
Comment. Math. Helv. 93 (2018), 829–882
DOI 10.4171/CMH/451

Commentarii Mathematici Helvetici
© Swiss Mathematical Society

Lagrangian isotopies and symplectic function theory

Michael Entov�, Yaniv Ganor�� and Cedric Membrez�

Abstract.We study two related invariants of Lagrangian submanifolds in symplectic manifolds.
For a Lagrangian torus these invariants are functions on the first cohomology of the torus.

The first invariant is of topological nature and is related to the study of Lagrangian isotopies
with a given Lagrangian flux. More specifically, it measures the length of straight paths in the
first cohomology that can be realized as the Lagrangian flux of a Lagrangian isotopy.

The second invariant is of analytical nature and comes from symplectic function theory. It
is defined for Lagrangian submanifolds admitting fibrations over a circle and has a dynamical
interpretation.

We partially compute these invariants for certain Lagrangian tori.
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1. Introduction

In this paper we study two related invariants of Lagrangian submanifolds which are
invariant under symplectomorphisms of the ambient symplectic manifolds.

Let .M;!/ be a symplectic manifold (possibly with boundary) and L � .M;!/
a closed Lagrangian submanifold. Let �WL ! M denote here and further on the
natural inclusion of L inM .

The first invariant of L comes from the consideration of Lagrangian isotopies
of L with a given Lagrangian flux path in H 1.LIR/. Namely, recall that if
 WD f t WL!M g0�t�T ,  0 D �, is a Lagrangian isotopy, one can associate to
it a Lagrangian flux path

fFlux. /tg0�t�T � H 1.LIR/; Flux. /0 D 0;

as follows: given a closed curve C � L and t 2 Œ0; T �, consider the trace of C
under the Lagrangian isotopy f � WL!M g0���t and integrate ! over the resulting
surface. The resulting (real) number depends only on the homology class of C
inH1.L/ (see [36]). The numbers obtained for all C in this way are the periods of a
uniquely defined Lagrangian flux class Flux. /t 2 H 1.LIR/.

The notion of Lagrangian flux immediately raises the following question.

Question 1.1. Which paths in H 1.LIR/ based at 0 have the form fFlux. /tg for
some Lagrangian isotopy  of L?

In general, this seems to be a very difficult question. In this paper we investigate
its weaker version:

Question 1.2. Which straight paths inH 1.LIR/ based at 0 have the form fFlux. /tg
for some Lagrangian isotopy  of L?
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The deformation invariant ofL is a function defLWH 1.LIR/! .0;C1� defined
as follows. Given ˛ 2 H 1.LIR/, set

defL.˛/ WD supT;

where we take the supremum over all T 2 R�0 for which there exists a Lagrangian
isotopy  D f t WL!M g0�t�T ,  0 D �, of L such that

Flux. /t D �t˛ for all 0 � t � T ; (1.1)

or, in other words, the path f�t˛g0�t�T inH 1.LIR/ is the path fFlux. /tg for some
Lagrangian isotopy  of L. It is easy to show that defL.˛/ is always non-zero —
thus, defL.˛/ takes values in .0;C1�.

In case .M;! D d�/ is an exact symplectic manifold the invariant defL can be
related to the notion of a symplectic shape studied in [11,35]. The symplectic shape
of .M; d�/ associated to L and a homomorphism hWH 1.M IR/ ! H 1.LIR/ is
the subset of H 1.LIR/ formed by the Liouville classes Œe��� 2 H 1.LIR/ for all
possible Lagrangian embeddings eWL! .M; d�/ such that

h D e�WH 1.M IR/! H 1.LIR/:

Assume M D Tn � U � Tn � Rn D T �Tn, where U � Rn is a connected
open set, and � is the standard Liouville form on Tn � Rn. Let x 2 U and let
L WD Tn � fxg � Tn � U be the corresponding Lagrangian submanifold. Let

hWH 1.Tn
� U IR/! H 1.Tn

� fxgIR/

be induced by the embedding Tn � fxg ,! Tn � U: Then the Benci–Sikorav
theorem [35] (cf. [11]) says that the shape of .Tn � U; d�/ associated to L and h is
U � Rn Š H 1.Tn � fxgIR/. Rephrasing this result in terms of the deformation
invariant gives us the following theorem.
Theorem 1.3. With U and .M D Tn �U; d�/, and L D Tn � fxg as above, for all
˛ 2 H 1.LIR/

defL.˛/ D supf t > 0 j x � t˛ 2 U g:
To prove Theorem 1.3 note that in this setting Flux. /t can be represented as the

difference of the Liouville classes of  t .L/ and L:

Flux. /t D  �t � �  
�
0�:

Then the inequality defL.˛/ � supf t > 0 j x� t˛ 2 U g follows from the existence
of an obvious Lagrangian isotopy  t .Tn�fxg/ D Tn�fx� t˛g, while the opposite
inequality follows directly from the Benci–Sikorav theorem.

The function 1= defL is obviously non-negatively homogeneous. In the case
when U is star-shaped with respect to x, it is, by Theorem 1.3, the Minkowski
functional associated to U —which in turn completely determines U .
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The study of defL can also be viewed as a relative analogue of a deformation
problem for symplectic forms on closed symplecticmanifolds considered in [32]: how
far can one deform a symplectic form ! within a family of symplectic forms such that
the cohomology class of the deformed form changes along a straight ray originating
at Œ!� and such that its restriction to a given !-symplectic submanifold remains
symplectic? To see how a relative version of this question is related to defL we denote
by Œ!�L 2 H 2.M;LIR/ and Œ!� t 2 H 2.M; t .L/IR/ the relative symplectic area
cohomology classes of, respectively,L and t .L/. The isotopy defines a canonical
isomorphism

H 2.M;LIR/ Š H 2.M; t .L/IR/

and thus Œ!� t can be viewed as an element of H 2.M;LIR/. Let @WH 1.LIR/ !
H 2.M;LIR/ be the connecting homomorphism. Then

Œ!�
 
t D Œ!�L C @Flux. /t

and condition (1.1) becomes

Œ!�
 
t D Œ!�L � t@˛ 2 H

2.M;LIR/; 0 � t � T: (1.2)

Therefore, as long as @˛ ¤ 0, the number defL.˛/measures how far one can deform
Œ!�L in a Lagrangian isotopy  satisfying (1.2).

This viewpoint enables us to study defL using methods of “hard” symplectic
topology. Namely, the existence of pseudo-holomorphic curves with boundaries
on  t .L/ for 0 � t � T may yield constraints on the time-length T of the deform-
ation, since Œ!� t evaluates positively on such curves. All the upper bounds on defL.˛/
known to us and appearing further in this paper are obtained in this way.

On the other hand, as we explain below, lower bounds on defL can be obtained
by “soft” constructions. These bounds come from the study of the second invariant
of L, called the Poisson-bracket invariant of L. It is defined only for L admitting a
fibration over S1: it is a function on the set of isotopy classes of smooth fibrations
of L over S1. In the case when L is a Lagrangian torus with a choice of an isotopy
class of its smooth parametrizations Tn ! L, we reduce this invariant to a function

bpLWH 1.L/! .0;C1�:

Postponing the precise definition of bpLWH 1.L/! .0;C1� until Section 3 we give
a short and informal definition here.

Namely, assumeL is a Lagrangian torus equipped with a parametrizationTn!L

and a 2 H 1.L/, a ¤ 0 (for a D 0 we set bpL.0/ WD C1). Consider a fibration
f WL! S1 such that a is the pull-back under f of the standard generator ofH 1.S1/
(the parametrization of L is used in the construction of f ; see Section 3.3). Cut S1

into four consecutive arcs, denote their preimages under f byX0, Y1,X1, Y0 (so that
X0 \X1 D Y0 \ Y1 D ;, X0 [ Y1 [X1 [X0 D L) and set

bpL.a/ WD 1=pb
C
4 .X0; X1; Y0; Y1/:
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Here pbC4 is the Poisson-bracket invariant of a quadruple of sets defined in [14] — it
is a refined version of the pb4-invariant introduced in [4] and it admits a dynamical
interpretation in terms of the existence of connecting trajectories of sufficiently small
time-length between X0 and X1 for certain Hamiltonian flows; see Section 3 for
details. The relation between bpL and defL is given by the following inequality
(which will be proved in a stronger form in Theorem 3.5).

Theorem 1.4. bpL � defL onH 1.L/.

This relation, albeit in a different language, was already exploited in [14], where
upper bounds on defL were obtained by symplectic rigidity methods in a setting
where the Lagrangian isotopy class of a Lagrangian torus L does not contain
(weakly) exact Lagrangian tori. This was then used to prove the existence of
connecting trajectories of Hamiltonian flows. In this paper we get upper bounds
on defL in new cases by using several strong symplectic rigidity results, including
some recent ones. Namely, Theorem 2.6 (the original idea of whose proof belongs
to E. Opshtein) and Theorem 2.11 rely on Gromov’s famous work [19], while
Theorem 2.16 and Theorem 2.19 rely on the recent powerful rigidity results of,
respectively, K. Cieliebak–K.Mohnke [7] and G.Dimitroglou Rizell–E. Goodman–
A. Ivrii [10]. At the same time we use new soft dynamical constructions to get lower
bounds on bpL, and hence on defL, in many new settings.

In Section 2 we partially compute the functions bpL and defL for several classes of
Lagrangian tori. Section 2.7 is then devoted to a discussion of the results and further
directions. In Section 3 we discuss in detail the definition of bpL. The sections
following Section 3 contain the proofs of the results from Section 2.

2. The main results

We now present results about defL and bpL for several examples of Lagrangian tori
in symplectic manifolds. (For general properties of defL and bpL see Section 3.4).

2.1. Symplectic manifolds without weakly exact Lagrangian submanifolds. Re-
call that a Lagrangian submanifold L � .M;!/ is called weakly exact, if Œ!�L � 0.

Theorem 2.1. Let L be a closed Lagrangian submanifold of a symplectic manifold
.M;!/ (possibly with boundary). Assume that .M;!/ does not admit weakly
exact Lagrangian submanifolds in the Lagrangian isotopy class of L. Assume that
˛ 2 H 1.LIR/ and

@˛ D
1

C
Œ!�L

for some C > 0. Then defL.˛/ � C .
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Proof. Let  D f t WL!M g, 0 � t � T , be a Lagrangian isotopy of L such that

Œ!�
 
t D Œ!�L � t@˛: (2.1)

Since, by the hypothesis of the theorem, @˛ D 1
C
Œ!�L, we get

Œ!�
 
t D Œ!�L.1 � t=C /:

Then t D C cannot lie in the interval Œ0; T �, because if it did, we would have
Œ!�

 
C D 0, implying that the Lagrangian submanifold  C .L/, which is Lagrangian

isotopic to L, is weakly exact, in contradiction with the hypothesis of the theorem.
Hence T < C . Since this is true for any Lagrangian isotopy of L satisfying (2.1),
we get defL.˛/ � C .

A similar result for a particular class of Lagrangian submanifolds and a
particular ˛ was proved in the same way in [14].

Let us note that symplectic manifolds that do not admit weakly exact Lagrangian
submanifolds at all or in a particular Lagrangian isotopy class are plentiful and
include, in particular, symplectic vector spaces [19] and complex projective spaces.

2.2. Lagrangian tori in symplectic surfaces. Suppose .M 2; !/ is a connected sym-
plectic surface (possibly with boundary) and L � .M;!/ is a simple closed oriented
curve (that is, a 1-dimensional Lagrangian torus) lying in the interior of M . The
orientation of L defines an isomorphism H 1.L/ Š Z. This allows to define bpL
onH 1.L/ (see Section 3.3). Denote the positive generator ofH 1.L/ by e.

We distinguish between two possibilities: whenM nL is disconnected and when
M n L is connected. We present precise statements in both cases.

In the first case L divides M into two connected components: MC and M� of
areas AC, A�, where 0 < A˙ � C1. The signs C and � here are determined by
the usual orientation convention.
Theorem 2.2. For k 2 N we have

bpL.ke/ D defL.ke/ D
AC

k
;

bpL.�ke/ D defL.�ke/ D
A�

k
;

In the second case let L � .M;!/ be a simple closed curve such that MnL is
connected.
Theorem 2.3. For k 2 Z we have

bpL.ke/ D defL.ke/ D C1:

The case k D 1 was proved in [33]. For the proofs of Theorems 2.2 and 2.3 see
Section 4.
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2.3. Toric orbits in symplectic toric manifolds. Let Tn WD Rn=Zn. Denote by

LieTn
D Rn

the Lie algebra of Tn D Rn=Zn and by

Lie� Tn
D .Rn/�

its dual space. Denote by .Zn/� the integral lattice in .Rn/�.
Let .M 2n; !/ be a connected (not necessarily closed) symplectic manifold

equipped with an effective Hamiltonian action of Tn. Denote the moment map
of the action byˆWM ! .Rn/�. Assume thatˆ is proper, the fibers ofˆ are exactly
the orbits of the action and the image ofˆ is a convex set� � .Rn/� with non-empty
interior so that its interior points are exactly the regular values of ˆ (by the Atiyah–
Guillemin–Sternberg theorem [1, 20], these conditions are automatically satisfied
ifM is closed).

Given x 2 �, denote byLx WD ˆ
�1.x/ the corresponding fiber ofˆ. If x 2 Int�,

then Lx is a Lagrangian torus and the Hamiltonian Tn-action on Lx gives us a pre-
ferred isotopy class of diffeomorphismsTn!Lx. Thus the pairH 1.Lx/�H

1.LxIR/
is naturally identified with the pair .Zn/� � .Rn/�. We denote by

bpx WD bpLx W .Z
n/� �! R

and by
defx WD defLx W .R

n/� �! R

the Poisson bracket and the deformation invariants of Lx.
For x 2 Int� and ˛ 2 H 1.LIR/ define lx.˛/ as the largest t > 0 for which

x� t˛ 2 � and let I.x; ˛/ be the open segment of the open ray x� t˛, t 2 .0;C1/,
connecting x and x � lx.˛/˛:

I.x; ˛/ WD fx � t˛; 0 < t < lx.˛/g:

If no such t exists, set lx.˛/ WD C1 and let I.x; ˛/ be the whole open ray. In other
words, I.x; ˛/ is the interior of the closed segment obtained by the intersection of
the ray with� and lx.˛/ is the ratio of the rational length of ˛ and the rational length
of this segment1.

