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Slow manifolds for infinite-dimensional evolution equations
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Abstract. We extend classical finite-dimensional Fenichel theory in two directions to infinite
dimensions. Under comparably weak assumptions we show that the solution of an infinite-
dimensional fast-slow system is approximated well by the corresponding slow flow. After that
we construct a two-parameter family of slow manifolds S";� under more restrictive assumptions
on the linear part of the slow equation. The second parameter � does not appear in the finite-
dimensional setting and describes a certain splitting of the slow variable space in a fast decaying
part and its complement. The finite-dimensional setting is contained as a special case in
which S";� does not depend on �. Finally, we apply our new techniques to three examples
of fast-slow systems of partial differential equations.
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1. Introduction

In this work, we study infinite-dimensional fast-slow evolution equations of the form

"@tu
"
D Au" C f .u"; v"/;

@tv
"
D Bv" C g.u"; v"/;

(1.1)

where "�0 is a small parameter, A and B are linear operators on Banach spaces X
and Y , respectively, f; g are sufficiently regular nonlinearities, and .u"; v"/ D

.u".t/; v".t// 2 X � Y are the unknown functions, where the superscript indicates
the dependence of the solution on ". In particular, the class of systems (1.1) are
multiscale evolution equations, where the small parameter " hints at a formal time-
scale separation between the variables u" and v".

The motivation to study (1.1) is best explained via the finite-dimensional setting,
where .u"; v"/ 2 Rm �Rn, A 2 Rm�m, B 2 Rn�n, and one often assumes that f; g
are sufficiently smooth. Multiple time scale ordinary differential equations (ODEs)
are employed across broad areas of mathematics [21] and form one of the few classes
of higher-dimensional dynamical systems, where analytical results about nonlinear
dynamics can be obtained due to the time scale separation structure. If we let "! 0
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in (1.1) we obtain the slow subsystem (or reduced system)

0 D Au0 C f .u0; v0/;

@tv
0
D Bv0 C g.u0; v0/;

(1.2)

which is a differential-algebraic equation defined on the critical set

S0 WD
˚
.u0; v0/ 2 Rm �Rn W 0 D Au0 C f .u0; v0/

	
;

which we shall assume to be a manifold referred to as the critical manifold. If S0 � S0
is compact and normally hyperbolic submanifold, i.e., all eigenvalues of the matrix
ACDuf .z/ 2 Rm�m have nonzero real part for all z 2 S0, then Fenichel–Tikhonov
theory [14, 32] guarantees the existence of a locally invariant slow manifold S". Of
course, for practical applications, the case of a critical manifold, which is attracting
in the fast directions, is the most frequently encountered. This case occurs when
all eigenvalues of A C Duf .z/ have negative real part and we shall focus on the
attracting setting here. For any normally hyperbolic critical manifold, the flow on S"
is approximated well by the slow subsystem flow of (1.1); see also [18, 21, 35] for
detailed expositions of Fenichel theory. One reason to intuitively expect such an
approximation result in finite dimensions is better visible on the fast time scale
r WD t=", which leads upon substitution in (1.1) to

@ru
"
D Au" C f .u"; v"/;

@rv
"
D "

�
Bv" C g.u"; v"/

�
:

(1.3)

Indeed, sending "! 0 in (1.3) yields the fast subsystem (or layer equations)

@ru
0
D Au0 C f .u0; v0/;

@rv
0
D 0:

(1.4)

The full fast-slow system on Rm � Rn can then be treated near S0 as a bounded
perturbation of the fast subsystem since B and g satisfy local bounds due to the
assumptions of sufficient regularity on g, so the fast linear hyperbolic dynamics
driven by ACDuf .z/ for z 2 S0 dominates near z. To make this intuition precise is
already difficult in the finite-dimensional setting with Fenichel theory providing the
comprehensive standard [14], even for multiple time scale dynamical systems, which
cannot be written directly [34] in the standard form (1.1).

Transferring the finite-dimensional situation to general evolution equations on
Banach spaces turns out to be challenging. At first sight, one may hope that the
classical Fenichel approach to show the existence of S" via a Lyapunov–Perron
method or via a Hadamard graph transform [14, 35] can still be applied utilizing
variants/extensions of infinite-dimensional center manifold theory [33]. So far, the
best available results in this direction are due to Bates et al. [4,5], who cover the case
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of semiflows, when the perturbation induced by the slow dynamics is bounded. In
particular, this includes the case of partially dissipative systems, where A D � is
the Laplacian and B D 0 so that the slow variable dynamics is an ODE. Yet, even
for quite standard reaction-diffusion systems [15, 16, 22] with A D � and B D �

on bounded domains, there has been no major progress to generalize Fenichel’s
theory from the 1970s. The main problem is that on the fast time scale we can never
view "Bv" as a bounded perturbation ifB is a differential operator (this statement will
be made precise below); indeed, for differential operators we encounter the formal
limit 0 � 1 since B is an unbounded operator. Furthermore, the classical concept
of normal hyperbolicity is problematic since "Bv" is not necessarily “small” in any
norm compared to the linear part of the u"-variable. For example, when B D �

on a bounded domain, a spectral Galerkin decomposition shows that the v"-variable
may have fast decaying components in its linear part. This implies that the case of
hyperbolic operators for B (which we include here as well) is somewhat easier. In
fact, a very special case of fast-slow invariant manifold theory was carried out for
the Maxwell–Bloch equations in [25], where u" is governed by an ODE and B is a
first-order partial derivative.

Another hope might be that one can adapt the theory of inertial manifolds [28,31],
which has been used to constructed low-dimensional attracting invariant manifolds
for several classes of partial differential equations (PDEs). Yet, inertial manifold
theory is based on global dissipation and compact embeddings to construct reduced
lower-dimensional invariant manifolds. For the fast-slow evolution system (1.1), we
are not interested in global reduction but local persistence/perturbation of manifolds.
In fact, we shall see below that our slow manifold can even grow upon perturbation
in a suitable sense in comparison to the critical manifold.

In this work, we provide a quite general fast-slow invariant manifold theory for
the evolution equations (1.1). We briefly outline our results in a non-technical form:
� We identify the key problems with Fenichel theory in infinite dimensions via
several explicit examples including the problems with unbounded and differential
operators B as well as with the notion of normal hyperbolicity; see Section 3.

� We assume that A is the generator of a C0 semigroup having zero in its resolvent
and that the nonlinearity is (locally) Lipschitz. Then we prove an approximation result
that the flow of the full evolution equation for sufficiently small " > 0 is, near S0,
well-approximated by the flow of the slow subsystem on S0; see Theorem 4.13.

� Under suitable regularity assumptions onB and g, we prove the existence of a two-
parameter family of slow manifolds S";� . The second small parameter � > 0 controls
additional “fast” contributions of the v"-dynamics. We also prove differentiability
of S";� if f is C 1, we show estimates on the distance of S";� to the critical manifold,
and a result regarding local attraction of trajectories near S";� ; see Section 5.
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In the proofs, there are several important new technical steps. The approximation
result given in Theorem 4.13 does not provide a slow manifold, and is hence
weaker than classical Fenichel theory but it also uses weaker assumptions. It
shows that there exists a very general result that the slow subsystem can be used
to approximate the full dynamics in a suitable sense near S0. In fact, the proof of
this result seems to be difficult to achieve on the fast time scale, or even directly
with the original full evolution equations (1.1) on the slow time scale. We use
an intermediate approximating evolution equation (see also the calculations starting
from equation (4.2)), which changes the right-hand side of the fast component as
follows

"@tu
";0
D Au";0 C f .u";0; v0/ � "@tA

�1f
�
h0.v0/; v0

�
;

@tv
0
D Bv0 C g

�
h0.v0/; v0

�
;

(1.5)

where h0WY ! X is a local parametrization of the critical manifold. On the finite-
dimensional level, when X D Rm and Y D Rn one can nicely see, why this choice
might be helpful. Looking formally at different orders of O."k/ one has for k D 0; 1
from the first equation

Au0;0 C f .u0;0; v0/ D 0 and u0;0 C A�1f
�
h0.v0/; v0

�
D constant;

so upon using an initial condition with h0.v0/ D u0;0 one just obtains the condition
of the critical manifold twice, to leading-order and to first order in ". This means that
our intermediate system (1.5) is likely to be a locally better approximation to the full
fast-slow dynamics near S0 and it is a regularization of the slow subsystem. Other
important ingredients to obtain the approximation result are the use of interpolation-
extrapolation scales and suitably adapted Gronwall-type arguments involving mild
solutions.

For the construction of the slow manifold family S";� , we use a re-partitioning the
slow dynamics into two parts, which can formally be expressed as

Y D Y
�
F ˚ Y

�
S :

The part Y �S comes from modes/directions, where "B yields a sufficiently small
perturbation so that these modes are slow. Moreover, the linear part of the dynamics
on Y �S is supposed to exist also backwards in time. The other part Y �F comes
from modes, which are fast as B dominates the small parameter ". The parameter �
describes which parts of the linear dynamics in the slow variable space are considered
as fast and which ones are considered as slow. This is quantified in terms of an
exponential dichotomy. In a simplified special case, which already covers many
examples, this dichotomy is given by estimates of the form

ketByF kY1 � CBe.N
�
F
C��1!A/tkyF kY1 .t � 0; yF 2 Y

�
F \ Y1/;

ke�tBySkY1 �MBe�.N
�
S
C��1!A/tkySkY1 .t � 0; yF 2 Y

�
S \ Y1/:
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Here, Y1 D D.B/ denotes the domain of B , the parameter !A is essentially the
growth bound of theC0-semigroup generated by the operatorA, the two constantsCB ,
MB > 0 are independent of � and the two constants N �

S > N
�
F > 0 do depend on �.

The difference of N �
S and N �

F is an important quantity in our theory. It describes
how well the splitting separates fast and slow parts of the linearized slow dynamics.
It is related to gaps in the spectrum of the operator B . For the construction of
our slow manifolds, we need the spectral gaps to be of a certain size in relation
to the Lipschitz constants of the nonlinearities. In certain situations, especially if
the equation in the slow variable is a parabolic equation on a bounded domain, this
leads to similar conditions as the ones for the existence of inertial manifolds for
dissipative equations. However, since the slow manifolds we construct do not have
to be finite-dimensional, our spectral assumptions are not as restrictive as those for
inertial manifolds. In particular, unbounded spectrum in the imaginary direction will
usually not be a problem for our theory, so that hyperbolic or dissipative equations in
the slow variable are in a certain sense easier for our theory. The precise conditions
for the existence of slow manifolds will be given later in Section 5.1.

Having this splitting available, we then proceed to set up a Lyapunov–Perron
functional iteration to obtain the existence of S";� . The dynamical properties of S";�
can be established using relatively long estimates in combination with mild solution
representations, time differentiation of the manifold parametrization along solutions,
and contraction mapping arguments.

The paper is structured as follows: In Section 2 we collect technical background
results regarding interpolation-extrapolation scales of Banach spaces and operators
on these spaces, as well as suitable variants of Gronwall-type lemmas. In Section 3,
we illustrate the difficulties of the classical Fenichel viewpoint and the barriers to
generalize the bounded perturbation results for semiflows. In Section 4, we prove
the general result on slow flow approximation for semiflows, while in Section 5 we
obtain the slow manifold family and its precise dynamic properties. We present three
illustrating examples in Section 6 and conclude with an outlook in Section 7.

2. Preliminaries

2.1. Interpolation-extrapolation scales. We briefly introduce some required no-
tions and results in connection with interpolation-extrapolation scales. As a general
reference, we would like to mention [1, Chapter V].

Let T WX � D.T / ! X be a densely defined closed linear operator on a
Banach space X with 0 2 �.T /. Moreover, for � 2 .0; 1/ let .� ; �/� be an exact
admissible interpolation functor, i.e., an exact interpolation functor such that X1 is
dense in .X0; X1/� , whenever

X1
d
,! X0:
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We define a family of Banach spaces .X˛/˛2Œ�1;1/ and a family of operators
.T˛/˛2Œ�1;1/ 2 B.X˛C1; X˛/ as follows:
� Fork2N0we chooseXk WDD.T k/ endowed with kxkXk WDkT kxkX (x2D.T k/).

In particular, X0 D D.T 0/ D D.idX / D X . Moreover, Tk WD T jXkC1 .
� X�1 is defined as the completion of X D X0 with respect to the norm kxkX�1 D
kT �1xkX0 . The operator T0 D T is then closable on X�1 and T�1 is defined to
be the closure. One can also define .X�k; T�k/ for k 2 N by iteration, but we do
not go beyond k D �1 in this paper.

� For k 2 N0[f�1g, � 2 .0; 1/ and ˛ D kC � we defineX˛ WD .Xk; XkC1/� and
T˛ D TkjD.T˛/, where

D.T˛/ D fx 2 XkC1 W Tkx 2 X˛g:

The family .X˛; T˛/˛2Œ�1;1/ is a densely injected Banach scale in the sense that

X˛
d
,! Xˇ ;

whenever ˛ � ˇ (i.e., the injection is continuous with dense range), and

T˛WX˛C1 ! X˛

is an isomorphism for all ˛ 2 R. Moreover, T˛WX˛ � X˛C1 ! X˛ is a densely
defined closed linear operator with 0 2 �.T˛/ for all ˛ 2 R. The family .X˛; T˛/˛2R

is an interpolation-extrapolation scale.
One of the nice things about interpolation-extrapolation scales is that semigroups

can be shifted along these scales. More precisely, we have the following (cf. [1,
Chapter V, Theorem 2.1.3]):
Theorem 2.1. Let T be the generator of a C0-semigroup .S.t//t�0 and let !S 2 R
be the growth bound of S , i.e.,

!S WD inf
˚
! 2 R j 9M > 0 8t � 0 W kS.t/kB.X/ �M e!t

	
:

Then T˛WX˛ � X˛C1 ! X˛ also generates a C0 semigroup .S˛.t//t�0 with the
same growth bound and for all ˛; ˇ 2 Œ�1;1/, ˛ � ˇ, the following diagram
commutes:

X˛ X˛

Xˇ Xˇ :

S˛.t/

Sˇ.t/

Moreover, if .S.t//t�0 is holomorphic then the same holds for .Sˇ .t//t�0 and for all
! > !S there is a constant C also depending on ˛ and ˇ such that

kSˇ .t/kB.Eˇ ;E˛/ � Ct
ˇ�˛e�!t .t > 0/:
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2.2. Estimates for the incomplete gamma function. In this paper we frequently
encounter terms of the form Z t

0

e"�1!.t�s/

" .t � s/1�
ds

with  2 .0; 1�, ! < 0 and " > 0. In the following, we derive certain elementary
estimates which we use several times. They might not be of great importance on
their own, but being able to refer to them will be useful at some places. Note that the
substitution r D �"�1!.t � s/ yieldsZ t

0

e"�1!.t�s/

" .t � s/1�
ds D

1

j!j

Z "�1j!jt

0

e�r

r1�
dr D

z�.; "�1j!jt /

j!j
;

where z�.; t/ WD
R t
0

e�r
r1�

dr denotes the incomplete gamma function.
Lemma 2.2. For all t � 0, " > 0,  2 .0; 1� and ! < 0 it holds thatZ t

0

e"�1!.t�s/

" .t � s/1�
ds � min

�
t

"
;
�./

j!j

�
:

Here, � denotes the gamma function.

Proof. Hölder’s inequality yieldsZ t

0

e"�1!.t�s/

" .t � s/1�
�
1

"

Z t

0

1

.t � s/1�
ds D

t

"
:

On the other hand, since z�.; t/ is increasing in t , it follows thatZ t

0

e"�1!.t�s/

" .t � s/1�
ds D

z�.; "�1j!jt /

j!j
� lim
t!1

z�.; "�1j!jt /

j!j
D
�./

j!j
;

which completes the proof.

Lemma 2.3. For all t � 0, " > 0,  2 .0; 1� and ! < z! it holds that

e"�1 z!t
Z t

0

e"�1.!�z!/s

"s1�
ds �

e

1� j z!j
:

Proof. By Lemma 2.2 it holds that

e"�1 z!t
Z t

0

e"�1.!�z!/s

"s1�
ds � e"�1 z!t

t

"
:

The right-hand side attains its maximum at t D j"z!�1j. This yields the assertion.
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Lemma 2.4. For all t � 0, " > 0,  2 .0; 1� and ! < z! < 0 it holds thatZ t

0

"�1j!je"�1 z!.t�s/
Z s

0

e"�1!r

"r1�
dr ds �

�./j!j1�

z!
:

Proof. Using Lemma 2.2 we obtainZ t

0

"�1j!je"�1 z!.t�s/
Z s

0

e"�1!r

"r1�
dr ds � "�1j!j1��./

Z t

0

e"�1 z!.t�s/ ds

�
�./j!j1�

z!
:

Corollary 2.5. For all t � 0, " > 0,  2 .0; 1� and ! < z! < 0 it holds thatZ t

0

�
e"�1!s

"s1�
C"�1j!j

Z s

0

e"�1!r

"r1�
dr
�

e"�1 z!.t�s/ ds �
�

e

1�
C�./

ˇ̌̌!
z!

ˇ̌̌1�� 1

z!
:

Proof. This follows from summing up the estimates of Lemmas 2.3 and 2.4.

Lemma 2.6. Let ! < 0 and  2 .0; 1�. Then it holds thatZ t

0

e!s

.t � s/1�
ds �

e1C!t C 
 j!j

:

Proof. This follows fromZ t

0

e!s

.t � s/1�
ds D e!t

Z t

0

e�!s

s1�
ds D

e!t

j!j

Z j!jt
0

er

r1�
dr

�
e!t

j!j

�Z 1

0

er

r1�
dr C

Z maxf1;j!jtg

1

er

r1�
dr
�

�
e!t

j!j

�
e

C e�!t

�
D

e1C!t C 
 j!j

:

2.3. Some Gronwall type inequalities. In most of the proofs of this paper, Gronwall
type inequalities are essential ingredients. Here, we collect the versions which we
use throughout this work.
Lemma 2.7. Let T > 0, u; v; cW Œ0; T �! Œ0;1/ be continuous and suppose that c0
is locally integrable. If v.t/ � c.t/C

R t
0
u.s/v.s/ ds for all t 2 Œ0; T �, then

v.t/ � c.0/ exp
�Z t

0

u.s/ ds
�
C

Z t

0

c0.s/ exp
�Z t

s

u.r/ dr
�

ds .t 2 Œ0; T �/:

Proof. This is a well-known version of Gronwall’s inequality. A proof can, for ex-
ample, be found in [9, Corollary 2]. The statement therein is formulated for c being
differentiable, but the argument relies on integration by parts and thus, also the
asserted version holds true.
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Lemma 2.8. Let x 2 R, ";N; T > 0,  2 .0; 1�, p 2 .1;1/ and let p0 D p=.p�1/
be the conjugated Hölder index. Let further v; cW Œ0; T � ! Œ0;1/ be continuous.
Suppose that c0 is locally integrable and that Œt 7! e�"�1xtc.t/� is non-decreasing.
If

v.t/ � c.t/CN

Z t

0

e"�1x.t�s/

" .t � s/1�
v.s/ ds

for all t 2 Œ0; T �, then we have the estimate

v.t/ � pc.0/e"�1zxt C p
Z t

0

�
c0.s/ � "�1xc.s/

�
e"�1zx.t�s/ ds .t 2 Œ0; T �/;

where zx WD x C pN 1= .p0=/.1�/= .

Proof. Let �.t/ WD sup0�s�t e�"�1xsv.s/. Then we have the estimate

e�"�1xtv.t/ � c.t/e�"�1xt CN
Z t

0

1

" .t � s/1�
�.s/ ds:

If we choose � D .=p0N/1=", then we obtain

e�"�1xtv.t/ � c.t/e�"�1xt CN
Z Œt���C

0

1

" .t � s/1�
�.s/ ds

CN

Z t

Œt���C

1

" .t � s/1�
�.t/ ds

� c.t/e�"�1xt C
N

"�1�

Z t

0

�.s/ ds �
N

"

�
.t � s/

�t
sDŒt���C

�.t/

� c.t/e�"�1xt C
N

"�1�

Z t

0

�.s/ ds C
1

p0
�.t/:

By the monotonicity of the right-hand side, it follows that we can replace e�"�1xtv.t/
by �.t/ on the left-hand side. Therefore, we obtain

�.t/ � pc.t/e�"�1xt C
pN

"�1�

Z t

0

�.s/ ds;

so that Lemma 2.7 implies

�.t/ � pc.0/ exp
�

pN

"�1�
t

�
C p

Z t

0

.c0.s/ � "�1xc.s// exp
�
�"�1xs C

pN

"�1�
.t � s/

�
ds;
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and therefore

v.t/ � pc.0/ exp
��
"�1x C

pN

"�1�

�
t

�
C p

Z t

0

.c0.s/ � "�1xc.s// exp
��
"�1x C

pN

"�1�

�
.t � s/

�
ds

D pc.0/e"�1zxt C p
Z t

0

�
c0.s/ � "�1xc.s/

�
e"�1zx.t�s/ ds:

Remark 2.9. For the sake of simplicity, we will apply Lemma 2.8 withp D 2most of
the time. However, this is not optimal in many cases. In particular, if  D 1 then it is
actually better to takep close to 1. This way, we may actually take!f > !ACCALf
instead of !f D ! C .2CALf /1= .1=/.1�/= later in this paper. This might be of
importance if one wants !f to be as small as possible.

Lemma 2.10. Let x; y 2 R, ";N;M; T > 0 as well as ; ı 2 .0; 1�. Let further
v; cW Œ0; T � ! Œ0;1/ be continuous. Suppose that c0 is locally integrable and that
Œt 7! e�ytc.t/� is non-decreasing. If 0 < N�./=."y � x/ < 1 and if

v.t/ � c.t/CN

Z t

0

e"�1x.t�s/

" .t � s/1�
v.s/ ds CM

Z t

0

ey.t�s/

.t � s/1�ı
v.s/ ds

for all t 2 Œ0; T �, then for all � 2 .0; 1� .N�./=."y � x/ //, we have the estimate

v.t/ �
1

1 � � � .N�./=."y � x/ /

�
c.0/ezyt C

Z t

0

.c0.s/ � yc.s//ezy.t�s/ ds
�

.t 2 Œ0; T �/;

where zy WD y CM 1=ı.ı�/.ı�1/=ı.1 � � � .N�./=."y � x/ //�1.

Proof. The proof is similar to the one of Lemma 2.8. We define

�.t/ WD sup
0�s�t

e�ysv.s/;

so that we obtain

e�ytv.t/ � e�ytc.t/CN
Z t

0

e."�1x�y/.t�s/

" .t � s/1�
�.s/ ds CM

Z t

0

1

.t � s/1�ı
�.s/ ds

� e�ytc.t/CN
Z t

0

e."�1x�y/.t�s/

" .t � s/1�
ds �.t/CM

Z t

0

1

.t � s/1�ı
�.s/ ds

� e�ytc.t/C
N�./

."y � x/
�.t/CM

Z t

0

1

.t � s/1�ı
�.s/ ds;
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where we used Lemma 2.2. For some � � 0 we split again

e�ytv.t/ � e�ytc.t/C
N�./

."y � x/
�.t/C

Z Œt���C

0

M
1

.t � s/1�ı
�.s/ ds

C

Z t

Œt���C

M
1

.t � s/1�ı
ds �.t/

� e�ytc.t/C
�
N�./

."y � x/
C
M�ı

ı

�
�.t/C

M

�1�ı

Z t

0

�.s/ ds:

Now we choose � 2 .0; 1 � .N�./=."y � x/ // and � D .ı�=M/1=ı . If we also
use the monotonicity of the right-hand side, then we obtain

�.t/ � e�ytc.t/C
�
N�./

."y � x/
C �

�
�.t/CM 1=ı.ı�/.ı�1/=ı

Z t

0

�.s/ ds:

Since 0 < .N�./=."y � x/ /C � < 1 this yields

�.t/ �
1

1 � � � .N�./=."y � x/ /
e�ytc.t/

C
M 1=ı.ı�/.ı�1/=ı

1 � � � .N�./=."y � x/ /

Z t

0

�.s/ ds:

Hence, the assertion follows from Lemma 2.7.

3. Problems with fast-slow systems in infinite dimensions

Here we give some reasons why it is difficult to apply perturbation theorems for
normally hyperbolic invariant manifolds in infinite dimensions such as the ones
in [4, 5] to infinite-dimensional fast-slow systems.

3.1. Problems with small perturbations. In finite dimensions, the usual approach
to show the existence of slow manifolds is to show that the flow of the fast-slow
system on the fast time scale is a small perturbation of the flow generated by the
fast subsystem. Then the existence of slow manifolds follows from the persistence
of normally hyperbolic invariant manifolds under small perturbation. But even
though such persistence results are also available in infinite dimensions (see, for
example, [4, 5]), this approach does not work directly for many interesting infinite-
dimensional examples. Consider for instance the following situation: Let X; Y be
Banach spaces. Suppose that

AWX � D.A/! X and BWY � D.B/! Y
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are generators of C0-semigroups

.TA.t//t�0 � B.X/ and .TB.t//t�0 � B.Y /;

respectively. Let further L1 2 B.Y;X/ and L2 2 B.X; Y / be bounded linear oper-
ators. Then the operator�

A L1
"L2 "B

�
WX � Y � D.A/ �D.B/! X � Y

generates a C0-semigroup .T".t//t�0 for all " � 0. Hence, for all u0 2 X , v0 2 Y
and all " � 0 there is a unique solution to the fast-slow system

@tu
"
D Au" C L1v

";

@tv
"
D "Bv" C "L2u

";

u".0/ D u0; v".0/ D v0

(3.1)

on the fast time scale which is given by a semiflow�
u".t/

v".t/

�
D T".t/

�
u0
v0

�
:

For the sake of argument, we assume that the embedding

D.A/ �D.B/! X � Y

is compact so that the intersection of the critical subspace

S0 WD f.u; v/ 2 D.A/ �D.B/ W AuC L1v D 0g

with the ball B.0;R/ in D.A/ � D.B/ around 0 with arbitrary radius R > 0 is
relatively compact in X � Y . Note that this assumption is frequently satisfied for
differential operators on bounded domains. We are thus in a similar situation as
in finite dimensions. One would hope that one can apply the theorem given in the
introduction of [4] to S0 \ B.0;R/. However, if one wants to apply this theorem in
order to perturb the critical subspace S0 for (3.1) with " D 0 to a slow submanifold S"
for (3.1) with " > 0, one would – among other assumptions – need that

kT0.t/ � T".t/kB.X�Y / ! 0 ."! 0/ (3.2)

for some t > 0. In fact, one just needs

kT0.t/ � T".t/kC1.N IX�Y / ! 0 ."! 0/

for a suitable neighborhood N of S0 \ B.0;R/. But since such a neighborhood
already contains a ball in X � Y around 0 with small radius, this implies (3.2)
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by linearity. However, (3.2) is not satisfied if B is an unbounded operator. This
can be seen as follows: One can use the variation of constants formula together
with a standard version of Gronwall’s inequality in order to show that there is a
constant C > 0, such that

sup
";t2Œ0;1�

�
ku".t/kX C kv

".t/kY
�
� C

�
ku0kX C kv0kY

�
:

Therefore, if (3.2) holds then we have that

0 D lim
"!0

sup
k.u0;v0/T kX�YD1

k prY
�
T".1/ � T0.1/

�
.u0; v0/

T
kY

D lim
"!0

sup
k.u0;v0/T kX�YD1

kv".1/ � v0kY

D lim
"!0

sup
k.u0;v0/T kX�YD1

�TB."/ � idY
�
v0 C "

Z 1

0

TB
�
".1 � s/

�
L2u

".s/ ds

Y

� lim
"!0

sup
k.u0;v0/T kX�YD1

�
k.TB."/ � idY /v0kY

�
� lim
"!0

sup
k.u0;v0/T kX�YD1

"
Z 1

0

TB
�
".1 � s/

�
L2u

".s/ ds

Y

D lim
"!0

sup
k.u0;v0/T kX�YD1

�
k
�
TB."/ � idY

�
v0kY

�
:

Hence, we have
kTB."/ � idY kB.Y / ! 0 ."! 0/;

i.e., the semigroup generated by B is norm-continuous at t D 0. But this holds if
and only ifB is a bounded linear operator on Y , see for example [10, Theorem I.3.7].
Therefore, one can not apply [4] directly to fast-slow systems, in which the dynamics
of the slow variable are given by a partial differential equation.