Theorem 2.4. Let ˛ 2 .Zn/�. Then

lx.˛/ � bpx.˛/:

For the proof see Section 5.

1Recall that the rational length of a vector cv, v 2 Zn, is defined as jcj.
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Remark 2.5. Note that there exists a symplectomorphismˆ�1.Int�/! Tn� Int�
that identifiesˆ�1.x/withTn�fxg for each x 2 Int�. Then Theorem 1.3, applied to
the symplectic toric manifoldˆ�1.Int�/, implies that forLx viewed as a Lagrangian
submanifold ofˆ�1.Int�/ for each ˛ the deformation invariant defx.˛/ equals lx.˛/
and thus, by Theorem 2.4,

bpx.˛/ D defx.˛/ D lx.˛/

for all ˛ 2 H 1.L/.
For Lx viewed as a Lagrangian submanifold of the whole M the problem of

finding bpx.˛/ and defx.˛/ is more difficult and the results below that we have been
able to obtain are weaker.

2.4. Lagrangian tori in symplectic vector spaces. LetM D Cn be equipped with
the standard symplectic structure ! and let z1; : : : ; zn be the complex coordinates
on Cn. Given x1; : : : ; xn > 0, set x WD .x1; : : : ; xn/. Define a split Lagrangian
torus T n.x/ � Cn by

T n.x/ WD
˚
�jzi j

2
D xi ; i D 1; : : : ; n

	
:

The standard Hamiltonian Tn-action gives us a preferred isotopy class of
diffeomorphisms Tn ! T n.x/ and we naturally identify H 1.Lx/ � H 1.LxIR/
with .Zn/� � .Rn/�.

We first consider the case of Lagrangian tori in C2.

Lagrangian tori in C2. We first present computations of defL for general Lagrang-
ian tori in C2. We then restrict to the cases of split and Chekanov tori.

Let L � .C2; !/ be a Lagrangian torus.
We say that an almost complex structure J (on C2) compatible with ! is regular

(for L) with respect to a point p 2 L, if for any C 2 H2.C2; L/ the moduli
space of (non-parameterized) somewhere injective J -holomorphic disks in C2 with
boundary in L and with one marked boundary point that represent the class C and
pass through p (that is, the marked point coincides with p) is a (transversally cut
out) smooth manifold of the expected dimension. For any p 2 L a generic almost
complex structure J compatible with ! has this property; see Section 6.

The original idea of the proof of the following theorem belongs to E. Opshtein.
Theorem2.6. Assume thatH2.C2; L/'ZhA;Bi, where!.A/>0. Let˛2H 1.LIR/
so that @˛.A/ DW � > 0 and @˛.B/ DW �. Assume that for some k � 0

�.A/ D 2; �.B/ D 2k;

and
�=� � k C 1 � !.B/=!.A/:
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Then:

(A) For any p 2 L and any almost complex structure J compatible with ! and
regular with respect to p the mod-2 number nA.p; J / of (non-parameterized)
somewhere injective J -holomorphic disks with boundary in L in the class A
passing through p is well-defined and independent of the choice of p and J .

(B) If nA.p; J / ¤ 0 for some p and J as in (A), then

defL.˛/ �
!.A/

�
:

For the proof see Section 6.

Remark 2.7. As it can be seen from the proof, Theorem 2.6 remains true if C2

is replaced by any 4-dimensional symplectic manifold .M;!/ which satisfies
!j�2.M/ D c1j�2.M/ D 0, is geometrically bounded in the sense of [2], or convex at
infinity in the sense of [12], and

H2.M;L/ Š ZhA;Bi ˚ Im.�2.M/! �2.M;L//;

where A;B satisfy the same conditions as in Theorem 2.6.

Note that Theorem 2.6 applies to certain split Lagrangian tori T 2.x/ � C2.
Indeed, by [8], the standard complex structure J on C2 (which is, of course,
compatible with !) is regular (for T 2.x/) with respect to any point p 2 T 2.x/.
It is also easy to see that for any point p 2 T 2.x/ there is exactly one regular (non-
parametrized) J -holomorphic disk in the classA (with one marked point) that passes
through p, if A is any one of the two standard generators of H2.C2; T 2.x// with
positive symplectic area.

Theorem2.6, togetherwith Theorem1.4 andTheorem2.14 (this general statement
for split Lagrangian tori in Cn will appear later), yields the following corollary for
computations of defL and bpL for split tori in C2. We state the result in the case
x1 � x2—the corresponding result in the case x1 > x2 can be deduced from it using
the obvious symmetry of bpx and defx with respect to permutations of coordinates
in x (see (7.1) below).

Corollary 2.8. Assumem; n 2 Z, x D .x1; x2/, 0 < x1 � x2. Under these assump-
tions the following claims are true:

(A) If m; n � 0, then
bpx.m; n/ D defx.m; n/ D C1:

(B) If x1 < x2=l and 1 � n � l , then

bpx.0; n/ D defx.0; n/ D C1:
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(C) If nx1 �mx2 � 0;m > 0, then

x1=m � bpx.m; n/ � defx.m; n/:

(D) If nx1 �mx2 � 0; n > 0, then

x2=n � bpx.m; n/ � defx.m; n/:

(E) Assume for x D .x1; x2/ that 2x1 � x2. If m > 0, n � 2m � 0, then

x1=m D bpx.m; n/ D defx.m; n/:

x2

n
≤ bpx(m;n) ≤ defx(m;n) ≤ ?

bpx(m;n) = defx(m;n) = +1

(0; 1)

x1

m
≤ bpx(m;n) ≤ defx(m;n) ≤ ?

n

m

+1

nx1 � mx 2 = 0

Figure 1. Regions of validity in Corollary 2.8 for x1 < x2.

Parts (A)–(D) of Corollary 2.8 follow directly from Theorems 1.4 and 2.14.
Part (E) follows from the inequalities:

x1=m � bpx.m; n/ � defx.m; n/ � x1=m:

Here the first inequality follows from part (C) of Corollary 2.8, the second one from
Theorem 1.4, and the third one from Theorem 2.6 with A;B being the standard basis
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of H2.C2; T 2.x// (so that !.A/ D x1, !.B/ D x2), ˛ D me1 C ne2, a D m,
b D n, and k D 1.

x2

n
≤ bpx(m;n) ≤ defx(m;n) ≤ ?

bpx(m;n) = defx(m;n) = +1

n � 2m = 0

nx1 � mx 2 = 0

x1

m
= bpx(m;n) = defx(m;n)

(0; 1)

...

(0; l)

x1

m
≤ bpx(m;n) ≤ defx(m;n) ≤ ?

?

n

m

+1

+1

+1

Figure 2. Regions of validity in Corollary 2.8 for x1 < x2=l for l � 2.

In the case of the split monotone Lagrangian torus in C2 Corollary 2.8, together
with the obvious homogeneity property of defx, bpx with respect to x (see part (B)
of Proposition 7.1 below) and Theorem 2.1 (since C2 does not admit weakly exact
Lagrangian submanifolds by [19]), yields the following result.
Corollary 2.9. Assume m; n 2 Z, x D .x; x/, x > 0. Then:

C1 D bpx.m; n/ D defx.m; n/; if m; n � 0;
x

m
D bpx.m;m/ D defx.m;m/; if m D n > 0;

x

maxfm; ng
� bpx.m; n/ � defx.m; n/; if m > 0 or n > 0:
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x

maxfm;ng ≤ bpx(m;n) ≤ defx(m;n) ≤ ?

bpx(m;n) = defx(m;n) = +1

n

m

x

m
= bpx(m;m) = defx(m;m)

Figure 3. Regions of validity in Corollary 2.9 for monotone Lagrangian tori.

Chekanov tori in C2. Chekanov tori ‚a, a > 0, in C2 were originally introduced
in [5] (cf. [13]). The torus ‚a � C2 D C � C is defined as follows: consider the
first open quadrant Q of C and a point q 2 Q. Fix a foliation of Q n q by simple
closed curves (each winding once around q) so that for each a > 0 there is exactly
one curve in the foliation that bounds a disk of area a inQ.

Pick a > 0 and let �.t/ be the counterclockwise regular parameterization of the
corresponding curve in the foliation. Then

‚a WD

�
1
p
2

�
e2�is�.t/; e�2�is�.t/

��
:

Consider the basis�; 
 ofH1.‚a/, where�; 
 are, respectively, the homology classes
of the curves

t 7!
1
p
2

�
�.t/; �.t/

�
and s 7!

1
p
2

�
e2�is�.0/; e�2�is�.0/

�
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in ‚a. Let y�; y
 be the integral basis ofH 1.‚a/ dual to �; 
 . Define the functions

defaW .Z2/� ! .0;C1�; bpaW .Z2/� ! .0;C1�

by
defa.m; n/ WD def‚a.my� C ny
/; bpa.m; n/ WD bp‚a.my� C ny
/:

Theorem 2.10. The following claims hold for the Chekanov tori in C2:
(A) bpa.m; n/ � a=m, if m > 0.
(B) bpa.m; n/ D defa.m; n/ D C1 for m < 0.

For the proof see Section 6.1.

Lagrangian tori in Cn for general n 2 N. We first generalize the statement of
Theorem 2.6 to Lagrangian tori in Cn for a general n 2 N.

Let L � .Cn; !/ be a Lagrangian torus.
As above, we say that an almost complex structure J (on Cn) compatible with !

is regular (for L) with respect to a point p 2 L, if for any C 2 H2.Cn; L/ the
moduli space of non-parameterized somewhere injective J -holomorphic disks in Cn

with boundary on L and with one marked point that represent the class C and pass
through p (that is, the marked point coincides with p) is a (transversally cut out)
smooth manifold of the expected dimension. A generic J (on Cn) compatible with !
has this property; see Section 7.2.
Theorem 2.11. AssumeH2.Cn; L/ ' ZhA1; : : : ; Ani, where

�.Ai / D 2; i D 1; : : : ; n;

and
!.A1/ DW a > 0; !.A2/ D � � � D !.An/ DW b:

Let ˛ 2 H 1.LIR/ so that

@˛.A1/ DW � > 0; @˛.Ai / DW �; i D 2; : : : ; n:

Assume

�=� �
nC 2

2
� b=a; if n is even;

�=� �
nC 3

2
� b=a; if n is odd:

Then:
(A) For an almost complex structure J compatible with ! and regular (for L) with

respect to a point p 2 L the mod-2 number nA1.p; J / of (non-parameterized
somewhere injective) J -holomorphic disks with boundary in L in the class A1
with one marked point passing through p is well-defined and independent of the
choice of p and J .
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(B) If nA1.p; J / ¤ 0 for some p and J as in (A), then

defL.˛/ �
!.A1/

�
D
a

�
:

For the proof see Section 7.2.
Remark 2.12. For Lagrangian tori L � C2 satisfying H2.C2; L/ ' ZhA1; A2i,
where �.A1/ D �.A2/ D 2, Theorem 2.11 gives the same result as Theorem 2.6.
Remark 2.13. As it can be seen from the proof, and similarly to Remark 2.7,
Theorem 2.11 remains true if Cn is replaced by any 2n-dimensional symplectic
manifold .M;!/which satisfies !j�2.M/ D c1j�2.M/ D 0, is geometrically bounded
in the sense of [2], or convex at infinity in the sense of [12], and the following holds:

H2.M;L/ ' ZhA1; : : : ; Ami ˚ Im.�2.M/! �2.M;L//; (2.2)

for some m 2 N (not necessarily equal to n!), where

�.Ai / D 2; i D 1; : : : ; m;

!.A1/ DW a > 0; !.A2/ D � � � D !.Am/ DW b;

and ˛ 2 H 1.LIR/ satisfies

@˛.A1/ DW � > 0; @˛.Ai / DW �; i D 2; : : : ; m;

�=� �
nC 2

2
� b=a; if n is even;

�=� �
nC 3

2
� b=a; if n is odd:

In such a case Theorem 2.11 can be applied not only to M;L and ˛ but also to
. yM WD M � T �S1, y! WD ! ˚ d� ^ dr/ (where � 2 S1; r 2 R are the standard
coordinates on T �S1), yL WD L � S1 � yM (where S1 D fr D 0g is the zero-
section of T �S1) and y̨, which is the image of ˛ under the inclusion H 1.LIR/ !
H 1.yLIR/ D H 1.LIR/˚R. (Note thatH2.M;L/ ' H2. yM; yL/).

Moreover, if an almost complex structureJ onM is compatiblewith! and regular
(for L) with respect to a point p 2 L, then yJ WD J ˚ j (where j is the standard
complex structure on T �S1) is an almost complex structure on yM compatible with y!
and regular (for yL) with respect to a point yp WD p � q 2 yL D L � S1 (where q is a
point in S1), and nA1.p; J / D nA1. yp; yJ /.

Then, if ˛ 2 H 1.L/, we can apply Theorem 2.11 to yM; yL; y̨ and, together with
Theorem 1.4, it yields

bpyL.y̨/ � defyL.y̨/ �
a

�
;
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or, equivalently,

pbC4 .X0 � S1; Y0 � S1; X1 � S1; Y1 � S1/ �
�

a
;

where X0; X1; Y0; Y1 are the closed subsets of L D X0 [ X1 [ Y0 [ Y1 used to
define bpL.˛/.

By [14] (cf. Theorem 3.1 below), this yields the existence of connecting traject-
ories from X0 to X1 for Hamiltonian flows (defined for all times) generated by
time-periodic HamiltoniansH WM � S1 ! R such that

�H WD min
Y1�S1

H � max
Y0�S1

H > 0:

Such a connecting trajectory will have time-length � a=��H .

Note that Theorem 2.11 applies to certain split Lagrangian tori in .Cn; !/ and
the standard basis A1; : : : ; An ofH2.Cn; T n.x// – indeed, for the standard complex
structure J on Cn (which is, of course, compatible with !) there is exactly one
(non-parametrized) J -holomorphic disk in the class A1 passing through any point
of T n.x/. The regularity of J (for T n.x/) with respect to any p 2 T n.x/ follows
again from [8].

The following results give partial information about the function bpx for split
Lagrangian tori. Set xmin WD minfx1; : : : ; xng. Denote by e1; : : : ; en the standard
generators ofH 1.T n.x// Š .Zn/�.

Theorem 2.14.