3.2. Problems with the notion of normal hyperbolicity. One of the central objects
in classical Fenichel theory is the notion of a normally hyperbolic invariant manifold.
The important properties of such a manifoldM are that it is invariant under the given
(semi-)flow .T t /t�0 on the space X and that for each m 2M it admits a splitting

X D Xcm ˚X
s
m ˚X

u
m;

such that
(i) Xcm is the tangent space to M at m;
(ii) the splitting is invariant under the linearized flow DT t .m/;
(iii) DT t .m/jXum expands, DT t .m/jXsm contracts, and both do so to a greater degree

than DT t .m/jXcm .
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Perturbation results for such normally hyperbolic invariant manifolds in infinite
dimensions have been obtained in [4]. Therein, property (iii) includes on a formal
level the condition

�min
˚
1; inf

˚
kDT t .m/xckXcm W x

c
2 Xcm; jx

c
j D 1

		
> kDT t .m/jXsmkB.Xsm/

(3.3)
for some � 2 .0; 1/. However, if we consider the uncoupled, linear case of a fast-slow
system, i.e., (3.1) with L1 D 0 and L2 D 0, then the center direction Xcm on the
critical manifold will be given by

Xcm D f.x; y/ 2 X � Y W Ax D 0g � f.x; y/ 2 X � Y W x D 0g:

Thus, if B is a standard parabolic operator as the Laplacian � on Lp.Rd / or the
Dirichlet Laplacian�D onLp.O/with O being a smooth domain, then the left-hand
side of (3.3) is equal to 0 so that normal hyperbolicity in the sense of [4, p. 11] can
not be satisfied.

3.3. Problems with the splitting in fast and slow time. In infinite dimensions,
one has to be careful with the interpretation of the notion “fast-slow system”. Many
interesting cases can (locally) be written as

"@tu
"
D Au" C f .u"; v"/;

@tv
"
D Bv" C g.u"; v"/;

u".0/ D u0; v".0/ D v0;

(3.4)

where in infinite dimensions the operators A and B are unbounded operators on the
Banach spaces X and Y , the Lipschitz continuous nonlinearities f; g have Lipschitz
constants which are not too large and u0; v0 are certain initial conditions; note that in
many examples one may cut off the nonlinearity to make it Lipschitz due to invariant
regions [29] or due to global dissipation [28, 31].

Already in finite dimensions, the speed of evolution of the fast variable can only
be considered faster than the one of the slow variable if they are related to their
norms. Obviously, if kv0kY is very large, then v".t/ may change quickly compared
to u".t/, even if " is very small. However, in infinite dimensions k �kX and k �kY may
not be suitable for such a comparison for several reasons. First of all, unlike in finite
dimensions, not all norms are equivalent and thus, comparing k � kX and k � kY might
not be very meaningful. But even if ones takes .X; k � kX / D .Y; k � kY /, one may
run into difficulties. For the sake of argument, we assume for the moment that there
is no coupling, i.e., f D 0 and g D 0. Since B is unbounded in many interesting
cases, we may take u0 2 D.A/ with ku0kX D 1 and v0 2 Y with kv0kY D 1 such
that kBv0kY > "�1kAu0kX . Then we have

k@tu
".0/kX D "

�1
kAu0kX < kBv0kY D k@tv

".0/kY :
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Therefore, one could argue that v".t/ is faster around t D 0 than u".t/, even though
it is called “slow variable”. Note that this argument breaks down if one takes u0
and v0 to have graph norms of the same size, i.e., ku0kD.A/ D kv0kD.B/ D 1. But
then we have to problem the other way round: k@tv".0/kY might be smaller than
k@tu

".0/kX only because kv0kY is much smaller than ku0kX . In order to illustrate
this, let us consider an example:

Example 3.1. We take X D L2.Rd /, Y D H�2.Rd /, A D � � 1 with domain
H 2.Rd / and B D � � 1 with domain L2.Rd /. Again, we take f D 0 and g D 0

so that we obtain the system

"@tu
"
D .� � 1/u";

@tv
"
D .� � 1/v";

u".0/ D u0; v".0/ D v0:

Now, we take

u0 WD F �1
h
� 7!

1

1C j�j2
1Œ0;1�d .�/

i
and v0 WD F �1

�
� 7! 1Œ0;1�d .� � �0/

�
for a certain �0 2 Rd . Then we have

ku0kD.A/ D ku0kL2.Rd / C k.� � 1/u0kL2.Rd /

Å kF �1
�
1C j�j2

�
F u0kL2.Rd / D k1Œ0;1�d kL2.Rd / D 1

and
kv0kD.B/ D kv0kH�2.Rd / C k.� � 1/v0kH�2.Rd /

Å kv0kL2.Rd / D k1Œ0;1�d .� � �0/kL2.Rd / D 1:

However, it holds that

ku".t/kL2.Rd / D kF
�1e�"�1.1Cj�j2/tF u0kL2.Rd / � e�2"�1tku0kL2.Rd /

and
kv".t/kH�2.Rd / D kF

�1e�.1Cj�j2/tF v0kH�2.Rd / � e�j�0j2tkv0kH�2.Rd /:

Hence, v".t/ decays faster in relation to kv0kH�2.Rd / than u".t/ does in relation to
ku0kL2.Rd / if j�0j2 > 2"�1, even though ku0kD.A/ D kv0kD.B/ D 1.

We also want to point out that norms can be a bad indicator of different time scales
in a system. Suppose that B generates a unitary group .etB/t2R on a Hilbert space Y
andA generates an exponentially stableC0-semigroup of contractions .etA/t�0 onX .
Since .etB/t2R is a family of isometric isomorphisms on Y , we obviously have that

1 D ketBv0kY > ke"
�1tAu0kX
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for all choices of t > 0, v0 2 Y with kv0kY D 1 and u0 2 X with ku0kX D 1. But
still, the trajectories of .etB/t2R can have changes which are much faster than the
exponential decay caused by .e"�1tA/t�0 for certain initial values. Take, for example,
B D d

dx
on H�1.R/ with domain L2.R/. The corresponding group is given by the

family of shifts etBv D v.� C t /. If we take vk D
p
k1Œ0;k�1�, then we have

kvkkL2.R/ D 1; ke
k�1Bvk � vkkL2.R/ D

p
2:

Thus, no matter how small jt j is, there will always be an initial value v0 with
kv0kL2.R/ D 1 such that etBv0 and v0 have a distance of

p
2.

In principle, the fact that small " does not provide an intuitive splitting in fast
and slow time does not necessarily mean that carrying over the results from the
finite to the infinite dimensional setting has to cause problems. However, it shows
that both cases are different not only from a technical but also from a conceptual
point of view. Looking at the above examples one could even discuss whether using
the terminology “fast-slow system” is the most adequate in infinite dimensions as
one cannot immediately spot the scale separation from a standard form but we shall
nevertheless still use the finite-dimensional terminology as one can then formally
refer to the two evolution equations for u" and v" more easily.

4. General fast-slow systems in infinite dimensions

In Section 3.2 we have seen that the classical notion of normal hyperbolicity is
very restrictive in infinite dimensions. Unfortunately, it is not known if or how the
Lyapunov–Perron method or Hadamard’s graph transform can be carried out without
this condition and thus, slow manifolds have not been constructed in a general
infinite-dimensional setting so far. The main results of this section, Theorem 4.13
and Corollary 4.15, show that even without the construction of slow manifolds, one
can consider the slow flow as a good approximation of the semiflow generated by the
fast-slow system. In order to derive these results, we need a weaker version of normal
hyperbolicity. The idea behind this condition is that solutions of the fast equation

"@tu
"
D Au" C f .u"; v"/

should decay unless the contribution of the slow variable v" prevents them from doing
so. This could be formulated in terms of conditions on the spectrum ofACDxf .x; y/
or, as we do it later, by the estimate (4.4). For finite-dimensional fast-slow systems,
requiring the spectrum of A C Dxf .x; y/ to have an empty intersection with the
imaginary axis is equivalent to normal hyperbolicity of the critical manifold. But in
infinite dimensions this is clearly not the case, since Section 3.2 shows that classical
normal hyperbolicity crucially depends on the operator in the slow variable.
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Altogether, one could summarize that in this section we derive weaker results
under weaker conditions than classical Fenichel theory. In Section 5 we will then
introduce a suitable stronger notion of normal hyperbolicity in infinite dimensions
which will suffice to construct slow manifolds. However, this stronger notion will be
more restrictive again and there are examples in which we are still forced to rely on
the results of Section 4.

4.1. The fast equation. First, we study the equation

"@tu
".t/ D Au".t/C f .t; u".t// .t 2 Œ0; T �/;

u".0/ D u0;
(4.1)

under the following assumptions:
(1) " � 0, T > 0 are parameters and u0 2 X1 WD D.A/ an initial value which
satisfies

0 D Au0 C f .0; u0/ if " D 0:

(2) The operator AWX � D.A/ ! X is a closed linear operator on the Banach
space X with D.A/ being dense in X and with 0 2 �.A/. It generates the C0-semi-
group .etA/t�0 � B.X/.

(3) We write . zX˛; A˛/˛2Œ�1;1/ for the interpolation-extrapolation scale generated
by .X;A/ and .X˛/˛2Œ�1;1/ for a scale of Banach spaces such that the norms k � kX˛
and k � k zX˛ are equivalent. Moreover, we take constants CA;MA > 0, !A 2 R such
that

ketAkB.X1/ �MAe!At ; ketAkB.X ;X1/ � CAt
�1e!At .t > 0/;

where  2 .0; 1� if .etA/t�0 � B.X/ is holomorphic and  D 1 in the general case.

(4) Take again  2 .0; 1� if .etA/t�0 � B.X/ is holomorphic and  D 1 in the
general case. Let ı 2 Œ1�; 1�. The nonlinearity f W Œ0;1/�Xı ! X is continuous
and there is an Lf > 0 such that

kf .t; x1/ � f .t; x2/kX � Lf kx1 � x2kX1 ;

kf .� ; u1/ � f .� ; u2/kC1.Œ0;t�IXı�1/ � Lf ku1 � u2kC1.Œ0;t�IXı/;

for all t 2 Œ0; T �, x1; x2 2 X1 and u1; u2 2 C 1.Œ0; T �IXı/. Here we assume that

f .t; x/ 2 X for .t; x/ 2 Œ0; T � �X1;
f .� ; u/ 2 C 1

�
Œ0; T �IXı�1

�
for u 2 C 1

�
Œ0; T �IXı

�
:

(5) We define

!f WD !A C .2CALf /
1=
� 1


�.1�/=
if  2 .0; 1/
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and take
!f > !A C CALF if  D 1:

According to Remark 2.9 the former definition will not be optimal in most cases,
but for the sake of simplicity, we make this choice. However, as the optimal choice
for  D 1 has a nice representation, we explicitly mention this case. We assume
that !f < 0, even though it is not necessary for the results in Section 4.1.

We work with these assumptions throughout this subsection.
Remark 4.1. Formally, one has to distinguish the different operators A˛ and the
corresponding semigroups .etA˛ /t�0 for different values of ˛ 2 Œ�1;1/. However,
the difference is not essential for us. So we will in our notation just write A and
.etA/t�0 no matter on which X˛ we consider them.
Proposition 4.2. (a) Assume that Lf kA�1kB.Xı�1;Xı/ < 1. Then equation (4.1)

with " D 0 has a unique solution

u0 2 C 1
�
Œ0; T �IXı

�
:

(b) Equation (4.1) with " > 0 has a unique strict solution u", i.e., a solution

u" 2 C 1
�
Œ0;1/IX

�
\ C

�
Œ0;1/IX1

�
;

which satisfies (4.1) with " > 0 for all t 2 Œ0;1/.

Proof. (a) Our assumptions imply that

LWC 1
�
Œ0; T �IXı

�
! C 1

�
Œ0; T �IXı

�
; u 7! �A�1f .� ; u/

is a contraction. Since C 1.Œ0; T �IXı/ is a Banach space, the assertion follows from
Banach’s fixed point theorem.