(A) If mi � 0 for all i D 1; : : : ; n, then

bpx.m1; : : : ; mn/ D defx.m1; : : : ; mn/ D C1:

Otherwise
min
i;mi>0

xi=mi � bpx.m1; : : : ; mn/:

(B) If x1 D � � � D xn DW x and k 2 N, then

bpx.k; : : : ; k/ D defx.k; : : : ; k/ D x=k:

(C) Let l 2 N and assume xmin < xi=l . Then for all k 2 N with k � l ,

bpx.kei / D defx.kei / D C1:

For the proof see Section 7.3.
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Combining Theorem 2.11 and Theorem 2.14 we obtain for certain split tori T n.x/
the following result.
Corollary 2.15. Assume x2 D � � � D xn DW y and let 0 < x1 � 2y=.n C 2/

if n is even and 0 < x1 � 2y=.n C 1/ if n is odd. For m1 2 N let the integer
m2 D � � � D mn � y m1=x1. Then we have

bpx.m1; : : : ; mn/ D defx.m1; : : : ; mn/ D x1=m1:

In particular, for any m1 2 N

bpx.m1e1/ D defx.m1e1/ D x1=m1:

Furthermore, assume for l 2 N that x1 < y=l . Then for all 1 � k � l and all
2 � i � n we have

bpx.kei / D defx.kei / D C1:

2.5. Lagrangian tori in complex projective spaces. LetM D CP n and let ! be
the standard Fubini–Study symplectic form on CP n normalized so that

R
CP 1 ! D 1.

Theorem2.16. LetL � .CP n; !/ be a Lagrangian torus and˛ 2 H 1.L/. Consider

Œ!�t WD Œ!�L � t@˛ 2 H
2.CP n; LIR/

for t � 0. If there exists a C > 0 such that Œ!�C 2 H 2.CP n; LI 1
n
Z/, then

defL.˛/ � C:

For the proof see Section 8.1.
We provide a precise statement in the case of Lagrangian torus fibers. Consider

the standard Hamiltonian Tn-action on CP n and denote its moment map by
ˆWCP n ! .Rn/�. Its image is the simplex

� WD
˚
.x1; : : : ; xn/ 2 .R

n/� j x1; : : : ; xn � 0; 0 � x1 C � � � C xn � 1
	
:

As in Section 2.3, for x 2 Int� denote Lx WD ˆ
�1.x/ the corresponding Lagrangian

torus fiber of ˆ and set

defx.˛/ WD defLx.˛/; bpx.˛/ WD bpLx.˛/

for each ˛ 2 .Zn/� Š H 1.Lx/.
By Theorem 2.4, for all ˛ 2 .Zn/�

lx.˛/ � bpx.˛/: (2.3)

For certain ˛ 2 .Zn/� and x 2 Int� we obtain an upper bound on defx.˛/ from
Theorem 2.16.



Vol. 93 (2018) Lagrangian isotopies and symplectic function theory 845

Namely, define dx.˛/ as the smallest t > 0 for which x � t˛ 2 1
n
� .Zn/� and let

J.x; ˛/ be the open segment of the same open ray x � t˛, t 2 .0;C1/, as above
connecting x and x � dx.˛/˛:

J.x; ˛/ WD
˚
x � t˛; 0 < t < dx.˛/

	
:

If no such t exists, set dx.˛/ WD C1 and let J.x; ˛/ be the whole open ray. In other
words, J.x; ˛/ is the open part of the segment of the ray connecting the origin x of
the ray to the closest point of the lattice 1

n
� .Zn/� on the ray.

Corollary 2.17. With the setup as above,

defx.˛/ � dx.˛/: (2.4)

In case lx.˛/ D dx.˛/ the lower and the upper bounds (2.3), (2.4) yield defx.˛/ D
dx.˛/ D lx.˛/ D bpx.˛/. For instance, this happens when the intervals I.x; ˛/ and
J.x; ˛/ coincide. Thus, we get the following corollary.
Corollary 2.18. Assume that x D �˛ for some � > 0, ˛ 2 H 1.Lx/, and that the
open interval ftx; 0 < t < �g, does not contain points of the lattice 1

n
� .Zn/�.

Then this interval coincides with I.x; ˛/ and J.x; ˛/ and therefore

defx.˛/ D bpx.˛/ D lx.˛/ D dx.˛/ D �:

2.6. Lagrangian tori in S2 � S2. Let .S2; �/ be the standard symplectic sphere
with normalized symplectic area

R
S2 � D 1.

Theorem 2.19. Let L � .S2 � S2; � ˚ �/ be a Lagrangian torus and ˛ 2 H 1.L/.
Consider

Œ!�t WD Œ!�L � t@˛ 2 H
2.S2 � S2; LIR/

for t � 0. If there exists a C > 0 such that Œ!�C 2 H 2.S2 � S2; LIZ/, then

defL.˛/ � C:

For the proof see Section 8.2.
We provide a precise statement in the case of Lagrangian torus fibers. Consider

the standard Hamiltonian T2-action on S2 � S2 and denote its moment map by
ˆWS2 � S2 ! .R2/�. Its image is given by � WD Œ0; 1� � Œ0; 1�. As in Section 2.3,
for x 2 Int� denote Lx WD ˆ�1.x/ the corresponding Lagrangian torus fiber of ˆ
and set

defx.˛/ WD defLx.˛/; bpx.˛/ WD bpLx.˛/

for each ˛ 2 .Z2/� Š H 1.Lx/.
By Theorem 2.4, for all ˛ 2 .Z2/�

lx.˛/ � bpx.˛/:
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For certain ˛ 2 .Z2/� and x 2 Int� we obtain an upper bound on defx.˛/ from
Theorem 2.19.

Namely, define �x.˛/ as the smallest t > 0 for which x � t˛ 2 .Z2/� and let
K.x; ˛/ be the open segment of the same open ray x � t˛, t 2 .0;C1/, as above
connecting x and x � �x.˛/˛:

K.x; ˛/ WD
˚
x � t˛; 0 < t < �x.˛/

	
:

If no such t exists, set �x.˛/ WD C1 and let K.x; ˛/ be the whole open ray. In other
words, K.x; ˛/ is the open part of the segment of the ray connecting the origin x of
the ray to the closest point of the lattice .Z2/� on the ray.

Corollary 2.20. With the setup as above,

lx.˛/ � bpx.˛/ � defx.˛/ � �x.˛/:

In particular, if K.x; ˛/ connects x to either of the four vertices of�, then I.x; ˛/ D
K.x; ˛/ then

lx.˛/ D bpx.˛/ D defx.˛/ D �x.˛/:

2.7. Discussion and open questions. The results above reflect first steps in the study
of the invariants bpL and defL. In this section we discuss the main difficulty in the
current approach and a possible direction of further investigation of these invariants.

As we have already mentioned in the introduction, the lower bounds on bpL
come from “soft” constructions, while the upper bounds on defL are based on
“rigid” symplectic methods – foremost, on strong results yielding the existence of
pseudo-holomorphic disks with boundary on Lagrangian submanifolds appearing
in appropriate Lagrangian isotopies of L. Unfortunately, it seems that these
strong rigidity results are not strong enough to get upper bounds on defL.˛/ for
many ˛ even for the basic examples of Lagrangian tori considered above. The
(well-known) difficulty comes from the fact that the pseudo-holomorphic disks in a
given relative homology class of L in M may not persist in a Lagrangian isotopy
 D f t WL ! M g of L (since bubbling-off of pseudo-holomorphic disks is a
codimension-1 phenomenon), which makes it very difficult to track, as t changes,
the relative homology classes of  t .L/ carrying the disks and, accordingly, the
symplectic areas of these disks. (As above, we use the Lagrangian isotopy to identify
the relative homology groups of all  t .L/). In our case the difficulty is compounded
by the need to track the pseudo-holomorphic disks and their areas for an arbitrary
Lagrangian isotopy  of L satisfying the cohomological condition (1.1), with no a
priori geometric information about it. Such a Lagrangian isotopy typically involves
non-monotone Lagrangians which limits even more the control over the disks and
their areas.
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Thus, the progress on upper bounds for defL depends on getting more precise
information on pseudo-holomorphic/symplectic disks with boundary on (possibly
non-monotone) Lagrangian submanifolds Lagrangian isotopic to L.

Here is an example of possible additional helpful information on the disks. We
will present it in the case of Lagrangian tori in the standard symplectic C2.

Assume there is away to associate to any non-monotoneLagrangian torusL � C2

an ordered integral basis BL ofH2.C2; L/ with the following properties:

(a) For any Lagrangian isotopy Lt of L among non-monotone Lagrangian tori the
following conditions hold:
– the bases BLt for different t are all identified with each other under the

isomorphisms between the groupsH2.C2; Lt / defined by the Lagrangian isotopy;
– the symplectic areas of the elements of BLt are positive and change continuously

with t .

(b) For L D T 2.x1; x2/, x1 < x2, the basis BL is the standard basis of

H2.C
2; T 2.x1; x2//:

If such bases exist, a rather straightforward argument would allow to strengthen
Corollary 2.8 and show that if 0 < x1 � x2 and nx1 �mx2 � 0, m > 0, then

x1=m D bpx.m; n/ D defx.m; n/:

This, in turn, would allow to strengthen Corollary 2.9 and show that for a monotone
split Lagrangian torus T 2.x; x/ one has

bpx.m; n/ D defx.m; n/ D
x

maxf0;m; ng

for all m; n 2 Z.
The question about the existence of a basis BL is motivated by the folklore

conjecture that any non-monotone torus L in C2 is Hamiltonian isotopic to a split
torus T 2.x1; x2/.

Indeed, assume the conjecture is true. Then, by a theorem of Y.Chekanov [5], the
ordered pair .x1; x2/ is uniquely determined by L, as long as we require x1 < x2.
A Hamiltonian isotopy between L and T 2.x1; x2/ identifies the standard basis of
H2.C2; T .x1; x2// with an integral basis BL of H2.C2; L/. The basis BL does
not depend on the choice of the Hamiltonian isotopy (since any Hamiltonian isotopy
of C2 preserving T 2.x1; x2/ as a set acts trivially on the homology of T 2.x1; x2/,
by a theorem of M.-L. Yau [38]). It is not hard to check that BL satisfies (a) and (b).

The existence of bases BL satisfying (a) and (b) is, of course, much weaker than
the conjecture and, accordingly, might be easier to prove and to generalize to higher
dimensions.
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3. The invariant bpL and its properties

The definition of bpL is based on the following construction related to the Poisson
bracket.

3.1. Poisson bracket invariants. Let .M 2n; !/ be a connected symplectic mani-
fold, possibly with boundary. Let C1.M/ and C1c .M/ denote, respectively, the
spaces of all and of compactly supported smooth functions onM (in the latter case
the support is allowed to intersect the boundary ofM ).

Our sign convention for the Poisson bracket on .M;!/ will be as follows. For
G2C1.M/ define a vector field sgradG by isgradG!D�dG. GivenF;G2C1.M/,
define the Poisson bracket fF;Gg by

fF;Gg WD !.sgradG; sgradF / D dF.sgradG/
D �dG.sgradF / D LsgradGF D �LsgradFG:

We say that sets X0, X1, Y0, Y1 � M form an admissible quadruple, if they are
compact and X0 \X1 D Y0 \ Y1 D ;.

Assume X0; X1; Y0; Y1 � M is an admissible quadruple. Recall from [14]
(cf. [4]) the following definition:

pbC4 .X0; X1; Y0; Y1/ WD inf
.F;G/2F

max
M
fF;Gg;

where F D F .X0; X1; Y0; Y1/ is the set of all pairs .F;G/, F;G 2 C1c .M/, such
that

F jX0 � 0; F jX1 � 1; GjY0 � 0; GjY1 � 1: (3.1)

One can show (see [4, 14]) that F can be replaced in the definition of pbC4 by a
smaller set F 0 D F 0.X0; X1; Y0; Y1/ of pairs .F;G/, F;G 2 C1c .M/, for which
the inequalities in (3.1) are replaced by equalities on some open neighborhoods of
the sets X0; X1; Y0; Y1.

If it is clear from the context what X0; X1; Y0; Y1 are meant, we will omit the
corresponding indices and sets in the notation for pbC4 , F , F 0.

The number 1=pbC4 .X0; X1; Y0; Y1/ has the following dynamical interpretation
[14] (cf. [4]):
Consider the set S of complete Hamiltonians GWM ! R such that

�G WD min
Y1

G �max
Y0

G > 0:

For each such G define TG 2 .0;C1� as the supremum of all t > 0 such that there
is no trajectory of the Hamiltonian flow of G of time-length � t=�G from X0 to X1
(such a trajectory is called a chord of G). We recall:
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Theorem 3.1 ([14, Theorem 1.11]).

sup
G2S

TG D 1=pb
C
4 .X0; X1; Y0; Y1/:

Thus, if there exists a complete Hamiltonian GWM ! R with

min
Y1
G �max

Y0
G > 0

that has no chords from X0 to X1 then

1=pbC4 .X0; X1; Y0; Y1/ D C1:

3.2. The invariant bpL for general Lagrangian submanifolds. ThepbC4 -invariant
of admissible quadruples can be used to define a symplectic invariant of Lagrangian
submanifolds fibered over the circle in the following way.

Let L � .M;!/ be a closed, connected Lagrangian submanifold admitting a
fibration over S1. Let I0.L/ denote the set of smooth fibrations L ! S1. The
right action of Diff0.L/ defines an equivalence relation on I0.L/ and we denote the
resulting quotient set by I.L/. Now slice S1 into 4 consecutive closed arcs 
1, 
2,

3, 
4 in the counterclockwise order. For a chosen smooth fibration f WL ! S1

representing a class Œf � 2 I.L/ we define

X0 WD f
�1.
1/; X1 WD f

�1.
3/; Y0 WD f
�1.
4/; Y1 WD f

�1.
2/:

Roughly speaking, we slice L into four parts along cuts parallel to a fiber of f ; see
Figure 4.

X0

Y0

X1

Y1

γ1

γ4

γ3

γ2

S1

f

Figure 4. The four sets X0; X1; Y0; Y1 arising from a fibration f .