(b) For � 2 R, letCb.Œ0;1/; e"
�1�t IX1/ be the space of all u 2 C.Œ0;1/IX1/ such

that
kuk

Cb.Œ0;1/;e"
�1�t IX1/

WD sup
t�0

e�"�1�tku.t/kX1 <1:

We show that the operator

L.u/ WD e"�1tAu0 C "�1
Z t

0

e"�1.t�s/Af .s; u.s// ds

has a unique fixed point in Cb.Œ0;1/; e�t IX1/ for � large enough. By our assump-
tions it holds for � > !A that

kL.u1/ �L.u2/kCb.Œ0;1/;e"
�1�t IX1/

D sup
t�0

e�"�1�t
"�1 Z t

0

e"�1.t�s/A
�
f .s; u1.s// � f .s; u2.s//

�
ds

X1
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� sup
t�0

Lf CA

Z t

0

e"�1.t�s/.!A��/

.t � s/1�"
dsku1 � u2kCb.Œ0;1/;e"�1�t IX1/

�
Lf CA�./

.� � !A/
ku1 � u2kCb.Œ0;1/;e"

�1�t IX1/
;

where � denotes the gamma function. If even � > .Lf CA�.//1= C!A, then L is
a contraction. By Banach’s fixed point theorem, it follows that L has a unique fixed
point in Cb.Œ0;1/; e"

�1�t IX1/. Let u" be this fixed point. Then we have that

u".t/ D e"�1tAu0 C "�1
Z t

0

e"�1.t�s/Af .s; u".s// ds;

and which in turn implies that

u".t/ D u0 C "
�1A

Z t

0

u".s/ ds C "�1
Z t

0

f .s; u".s// ds .t 2 Œ0;1//;

see for example [23, Proposition 4.1.5]. Hence, it follows that for all t � 0 we have
that

lim
h!0

u".t C h/ � u".t/

h
D lim
h!0

1

h

�Z tCh

t

"�1Au".s/ ds C "�1
Z tCh

t

f .s; u".s// ds
�

D "�1Au".t/C "�1f .t; u".t//;

where to convergence holds in X as Au"; f .� ; u"/ 2 C.Œ0;1/IX/. This shows the
assertion.

Remark 4.3. Note that in the proof of Proposition 4.2 (b) we did not use the estimate

kf .� ; u1/ � f .� ; u2/kC1.Œ0;T �IXı�1/ � Lf ku1 � u2kC1.Œ0;T �IXı/

.u1; u2 2 C
1.Œ0; T �IXı//;

which we assumed to hold for f .
Proposition 4.4. Consider the situation of Proposition 4.2.
(a) Suppose that Lf kA�1kB.Xı�1;Xı/ < 1. Let " D 0 and let u0 be the solution

of (4.1) from Proposition 4.2 (a). Then we have the estimate

ku0kC1.Œ0;T �IXı/ �
kA�1kB.Xı�1;Xı/

1 � Lf kA�1kB.Xı�1;Xı/
kf .� ; 0/kC1.Œ0;T �IXı�1/:

(b) Let " > 0 and � > !f . Then for all t � 0, we have the estimate

ku".t/kX1 � 2MAe"�1!f tku0kX1

C 2CA

�
e

1�
C �./

ˇ̌̌� � !A
� � !f

ˇ̌̌1��ke"�1�.t� � /f . � ; 0/kL1;.Œ0;t�IX /
.� � !f /

;

where u" denotes the solution of (4.1) from Proposition 4.2 (b).
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Proof. (a) The assertion follows from

ku0kC1.Œ0;T �IXı/ D kA
�1f .� ; u0/kC1.Œ0;T �IXı/

� kA�1kB.Xı�1;Xı/kf .� ; u
0/kC1.Œ0;T �IXı�1/

� kA�1kB.Xı�1;Xı/
�
kf .� ; u0/ � f .� ; 0/kC1.Œ0;T �IXı�1/ C kf .� ; 0/kC1.Œ0;T �IXı�1/

�
� kA�1kB.Xı�1;Xı/

�
Lf ku

0
kC1.Œ0;T �IXı/

C kf .� ; 0/kC1.Œ0;T �IXı�1/
�
:

(b) In a first step we assume that !f < � D 0. For the solution of (4.1) we have the
implicit solution formula

u".t/ D e"�1tAu0 C "�1
Z t

0

e"�1.t�s/Af .s; 0/ ds

C "�1
Z t

0

e"�1.t�s/A
�
f .s; u".s// � f .s; 0/

�
ds:

Therefore, we obtain

ku".t/kX1 � ke
"�1tA

kB.X1/ku0kX1 C "
�1

Z t

0

ke"�1.t�s/AkB.X ;X1/kf .s; 0/kX ds

C Lf "
�1

Z t

0

ke"�1.t�s/AkB.X ;X1/ku
".s/kX1 ds

�MAe"�1!Atku0kX1 C CA
Z t

0

e"�1!A.t�s/

" .t � s/1�
dskf . � ; 0/kL1.Œ0;t�IX /

C CALf

Z t

0

e"�1!A.t�s/

" .t � s/1�
ku".s/kX1 ds

DMAe"�1!Atku0kX1 C CA
Z t

0

e"�1!As

"s1�
dskf . � ; 0/kL1.Œ0;t�IX /

C CALf

Z t

0

e"�1!A.t�s/

" .t � s/1�
ku".s/kX1 ds:

Now we choose t0 � t and apply Lemma 2.8 with p D 2 together with Corollary 2.5.
If  D 1, then we apply Lemma 2.8 with p close to 1. Note that

t 7! e�"�1!At
Z t

0

e"�1!As

"s1�
ds

is non-decreasing since !A < 0. We get

ku".t/kX1 � 2MAe"�1!f tku0kX1

C 2CA

�
e

1�
C �./

ˇ̌̌!A
!f

ˇ̌̌1��kf . � ; 0/kL1.Œ0;t0�IX /
j!f j

:
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Taking t0D t yields the assertion for !f < � D 0. For arbitrary !f < �, we use the
transformation u"�.t/ WD e�"�1�tu".t/. Then u"� satisfies

"@tu
"
�.t/ D .A � �/u

"
�.t/C e�"�1�tf .t; e"�1�tu"�.t// .t � 0/;

u"�.0/ D u0:

Our previous argument thus implies

ku"�.t/kX1 � 2MAe"�1.!f ��/tku0kX1

C 2CA

�
e

1�
C �./

ˇ̌̌� � !A
� � !f

ˇ̌̌1��ke�"�1�. � /f . � ; 0/kL1.Œ0;t�IX /
.� � !f /

:

Multiplying with e"�1�t again yields the assertion.

Proposition 4.5. Let zf WXı ! X satisfy the same assumptions as f and let zu" be
the solution of (4.1) for " > 0 with f being replaced by zf . Let further � > !f .
Then we have the estimate

ku".t/ � zu".t/kX1 � 2CA

�
e

1�
C �./

ˇ̌̌� � !A
� � !f

ˇ̌̌1��

�

sup
0�s�t;x2X1

e"�1�.t�s/kf .s; e"�1�sx/ � zf .s; e"�1�sx/kX

.� � !f /
:

Proof. We only treat the case � D 0. For the general case, one can use the same
transformation as in the proof of Proposition 4.4 (b). Variation of constants yields

ku".t/ � zu".t/kX1 �
"�1 Z t

0

e"�1.t�s/A
�
f .s; zu".s// � zf .s; zu".s//

�
ds

X1

C

"�1 Z t

0

e"�1.t�s/A
�
f .s; u".s// � f .s; zu".s//

�
ds

X1

� CA

Z t

0

e�"�1!A.t�s/

" .t � s/1�
ds sup
0�r�t0; x2X1

kf .r; x/ � zf .r; x/kX

C CALf

Z t

0

e"�1!A.t�s/

" .t � s/1�
ku".s/ � zu".s/kX1 ds

� CA

Z t

0

e�"�1!As

"s1�
ds sup
0�r�t0; x2X1

kf .r; x/ � zf .r; x/kX

C CALf

Z t

0

e"�1!A.t�s/

" .t � s/1�
ku".s/ � zu".s/kX1 ds;

where t0 � t . Applying Lemma 2.8 with p D 2 (or p close to 1 if  D 1 together
with Corollary 2.5 and taking t0 D t yields the assertion.
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4.2. A modified fast equation. Under the assumptions of Section 4.1, we now con-
sider a modified fast equation

"@tu
";0.t/ D Au";0.t/C f .t; u";0.t// � "@tA

�1f .t; u0.t//;

u";0.0/ D u0;
(4.2)

where u0 denotes the solution of (4.1) with " D 0 from Proposition 4.2 (a). Note
that for " D 0 and u0 such that 0 D Au0 C f .0; u0/ the equations (4.2) and (4.1)
coincide. The reason why we choose u";0 as a notation for solutions of (4.2) is
that (4.2) inherits properties from (4.1) both with " D 0 and " > 0. On the one
hand, if u0 already satisfies 0 D Au0 C f .0; u0/, then u0 is a solution of (4.2) for
all " > 0. Thus, (4.2) is an "-dependent extension of (4.1) with " D 0. On the other
hand, Proposition 4.8 shows that solutions of (4.2) and (4.1) with " > 0 are only
an "-distance away from each other. In this sense, one could say that u";0 is just a
modified version of u" that has been adjusted such that it contains (4.1) with " D 0

and such that it even approaches the solution u0. Hence, we choose the notation u";0
to emphasize the similarity to both u0 and u".

Since we work with u0, we assume that kA�1kB.Xı�1;Xı/Lf < 1 in this sub-
section. Even though it is not necessary for all the results, we will assume !A <
!f < 0 from now on.

Lemma 4.6. For all u0 2 X1 and all " > 0, there is a unique strict solution of (4.2):

u";0 2 C 1
�
Œ0;1/IX

�
\ C

�
Œ0;1/IX1

�
:

Proof. Let

f"W Œ0; T � �Xı ! X; .t; x/ 7! f .t; x/ � "@tA
�1f .t; u0.t//:

Since u0 2 C 1.Œ0; T �IXı/ by Proposition 4.2 (a) and since f maps C 1.Œ0; T �IXı/
to C 1.Œ0; T �IXı�1/, it follows that @tA�1f .� ; u0/ 2 C.Œ0; T �IXı/ so that f" is
well-defined. Moreover, we have

kf".t; x1/ � f".t; x2/kX D kf .t; x1/ � f .t; x2/kX � Lf kx1 � x2kX1

for all .t; x1/; .t; x2/ 2 Œ0; T � � X1. By Remark 4.3 this suffices to apply Proposi-
tion 4.2 with f being replaced by f".

Proposition 4.7. Let u";0 be the solution of (4.2) with " > 0 and the u0 solution
of (4.1) with " D 0. Then we have the estimate

ku";0.t/ � u0.t/kX1 � 2MAe"�1!f tku0 � u0.0/kX1 :
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Proof. Using variation of constants and integration by parts yields

ku";0.t/ � u0.t/kX1

�

e"�1tAu0 C
Z t

0

e"�1A.t�s/
�
"�1f .s; u";0.s// � @sA

�1f .s; u0.s//
�

ds � u0.t/

X1

D

e"�1tA.u0 � u0.0//C "�1
Z t

0

e"�1A.t�s/
�
f .s; u";0.s// � f .s; u0.s//

�
ds

X1

�MAe"�1!Atku0 � u0.0/kX1 C CALf
Z t

0

e"�1!A.t�s/

" .t � s/1�
ku";0.s/ � u0.s/kX1 ds:

Now, the assertion follows from Lemma 2.8.

Proposition 4.8. Suppose thatCA is chosen such that additionally to the assumptions
of Section 4.1 we also have

ketAkB.Xı ;X1/ � CAt
ı�1e!At .t > 0/:

Let u" be the solution of (4.1) and u";0 the one of (4.2) for " > 0 with the same initial
data. Then we have the estimate

ku".t/ � u";0.t/kX1 �

�
eı

ı1�ı
C �.ı/

ˇ̌̌!A
!f

ˇ̌̌1�ı�
�

CAkA
�1kB.Xı�1;Xı/�

1 � Lf kA�1kB.Xı�1;Xı/
� "

j!f jı
kf .t; 0/kC1

b
.Œ0;t�IXı�1/

:

Proof. Using variation of constants and choosing t0 � t yields that

ku".t/ � u";0.t/kX1

D

"�1 Z t

0

e"�1.t�s/A
�
f .s; u".s// � f .s; u";0.s//

�
ds

�

Z t

0

e"�1.t�s/A@sA�1f .s; u0.s// ds

X1

� CA"kA
�1
kB.Xı�1;Xı/k@tf . �; u

0/kL1.Œ0;t0�IXı�1/

Z t

0

e"�1!A.t�s/

"ı.t � s/1�ı
ds

C CLf

Z t

0

e�"�1!A.t�s/

" .t � s/1�
ku".s/ � u";0.s/kX1 ds:

Thus, a combination of Lemma 2.8 and Corollary 2.5 shows that

ku".t/ � u";0.t/kX1 �

�
eı

ı1�ı
C �.ı/

ˇ̌̌!A
!f

ˇ̌̌1�ı�
�
CA"kA

�1kB.Xı�1;Xı/

!ı
f

k@tf . �; u
0/kL1.Œ0;t0�IXı�1/:
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Moreover, it follows from Proposition 4.4 (a) that

k@tf .� ; u
0/kL1.Œ0;t0�IXı�1/ � kf .� ; u

0/kC1
b
.Œ0;t0�IXı�1/

� kf .� ; 0/kC1
b
.Œ0;t0�IXı�1/

C Lf ku
0
kC1

b
.Œ0;t0�IXı/

�
1

1 � kA�1kB.Xı�1;Xı/Lf
kf .t; 0/kC1

b
.Œ0;t0�IXı�1/

;

so that

ku".t/ � u";0.t/kX1 �

�
eı

ı1�ı
C �.ı/

ˇ̌̌ !
!f

ˇ̌̌1�ı�
�

CAkA
�1kB.Xı�1;Xı/�

1 � Lf kA�1kB.Xı�1;Xı/
� "

j!f jı
kf .t; 0/kC1

b
.Œ0;t�IXı�1/

:

This completes the proof.