One easily sees that X0; X1; Y0; Y1 � M is an admissible quadruple and
X0 [X1 [ Y0 [ Y1 D L. We call such a quadruple an admissible quadruple
associated to f . We set

bpL
�
Œf �
�
WD 1=pbC4 .X0; X1; Y0; Y1/:

If pbC4 .X0; X1; Y0; Y1/ D 0, we set

bpL
�
Œf �
�
WD C1:

Thus, bpL.Œf �/ takes values in .0;C1�.



850 M. Entov, Y. Ganor and C. Membrez CMH

Equivalently, bpL.Œf �/ can be described as the infimum of all T > 0 such that for
any complete Hamiltonian GWM ! R satisfying GjY0 � 0, GjY1 � 1, there exists
a chord of G from X0 to X1 of time-length � T . If no such T exists, we set

bpL
�
Œf �
�
WD C1:

In applications we will often prove a lower bound T � bpL.Œf �/ by constructing for
any " > 0 a complete Hamiltonian G that satifies GjY0 � 0, GjY1 � 1 and has no
chords from X0 to X1 of time-length < T � ".

Remark 3.2. The letters in the notation bp stand for the “Poisson bracket” and their
inverse order (“b” before “p”) reflects the fact that in the definition of bp we take the
inverse of the maximum of the Poisson bracket.

Proposition 3.3. bpL.Œf �/ is well-defined i.e. it does not depend on the choice of
representative of Œf � 2 I.L/ and the choice of division of S1 into 4 arcs.

Proof. Let f WL ! S1 be a smooth fibration. We first show that for � 2 Diff0.L/
the bpL-invariants of f and f ı � are equal.

Note that any � 2 Diff0.L/ is a time-1 flow of a time-dependent vector field
on L. Denote this vector field on L by Xt and the corresponding flow by �t .
Let W Š U � T �L be a Weinstein neighborhood of L in M . Identify L with the
0-section in U . We can extend Xt in U to a Hamiltonian vector field as follows:
in canonical coordinates .q; p/ we define the Hamiltonian Ht WU ! R by setting
Ht .q; p/ D p.Xt .q//. A short calculation reveals that the Hamiltonian vector
field XHt � Xt on the zero-section. By multiplying Ht with a suitable cut-off
function one obtains a time-dependent Hamiltonian with compact support in W
such that the induced flow on L coincides with the flow of �t . Therefore, by
invariance of pbC4 under symplectomorphism, bpL does not depend on the choice of
representative of a class in I.L/.

We now show independence of the choice of four arcs 
i . Choose four other arcs 
 0i
in the same fashion. Note that there exists a ' 2 Diff0.S1/ such that '.
 0i / D 
i .
Using the notation of Section 3.2, this implies that the image of ' ıf and f under %0
lie in the same path-connected component of N 0.L/. Using Proposition 3.4 we see
that ' ı f and f represent the same equivalence class in I.L/. Hence our definition
is independent of choice of arcs.

Clearly, the resulting function bpLW I.L/! .0;C1� is a symplectic invariant of
Lagrangian submanifolds fibered over the circle. We call this function the Poisson-
bracket invariant of L.

We now relate I.L/ to the integral cohomology of L.
Consider the setN 0.L/ of all non-singular (that is, non-vanishing) closed 1-forms

onL representing non-zero integral classes inH 1.L/. It follows easily fromMoser’s
method [30] that the path-connected components of N 0.L/ are exactly the orbits of
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the natural Diff0.L/-action on N 0.L/. Let N .L/ D N 0.L/=Diff0.L/ be the set of
the path-connected components of N 0.L/.

Define a map %0W I0.L/ ! N 0.L/ as follows. Given an element f 2 I0.L/,
i.e. a fibration f WL ! S1, let %0.f / be the non-singular 1-form f �d� , where d�
is the standard angle 1-form on S1. Clearly, %0W I0.L/ ! N 0.L/ induces a map
%W I.L/! N .L/.
Proposition 3.4. The map %W I.L/! N .L/ is invertible.

Proof. Define a map �0WN 0.L/ ! I0.L/ as follows. Fix a point x0 2 L. Given
a non-singular form ˛ 2 N 0.L/, let �0.˛/ be the map L ! S1 D R=Z that sends
each x 2 L to

R x
x0
˛ mod 1. Here the integral is taken along any smooth path from x0

to x inL (recall thatL is assumed to be connected); a different choice of path changes
the integral by an integral value, since the cohomology class of ˛ is integral. One
easily checks that �0.˛/ is a fibration ofL over S1 and thus �0 is well-defined. Clearly,
�0 induces a map �WN .L/! I.L/.

Note that %0 ı �0 D Id and for any fibration f 2 I0.L/ the fibration �0 ı%0.f / lies
in the Diff0.L/-orbit of f . This shows that � D %�1.

Thus bpL is also defined as a function bpLWN .L/! .0;C1�.
Note that a path in N 0.L/ has to lie in the same cohomology class. This defines

a map ‡ WN .L/! H 1.L/ n 0. For general L the map ‡ does not have to be either
surjective or injective — to check whether it is surjective for a particular L is, in
general, a very non-trivial task, see [15, 21, 23, 37]. However, if dimL � 3, then ‡
is injective; see e.g. [25]. Using ‡ WN .L/! H 1.L/ n 0 we define a version bpL of
the invariant on the image of ‡ inH 1.L/ n 0: for ˛ 2 im.‡/ � H 1.L/ n 0 we set

bpL.˛/ WD sup
A2‡�1.˛/

bpL.A/;

and we extend bpL to 0 via bpL.0/ WD C1.
Theorem 3.5. Let L � .M;!/ be a closed Lagrangian submanifold admitting
fibrations over S1. Then for all ˛ 2 im.‡/ [ f0g � H 1.L/ we have

bpL.˛/ � defL.˛/:

Proof. For ˛ D 0 we have bpL.˛/ D defL.˛/ D C1 verifying the claim.
Let us assume ˛ ¤ 0. We will prove the inequality bpL.˛/ � defL.˛/ by

a method developed in [4] (cf. [14]). Namely, given ˛ 2 H 1.L/, consider any
smooth fibration f WL ! S1 such that ‡ ı %.Œf �/ D ˛ (see Section 3.2 for the
notation). Let X0; X1; Y0; Y1 be an admissible quadruple used in the definition of
bpL.Œf �/ D 1=pbC4 .X0; X1; Y0; Y1/. Let .F;G/ 2 F 0.X0; X1; Y0; Y1/. Note that,
since L D X0[X1[Y0[Y1 and since F is constant on some neighborhoods ofX0
and X1 and G is constant on some neighborhoods of Y0 and Y1,

dF ^ dG � 0 on a neighborhood of L; (3.2)
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and thus FdGjL is a closed 1-form on L. An easy direct computation shows that

ŒFdGjL� D �˛ 2 H
1.L/: (3.3)

Consider the deformation

!t WD ! C tdF ^ dG; t 2 R�0:

A direct calculation shows that

dF ^ dG ^ !n�1 D �
1

n
fF;Gg!n;

and thus
!nt D

�
1 � tfF;Gg

�
!n:

Thus, !t is symplectic for any t 2 I.F;G/, where

I.F;G/ WD
h
0;

1

maxM fF;Gg

�
:

Fix an arbitrary t 2 I.F;G/. Since F;G are compactly supported, the form !

can be mapped (using Moser’s method [30]) to !t by a compactly supported isotopy
#t W .M;!t / ! .M;!/. Since, by (3.2), L is Lagrangian with respect to !t , we get
that Lt WD #t .L/ is a Lagrangian submanifold of .M;!/ Lagrangian isotopic to L.

Using (3.3) we readily see that, under the identification

H 2.M;LIR/ Š H 2.M;Lt IR/

induced by the isotopy, the class Œ!�Lt is identified with ! � t@˛. Since this is true
for all t 2 I.F;G/ we obtain

1

maxM fF;Gg
� defL.˛/:

Now the latter inequality holds for all .F;G/ 2 F 0.X0; X1; Y0; Y1/, this gives us

bpL
�
Œf �
�
WD 1=pbC4 .X0; X1; Y0; Y1/ � defL.˛/:

This is true for any Œf � such that ‡ ı %.Œf �/ D ˛, hence

bpL.˛/ � defL.˛/:

Question 3.6. Do there exist L and ˛ 2 im.‡/ � H 1.L/ n 0 for which

bpL.˛/ ¤ defL.˛/‹
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3.3. The invariant bpL for Lagrangian tori. Let us now assume that L is diffeo-
morphic to a torus Tn. In this case the map ‡ is clearly surjective. If n � 3, then,
as mentioned above, ‡ is injective and hence bijective. Thus bpL D bpL coincide
and by abuse of notation we write the invariant

bpLWH 1.L/ �! R

in these cases (we extend bpL to 0 via bpL.0/ WD C1).
For a torus of dimension strictly greater than 3 themap‡ may not be injective. For

instance,‡ is known to be not injective ifn > 5; see [24,34]. In any case, each isotopy
class of diffeomorphisms sWTn ! L defines a right inverse‰sWH 1.L/ n 0! N .L/

of ‡ as follows: given a 2 H 1.L/ n 0, represent s�a 2 H 1.Tn/ n 0 by a linear form
and let‰s.a/ be the path-connected component ofN 0.L/ containing the pull-back of
this linear form under s�1. Thus for any isotopy class of diffeomorphisms sWTn ! L

we can define
bpsL WD bpL ı‰sWH 1.L/ �! R;

where we again extend bpL to 0 via bpsL.0/ WD C1. Clearly,

bpsL � bpL: (3.4)

In case the class of parametrizations sWTn ! L is clear we sometimes write bpL by
abuse of notation. For instance, if L is a regular fiber of a Hamiltonian Tn-action
there is an obvious preferred isotopy class of diffeomorphisms Tn ! L.

Theorem 3.5 and (3.4) yield

bpL � defL : (3.5)

Remark 3.7. The discussion above shows that for a Lagrangian torus L, a
cohomology class˛ 2 H 1.L/n0 and an isotopy class s of diffeomorphismsTn ! L

we have
bpsL.˛/ D 1=pb

C
4 .X0; X1; Y0; Y1/:

Here .X0; X1; Y0; Y1/ is an admissible quadruple associated to a fibrationf˛WL! S1

such that the Diff0.L/-orbit of the 1-form f �˛ d� onL (whose cohomology class is ˛)
is ‰s.˛/ 2 N .L/. By the same token,

bpsL.�˛/ D 1=pb
C
4 .X0; X1; Y1; Y0/ D 1=pb

C
4 .X1; X0; Y0; Y1/:

Indeed, f�˛ can be constructed by composing f˛ with an orientation-reversing
diffeomorphism of S1.

Nowassumek 2 N and˛ 2 H 1.L/ is a primitive class (that is, a classwhich is not
a positive integral multiple of another class inH 1.L/). Then an admissible quadruple
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.X0; X1; Y0; Y1/ associated tofk˛ can be described in terms off˛ . Namely, divideS1

in consecutive closed arcs 
1; : : : ; 
4k in the counterclockwise order. Set

X0 WD f
�1
˛

� [
i�1 mod 4


i

�
; X1 WD f

�1
˛

� [
i�3 mod 4


i

�
;

Y0 WD f
�1
˛

� [
i�0 mod 4


i

�
; Y1 WD f

�1
˛

� [
i�2 mod 4


i

�
:

Thus, if k D 1, then the setsX0; X1; Y0; Y1 are diffeomorphic to Tn�1� Œ0; 1�, while
if k > 1 the sets are the unions of the same number of disjoint copies ofTn�1� Œ0; 1�.

3.4. General properties of bpL and defL. We list basic properties of bpL and defL
that will be used further in the paper.

Homogeneity of defL. defL is positively homogeneous of degree �1,

defL.c˛/ D defL.˛/=c

for any c > 0 and ˛ 2 H 1.LIR/.

Question 3.8. Is there an inequality/equality between bpL.k˛/ and kbpL.˛/ in
case L is a Lagrangian torus and k 2 N?

Semi-continuity of defL. Let Lj � .M;!/, j 2 N, be a sequence of Lagrangian
submanifolds Lagrangian isotopic to L and converging to L � .M;!/ in the C 1-
topology. Then

defL.˛/ � lim inf
j!C1

defLj .˛/ for any ˛ 2 H 1.LIR/: (3.6)

(Here we use the canonical isomorphism H 1.Lj IR/ Š H 1.LIR/). The inequality
follows from a parametric version of the Weinstein neighborhood theorem.
Now let us consider the general properties ofpbC4 . Wewill use the following notation:
if U � M (possibly U D M ) is an open set containing an admissible quadruple
X0; X1; Y0; Y1wewill denote bypbU;C4 .X0; X1; Y0; Y1/ the Poisson bracket invariant
defined using functions supported in U .

The following properties of pbC4 and bpL follow easily from the definitions.

Monotonicity of pbC

4
. Assume U � W are opens sets inM and X 00; X 01; Y 00; Y 01 �

U � W is an admissible quadruple. Let X0; X1; Y0; Y1 be another admissible
quadruple such that X0 � X 00; X1 � X 01; Y0 � Y 00; Y1 � Y 01. Then

pb
W;C
4 .X0; X1; Y0; Y1/ � pb

U;C
4 .X 00; X

0
1; Y

0
0; Y

0
1/: (3.7)
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Semi-continuity of pbC

4
and bpL. Suppose that a sequenceX .j /0 ; X

.j /
1 ; Y

.j /
0 ; Y

.j /
1 ,

j 2 N, of ordered collections converges (in the sense of the Hausdorff distance
between sets) to a collection X0; X1; Y0; Y1. Then

lim sup
j!C1

pbC4
�
X
.j /
0 ; X

.j /
1 ; Y

.j /
0 ; Y

.j /
1

�
� pbC4 .X0; X1; Y0; Y1/:

Accordingly, if Lj � .M;!/, j 2 N, is a sequence of Lagrangian submanifolds
Lagrangian isotopic to L and converging to L � .M;!/ in the C 1-topology. Then

bpL.˛/ � lim inf
j!C1

bpLj .˛/ for any ˛ 2 H 1.LIR/: (3.8)

(Here we use the canonical isomorphismH 1.Lj IR/ Š H 1.LIR/).

Behavior of pbC

4
and bpL under products. Suppose thatM and N are connected

symplectic manifolds. EquipM �N with the product symplectic form. LetK � N
be a compact subset. Then for every collection X0; X1; Y0; Y1 of compact subsets
ofM

pb
M�N;C
4 .X0 �K;X1 �K;Y0 �K;Y1 �K/ � pb

M;C
4 .X0; X1; Y0; Y1/: (3.9)

The following product property of bpL follows immediately from (3.9):
Proposition 3.9. AssumeLi�.Mi ; !i /, iD1; 2, are Lagrangian tori and˛2H 1.L1/.
Consider the Lagrangian submanifold L1 � L2 � .M1 �M2; !1 ˚ !2/ and the co-
homology class ˛ � g 2 H 1.L1 � L2/, where g is a generator of H 0.L2/. Let
si WTni ! Li be two isotopy classes of diffeomorphisms. Then

bps1�s2L1�L2
.˛ � g/ � bps1L1.˛/:

Behavior of pbC

4
under symplectic reduction. The following property of pbC4 did

not appear in [4, 14], but is proved similarly to (3.9).
Namely, let .M;!/ be a connected, not necessarily closed, symplectic manifold.

Let † � .M;!/ be a coisotropic submanifold. We do not assume that † is a closed
subset ofM . Assume that the characteristic foliation of † defines a proper fibration
� W†! .N; �/ over a (not necessarily closed) symplectic manifold .N; �/.

Let X0; X1; Y0; Y1 � N be an admissible quadruple (in particular, the sets are
compact). Assume

yX0 � �
�1.X0/; yX1 � �

�1.X1/; yY0 � �
�1.Y0/; yY1 � �

�1.Y1/

are some compact sets inM . Then yX0; yX1; yY0; yY1 �M is an admissible quadruple.
Moreover,

pb
M;C
4

�
yX0; yX1; yY0; yY1

�
� pb

N;C
4 .X0; X1; Y0; Y1/: (3.10)
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Indeed, let F;G be functions on N such that .F;G/ 2 FN .X0; X1; Y0; Y1/.
Consider the functions F ı � , G ı � on †. Since � W†! N is proper and F;G are
compactly supported, so are F ı � , G ı � . Now cut off the functions F ı � ,
G ı � in the isotropic direction normal to †. As a result we get functions
�.r2/.F ı �/; �.r2/.G ı �/with compact support lying in a tubular neighborhoodU
of†—here r is a radial function on the isotropic normal bundle to†with respect to
a Riemannian metric on that bundle and �WR! Œ0; 1� is a smooth function supported
near 0 and satisfying �.0/ D 1. Extend the two functions from U to M by zero
and denote the resulting functions onM by yF ; yG. One easily checks that . yF ; yG/ 2
FM . yX0; yX1; yY0; yY1/ and maxM f yF ; yGg D maxN fF;Gg, which yields (3.10).

In the case when † is a fiber of the moment map of a Hamiltonian action of a
Lie group H onM the reduced space N D †=H may not be a smooth symplectic
manifold but a symplectic orbifold, which brings us to the following discussion.

The Poisson bracket invariant for symplectic orbifolds. Recall (see e.g. [28]) that
the notions of smooth functions, vector fields and differential forms can be extended to
orbifolds. In particular, there is a well-defined notion of an orbifold symplectic form;
an orbifold equipped with such a form is called a symplectic orbifold. Accordingly,
there is a notion of the Poisson bracket of two smooth functions on a symplectic
orbifold and the definition ofpbC4 can be carried over literally to symplectic orbifolds.

It is easy to check that the proof of (3.10) goes through in the case when the
reduced symplectic space N is an orbifold.

4. Lagrangian tori in symplectic surfaces: proofs

Proof of Theorem 2.2. Let us prove that

defL.ke/ � AC=k:

(The inequality defL.�ke/ � A�=k is proved in the same way). If AC D 1, the
inequality is trivial, so let us assume that AC <1.

Fix � > 0. Let  D f t WL!M g0�t�T be a Lagrangian isotopy of L such that
Flux. /t D �tke for all 0 � t � T . By definition of defL.ke/ and since � was
chosen arbitrarily, it suffices to show that T � AC=k C �.

There exists a compact surface K (possibly with boundary) which lies inM and
contains the union [0�t�T t .L/ of all the Lagrangian submanifolds appearing in
the isotopy. Cap off the boundary components of K lying in MC (if they exist) by
disks and extend the symplectic form from K over the disks so that the total area of
the disks is smaller than �. Denote the resulting compact symplectic surface by yK
and the symplectic form on it by y!.

Note that L is a Lagrangian submanifold of . yK; y!/,  defines a Lagrangian
isotopy of L in . yK; y!/ and the Lagrangian flux of the latter Lagrangian isotopy in yK
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is the same as that of the original Lagrangian isotopy in M . By our construction,
L bounds in yK a domain without boundary of area A < AC C �. Therefore,
@.ke/ D kŒy!�L=A and . yK; y!/ does not admit weakly exact Lagrangian submanifolds
in the Lagrangian isotopy class of L (because any curve in yK isotopic to L bounds
a domain of positive area). Thus we can apply Theorem 2.1 and get that defL.ke/,
for L viewed as a Lagrangian submanifold of . yK; y!/, is not bigger than A=k. On the
other hand, by definition,

T � defL.ke/:

Thus, T � A=k < AC=k C �. Since this holds for any Lagrangian isotopy  as
above and any � > 0, by the definition of defL.ke/ for L viewed as a Lagrangian
submanifold of .M;!/, we get that

defL.ke/ � AC=k:

Since, by Theorem 3.5, bpL.˙ke/ � defL.˙ke/, it remains to prove that

bpL.˙ke/ � A˙=k:

We first consider a model situation. Let "; A > 0 and denote by .x; y/ 2 R2 the
coordinates and by � WR2 ! R the projection onto the x-axis, �.x; y/ D x . Define

Q.A/ WD Œ0; A� � Œ0; 1� � Q".A/ WD .�"; AC "/ � .�"; 1C "/ � R2:

Label three sides ofQ.A/ as follows:

yX0 D Œ0; A� � f0g; yY0 D f0g � Œ0; 1�; yY1 D fAg � Œ0; 1�:

For the remaining side Œ0; A�� f1g we choose a partition into 4k � 3 closed intervals

1; : : : ; 
4k�3, ordered from right to left, such that for i � 0; 2; 3 mod 4 the
intervals 
i have length ", the interval 
1 has length A=k and the remaining intervals
have length A

k
� 3". Set

X0 WD yX0 [
[

i�0 mod 4


i ; X1 WD
[

i�1 mod 4


i ;

Y0 WD yY0 [
[

i�2 mod 4


i ; Y1 WD yY1 [
[

i�0 mod 4


i :

Now choose a piecewise-linear function G"WQ".A/! Œ0; 1� that satisfies:

(i) G"jY0 D 0, G"jY1 D 1,

(ii) G" only depends on x inQ.A/,

(iii) G" has compact support.
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One can choose G" to satisfy

@xG" � 1=
�
A
k
� 3"

�
on �.X1/� Œ0; 1� � Q.A/; see for example Figure 5. Therefore there exists a smooth
approximation G that satisfies (i), (ii), and (iii) and has slope

@xG < 1=
�
A
k
� 4"

�
on �.X1/ � Œ0; 1�. This implies that all chords of G from X0 to X1 have time-
length T > A

k
� 4". Since " > 0 can be chosen arbitrarily small, by the dynamical

characterization of bpL in Section 3.2, we have

1=pbC4 .X0; X1; Y0; Y1/ �
A
k
:

X̂0

Ŷ0

γ9 γ8 γ7 γ6 γ5 γ4 γ3 γ2

Ŷ1

A

3
− " "

1

A

"

γ1

1

0

A

3

G

"

Figure 5. Partition and function in the case k D 3.

We now construct a specific neighborhood of L � M . We first treat the case
where L is a boundary component ofMC. Note that the boundary orientation of L
corresponds toCe.

For a small ı > 0 choose A D AC � ı. Let D1; : : : ;Dn � IntQ.A/ denote
a non-intersecting (possibly empty) finite union of closed disks of total symplectic
area less than ı. Then for a sufficiently small " > 0 and for an appropriate choice
of the disks Di there exists an open neighborhood UC � IntM of L that can
be symplectically identified with Q".A/nD1 [ � � � [ Dn and so that L (with the
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orientation corresponding to Ce) gets mapped arbitrarily close to @Q.A/ with the
standard boundary orientation. If ı > 0 is chosen small enough, one can choose
the disks Di to lie in the region �.Y0/ � Œ0; 1� � Q.A/. Thus we can extend the
functionG from UC, identified withQ".A/nD1[ � � � [Dn, to the whole symplectic
manifoldM by 0. Then all chords ofG fromX0 toX1 have time-length T > A

k
�4".

Since "; ı > 0 can be chosen arbitrarily small, together with the semi-continuity and
symplectic invariance properties of pbC4 (see Section 3.4) this implies that

bpL.ke/ � AC=k:

When L with the orientation �e is a boundary component of M� a similar
construction gives us the lower bound

bpL.�ke/ � A�=k:

This completes the proof.

Proof of Theorem 2.3. The case k D ˙1 was shown in [33]. We generalize this
construction to arbitrary k 2 Z.

By Remark 3.7, we see that an admissible quadruple associated to ke is given
by dividing L ' S1 into 4k consecutive closed arcs and labeling them with
X0; Y1; X1; X1 following the orientation of L in the case k > 0 and else following
the opposite orientation in the case k < 0. Note that, by Proposition 3.3, bpL.ke/
does not depend on the choice of subdivision as long as the order of the 4k arcs is
preserved.

For " > 0 consider the symplectic annulus,�
Z" D .�"; "/ � Œ�1; 1�=�; dx ^ dy

�
;

where we identify .x;�1/ � .x; 1/. Partition the subset .�"; "/ � f0g into 4k C 1
consecutive intervals 
1; : : : ; 
4kC1 respecting the standard orientation on .�"; "/.
Set

yX0 WD
[

i�1 mod 4


i ; yX1 WD
[

i�3 mod 4


i ;

yY0 WD
[

i�0 mod 4


i ; yY1 WD
[

i�2 mod 4


i :

One can easily construct functions F;GWZ" ! Œ0; 1� such that .F;G/ 2
F 0. yX0; yX1; yY0; yY1/ and fF;Gg � 0, namely choose F and G to only depend on
the x-coordinate.

The LagrangianL �M is not a separating curve. Thus there exists an embedded
loop 
 � M that intersects L exactly once. Furthermore, one can find a tubular
neighborhood N of 
 that is symplectomorphic to Z" for " > 0 small enough. The
symplectomorphism can be chosen tomap 
 to f0g�Œ�1; 1� andL\N to .�"; "/�f0g.
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We now make a specific choice of admissible quadruple X0; X1; Y0; Y1 on L.
Namely choose X0 � L such that LnN � X0 and

X0 \N D yX0; X1 \N D yX1; Y0 \N D yY0; and Y1 \N D yY1

(or, if the order requires, use the reflection of yX0; yX1; yY0; yY1 � Z" along the y-axis).
Since F;G have compact support in Z", we may pull back the functions to M and
obtain functions onM that satisfy (3.1), have compact support and Poisson-commute.
This proves the theorem.

A lower bound on bpL for orbifolds. The proof of the lower bound for k 2 N,

A˙=k � bpL.˙ke/; (4.1)

from the proof of Theorem 2.2 can also be modified for the orbifold case.
Indeed, the singular points of a 2-dimensional symplectic orbifold M form a

discrete subset ofM [18] and one can assume without loss of generality that they all
lie inM n UC where the function G vanishes identically (and thus can be extended
over the singularities).

Symplectic reduction and bpL. Let .M 2n; !/ be a connected, not necessarily
closed, symplectic manifold. Let †nC1 � .M;!/ be a smooth coisotropic
submanifold. We do not assume that † is a closed subset of M . Assume that
the characteristic foliation of † defines a proper fibration � W†! .N; �/ over a (not
necessarily closed) 2-dimensional symplectic orbifold .N 2; �/. Let L � .M;!/ be
a Lagrangian torus lying in † and s an isotopy class of diffeomorphisms Tn ! L.
Assume that �jLWL ! � is a fiber bundle over a simple closed curve � WD �.L/

lying in the non-singular part of N and dividing N into two domains of areas AC
and A�.

Equip � with an orientation induced by the orientation of the domain of area AC.
The orientation of � defines a positive generator e 2 H 1.�/ Š Z.

Assume that k 2 N and ˛ 2 H 1.L/ is a primitive class. Assume that there exists
an orientation-preserving diffeomorphism S1 ! � that identifies the fiber bundle
�jLWL ! � with a fibration f˛WL ! S1 associated to s and ˛; see Remark 3.7.
Then an admissible quadruple associated to a fibration fk˛ can be described in terms
of f˛ as follows (see Remark 3.7).

Divide S1 Š � in 4k consecutive closed arcs 
1; : : : ; 
4k numbered in the
counterclockwise order. Set

X0 WD
[

i�1 mod 4


i ; X1 WD
[

i�3 mod 4


i ;

Y0 WD
[

i�0 mod 4


i ; Y1 WD
[

i�2 mod 4


i ;
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and furthermore

yX0 WD �
�1.X0/ \ L D f

�1
˛ .X0/; yX1 WD �

�1.X1/ \ L D f
�1
˛ .X1/;

yY0 WD �
�1.Y0/ \ L D f

�1
˛ .Y0/; yY1 WD �

�1.Y1/ \ L D f
�1
˛ .Y1/:

By Remark 3.7, . yX0; yX1; yY0; yY1/ is an admissible quadruple associated to fk˛ .
Combining this observation with (3.7) and (3.10) (in the orbifold case), we

immediately get:

bpsL.k˛/ D 1=pb
M;C
4

�
yX0; yX1; yY0; yY1

�
� 1=pb

N;C
4 .X0; X1; Y0; Y1/ D bp�.ke/:

In view of
bpsL.�k˛/ D 1=pb

M;C
4

�
yX0; yX1; yY1; yY0

�
(see Remark 3.7) and (4.1) (in the orbifold case) this yields the following claim.
Proposition 4.1. With the setup as above, for any k 2 N we have

bpsL.k˛/ � AC=k and bpsL.�k˛/ � A�=k:

5. Toric orbits in symplectic toric manifolds: proofs

Proof of Theorem 2.4. Set

k˛ WD .m1; : : : ; mn/ 2 .Z
n/� D H 1.Tn/;

where ˛ is a primitive class and k 2 N.
Complete ˛ to an integral basis ˛1; : : : ; ˛n�1; ˛ of H 1.Tn/ D .Zn/� and let

ˇ1; : : : ; ˇn be the dual integral basis of Zn. Thus, we have a splitting

Lie� Tn
D SpanRf˛1; : : : ; ˛n�1g ˚ SpanRf˛g:

Let �1WLie� Tn ! SpanRf˛1; : : : ; ˛n�1g and �2WLie� Tn ! SpanRf˛g be the
projections defined by the splitting.