4.3. Well-posedness of the full system. Now we consider the nonlinear fast-slow
system

"@tu
".t/ D Au".t/C f .u".t/; v".t//;

@tv
".t/ D Bv".t/C g.u".t/; v".t//;

u".0/ D u0; v".0/ D v0:

.t 2 Œ0; T �/; (4.3)

We assume that:
(i) X; Y are Banach spaces, " � 0, T > 0 are parameters andu0 2 X1 D D.A/, v1 2
Y1 D D.B/ are initial values. If " D 0, then u0 has to satisfy 0 D Au0C f .u0; v0/.

(ii) The closed linear operatorAWX � D.A/! X generates an exponentially stable
C0-semigroup .etA/t�0 � B.X/. The closed linear operator BWY � D.B/! Y is
the generator of a C0-semigroup .etB/t�0 � B.Y /.

(iii) The interpolation-extrapolation scales generated by .X;A/ and .Y; B/ are, up
to equivalence of norms for each fixed ˛ 2 Œ�1;1/, given by .X˛/˛2Œ�1;1/ and
.Y˛/˛2Œ�1;1/. If 0 … �.B/, then .Y˛/˛2Œ�1;1/ shall be equivalent to the interpolation-
extrapolation scale generated by B � � for some � 2 �.B/.

(iv) Let X 2 .0; 1� if .etA/t�0 � B.X/ is holomorphic and X D 1, otherwise. In
addition, we choose ıX 2 Œ1� X ; 1�. Let further ıY 2 .0; 1� if .etB/t�0 � B.Y / is
holomorphic and ıY D 1, otherwise. The nonlinearities f WXıX � Y1�ıX ! X and
gWX1 � Y1 ! YıY are continuous and there are constants Lf ; Lg > 0 such that

kf .x1; y1/ � f .x2; y2/kX � Lf
�
kx1 � x2kX1 C ky1 � y2kY1

�
;

kf .u1; v1/ � f .u2; v2/kC1.Œ0;t�IXıX�1/
� Lf

�
ku1 � u2kC1.Œ0;t�IXıX /

C kv1 � v2kC1.Œ0;t�IY /
�
;

kg.x1; y1/ � g.x2; y2/kıY � Lg
�
kx1 � x2kX1 C ky1 � y2kY1

�
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for all x1; x2 2 X1, y1; y2 2 Y1, t > 0, u1; u2 2 C 1.Œ0; t �IXıX /, and all v1; v2 2
C 1.Œ0; t �IY / \ C.Œ0; t �IY1�ıX /. Here, we assume that

f .x; y/ 2 XX ; g.x; y/ 2 YıY if .x; y/ 2 X1 � Y1;
as well as

f .u; v/ 2 C 1
�
Œ0; t �IXıX�1

�
if .u; v/ 2 C 1

�
Œ0; t �IXıX � Y

�
and v 2 C

�
Œ0; t �IY1�ıX

�
:

(v) We assume that f .0; 0/ D 0 and g.0; 0/ D 0.

(vi) We choose constants MA;MB ; CA; CB > 0, !A < 0 and !B 2 R such that

ketAkB.X1/ �MAe!At ; ketAkB.XX ;X1/ � CAt
X�1e!At ;

ketAkB.XıX ;X1/ � CAt
ıX�1e!At

and
ketBkB.Y1/ �MBe!B t ; ketBkB.YıY ;Y1/ � CB t

ıY�1e!B t

hold for all t > 0.

(vii) Again we define !f WD !A C .2CALf /
1=X .1=X /

.1�X /=X if X 2 .0; 1/
and take !f > !A C CALF if X D 1. Even though it is not necessary for all the
results, we will assume

!f < 0;

Lf max
˚
kA�1kB.XX ;X1/; kA

�1
kB.XıX�1;XıX /

	
< 1

(4.4)

in the following. Note thatA�1 exists as a consequence of the Hille–Yosida theorem,
since A generates an exponentially stable C0-semigroup. Recall that as described
at the beginning of Section 4 this is a weak version of normal hyperbolicity, as it
ensures that solutions of the fast equation would decay exponentially if there was no
influence of the slow variable v" in the fast equation.

Note that assumption (v) can in practice very frequently be ensured locally by just
moving the point of interest on the critical manifold via a coordinate transformation
to the origin and using Taylor expansion, so it is not really a restriction. We work
with all the above assumptions for the rest of this paper. Since we also assume global
Lipschitz conditions on the nonlinearities, we obtain the following well-posedness
results:
Proposition 4.9. (a) Let " D 0. Then (4.3) has a unique strict solution

.u0; v0/ 2 C 1
�
Œ0; T �IX � Y

�
\ C

�
Œ0; T �IX1 � Y1

�
:

(b) Let " > 0. Then (4.3) has a unique strict solution

.u"; v"/ 2 C 1
�
Œ0; T �IX � Y

�
\ C

�
Œ0; T �IX1 � Y1

�
:
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Proof. (a) Let y 2 Y1. By assumption, it holds that

fy WXıX ! X; x 7! fy.x/ WD f .x; y/

is continuous and satisfies

kfy.x1/ � fy.x2/kXX D kf .x1; y/ � f .x2; y/kXX � Lf kx1 � x2kX1 :

Since we assume kA�1kB.XX ;X1/Lf < 1 it follows from Banach’s fixed point
theorem that there is a unique solution x 2 X1 of

0 D Ax C fy.x/:

In the following we write h0.y/ for this solution. Given y1; y2 2 Y1 it holds that

kh0.y1/ � h
0.y2/kX1 D kA

�1f .h0.y1/; y1/ � A
�1f .h0.y2/; y2/kX1

� Lf kA
�1
kB.XX ;X1/

�
kh0.y1/ � h

0.y2/kX1 C ky1 � y2kY1
�
;

and thus

kh0.y1/ � h
0.y2/kX1 �

1

1 � Lf kA�1kB.XX ;X1/
ky1 � y2kY1 :

Therefore, the mapping

Y1 ! YıY ; y 7! g.h0.y/; y/

is continuous. Moreover, we have the estimate

kg.h0.y1/; y1/ � g.h
0.y2/; y2/kYıY

�

�
Lg

1 � Lf kA�1kB.XX ;X1/
C Lg

�
ky1 � y2kY1 :

Therefore, it follows from Proposition 4.2 (b) together with Remark 4.3 with ı D 1

and  D ıY that there is a unique strict solution

v0 2 C 1
�
Œ0; T �IY

�
\ C

�
Œ0; T �IY1

�
of the equation

@tv
0.t/ D Bv0.t/C g.h0.v0.t//; v0.t//; v0.0/ D v0:

Now we take u0.t/ WD h0.v0.t//, i.e., we have that

u0.t/ D A�1f .u0.t/; v0.t//:
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Proposition 4.2 (a) shows that u0 2 C 1.Œ0; T �IXıX / � C 1.Œ0; T �IX/. Moreover,
since h0WY1 ! X1 is Lipschitz continuous, it follows that u0 2 C.Œ0; T �IX1/.
Altogether, it follows that

.u0; v0/ D .h0.v0/; v0/ 2 C 1
�
Œ0; T �IX � Y

�
\ C

�
Œ0; T �IX1 � Y1

�
is the unique solution of (4.3) with " D 0.

(b) The proof is similar to the one of Proposition 4.2 (b). This time, for some � 2 R
we consider the space Cb.Œ0;1/; e�t IX1 � Y1/ of all .u; v/ 2 C.Œ0;1/IX1 � Y1/
such that

k.u; v/kCb.Œ0;1/;e�t IX1�Y1/ WD sup
t�0

e��t
�
ku.t/kX1 C kv.t/kY1

�
<1:

On this space, we define the operator L by

ŒL.u; v/�.t/ WD

 
e"�1tAu0 C "�1

R t
0

e"�1.t�s/Af .u.s/; v.s// ds
etBv0 C

R t
0

e.t�s/Bg.u.s/; v.s// ds

!
:

We show that this operator is a contraction on Cb.Œ0;1/; e�t IX1 � Y1/ if � is large
enough. We have that

sup
t�0

e��t"�1
Z t

0

e"�1.t�s/A
�
f .u1.s/; v1.s// � f .u2.s/; v2.s//

�
ds


� Lf CA sup
t�0

Z t

0

e.t�s/."�1!A��/

"X .t � s/1�X
dsk.u1; v1/ � .u2; v2/kCb.Œ0;1/;e�t IX1�Y1/

�
Lf CA�.X /

."� � !A/X
k.u1; v1/ � .u2; v2/kCb.Œ0;1/;e�t IX1�Y1/:

Similarly, we have that

sup
t�0

e��t
Z t

0

e.t�s/B
�
g.u1.s/; v1.s// � g.u2.s/; v2.s//

�
ds


� LgCB sup
t�0

Z t

0

e.t�s/.!B��/

.t � s/1�ıY
dsk.u1; v1/ � .u2; v2/kCb.Œ0;1/;e�t IX1�Y1/

�
LgCB�.ıY /

.� � !B/ıY
k.u1; v1/ � .u2; v2/kCb.Œ0;1/;e�t IX1�Y1/:

Therefore, we have that

kŒL.u; v/�.t/kCb.Œ0;1/;e�t IX1�Y1/

�

�
Lf CA�.X /

."� � !A/X
C
LgCB�.ıY /

.� � !B/ıY

�
k.u1; v1/ � .u2; v2/kCb.Œ0;1/;e�t IX1�Y1/:
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In particular, if � is large enough then L is a contraction. Thus, there is a unique
fixed point .u"; v"/ 2 Cb.Œ0;1/; e�t IX1 � Y1/. By the same line of arguments as in
the proof of Proposition 4.2 (b) it now follows that

.u"; v"/ 2 C 1
�
Œ0; T �IX � Y

�
\ C

�
Œ0; T �IX1 � Y1

�
and that it solves (4.3) with " > 0.

Remark 4.10. (a) In the proof of Proposition 4.9 we introduced the mapping

h0WY1 ! X1; y 7! h0.y/;

where h0.y/ is the unique solution of

0 D Ah0.y/C f .h0.y/; y/:

In particular, this mapping describes the critical manifold S0 over Y1 by

S0 WD f.h
0.y/; y/ W y 2 Y1g � X � Y:

Note that Proposition 4.2 (a) shows that if v0 2 C 1.Œ0; T �IY / \ C.Œ0; T �IY1/, then
h0.v0/ 2 C 1.Œ0; T �IXıX /.

(b) Since (4.3) is autonomous, the solutions .u0; v0/ and .u"; v"/ are given by
semiflows, i.e., continuous mappings

T"W Œ0; T � �X1 � Y1 ! X1 � Y1; T0W Œ0; T � � S0 ! S0:

We write �
u".t/

v".t/

�
D T".t/

�
u0
v0

�
;

�
u0.t/

v0.t/

�
D T0.t/

�
h0.v0/

v0

�
:

4.4. Extended slow flow. One of our aims is to show that the semiflow of the fast-
slow system .T".t//t�0 behaves similarly to the slow flow .T0.t//t�0. However, the
slow flow is only defined on the critical manifold S0, while .T".t//t�0 is defined
on X1 � Y1. Thus, we will compare .T".t//t�0 to an extension .T";0.t//t�0 of the
slow flow to X1 � Y1. This extension will approach the slow flow at an exponential
rate and on the critical manifold it will coincide with the slow flow. This extended
flow will be generated by the equation

"@tu
";0.t/ D Au";0.t/C f .u";0.t/; v0.t// � "@tA

�1f .h0.v0.t//; v0.t//;

@tv
0.t/ D Bv0.t/C g.h0.v0.t//; v0.t//;

u";0.0/ D u0; v0.0/ D v0:

(4.5)

In this equation, the slow variable satisfies the equation of the slow subsystem. The
fast variable however satisfies the equation of the fast-slow system with an additional
drift in the direction of the slow flow.
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Proposition 4.11. There is a unique solution

.u";0; v0/ 2 C 1
�
Œ0; T �IX � Y

�
\ C

�
Œ0; T �IX1 � Y1

�
of (4.5) given by a semiflow .T";0.t//t�0 on X1 � Y1. The critical manifold S0 is
invariant under T";0.t/ for all t � 0. Moreover, the restriction of .T";0.t//t�0 to the
critical manifold coincides with the slow flow, i.e., .T";0.t/jS0/t�0 D .T0.t//t�0.

Proof. In the proof of Proposition 4.9 (a) it was shown that there is a unique solution

v0 2 C 1
�
Œ0; T �IY

�
\ C

�
Œ0; T �IY1

�
of the equation

@tv
0.t/ D Bv0.t/C g.h0.v0.t//; v0.t//; v0.0/ D v0

for all v0 2 Y1. We define

f";v0 W Œ0; T � �XıX ! X; x 7! f .x; v0.t// � "@tA
�1f .h.v0.t//; v0.t//:

Since v0 2 C 1.Œ0; T �IY / \ C.Œ0; T �IY1/, it follows from Remark 4.10 (a) that

Œ0; T � �XıX ! X; .t; x/ 7! A�1@tf .h
0.v0.t//; v0.t//;

and therefore f";v0 is also continuous. Moreover, we have the estimate

kf";v0.t; x1/ � f";v0.t; x2/kXX D kf .x1; v
0.t// � f .x2; v

0.t//kXX

� Lf kx1 � x2kX1 :

Now Proposition 4.2 (b) together with Remark 4.3 shows that there is a unique solution
u";0 2 C 1.Œ0; T �IX/ \ C.Œ0; T �IX1/ of

"@tu
";0.t/ D Au";0.t/C f .u";0.t/; v0.t// � "@tA

�1f .h0.v0.t//; v0.t//;

u";0.0/ D u0:

The desired solution is given by .u";0; v0/. Since (4.5) is autonomous, the solution is
given by a semiflow .T";0.t//t�0. Note that if .u0; v0/ 2 S0, then the slow flow with
initial value v0 solves (4.5). Therefore, the critical manifold is invariant under T";0.t/
for all t � 0 and .T";0.t//t�0 coincides with .T0.t//t�0 on the critical manifold.