Consider the .n � 1/-dimensional subtorusH � Tn whose Lie algebra is

LieH WD Ker ˛ D SpanRfˇ1; : : : ; ˇn�1g � Rn D LieTn:

The map Lie� Tn ! Lie�H dual to the inclusion LieH ! LieTn can be identified
with the projection �1.

Since H is a subtorus of Tn, there is a Hamiltonian action of H on .M;!/
whose moment map ˆH can be described as the composition of ˆ and �1. Thus,
Lx D ˆ�1.x/ lies in a fiber †0x of ˆH which is the union of the fibers ˆ�1.y/
for all y 2 � such that �1.y/ D �1.x/. The set †0x may be an orbifold, but its
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smooth part †x � †0x, which is the union of the fibers ˆ�1.y/ for y 2 Int� with
�1.y/ D �1.x/, is a smooth coisotropic .nC 1/-dimensional submanifold ofM .

The torus H acts on †x and the reduced space †x=H is a 2-dimensional
symplectic orbifold Nx. The natural projection �H W†x ! †x=H is proper and its
fibers are exactly the leaves of the characteristic foliation of †x. The 1-dimensional
torus Tn=H acts in a Hamiltonian way on Nx. In fact, the torus Tn=H can
be identified with a subtorus of Tn whose Lie algebra is SpanRfˇng � LieTn.
Accordingly, Lie�.Tn=H/ is identified with SpanRf˛g � Lie� Tn. Thus, the
moment map ˆTn=H of the Tn=H -action on Nx can be viewed as a map

ˆTn=H WNx ! SpanRf˛g:

Awell-known property of Hamiltonian group actions (the so-called “reduction in
stages”, see e.g. [3, Exercise III.12]) implies that the orbits of the original Tn-action
on .M;!/ lying in†x project under �H W†x ! Nx to the orbits of the Tn=H -action
on Nx and for any y 2 Lie� Tn \� such that �1.x/ D �1.y/ we have

�2 ıˆ D ˆTn=H ı �H on ˆ�1.y/:

Therefore the image of the moment map ˆTn=H can be identified with the image
under �2 of the intersection of the line x � t˛, t 2 R, in the affine space .Rn/� D
Lie� Tn with � D Imˆ.

Another conclusion is that the torus Lx � †x, which is an orbit of the Tn-action
on .M;!/, projects under �H W†x ! †x=H to a simple closed curve � � Nx that
lies in the non-singular part of the orbifold Nx. The curve � is an orbit of Tn=H

and as such can be identified with S1 — this identification is unique up to a rotation
of S1. Moreover, under this identification the map

�H jLx WLx ! �

becomes a fibration f˛WLx ! S1 associated to ˛; see Remark 3.7. (Indeed, f˛ can
be viewed as the projection Lx ! Lx=H D S1).

The symplectic properties of� insideNx are completely determined by the relative
position of the point �2.x/ D ˆTn=H .�/ in the image ofˆTn=H or, equivalently, by
the position of x in the intersection of the line x � t˛, t 2 R, with �. Recall that
I.x; ˛/ is defined as the open part of the intersection of the ray x� t˛, 0 < t < C1,
with �. By a basic version of the Delzant theorem [9], the oriented curve � (it is
oriented as an orbit of Tn=H ) is the oriented boundary of a domainD in Nx whose
area is the rational length of I.x; ˛/, if I.x; ˛/ is an interval, orC1, if I.x; ˛/ is an
infinite ray.

Thus, we can apply Proposition 4.1, which implies that

bpx.k˛/ � lx.˛/=k

for k 2 N.
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6. Lagrangian tori in C2: proofs

Proof of Theorem 2.6. The original idea of the proof below belongs to E. Opshtein.
Consider a Lagrangian isotopy

 D
˚
 t WL! C2

	
; 0 � t � T;  0 D �;

such that
Œ!�

 
t D Œ!�L � t@˛;

with L � C2 and ˛ as in the statement of the theorem.
For simplicity let us consider a dual picture. Namely, for 0 � t � T there exists

a family of compactly supported diffeomorphisms 't WC2 ! C2, '0 D Id, such that
't .L/ D  t .L/. By pulling back our symplectic form '�t ! DW !t we may consider
a fixed Lagrangian L � .C2; !t /. We haveH2.C2; L/ ' ZhA;Bi and

!t .A/ D !.A/ � �t and !t .B/ D !.B/ � �t:

Let Jt be the space of almost complex structures on C2 compatible with
the symplectic form !t . Given an almost complex structure J 2 Jt , by a
(parameterized) J -holomorphic disk we always mean a smooth J -holomorphic map
uW .D; @D/ ! .C2; L/ (here D � C is the standard closed unit disk). By the
homology class of a J -holomorphic disk u we always mean the relative homology
class u�.ŒD�/ 2 H2.C2; L/. Such a u is called somewhere injective, if du.z/ ¤ 0

for some z 2 D such that u�1.u.z// D fzg.
Given a relative homology class C 2 H2.C2; L/ define zM.C; J / as the moduli

space of somewhere injective (parametrized) J -holomorphic disks in the class C .
Let zM.C; J / � @D be the moduli space of J -holomorphic disks with one marked
point on the boundary. PSL2.R/ is the group of biholomorphisms of D and we
consider the quotient

M1.C; J / WD
�
zM.C; J / � @D

�
=PSL2.R/;

where the action of PSL2.R/ is defined as g � .u; x/ D .u ı g; g�1.x//. This space
comes with an evaluation map

evWM1.C; J /! L

given by ev.Œu; x�/ WD u.x/ and for a chosen point p 2 Lwe define M1.C; J; p/ WD

ev�1.p/.
Given a family fJtg, 0 � t � T , of almost complex structures Jt 2 Jt and a class

C 2 H2.C2; L/, define M1.C; fJtg/ as the set of pairs .t;D/, where 0 � t � T
andD 2M1.C; Jt /. The set M1.C; fJtg; p/ �M1.C; fJtg/ is defined analogously
withD 2M1.C; Jt ; p/.
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We will show that for A as in the assumption of the theorem and for a generic
family fJtg the set M1.A; fJtg; p/ is a smooth compact manifold of dimension 1.

We recall first some general facts about the moduli spaces.
We say that J 2 Jt , t 2 Œ0; T �, is regular, if for all C 2 H2.C2; L/ the space

M1.C; J / is a (transversally cut out) smooth manifold of dimension

dimM1.C; J / D dimLC �.C/C 1 � dimPSL2.R/ D �.C/:

An almost complex structure J 2 Jt is called regular with respect to p 2 L, if it is
regular and, in addition, M1.C; J; p/ is a (transversally cut out) smooth manifold of
dimension

dimM1.C; J; p/ D dimM1.C; J / � dimL D �.C/ � 2:

We will say that a family fJtg, 0 � t � T , Jt 2 Jt , is regular with respect to p if
(1) for any t 2 Œ0; T � the spaces M1.C; Jt / are empty for all C with �.C/ < 0,
(2) M1.C; fJtg; p/ is a (transversally cut out) smooth manifold of dimension

dimM1.C; fJtg; p/ D dimM1.C; J; p/C 1 D �.C/ � 1

with boundary M1.C; J0; p/ [M1.C; JT ; p/.
Similarly, given a (regular) path 
.s/, 0 � s � 1, in L, and t 2 Œ0; T �, we say that a
family fJsg0�s�1 � Jt is regular with respect to 
 , if
(10) for any s 2 Œ0; 1� the spaces M1.C; Js/ are empty for all C with �.C/ < 0,
(20) M1.C; fJsg; 
/ WD [0�s�1M1.C; Js; 
.s// is a smooth manifold of dimension

�.C/ � 1 with boundary M1.C; J0; 
.0// [M1.C; J1; 
.1//.
It follows from standard regularity and transversality arguments (see e.g. [29,31],

where the arguments are explained in detail for pseudo-holomorphic curves without
boundary) that for any p 2 L
– a generic J 2 Jt is regular and moreover regular with respect to p,
– for any p 2 L and any J0 2 J0, JT 2 JT that are regular with respect to p, a

generic family fJtg, 0 � t � T , Jt 2 Jt , connecting J0 and JT satisfies (2),
– for any 
 as above, any t 2 Œ0; T � and any J0; J1 2 Jt regular, respectively, with

respect to 
.0/ and 
.1/, a generic family fJsg0�s�1 � Jt connecting J0; J1
satisfies .20/.
In order to show that condition (1) also holds for a generic family fJtg note thatL

is orientable and, accordingly, the Maslov index of any disk with boundary on L is
even. Thus, if �.C/ is negative, then virtual dimM1.C; J / � �2 for any J 2 Jt
and t 2 Œ0; T �, meaning that the existence of somewhere injective Jt -holomorphic
disks of negative Maslov index is a codimension-2 phenomenon and can be avoided
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by choosing a generic 1-parametric family fJtg. This shows that (1) holds for a
generic family fJtg. Similarly, one can show that .10/ holds for a generic family fJsg
as above.

In fact, we claim that there are no Jt -holomorphic disks of negative Maslov
index, somewhere injective or not. Indeed, let fJtg satisfy (1). By a result
of Kwon–Oh [22] (cf. [26, 27]), any non-parameterized Jt -holomorphic disk in
the class C with boundary in L, viewed as a subset of C2, is a finite union
of non-parameterized somewhere injective Jt -holomorphic disks D1; : : : ;Dj and
C D k1ŒD1�C � � � C kj ŒDj �, where for each i ŒDi � is the relative homology class
of Di and ki 2 N. If k1�.D1/ C � � � C kj�.Dj / D �.C/ < 0, then �.Di / < 0

for some i D 1; : : : ; j , in contradiction to the non-existence of somewhere injective
Jt -holomorphic disks of negative Maslov index, which proves the claim.

Lemma 6.1. For any (possibly not even regular) J 2 Jt , 0 � t � T , there are
no non-constant J -holomorphic Maslov-0 disks of area less than !t .A/, somewhere
injective or not (recall that A 2 H2.C2; L/ is the class appearing in the hypothesis
of the theorem).

Proof of Lemma 6.1. Indeed, assume by contradiction that such a disk exists and
denote its relative homology class by C . By the hypothesis of the theorem,

!.B/ � .1C k/!.A/ and .1C k/� � �;

so that
!t .B � kA/ � !t .A/ D !.B/ � .1C k/!.A/C ..1C k/� � �/t � 0:

Moreover, !t .C / > 0, since C is non-constant and J is compatible with !t . Thus

!t .B � kA/ � !t .A/ > !t .C / > 0: (6.1)

On the other hand, since �.C/ D 0, by the hypothesis of the theorem, C is an
integral multiple of B � kA, and therefore !t .C / has to be an integral multiple of
!t .B � kA/, which is impossible by (6.1). This proves the lemma.

Continuing with the proof of the theorem, we now show that for any almost
complex structures J0 2 J0, JT 2 JT that are regular with respect to p 2 L and
any family fJtg, 0 � t � T , Jt 2 Jt , that connects J0 and JT and is regular with
respect to p, the moduli space M1.A; fJtg; p/ is compact and hence, in particular,
so are M1.A; J0; p/ and M1.A; JT ; p/.

It suffices to show that any sequence fDig in M1.A; Jti ; p/ with ftig ! s

has a subsequence converging to an element of M1.A; Js; p/. To prove this
claim note that, by Gromov compactness (see [16]), since �2.C2/ D 0, the
sequence fDig has a subsequence converging to a bubbling configuration of non-
constant non-parameterized Js-holomorphic disks D1; : : : ;Dl with boundary in L



866 M. Entov, Y. Ganor and C. Membrez CMH

whose homology classes ŒD1�; : : : ; ŒDl � add up to A:

ŒD1�C � � � C ŒDl � D A:

Thus, 0 < !s.ŒDi �/ � !s.A/ for all i D 1; : : : ; l and therefore, by Lemma 6.1,
none of the disks Di has Maslov index 0. Moreover, since the family fJtg is
regular with respect to p, none of the disks Di has a negative Maslov index. Since
�.ŒD1�/C� � �C�.ŒDl �/ D �.A/ D 2 and theMaslov indices of theDi ’s are all even,
this means that l D 1 – that is, there is only one disk in the bubbling configuration
and its relative homology class is A.

Let us denote this (non-parameterized) disk by D. By the result of Kwon–
Oh [22] (cf. [26, 27]) mentioned above, the non-parameterized disk D, viewed as
a subset of C2, is a finite union of non-parameterized somewhere injective disks
D.1/; : : : ;D.m/ and A is a linear combination with positive integral coefficients of
the homology classes of D.1/; : : : ;D.m/. The !s-areas of D.1/; : : : ;D.m/ are all
positive numbers smaller than !s.A/. Therefore, arguing as above, we get that all
D.1/; : : : ;D.m/ must have positive even Maslov indices, meaning that m D 1 and
D D D.1/ 2M1.A; Js; p/. Hence the sequence fDig has a subsequence converging
to an element of M1.A; Js; p/. This finishes the proof that the smooth manifold
M1.A; fJtg; p/ is compact.

Thus the moduli spaceM1.A; fJtg; p/ is a compact smooth 1-dimensional cobor-
dismbetween the compact 0-dimensionalmanifoldsM1.A; J0; p/ andM1.A; JT ; p/.

In a similar way one can show that given a (regular) path 
.s/, 0 � s � 1,
in L, t 2 Œ0; T � and a family fJsg � Jt regular with respect to 
 , the moduli space
M1.A; fJsg; 
/ is a compact smooth 1-dimensional cobordism between the compact
0-dimensional manifolds M1.A; J0; 
.0// and M1.A; J1; 
.1//.