Proposition 4.12. For all t � 0 it holds thatT";0.t/�u0v0
�
� T0.t/

�
h0.v0/

v0

�
X1�Y1

� 2MAe"�1!f tku0 � h0.v0/kX1 :

Proof. Since the second components of T";0.t/.u0; v0/T and T0.t/.h0.v0/; v0/T are
equal, we only have to estimate ku";0.t/ � u0.t/kX1 . But it was shown in Proposi-
tion 4.7 that

ku";0.t/ � u0.t/kX1 � 2MAe"�1!f tku0 � h0.v0/kX1 :

This shows the assertion.
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4.5. Approximation by the slow flow.
Theorem 4.13. There are constants C; c > 0 such thatT".t/�u0v0

�
�T";0.t/

�
u0
v0

�
X1�Y1

� C e.!BCc/t
�
"kv0kY1C"

ıY ku0�h
0.v0/kX1

�
holds for all .u0; v0/T 2 X1 � Y1, all t � 0 and all " 2 .0; 1�.
Remark 4.14. Before we turn to the proof we briefly give a rough idea of how largeC
and c have to be. Actually, we have all the ingredients to explicitly give formulas
for these constants and we could also give them by keeping track of the constants in
the proof of Theorem 4.13. However, these formulas would be quite involved and
probably not sharp. Thus, we refrain from giving precise constants here.

The constant C > 0 should not be very large unless ıY ; X or !f are close to 0.
If either of these values tends to 0, then C will tend to1. C is basically constructed
from the constants which were explicitly computed in Proposition 4.4 (b) (with " D 1
and  D ıY ), Proposition 4.8 and Proposition 4.7.

For c we are a little bit more precise, even though our rough estimate for c can
probably still be improved: The constant c can be taken to be

c D 1C 2.LgCB/
1=ıY

�
.LC 1/1=ıY C .1C C1Lf /

1=ıY
�� 1
ıY

� 1�ıY
ıy if ıY 2 .0; 1/;

c > 1C LgCB.2C LC C1Lf / if ıY D 1;

where C1 is given by

C1 D 2CA

�
eX


1�X
X

C �.X /
ˇ̌̌!A
!f

ˇ̌̌1�X� 1

j!f jX
;

and where L denotes the Lipschitz constant of the critical manifold.

Proof of Theorem 4.13. In this proof, we use the notation�
u".t/

v".t/

�
D T".t/

�
u0
v0

�
;

�
u";0.t/

v0.t/

�
D T";0.t/

�
u0
v0

�
:

Variation of constants shows that

v".t/ D etBv0 C
Z t

0

e.t�s/Bg.u".s/; v".s// ds;

v0.t/ D etBv0 C
Z t

0

e.t�s/Bg.h0.v0.s//; v0.s// ds:

Therefore, we have that

kv".t/ � v0.t/kY1

� LgCB

Z t

0

e.t�s/!B

.t � s/1�ıY

�
ku".s/ � h0.v0.s//kX1 C kv

".t/ � v0.t/kY1
�

ds: (4.6)
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The aim is to apply Gronwall’s inequality. But before we do this, we first estimate
the term ku".s/ � h0.v0.s//kX1 . Let zu" be the unique strict solution of

"@t zu
"
D Azu" C f .zu"; v0/;

zu".0/ D u0;

which exists by Proposition 4.2 (b). By the triangle inequality, we have

ku".s/ � h0.v0.s//kX1 � ku
".s/ � zu".s/kX1 C kzu

".s/ � u";0.s/kX1

C ku";0.s/ � h0.v0.s//kX1 :

Using Proposition 4.5 with � D 0 we obtain that there is a constant C1 > 0 such that

ku".s/ � zu".s/kX1 � C1 sup
0�r�s; x2X1

kf .x; v".r// � f .x; v0.r//kX

� C1Lf kv
".t/ � v0.t/kY1 :

Proposition 4.8 and Proposition 4.4 (b) show that there are constantsC2; zC2 � 0 such
that

kzu".s/ � u";0.s/kX1 �
zC2"kf .0; v

0/kC1.Œ0;s�IXıX�1/

� zC2Lf "kv
0
kC1.Œ0;s�IY /

� C2"e!gskv0kY1 ;

where

!g D !B C .2CBLg.LC 1//
1=ıY

� 1
ıY

�.1�ıY /=ıY
if ıY 2 .0; 1/;

!g > !B C CBLg.LC 1/ if ıY D 1:
(4.7)

Moreover, Proposition 4.7 yields

ku";0.s/ � h0.v0.s//kX1 � 2MAe"�1!f sku0 � h0.v0/kX1 :

By combining the previous four estimates with (4.6), we obtain that there is a constant
C > 0 not depending on !B ; u0; v0 and " such that

kv".t/ � v0.t/kY1

� C

Z t

0

e.t�s/!B

.t � s/1�ıY

�
"e!gskv0kY1 C e"�1!f sku0 � h0.v0/kX1

�
ds

C LgCB.1C C1Lf /

Z t

0

e.t�s/!B

.t � s/1�ıY
kv".s/ � v0.s/kY1 ds
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� C e!gt
Z t

0

1

.t � s/1�ıY

�
"kv0kY1 C e."�1!f �!g/sku0 � h0.v0/kX1

�
ds

C LgCB.1C C1Lf /

Z t

0

e.t�s/!B

.t � s/1�ıY
kv".s/ � v0.s/kY1 ds

� C e!gt
�
tıY

ıY
"kv0kY1 C

e C ıY

ıY ."!g � !f /ıY
"ıY ku0 � h

0.v0/kX1

�
C LgCB.1C C1Lf /

Z t

0

e.t�s/!B

.t � s/1�ıY
kv".s/ � v0.s/kY1 ds

� C e.!gC1/t
�
"kv0kY1 C "

ıY ku0 � h
0.v0/kX1

�
C LgCB.1C C1Lf /

Z t

0

e.t�s/.!gC1/

.t � s/1�ıY
kv".s/ � v0.s/kY1 ds;

where we used Lemma 2.6. Thus, Lemma 2.8 shows that there is a constant C > 0

not depending on !B , u0; v0 and " such that

kv".t/ � v0.t/kY1 � C e.!BCc/t
�
"kv0kY1 C "

ıY ku0 � h
0.v0/kX1

�
.t � 0/;

where

c D 1C 2.LgCB/
1
ıY

�
.LC 1/1=ıY C .1C C1Lf /

1=ıY
�� 1
ıY

�.1�ıY /=ıY
if ıY 2 .0; 1/;

c > 1C LgCB.2C LC C1Lf / if ıY D 1:

Using this estimate for the slow variable, Proposition 4.5 and Proposition 4.8 we also
obtain for the fast variable

ku".t/ � u";0.t/kX1 � ku
".t/ � zu".t/kX1 C kzu

".t/ � u";0.t/kX1

� C e.!BCc/t
�
"kv0kY1 C "

ıY ku0 � h
0.v0/kX1

�
:

Altogether, we obtain the assertion.

Corollary 4.15. There are constants C; c > 0 such thatT".t/�u0v0
�
� T0.t/

�
h0.v0/

v0

�
X1�Y1

� C
�
"e.!BCc/tkv0kY1 C

�
"ıY e.!BCc/t C e"�1!f t

�
ku0 � h

0.v0/kX1
�

holds for all .u0; v0/T 2 X1 � Y1, all t 2 Œ0; T � and all " 2 .0; 1�.

Proof. This is a combination of Proposition 4.12 and Theorem 4.13.
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5. Slow manifolds

Under additional assumptions on the operator B in the equation of the slow variable,
we now prove the existence of a family of slow manifolds S";� . Unlike in finite
dimensions, this family will depend on two parameters. While " plays the same role
as in the finite-dimensional setting, the parameter � is new. As explained in Section 3
there might be parts of the slow dynamics which decay faster than other parts in the
fast equation evolve. Our idea is to find a certain splitting of the slow variable in a fast
and a slow part. The fast part of the slow variable will then be treated together with
the fast variable, while the slow manifolds are constructed as graphs over the slow
part. The parameter � determines which parts of the slow variables are considered as
fast and which parts are considered as slow. In the language of normally hyperbolic
invariant manifolds one could say that the stable direction will consist of the fast
variable and the fast part of the slow variable, and the center direction will consist of
the slow part of the slow variable. Since the slow part of the slow variable should not
contain parts that evolve faster than the fast variable, we naturally obtain a restriction
on how we may choose � in relation to ". This will be reflected in the condition
" < c0.!f =!A/� for some fixed c0 2 .0; 1/ that we impose below.

The finite dimensional situation will also be recovered as a special case: The
family of slow manifolds S";� will then not depend on � so that one could omit it in
the notation and obtain a family S" as usual in finite dimensions. More generally,
if B generates a C0-group, then the family of slow manifolds will not depend on �.
We will give applications of our techniques to systems of fast-slow partial differential
equations in Section 6. In the next subsection, we make our assumptions more
precise.

5.1. Our approach on how to resolve the issues of Section 3. For the problems
explained in Section 3.2 and Section 3.3, we assume that for small � > 0 satisfying
" < c0.!f =!A/� with a fixed c0 2 .0; 1/ we have a splitting of the slow variable
space

Y D Y
�
F ˚ Y

�
S

in a fast part Y �F and a slow part Y �S such that

(i) The spacesY �F andY �S are closed inY and the projections pr
Y
�
F

and pr
Y
�
S

commute
with B on Y1.

(ii) The space Y �F \ Y1 is a closed subspace of Y1 and will be endowed with the
norm k � kY1 .

(iii) The space Y �S \ Y1 is a closed subspace of Y1 and will be endowed with the
norm k � kY1 . Moreover, the nonlinearity g satisfies

k pr
Y
�
S

�
g.x; yF ; yS / � g.zx; zyF ; zyS /

�
kY1

� Lg�
ıY�1

�
kx � zxkX1 C kyF � zyF kY1 C kyS � zySkY1

�
:
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(iv) The realization of B in Y �S , i.e.,

B
Y
�
S

WY
�
S � D.BY "S /! Y

�
S ; v 7! Bv

with
D.B

Y
�
S

/ WD
˚
v0 2 Y

�
S \D.B/ W Bv0 2 Y

�
S

	
generates a C0-group .etBY�

S
/t2R � B..Y

�
S ; k � kY //, which satisfies etBY�

S
DetB

on Y �S for t � 0.

(v) The realization of B in Y �F , i.e.,

B
Y
�
F

WY
�
F � D.BY "F /! Y

�
F ; v 7! Bv

with
D.B

Y
�
F

/ WD
˚
v0 2 Y

�
F W Bv0 2 Y

�
F

	
has 0 in its resolvent set.

(vi) The space Y �F \ YıY contains the parts of YıY that decay under the semigroup
.etB/t�0 almost as fast as the space X1 under .e��1tA/t�0. The space Y �S \ Y1
contains the parts of Y1 which do not decay or which only decay slowly under the
semigroup .etB/t�0 compared to X1 under .e��1tA/t�0. More precisely, there are
constants CB ;MB > 0 such that for all � > 0 small enough there are constants
0 � N

�
F < N

�
S < ��

�1!A such that for all t � 0, yF 2 Y �F \YıY and yS 2 Y �S \Y1
we have the estimates

ketByF kY1 � CB
�1
2
t�
�
N
�
S �N

�
F

��ıY�1
e.N

�
F
C��1!A/tkyF kYıY ; (5.1)

ke�tBySkY1 �MBe�.N
�
S
C��1!A/tkySkY1 : (5.2)

(vii) We have the estimate

2XLf CA�.X /�
2."��1 � 1/!A C ".N

�
S CN

�
F /
�X C 2�ıY�1Lg.CB�.ıY /CMB/

N
�
S �N

�
F

< 1; (5.3)

which will be needed for an application of Banach’s fixed point theorem.
These conditions might seem very restrictive at first. However, in many applica-

tions it is possible to find such a decomposition. In many cases, it can be obtained
by using Riesz projections corresponding to B . This can for example be done if B is
a parabolic operator on a bounded domain. If B generates a group, then it will even
suffice to take Y �F D f0g and Y �S D Y for small ". In particular, one can always find
such a decomposition if the equation for the slow variable is given by an ordinary
differential equation.
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Besides the parameters " and �, the quantityN �
S �N

�
F also plays a certain role. It

measures how far one can separate the decay properties of the fast and the slow part
in the slow variable. In many situations this number corresponds to size of spectral
gaps in the real part of the spectrum of B as one approaches �1. For example, if B
is the Laplace operator � on L2.Œ0; 2��/ with Dirichlet boundary conditions, then
the eigenvalues are of the form �k2. The gaps between two consecutive different
eigenvalues will then be given by 2k C 1, i.e., it will behave almost like the square
root of the size of the eigenvalues times a constant. In such a situation, N �

S �N
�
F

will behave like C��1=2 as � ! 0. If B generates a group, then it will hold that
N
�
S �N

�
F behaves like ��1.

We use this splitting to rewrite the fast-slow system (4.3) as

"@tu
".t/ D Au".t/C f .u".t/; v"F .t/; v

"
S .t//;

@tv
"
F .t/ D Bv

"
F .t/C pr

Y
�
F

g.u".t/; v"F .t/; v
"
S .t//;

@tv
"
S .t/ D Bv

"
S .t/C pr

Y
�
S

g.u".t/; v"F .t/; v
"
S .t//;

u".0/ D u0; v"F .0/ D pr
Y
�
F

v0; v"S .0/ D pr
Y
�
S

v0;

.t 2 Œ0; T �/ (5.4)

with an abuse of notation: Actually, f and g only depend on two variables, but we
use the convention

f .u".t/; v"F .t/; v
"
S .t// WD f .u

".t/; v"F .t/C v
"
S .t//

as well as
g.u".t/; v"F .t/; v

"
S .t// WD g.u

".t/; v"F .t/C v
"
S .t//:

We should point out that, as already mentioned at the beginning of Section 4, there are
also certain situations in which the space of the slow variable does not admit such a
splitting. The main example we have in mind is ifB is a parabolic operator such as the
Laplacian� on the whole space Rn. If it is considered on Lp.Rn/, then there are no
gaps in the spectrum and it will not be possible to find the constants 0 � N �

F < N
�
S .