Let us summarize: for any t 2 Œ0; T � and any J 2 Jt regular with respect
to p the moduli space M1.A; J; p/ is a compact 0-dimensional manifold. The
number nA.p; J / WD #M1.A; J; p/ mod 2 — that is, the mod-2 number of non-
parameterized J -holomorphic disks with one marked point that representA and pass
through p— is independent of p and J . Indeed, for a different p0 2 L and an almost
complex structure J 0 2 Jt regular with respect to p0 the manifolds M1.A; J; p/

and M1.A; J
0; p0/ are cobordant and therefore nA.p; J / D nA.p0; J 0/. This proves

part (A) of the theorem.
Moreover, for any J0 2 J0 and JT 2 JT regular with respect to p we have

nA.p; J0/ D nA.p; JT /, since M1.A; J0; p/ and M1.A; JT ; p/ are cobordant
compact 0-dimensional manifolds.

In view of the above, if nA.p; J0/ is non-zero, then so is nA.p; JT / for J0 2 J0
and JT 2 JT regular with respect to p. In particular, there exists a JT -holomorphic
disk in C2 with boundary in L in the relative homology class A and therefore

!T .A/ D !.A/ � �T > 0;
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and hence
T < !.A/=�:

Since this holds for any Lagrangian isotopy f tg0�t�T as above, we get that defL.˛/,
which is the supremum of such T , is less or equal to !.A/=� :

defL.˛/ � !.A/=�:

This proves part (B) of the theorem.

6.1. Proof of Theorem 2.10. We calculate lower bounds for the bp-invariants of
Chekanov tori ‚a. The proofs of both parts rely on an increasing sequence of
neighborhoods of ‚a in C2. We first explain this construction.

For r 2 R>0 let D.r/ � C denote the standard open symplectic disk of area r
and T �r S1 � T �S1 be the subset of covectors of norm < r (here we choose the flat
metric on S1 D R=Z). Let � be the standard Liouville form on T �S1.

Proposition 6.2. For every r > a there exists a neighborhood U.r/ � C2 of ‚a
such that U.r/ is symplectomorphic to�

D.r/ � T �r S1; dx ^ dy C d�
�

and ‚a is identified with @D.a/ � f0-sectiong.

Proof. Let � be the simple closed oriented curve in the open first quadrant Q � C
used in the construction of the Chekanov torus‚a. The curve bounds a disk of area a
which is contained in a larger open disk D � Q of area aC ı for some small ı > 0.
The map „WS1 �D ! C2 given by

„
�
e2�it ; z

�
D

1
p
2

�
e2�itz; e�2�itz

�
is an embedding and its image contains ‚a as well as the Chekanov tori ‚a0 for
every 0 < a0 � a. Denote the image of „ by N . We see that „ preserves
the symplectic structure on D and that N is a coisotropic submanifold with
characteristic foliation generated by the S1-action. By the neighborhood theorem
for coisotropic submanifolds [17], there exists a neighborhood U of N in C2 that is
symplectomorphic to a neighborhood of the zero-section in E�, where E � TN is
the characteristic bundle ofN . One sees that the characteristic bundle ofN is trivial,
hence

E� ' N �R ' D � S1 �R:

Since the disk D is symplectic, the neighborhood U is symplectomorphic to a
neighborhood V of D.aC ı/ � f0-sectiong in D.a C ı/ � T �S1 with its standard
split symplectic form dx ^ dy C d�. By choosing a smaller neighborhood U if
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necessary, we can assume that U is symplectomorphic to V D D.aC ı/�T �" S1 for
an " > 0 so that ‚a � U is identified with @D.a/ � f0-sectiong � V .

For c > 0 the map 'c WC2 ! C2 given by

.z1; z2/ 7!
p
c.z1; z2/

is a conformal symplectomorphism. Recall that the neighborhood U contains all
Chekanov tori‚a0 for 0 < a0 � a. Now let 0 < a0 < a and c D a=a0, then the image
'c.‚a0/ is a Lagrangian torus that is Hamiltonian isotopic to ‚a. The image of the
neighborhood, 'c.U /, is then a neighborhood of 'c.‚a0/. The neighborhood 'c.U /
is symplectomorphic to V 0 D D.c.a C ı// � T �c"S

1 (recall that S1 D R=Z and
� D p d� is the standard Liouville form).

Let us now construct the wanted neighborhoods U.r/ for r > a. For a given
r > a we choose a0 > 0 so that for c D a=a0 we have c dx^dy.D/ > r and c " > r .
Then D.r/ � T �r S1 � V 0 and this gives us a neighborhood U.r/. Since a0 > 0 can
be chosen arbitrarily small, this provides us with a neighborhood U.r/ for all r > a.
The statement follows from this.

(A) We return to the proof of part (A). For the lower bound bpa.m; n/ � a=m,
following the dynamical characterization of bpL in Section 3.2, we use a
neighborhood that we obtain from Proposition 6.2 to construct for any " > 0 a
complete HamiltonianH that has no chords from X0 to X1 of time-length < a

m
� ":

Form � 1 andn 2 Zfixedwe choosek 2 N such thatk > a andk > C WD 4ajnj.
Now let U.k/ be a neighborhood of ‚a as in Proposition 6.2 and we identify

U.k/ ' D.k/ � T �k S1:

Recall that ‚a is mapped to @D.a/ � f0-sectiong under this identification. Further-
more, we identify C ' R2 and write the coordinates ofD.k/�T �

k
S1 as .x; y; �; p/.

First we define a partition of @D.a/. Namely, partition S1 into 4m closed arcs by
setting


j WD

�
e2�i� 2 S1

ˇ̌̌
� 2

�
j � 1

4m
;
j

4m

��
; j D 1; : : : ; 4m:
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Using the identification @D.a/ ' S1 we consider the 
j to be arcs of @D.a/. For
� 2 R=Z denote byR.�/WR2 ! R2 the rotation by angle 2�� . InD.k/�T �

k
S1 we

define the four sets,

X0 D
[

j�1 mod 4

˚
.R.n�/.x; y/; �; 0/ j .x; y/ 2 
j ; � 2 R=Z

	
;

X1 D
[

j�3 mod 4

˚
.R.n�/.x; y/; �; 0/ j .x; y/ 2 
j ; � 2 R=Z

	
;

Y0 D
[

j�0 mod 4

˚
.R.n�/.x; y/; �; 0/ j .x; y/ 2 
j ; � 2 R=Z

	
;

Y1 D
[

j�2 mod 4

˚
.R.n�/.x; y/; �; 0/ j .x; y/ 2 
j ; � 2 R=Z

	
:

(6.2)

A brief calculation reveals that under the identification U.k/ ' D.k/ � T �
k

S1 the
quadruple ismapped to an admissible quadruple associated to the fibrationf˛W‚a!S1,
where ˛ D my� � ny
 2 H 1.‚a/.

Consider now the sector S � D.k/ given by

S WD D.k/ \

�
re2�i�

ˇ̌̌
r � 0; � 2

�
�1

8m
;
7

8m

��
:

The intersection S \ D.a/ has area a=m and @S intersects @D.a/ in the arcs 
4
and 
4m. We consider a Hamiltonian GWS ! R that satisfies the following:
(i) G has compact support in Int.S/,

(ii) G � 0 in a neighborhood of .
4m [ 
4/ \ S ,

(iii) G � 1 in a neighborhood of 
2,

(iv) all chords of G from 
1 to 
3 have time-length T > a
m
� ",

(v) on S \D.a/ the Euclidean norm of the gradient of G is bounded,

j.@xG; @yG/j �
4m
p
a
:

The existence of such aHamiltonian follows easily. See Figure 6 for an illustration.
Namely, one can choose a piecewise-linear function that satisfies all conditions
except (iv) and then find a smooth approximation that satisfies all conditions.

Extend G to the whole disk D.k/ such that G is periodic under the rotation
R.1=m/. Since G has support in Int.S/, this extension is smooth and has compact
support. By abuse of notation we denote the extension by G. Now choose a non-
negative function ˇWT �

k
S1 ! R that is constant equal to 1 for jpj � C and has

compact support in T �
k

S1.
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D(a)

D(k)

S

γ1

γ2

γ3

γ4

γ4m

Figure 6. Hamiltonian chord of G from 
1 to 
3 in S .

Define the HamiltonianH WD.k/ � T �
k

S1 ! R via

H.x; y; �; p/ D G
�
R.n�/.x; y/

�
ˇ.p/:

By construction H is complete and satisfies H � 0 on Y0 and H � 1 on Y1.
Since ˇ.p/ is constant in fjpj � C g, we see that @pH � 0 in this region. This
implies that the Hamiltonian vector field of H in fjpj � C g is tangent to the fibers
f� D constantg. Thus all Hamiltonian chords of H starting on @D.a/ � f0-sectiong
and contained in fjpj � C g will project to the fibers.

Now for fjpj � C g and .x; y/ 2 D.a/ we estimate the Euclidean norm of the
differential,

j@�H j � j.@xG; @yG/j � jnj � j.x; y/j �
4mjnj
p
�
:

This implies that all Hamiltonian chords of H starting in @D.a/ � f0 � sectiong
remain in the region fjpj � C g for times t 2 Œ0; a=m� by our choice of C . Therefore
any chord of time-length t � a=m is contained in the fiber f� D constantg and under
the projection D.k/ � T �

k
S1 ! D.k/ these chords project to rotated chords of G.

This proves that any chord fromX0 toX1 must have time-length T > a=m� ". This
completes the proof of part (A).

(B) We prove part (B). We construct a sequence of Hamiltonians that have chords
from X0 to X1 with time-length increasing toC1.

We consider the admissible quadruple associated to the fibration f˛W‚a ! S1,
where ˛ D my� � ny
 with m < 0 and n 2 Z. Following Remark 3.7 we see
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D(a)

D(k)

S

γ1

γ2

γ3

γ4

γ4m

Figure 7. Hamiltonian chord of G from 
3 to 
1 in S .

that if .X0; X1; Y0; Y1/ is an admissible quadruple for ˛, then .X1; X0; Y0; Y1/ is an
admissible quadruple for�˛. Thus we may take the admissible quadruple associated
to �my� C ny
 as constructed in (6.2) and interchange X0 and X1 to obtain an
admissible quadruple associated to my� � ny
 .

Following the construction in part (A), we find a Hamiltonian GWS ! R that
satisfies G � 0 on 
4m [ 
4 and G � 1 on 
2 and consider its chords from

3 to 
1; see Figure 7. In our sequence of symplectic neighborhoods we have
dx ^ dy.D.k/=D.a// ! C1. Hence we can choose for all k > a a sequence of
Hamiltonians Gk for which the time-length T of chords from 
3 to 
1 goes to C1.
Repeating the construction as in part (A) then gives us a sequence of HamiltoniansHk
in C2 with the desired properties.

7. Lagrangian tori in Cn: proofs

7.1. Basic properties of bpx, defx for split Lagrangian tori in Cn.
Proposition 7.1.
(A) Permutation invariance: Let x� 2 Rn, ˛� 2 .Rn/� be the vectors obtained,

respectively, from x 2 Rn, ˛ 2 .Rn/� by a permutation � of the coordinates.
Then for any ˛

defx� .˛� / D defx.˛/; bpx� .˛� / D bpx.˛/: (7.1)
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(B) Homogeneity in x: For any c > 0

defcx D
1

c
defx; bpcx D

1

c
bpx:

(C) Semi-continuity with respect to x:

fxig ! x H) 8˛ 2 .Zn/� W bpx.˛/ � lim inf
xi

bpxi .˛/;

fxig ! x H) 8˛ 2 .Rn/� W defx.˛/ � lim inf
xi

defxi .˛/:

(D) The product property: For any ˛

def.x;xnC1;:::;xN /.˛; 0; : : : ; 0/ � defx.˛/;

bp.x;xnC1;:::;xN /.˛; 0; : : : ; 0/ � bpx.˛/:

Proof. (A) Claim (A) holds, since any split torus obtained from

T n.x/ D T 1.x1/ � � � � � T 1.xn/

by a permutation of the T 1-factors is Hamiltonian isotopic to T n.x/.

(B) Claim (B) follows easily from the fact that .p; q/ 7!
p
c.p; q/, c > 0, is a

conformal symplectomorphism.

(C) Claim (C) follows from the semi-continuity property of bpL (see (3.8)) and defL
(see (3.6)).

(D) Claim (D) follows from the product property of pbC4 (see (3.9)).

7.2. Proof of Theorem 2.11. Wenow prove that for certain Lagrangian toriL � Cn

and specific cohomology classes ˛ 2 H 1.LIR/ there are upper bounds for the
associated Lagrangian isotopies. This proof follows the same route as in the proof
of Theorem 2.6. We indicate the changes here and refer the reader to the proof of
Theorem 2.6 for more details.

Consider a Lagrangian isotopy

 D
˚
 t WL! Cn

	
; 0 � t � T;  0 D �;

such that
Œ!�

 
t D Œ!�L � t@˛;

with L � Cn and ˛ as in the statement of the theorem.
For simplicity we consider the dual picture. Namely, for 0 � t � T there exists

a family of compactly supported diffeomorphisms 't WCn ! Cn, '0 D Id, such that
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't .L/ D  t .L/. By pulling back our symplectic form '�t ! DW !t we may consider
a fixed Lagrangian L � .Cn; !t /. We have

H2.C
n; L/ ' ZhA1; : : : ; Ani

and
!t .A1/ D a � �t and !t .Ai / D b � �t

for i D 2; : : : ; n.
Let Jt , t 2 Œ0; T �, be the space of almost complex structures on Cn compatible

with the symplectic form !t and let C 2 H2.Cn; L/ be a relative homology class.
Choose a point p 2 L. We define the moduli spaces M1.C; J /, M1.C; J; p/

and M1.C; fJtg; p/ as in the proof of Theorem 2.6. An almost complex structure
J 2 Jt is called regular, if M1.C; J / is a (transversally cut out) smooth manifold of
dimension

dimM1.C; J / D dimLC �.C/ � 2;

and regular with respect to p, if the space M1.C; J; p/ is a (transversally cut out)
smooth manifold of dimension

dimM1.C; J; p/ D �.C/ � 2:

Further on we will assume n D dimL is even – the arguments for n odd are
similar.

Let S 2 .0; T �. We will say that a family fJtg, 0 � t � S , Jt 2 Jt , is regular
with respect to p if
(1) for any t 2 Œ0; S� the spaces M1.C; Jt / are empty for all C with �.C/ < 2� n,
(2) M1.C; fJtg; p/ is a (transversally cut out) smooth manifold of dimension

dimM1.C; fJtg; p/ D dimM1.C; J; p/C 1 D �.C/ � 1

with boundary M1.C; J0; p/ [M1.C; JS ; p/.
Again, by the same standard regularity and transversality arguments, used in the

proof of Theorem 2.6, that for any J0 2 J0 and JS 2 JS , that are regular with respect
top, a generic family fJtg, 0 � t � S , Jt 2 Jt , connecting J0 and JS satisfies (2). In
order to show that condition (1) also holds for a generic family fJtg note that since L
is orientable, the Maslov index of any disk is even and therefore, since dimL is even,
dimM1.C; J / is even. Thus, if �.C/ < 2 � n, then virtual dimM1.C; J / � �2

for any J 2 Jt and t 2 Œ0; S�, meaning that the existence of somewhere injective
Jt -holomorphic disks of such Maslov indices is a codimension-2 phenomenon and
can be avoided by a generic choice of fJtg.

We remark the following difference to the proof of Theorem 2.6. For a general
C 2 H2.Cn; L/ with �.C/ < 2� n, we cannot a priori exclude the existence of not
somewhere injective Jt -holomorphic disks in the class C . However, we will show
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now that for t 2 Œ0; a=�/ all Jt -holomorphic disks of Maslov index lying in Œ2�n; 0�,
somewhere injective or not, can be excluded using our assumptions on A1; : : : ; An
and ˛.

Set a.t/ WD a � �t and b.t/ WD b � �t .
Lemma 7.2. For t 2 Œ0; a=�/ there is no Jt -holomorphic disk with boundary in L
with Maslov index equal to �2l for l 2 f0; 1; : : : ; .n � 2/=2g that has positive
symplectic area smaller than !t .A1/ D a.t/.

Proof of Lemma 7.2. Let t 2 Œ0; a=�/. For l 2f0; 1; : : : ; .n�2/=2g letD2H2.Cn; L/

be a class such that �.D/ D �2l andD has positive symplectic area.
A brief calculation shows that b.t/ � a.t/ > 0 and a.t/ > 0, since t 2 Œ0; a=�/

and
� �

�.nC 2/

2
�
b�

a
:

Hence, we also have that b.t/ > 0.
A calculation of the symplectic area ofD reveals that, since

b.t/ > 0; b.t/ � a.t/ > 0 and !t .D/ > 0;

for each t 2 Œ0; a=�/ we have

!t .D/ D k.b.t/ � a.t// � lb.t/

for some k 2 Z such that
k >

lb.t/

b.t/ � a.t/
> l;

where the last inequality actually means that

k � l C 1;

because k; l 2 Z.
Hence,

!t .D/ � .l C 1/.b.t/ � a.t// � lb.t/ D b.t/ � .l C 1/a.t/ � a.t/: (7.2)

Here the last inequality in (7.2) can be deduced from the assumptions

l 2
˚
0; 1; : : : ; .n � 2/=2

	
; �=� � .nC 2/=2 � b=a:

Inequality (7.2) implies the lemma.

Continuing with the proof of the theorem, assume 0 < S < a=� . We will now
show that for any almost complex structures J0 2 J0 and JS 2 Js regular with
respect to p and any family fJtg, 0 � t � S , Jt 2 Jt , that connects J0 and JS and is
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regular with respect to p, the moduli space M1.A1; fJtg; p/ is compact and hence,
in particular, the moduli spaces M1.A1; J0; p/ and M1.A1; JS ; p/ are compact.

As in the proof of Theorem 2.6 it suffices to consider a sequence fDig in
M1.A1; Jti ; p/ with ftig ! s 2 Œ0; S� and show that it has a subsequence
converging to an element of M1.A1; Js; p/. By Gromov compactness (see [19]),
since �2.Cn/ D 0, the sequence fDig has a subsequence converging to a bubbling
configuration of non-constant non-parameterized Js-holomorphic disks D1; : : : ;Dl

with boundary in L whose homology classes ŒD1�; : : : ; ŒDl � add up to A1:

ŒD1�C � � � C ŒDl � D A1:

By the result of Kwon–Oh [22], each disk Di , viewed as a subset of Cn, is
a finite union of non-parameterized somewhere injective Js-holomorphic disks
D
.1/
i ; : : : ;D

.in/
i so that

�.Di / D k1�
�
D
.1/
i

�
C � � � C kin�

�
D
.in/
i

�
where the coefficients ki are positive integers. Now 0 < !s.ŒDi �/ � !s.A1/ for all
i D 1; : : : ; l and this implies that

0 < !s
�
ŒD

.j /
i �

�
� !s.A1/

for all somewhere injective disks. By Lemma 7.2, this means that

�.D
.j /
i / … f2 � n; : : : ;�2; 0g:

Since the family fJtg is regular with respect to p, somewhere injective Js-holo-
morphic disks of Maslov index < 2 � n do not exist. Putting everything together
we conclude that for all i; j �.D.j /

i / > 0, which, in fact, means that �.D.j /
i / � 2

(recall that L is orientable and therefore the Maslov indices of disks with boundary
in L are all even). Therefore A1 D ŒD1�, the disk D1 lies in M1.A1; Js; p/ and the
sequence fDig has a subsequence converging to an element of M1.A1; Js; p/. This
finishes the proof that the smooth manifold M1.A1; fJtg; p/ is compact.

Thus for any J0 2 J0, JS 2 JS that are regular with respect to p and a family
fJtg0�t�S that connects J0 and JS and is regular with respect to p the moduli
space M1.A1; fJtg; p/ is a compact smooth 1-dimensional cobordism between the
compact 0-dimensional manifolds M1.A1; J0; p/ and M1.A1; JS ; p/, as long as
0 < S < a=� . (Note the difference with the proof of Theorem 2.6 where a similar
claim was proved for any S such that !t is symplectic for all t 2 Œ0; S�). This implies
that nA1.J0; p/ D nA1.JS ; p/.

In a similar way one can show that given a (regular) path 
.s/, 0 � s � 1,
in L, t 2 Œ0; S� and a family fJsg � Jt regular with respect to 
 , the moduli
space M1.A; fJsg; 
/ is a compact smooth 1-dimensional cobordism between
the compact 0-dimensional manifolds M1.A; J0; 
.0// and M1.A; J1; 
.1//, and
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therefore nA1.J0; 
.0// D nA1.J1; 
.1//. The latter claim proves part (A) of the
theorem for n even. The case for n odd is similar.

In order to prove part (B) we need to show that T � a=� . Let us assume by
contradiction that a=� < T . As we have shown above, nA1.J0; p/ D nA1.JS ; p/

for any S 2 .0; a=�/. Thus if nA1.J0; p/ is non-zero, then so is nA1.JS ; p/. This
implies that for every S < a=� there exists a JS -holomorphic disk in Cn with
boundary on L in the relative homology class A1. Passing to the limit S ! a=� and
applying again the Gromov compactness, we see that there must exist a configuration
of Ja=� -holomorphic disks whose total homology class isA1 (and hence not all disks
in the configuration are constant) and whose total !a=� -area is !a=� .A1/ D 0, which
is impossible since the area of each non-constant Ja=� -holomorphic disk has to be
positive. Hence, we obtain a contradiction and this proves (B).

Remark 7.3. We remark that the proof of Theorem 2.11 does not generalize to the
settings where !.Ai / ¤ !.Aj / for some 2 � i; j � n, i ¤ j . The reason for
this comes from the fact that if in the Lagrangian isotopy there exist two Maslov-0
disks with positive symplectic areas that are rationally independent (e.g.A2�A1 and
A3 � A2), then one can always find a Maslov-0 disk with positive symplectic area
arbitrarily close to 0. Hence one can not exclude Maslov-0 disks from any bubbling
configuration.

7.3. Proof of Theorem 2.14.
(A) The tori T n.x/ are exactly the regular orbits of the standard Hamiltonian
Tn-action on Cn and the regular level sets of its moment map ˆWCn ! .Rn/�

whose image is the non-negative quadrant � � .Rn/�.
For ˛ D .m1; : : : ; mn/ one readily sees that I.x; ˛/, which is the open part of

the intersection of the ray x � t˛, 0 < t < C1, and �, is an infinite ray if and only
if all mi are non-positive. Otherwise, I.x; ˛/ is an interval and its rational length is
given by mini;mi>0 xi=mi . By Theorem 2.4, this proves part (A) of the theorem.

(B) The upper bound defx.k; : : : ; k/ � x=k for k 2 N follows from Theorem 2.1,
since Cn does not admit weakly exact closed Lagrangian submanifolds by a famous
result of Gromov [19].

The lower bound bpx.k; : : : ; k/ � x=k follows immediately from part (A) of the
theorem.

(C) Let p1; : : : ; pn; q1; : : : ; qn be the standard Darboux coordinates on R2n D Cn

so that zj D pj C iqj , j D 1; : : : ; n.
According to the assumption, xi=k > xmin, that is, xi=k > xj for some j ¤ i .

By (7.1), we may assume without loss of generality, that i D n; j D 1, that is,
xn=k > x1. Let us show that bpx.ken/ D C1.

Observe that a circle bounding a round disk of a certain area in R2 can be mapped
by an area-preserving map arbitrarily close to the boundary of a square of the same
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area. Together with the semi-continuity, product and symplectic invariance properties
of pbC4 (see Section 3.4) this easily implies that it is enough to prove

pbC4 .X0; X1; Y0; Y1/ D 0; (7.3)

where the admissible quadruple X0; X1; Y0; Y1 is defined as follows: for i D
1; : : : ; n � 1 denote by…i the boundary of the square

Œ0;
p
xi � � Œ0;

p
xi � �

�
R2.pi ; qi /; dpi ^ dqi

�
:

For i D n consider the rectangle

Œ0; xn� � Œ0; 1� �
�
R2.pn; qn/; dpn ^ dqn

�
:

Now choose " > 0 such that
xn

k
� 4" > x1: (7.4)

As in the proof of Theorem 2.2 we choose a partition of Œ0; xn� � f1g into 4k � 3
intervals 
1; : : : ; 
4k�3, ordered from right to left, such that for i � 0; 2; 3 mod 4 the
intervals 
i have length ", the interval 
1 has length xn

k
and the remaining intervals

have length xn
k
� 3". Note that if k D 1 then 
1 D Œ0; xn� � f1g. We define

yX0 D Œ0; xn� � f0g [
[

i�3 mod 4


i ; yX1 D
[

i�1 mod 4


i ;

yY0 D Œ0; 1� � f0g [
[

i�2 mod 4


i ; yY1 D Œ0; 1� � fxng [
[

i�0 mod 4


i :

We then set

X0 WD …1 � � � � �…n�1 � yX0;

X1 WD …1 � � � � �…n�1 � yX1;

Y0 WD …1 � � � � �…n�1 � yY0;

Y1 WD …1 � � � � �…n�1 � yY1;

which gives us our admissible quadruple.
Now choose a constant C that satisfies�

xn

k
� 4"

�
1
p
x1
> C >

p
x1: (7.5)

Such a constant exists by inequality (7.4). OnR2.pn; qn/we define a piecewise-linear
function G"WR2 ! R that satisfies:
(i) G" � 0 on bY 0 and G" � C on bY 1,
(ii) G" only depends on pn.
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One can choose G" to satisfy

@xG" � C=
�xn
k
� 3"

�
on �. yX1/ � R, where �.pn; qn/ D pn is the projection. Therefore there exists a
smooth approximation GWR2 ! R that is complete, satisfies (i) and (ii) and has
slope

@xG < C=
�xn
k
� 4"

�
on �. yX1/ �R. This implies that all chords of G from bX0 to bX1 have time-length

T >
�xn
k
� 4"

�
=C:

Now consider the HamiltonianH WR2n ! R defined by

H.p; q/ WD p1 CG.pn; qn/:

H is complete and satisfies

min
Y1
H D C; max

Y0
H D

p
x1;

and thus, by inequality (7.5),

min
Y1
H �max

Y0
H > 0:

Again by inequality (7.5) we have�xn
k
� 4"

� 1
C
>
p
x1:

Under the projection R2n ! R2.pn; qn/ the chords of H map to the chords of G.
All chords of G from yX0 to yX1 have time-length

T >
�xn
k
� 4"

�
=C:

Now under the projection R2n ! R2.p1; q1/ the chords ofH map to vertical lines.
We see that for any T > px1 the image of…1 � R2.p1; q1/ under the Hamiltonian
flow at time T does not intersect…1. Thus there are no chords ofH from X0 to X1,
which, by the dynamical characterization of pbC4 , proves (7.3) and part (C).

8. Lagrangian tori in CPn and S2 � S2: proofs

We now prove that for Lagrangian toriL in CP n or S2�S2 and certain cohomology
classes ˛ 2 H 1.LIR/ there are upper bounds for defL.˛/.
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8.1. Proof of Theorem 2.16. Consider a Lagrangian isotopy

 D
˚
 t WL! CP n

	
; 0 � t � T;  0 D �;

such that
Œ!�

 
t D Œ!�L � t@˛:

By contradiction assume T > C and consider LC WD  C .L/. By the assumption of
the theorem, we have Œ!� C 2 H

2.CP n; LI 1
n
Z/ and therefore

!
�
H 2.CP n; LC /

�
�
1

n
Z:

Since L is a torus the group !.H 2.CP n; LC // has nC 1 generators y1; : : : ; yn; 1.
Denote by c 2 Œ0;C1/ \ 1

n
Z its positive generator. However, by a theorem of

Cieliebak and Mohnke [7],
c �

1

nC 1
:

We obtain a contradiction and therefore T < C .

8.2. Proof of Theorem 2.19. Consider a Lagrangian isotopy

 D
˚
 t WL! S2 � S2

	
; 0 � t � T;  0 D �;

such that
Œ!�

 
t D Œ!�L � t@˛:

By contradiction, assume T > C and consider LC WD  C .L/. By the assumption
of the theorem we have Œ!� C 2 H

2.S2 � S2; LIZ/ and therefore

!
�
H 2.S2 � S2; LC /

�
� Z:

Therefore the group !.H 2.S2 �S2; LC // is generated by 1. However, by a theorem
of Dimitroglou Rizell, Goodmann, and Ivrii [10, Proposition 5.3], for any torus
L � S2 � S2 the positive generator c of !.H 2.S2 � S2; L// satisfies

c �
1

2
:

We obtain a contradiction and therefore T < C .
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