In such a situation, we will not be able to construct slow manifolds. IfB is a parabolic
operator on a bounded domain in dimension n � 3, then it admits such a splitting,
but the spectral gaps will usually not grow as � ! 0. This follows for example from
Legendre’s three-square theorem for a domain such as the n-dimensional torus. In
this case, (5.3) will usually not be satisfied, unless the Lipschitz constants of the
nonlinearities are small. It should be noted that the case n D 2 is different. Here,
spectral gaps can indeed become large, but only very slowly, see for example [27].
Nonetheless, even if there are no spectral gaps, we can still use the results of Section 4
to justify that one may reduce the fast-slow system to the slow subsystem.
Remark 5.1. In an earlier version of this work, the estimates in the assumptions were
slightly different. Instead of (5.1) it was assumed that

ketByF kY1 � CB t
ıY�1e.N

�
F
C��1!A/tkyF kYıY :
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As a consequence of this, Banach’s fixed point theorem required

2XLf CA�.X /�
2."��1 � 1/!A C ".N

�
S CN

�
F /
�X C 2ıYLgCB�.ıY /

.N
�
S �N

�
F /
ıY
C
2�ıY�1LgMB

N
�
S �N

�
F

< 1

instead of (5.3). This old set of assumptions was used for example in [11]. It should
be noted that both sets of assumptions and their corresponding results are possible
and the proofs and results are the same up to modification of some terms according
to the modified assumptions. For ıY D 1 both settings are even identical. However,
it turns out that if ıY 2 .0; 1/, then the new set of assumptions is more realistic for
applications, which we will see later in our analysis of the Stommel model.

5.2. Existence of slow manifolds. Now we want to construct a family of slow mani-
folds S";� which are given as graphs of certain functions

h";� W .Y
�
S \ Y1/! X1 � .Y

�
F \ Y1/;

over the slow part of the slow variable, i.e., we have that

S";� WD
˚
.h";� .v0/; v0/ W v0 2 Y

�
S \ Y1

	
:

In the following, we write h";�X1 for the first and h";�
Y
�
F

for the second component. We
use the Lyapunov–Perron method for the construction of slow manifolds, i.e., we
construct fixed points of the operator

Lv0;";� WC� ! C�;0@ u

vF
vS

1A 7!
264t 7!

0B@ "�1
R t
�1

e"�1.t�s/Af .u.s/; vF .s/; vS .s// dsR t
�1

e.t�s/B pr
Y
�
F

g.u.s/; vF .s/; vS .s// ds
etBv0 C

R t
0

e.t�s/B pr
Y
�
S

g.u.s/; vF .s/; vS .s// ds

1CA
375 ;

where v0 2 Y �S and C� WD C..�1; 0�; e�t IX1 � .Y �F \ Y1/ � .Y
�
S \ Y1// for

� WD ��1!A C
N
�
S CN

�
F

2

is the space of all .u; vF ; vS / 2 C..�1; 0�IX1 � .Y �F \ Y1/� .Y
�
S \ Y1// such that

k.u; vF ; vS /kC� WD sup
t�0

e��t
�
ku.t/kX1 C kvF .t/kY1 C kvS .t/kY1

�
<1:

Then we obtain the function h";� which describes the family of slow manifolds S";�
by

h";� W .Y
�
S \ Y1/! X1 � .Y

�
F \ Y1/; v0 7! .uv0.0/; v

v0
F .0//

T ;

i.e., h";� gives the first two components of the fixed point .uv0 ; vv0F ; v
v0
S /

T of Lv0;";�

evaluated at t D 0.
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Proposition 5.2. Let v0 2 Y �S \ Y1. Then Lv0;";� has a unique fixed point in C� .

Proof. We show that Lv0;";� is a contraction onC� . Let .u; vF ; vS /; .zu; zvF ; zvS /2C� .
Since showing that Lv0;";� mapsC� intoC� and showing that Lv0;";� is a contraction
on C� works in a similar way, we only show the latter. For the first component, we
have that

sup
t�0

e��tk prX1
�
Lv0;";� .u.t/; vF .t/; vS .t//

T
�Lv0;";� .zu.t/; zvF .t/; zvS .t//

T
�
kX1

� Lf CA

Z t

�1

e.t�s/."�1!A��/

"X .t � s/1�X
dsk.u � zu; vF � zvF ; vS � zvS /kC�

D
Lf CA�.X /

."� � !A/X
k.u � zu; vF � zvF ; vS � zvS /kC�

D
2XLf CA�.X /�

2."��1 � 1/!A C ".N
�
S CN

�
F /
�X k.u � zu; vF � zvF ; vS � zvS /kC� :

For the second component, we have that

sup
t�0

e��tk pr
Y
�
F

�
Lv0;";� .u.t/; vF .t/; vS .t//

T
�Lv0;";� .zu.t/; zvF .t/; zvS .t//

T
�
kY1

�
�ıY�1LgCB

2ıY�1.N
�
S �N

�
F /
ıY�1

�

Z t

�1

e.t�s/.��1!ACN
�
F
��/

.t � s/1�ıY
dsk.u � zu; vF � zvF ; vS � zvS /kC�

D
�ıY�1.N

�
S �N

�
F /
ıY�1LgCB�.ıY /

2ıY�1.� � ��1!A �N
�
F /
ıY

k.u � zu; vF � zvF ; vS � zvS /kC�

D
2�ıY�1LgCB�.ıY /

N
�
S �N

�
F

k.u � zu; vF � zvF ; vS � zvS /kC� :

Finally, the third component satisfies

sup
t�0

e��tk pr
Y
�
S

�
Lv0;";� .u.t/; vF .t/; vS .t//

T
�Lv0;";� .zu.t/; zvF .t/; zvS .t//

T
�
kY1

� LgCB

Z t

0

�ıY�1e.t�s/.��1!ACN
"
S
��/ dsk.u � zu; vF � zvF ; vS � zvS /kC�

�
�ıY�1LgMB

��1!A CN
�
S � �

k.u � zu; vF � zvF ; vS � zvS /kC�

D
2�ıY�1LgMB

N
�
S �N

�
F

k.u � zu; vF � zvF ; vS � zvS /kC� :
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Thus, if (5.3) is satisfied, then Lv0;";� is a contraction. Hence, it has a unique fixed
point in this case.

Proposition 5.3. Consider the situation of Proposition 5.2 and let .uv0 ; vv0F ; v
v0
S /

T

be the unique fixed point of Lv0;";� . The mapping

h";� W .Y
�
S \ Y1/! X1 � .Y

"
F \ Y1/; v0 7!

�
uv0.0/; v

v0
F .0/

�T
is Lipschitz continuous.

Proof. Let v0; zv0 2 Y �S \ Y1 and let .u; vF ; vS / 2 C� and .zu; zvF ; zvS / 2 C� be the
fixed points of Lv0;";� and Lzv0;";� , respectively. As in the proof of Proposition 5.2 it
follows that

sup
t�0

e��tku.t/ � zu.t/kX1 <
2XLf CA�.X /k.u � zu; vF � zvF ; vS � zvS /kC��

2."��1 � 1/!A C ".N
�
S CN

�
F /
�X ;

sup
t�0

e��tkvF .t/ � zvF .t/kY1 �
2�ıY�1LgCB�.ıY /k.u � zu; vF � zvF ; vS � zvS /kC�

N
�
S �N

�
F

;

sup
t�0

e��tkvS .t/ � zvS .t/kX1 �MBkv0 � zv0kY1

C
2�ıY�1LgMBk.u � zu; vF � zvF ; vS � zvS /kC�

N
�
S �N

�
F

:

Thus, if

zL WD
2XLf CA�.X /�

2."��1 � 1/!A C ".N
�
S CN

�
F /
�X C 2�ıY�1Lg.CB�.ıY /CMB/

N
�
S �N

�
F

< 1

then we may sum up the three estimates, subtract zLk.u � zu; vF � zvF ; vS � zvS /kC�
and divide by 1 � zL. This gives the Lipschitz continuity.

Remark 5.4. The proof of Proposition 5.3 even shows that the mapping which
maps v0 to the unique fixed point of Lv0;";� is Lipschitz continuous from Y

�
S \ Y1

to C� .

5.3. Distance to the critical manifold.
Proposition 5.5. Consider the situation of Proposition 5.2 and choose c0 2 .0; 1/.
There is a constant C > 0 such that for all "; � > 0 small enough and which satisfy
" < c0.!f =wA/� and for all v0 2 Y �S \ Y1 it holds that

0@h";�X1.v0/ � h0.v0/
h
";�

Y
�
F

.v0/

1A
X1�Y1

� C

�
"C

�ıY�1

N
�
S �N

�
F

�
kv0kY1 :
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Proof. Let .xu; xvF ; xvS / 2 C� be the unique fixed point of Lv0;";� , i.e.,

.xu; xvF ; xvS / D
�
h
";�
X1
.xvS /; h

";�

Y
�
F

.xvS /; xvS
�
:

Since .xu; xvF ; xvS / solves (5.4) on .�1; 0� we have that xvS 2 C 1..�1; 0�; e�t IY /
and

sup
t�0

e��t
�
kxvS .t/kY1 C k@txvS .t/kY

�
� L

�
1C kBkB.Y1;Y / C Lg

�
kv0kY1 ;

where L denotes the Lipschitz constant of the mapping which maps v0 to the unique
fixed point of Lv0;";� . Moreover, we have that

kh
";�

Y
�
F

.xvS .t//kY1 D
Z t

�1

e.t�s/B pr
Y
�
F

g
�
h
";�
X1
.xvS .s//; h

";�

Y
�
F

.xvS .s//; xvS .s/
�

ds

Y1

�

�1
2
�
�
N
�
S �N

�
F

��ıY�1
LgCBe�tk

�
h
";�
X1
.xvS /; h

";�

Y
�
F

.xvS /; xvS
�
kC�

�

Z t

�1

e.t�s/.��1!ACN
�
F
��/

.t � s/1�ıY
ds

�
L�ıY�1.N

�
S �N

�
F /
ıY�1LgCB�.ıY /e�t

2ıY�1.� � ��1!A �N
�
F /
ıY

kv0kY1

D
2L�ıY�1LgCB�.ıY /e�t

N
�
S �N

�
F

kv0kY1 : (5.5)

Furthermore, integration by parts shows that for t0 � t � 0 it holds that

h
";�
X1
.xvS .t// � h

0.xvS .t//

D "�1
Z t

�1

e"�1.t�s/Af
�
h
";�
X1
.xvS .s//; h

";�

Y
�
F

.xvS .s//; xvS .s/
�

ds

C A�1f
�
h0.xvS .t//; 0; xvS .t/

�
D "�1

Z t0

�1

e"�1.t�s/Af
�
h
";�
X1
.xvS .s//; h

";�

Y
�
F

.xvS .s//; xvS .s/
�

ds

C e"�1.t�t0/AA�1f
�
h0.xvS .t0//; 0; xvS .t0/

�
C

Z t

t0

e"�1.t�s/AA�1@sf
�
h0.xvS .s//; 0; xvS .s/

�
ds

C "�1
Z t

t0

e"�1.t�s/A
�
f
�
h
";�
X1
.xvS .s//; h

";�

Y
�
F

.xvS .s//; xvS .s/
�

� f
�
h0.xvS .s//; 0; xvS .s/

��
ds:
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Therefore, we obtain

kh
";�
X1
.xvS .t// � h

0.xvS .t//kX1

� Lf CAe"�1!A.t�t0/C�t0k
�
h
";�
X1
.xvS /; h

";�

Y
�
F

.xvS /; xvS
�
kC�

Z t0

�1

e."�1!A��/.t0�s/

"X .t � s/1�X
ds

C LfMAe"�1!A.t�t0/C�t0kA�1kB.XX ;X1/k
�
h0.xvS /; 0; xvS

�
kC�

C "e�tLf CAkA�1kB.XıX�1;XıX /

�

Z t

t0

e."�1!A��/.t�s/

"ıX .t � s/1�ıX
ds sup

s�0

�
e��s

�
kxvS .s/kY C k@sxvS .s/kY

��
C
2�ıY�1LLf CALgCB�.ıY /

N
�
S �N

�
F

e�t
Z t

t0

e."�1!A��/.t�s/

"X .t � s/1�X
dskv0kY1

C Lf CA

Z t

t0

e"�1!A.t�s/

"X .t � s/1�X
kh
";�
X1
.xvS .s// � h

0.xvS .s//kX1 ds

� Ckv0kY1

�
1

."� � !A/X
C 1

�
e.��"�1!A/t0e"�1!At

C Ckv0kY1

�
"

."� � !A/ıX
C

�ıY�1

."� � !A/X .N
�
S �N

�
F /

�
e�t

C Lf CA

Z t

t0

e"�1!A.t�s/

"X .t � s/1�X
kh
";�
X1
.xvS .s// � h

0.xvS .s//kX1 ds:

Now, Lemma 2.8 applied to

v.r/ WD kh
";�
X1
.xvS .r C t0// � h

0.xvS .r C t0//kX1 .r 2 Œ0; t � t0�/

yields that

1

Ckv0kY1
kh
";�
X1
.xvS .t// � h

0.xvS .t//kX1

�

��
1

."� � !A/X
C 1

�
C

"

."� � !A/ıX
C

�ıY�1

."� � !A/X .N
�
S �N

�
F /

�
� e�t0C"�1!f .t�t0/

C

�
"

."� � !A/ıX
C

�ıY�1

."� � !A/X .N
�
S �N

�
F /

�
�

Z t

t0

.� � "�1!A/e�se"
�1!f .t�s/ ds
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D

��
1

."� � !A/X
C 1

�
C

"

."� � !A/ıX
C

�ıY�1

."� � !A/X .N
�
S �N

�
F /

�
� e�t0C"�1!f .t�t0/

C

�
"

."� � !A/ıX
C

�ıY�1

."� � !A/X .N
�
S �N

�
F /

�
�
� � "�1!A

� � "�1!f

�
et� � e�t0C"�1!f .t�t0/

�
Note that since � > ��1!A, it follows from " < c0.!f =wA/� that

� > ��1!A > c0"
�1!f :

Hence, choosing t D 0 and letting t0 ! �1 shows that

kh
";�
X1
.v0/ � h

0.v0/kX1

� C

�
"

."� � !A/ıX
C

�ıY�1

."� � !A/X .N
�
S �N

�
F /

�
� � "�1!A

� � "�1!f
kv0kY1 :

Since "� � !A and "� � !f are bounded away from 0, it follows that

kh
";�
X1
.v0/ � h

0.v0/kX1 � C

�
"C

�ıY�1

N
�
S �N

�
F

�
kv0kY1

for some constant C > 0. Moreover, (5.5) turns into

kh
";�

Y
�
F

.xvS .t//kY1 � C
�ıY�1

N
�
S �N

�
F

kv0kY1 :

Altogether, we obtain the assertion.

5.4. Differentiability of the slow manifolds. Now, we suppose that the nonlineari-
ties f WX1 � Y1 ! XX and gWX1 � Y1 ! YıY are continuously differentiable such
that

kDf .x; y/kB.X1�Y1;XX / � Lf ; kDg.x; y/kB.X1�Y1;YıY / � Lg : (5.6)

The aim is to show that�
Y
�
S \ Y1; k � kY1

�
!
�
X1; k � kX1

�
�
�
Y
�
F \ Y1; k � kYıY

�
;

v0 7!
�
h
";�
X1
.v0/; h

";�

Y
�
F

.v0/
�

is differentiable.
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Proposition 5.6. Under the general assumptions in this section and the differentia-
bility assumptions in this subsection, the slow manifold S";� is differentiable.

Proof. Given v0 2 Y �S we write U. � ; v0/ WD .u.� ; v0/; vF .� ; v0/; vS .� ; v0// 2 C�
for the fixed point of Lv0;";� . Fix v0; zv0 2 Y �S . Effectively, any classical approach
to show smoothness [13, 17, 35] is based around estimates, which show that the
derivative exists as the best local linear approximation of the graph of the manifold.
We follow this strategy and write

U. � zv0/ � U. � v0/ � T
�
U. � zv0/ � U. � v0/

�
D

0@ 0

0

eB.�/.zv0 � v0/

1AC I.zv0; v0/;
where

T WC� ! C�; z 7!

264t 7!
0B@"�1

R t
�1

e"�1.t�s/ADf .U.s; v0//z.s/ dsR t
�1

e.t�s/B pr
Y
�
F

Dg.U.s; v0//z.s/ ds

0

1CA
375

and I.zv0; v0/ D .I1; I2; I3/T .zv0; v0/, where

I1.zv0; v0/ D

�
t 7! "�1

Z t

�1

e"�1.t�s/A
�
f .U.s; zv0// � f .U.s; v0//

� Df .U.s; v0//
�
U.s; zv0/ � U.s; v0/

��
ds
�
;

I2.zv0; v0/ D

�
t 7!

Z t

�1

e.t�s/B pr
Y
�
F

�
g.U.s; zv0// � g.U.s; v0//

� Dg.U.s; v0//ŒU.s; zv0/ � U.s; v0/�
�

ds
�
;

I3.zv0; v0/ D 0:

The aim is to show that kT kB.C�/ < 1 and that

kI.zv0; v0/kX1�.Y
�
F
\Y1/�.Y

�
S
\Y1/
D o

�
kzv0 � v0kY1

�
as zv0 ! v0:

Then we have

U.0; zv0/ � U.0; v0/ D .1 � T /
�1

0@ 0

0

eB.�/.zv0 � v0/

1AC o�kzv0 � v0kY1�
as zv0 ! v0, so that

U.0; � / D
�
h
";�
X ; h

";�

Y
�
F

; id
Y
�
S

�
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is differentiable. The fact that

kT k
B.X1�.Y

�
F
\Y1/�.Y

�
S
\Y1//

< 1

follows from the same computation as the one for showing that Lv0;";� is a contraction
in Proposition 5.2. Concerning I one can treat both its components similarly. Hence,
we only carry out the usual argument for the first component. By our assumptions
on f , for all � > 0 there is an N > 0 such that

e��t
"�1 Z minf�N;tg

�1

e"�1.t�s/A
�
f .U.s; zv0// � f .U.s; v0//

� Df .U.s; v0//ŒU.s; zv0/ � U.s; v0/�
�

ds

X1

� 2Lf CAkU.� ; zv0/ � U.� ; v0/kC�

Z minf�N;tg

�1

e."�1!A��/.t�s/

"

X .t � s/

1�X
ds

�
�

2
kzv0 � v0kY1

for all t � 0. Having fixed such an N > 0, we obtain that

e��t
"�1 Z t

minf�N;tg
e"�1.t�s/A

�
f .U.s; zv0// � f .U.s; v0//

� Df .U.s; v0//ŒU.s; zv0/ � U.s; v0/�
�

ds

X1

� CAkU.� ; zv0/ � U.� ; v0/kC�

Z t

minf�N;tg

e."�1!A��/.t�s/

"

X .t � s/

1�X

�

Z 1

0

Df
�
rU.s; zv0/ � .1 � r/U.s; v0/

�
� Df .U.s; v0//


B.X1�.Y

�
F
\Y1/�.Y

�
S
\Y1/;XX /

dr ds

� Ckzv0 � v0kY1

Z t

minf�N;tg

e."�1!A��/.t�s/

"

X .t � s/

1�X

�

Z 1

0

Df
�
rU.s; zv0/ � .1 � r/U.s; v0/

�
� Df .U.s; v0//


B.X1�.Y

�
F
\Y1/�.Y

�
S
\Y1/;XX /

dr ds:

By dominated convergence and the continuity of the integrand, it follows that the
integral is smaller than �=2C if zv0 is close enough to v0. Thus, for all � > 0 there
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is a z� > 0 such that for all zv0 2 Y �S with kzv0 � v0kY1 < z� and all t � 0 it holds that

e��t
"�1 Z t

�1

e"�1.t�s/A
�
f .U.s; zv0// � f .U.s; v0//

� Df .U.s; v0//ŒU.0; zv0/ � U.0; v0/�
�

ds

X1
< �kzv0 � v0kY1 :

A similar computation can be carried out for the second component of I . Thus, we
have that

kI.zv0; v0/kC� D o
�
kzv0 � v0kY1

�
as zv0 ! v0;

which shows the differentiability of the slow manifolds.

5.5. Attraction of trajectories. Consider the situation of Proposition 5.6 and let�
h
";�
X1
.v0/; h

";�

Y
�
F

.v0/; v0
�
2 S";� :

Let .u; vF ; vS / be the solution of (5.4) with initial value .h";�X1.v0/; h
";�

Y
�
F

.v0/; v0/ and
let .u"; v"F ; v

"
S / be the solution of (5.4) with initial value .u0; v0;F ; v0;S /. Since

.u; vF ; vS / is a strict solution, it holds that

@tu.t/ D "
�1Au.t/C "�1f .u.t/; vF .t/; vS .t// .t � 0/:

On the other hand, since S";� is invariant and since it is differentiable, it holds that
u.t/ D h

";�
X1
.vS .t//, and therefore

@tu.t/ D @th
";�
X1
.vS .t// D

�
Dh";�X1.vS .t//

��
@tvS .t/

�
D
�
Dh";�X1.vS .t//

��
BvS .t/C pr

Y
�
S

g.u.t/; vF .t/; vS .t//
�
.t � 0/:

Combining both equations for t D 0 and using

.u.t/; vF .t// D
�
h
";�
X1
.vS .t//; h

";�

Y
�
F

.vS .t//
�

yields that

h
";�
X1
.v0/ D "A

�1
�
Dh";�X1.v0/

��
Bv0 C pr

Y
�
S

g
�
h
";�
X1
.v0/; h

";�

Y
�
F

.v0/; v0
��

� A�1f
�
h
";�
X1
.v0/; h

";�

Y
�
F

.v0/; v0
�
: (5.7)

Similarly, it holds that

h
";�

Y
�
F

.v0/ D B
�1

Y
�
F

�
Dh";�

Y
�
F

.v0/
��
Bv0 C pr

Y
�
S

g
�
h
";�
X1
.v0/; h

";�

Y
�
F

.v0/; v0
��

� B�1
Y
�
F

pr
Y
�
F

g
�
h
";�
X1
.v0/; h

";�

Y
�
F

.v0/; v0
�
: (5.8)
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Note that (5.7) and (5.8) hold for arbitrary v0 2 Y �S \ Y1. In particular, they also
hold for v0 D v"S .t/. In addition, the differentiability of h";�X1 and h";�

Y
�
F

shows that

@th
";�
X1
.v"S .t// D

�
Dh";�X1.v

"
S .t//

��
Bv"S .t/C pr

Y
�
S

g.u".t/; v"F .t/; v
"
S .t//

�
; (5.9)

@th
";�

Y
�
F

.v"S .t// D
�
Dh";�

Y
�
F

.v"S .t//
��
Bv"S .t/C pr

Y
�
S

g.u".t/; v"F .t/; v
"
S .t//

�
: (5.10)

Proposition 5.7. Consider the situation of Proposition 5.2 together with the assump-
tions of this subsection. Then there is a constantK > 0 such that the following holds:
If �ıY�1=.N �

S �N
�
F / < K and if � and " are small enough, then there are constants

C; c > 0 we have the estimate
0@u".t/ � h";�X1.v"S .t//
v"F .t/ � h

";�

Y
�
F

.v"S .t//

1A
X1�Y1

� C e�ct

0@ u0 � h

";�
X1
.v0;S /

v0;F � h
";�

Y
�
F

.v0;S /

1A
X1�Y1

;

i.e., solutions of (4.3) approach the solutions on the slow manifold at an exponential
rate.

Proof. It holds that

u".t/ � h
";�
X1
.v"S .t// D e"�1tA

�
u0 � h

";�
X1
.v0;S /

�
C e"�1tAh";�X1.v0;S / � h

";�
X1
.v"S .t//

C "�1
Z t

0

e"�1.t�s/Af .u".s/; v"F .s/; v
"
S .s// ds

D e"�1tA
�
u0 � h

";�
X1
.v0;S /

�
�

Z t

0

@s
�
e"�1.t�s/Ah";�X1.v

"
S .s//

�
ds

C "�1
Z t

0

e"�1.t�s/Af .u".s/; v"F .s/; v
"
S .s// ds

D e"�1tA
�
u0 � h

";�
X1
.v0;S /

�
C

Z t

0

e"�1.t�s/A"�1Ah";�X1.v
"
S .s// ds

�

Z t

0

e"�1.t�s/A@s
�
h
";�
X1
.v"S .s//

�
ds

C "�1
Z t

0

e"�1.t�s/Af .u".s/; v"F .s/; v
"
S .s// ds:

Combining this with (5.7) and (5.9) yields

u".t/ � h
";�
X1
.v"S .t// D e"�1tA

�
u0 � h

";�
X1
.v0;S /

�
C

Z t

0

e"�1.t�s/A
�
Dh";�X1.v

"
S .s//

��
pr
Y
�
S

g
�
u".s/; v"F .s/; v

"
S .s/

�
� pr

Y
�
S

g
�
h
";�
X1
.v"S .s//; h

";�

Y
�
F

.v"S .s//; v
"
S .s/

��
ds
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C "�1
Z t

0

e"�1.t�s/A
�
f
�
u".s/; v"F .s/; v

"
S .s/

�
� f

�
h
";�
X1
.v"S .s//; h

";�

Y
�
F

.v"S .s//; v
"
S .s/

��
ds:

Similarly, it holds that

v"F .t/ � h
";�

Y
�
F

.v"S .t// D etB
�
v0;F � h

";�

Y
�
F

.v0;S /
�

C

Z t

0

e.t�s/B
�
Dh";�

Y
�
F

.v"S .s//
��

pr
Y
�
S

g
�
u".s/; v"F .s/; v

"
S .s/

�
� pr

Y
�
S

g
�
h
";�
X1
.v"S .s//; h

";�

Y
�
F

.v"S .s//; v
"
S .s/

��
ds

C

Z t

0

e.t�s/B pr
Y
�
F

�
g
�
u".s/; v"F .s/; v

"
S .s/

�
� g

�
h
";�
X1
.v"S .s//; h

";�

Y
�
F

.v"S .s//; v
"
S .s/

��
ds:

Thus, if we define

'.t/ WD ku".t/ � h
";�
X1
.v"S .t//kX1 C kv

"
F .t/ � h

";�

Y
�
F

.v"S .t//kY1 ;

then we obtain

'.t/ �MAe"�1!Atku0 � h";�X1.v0;S /kX1 CMBe.��1!ACN
�
F
/t
kv0;F � h

";�

Y
�
F

.v0;S /kY1

C CA."LgLC Lf /

Z t

0

e"�1.t�s/!A
"X .t � s/1�X

'.s/ ds

C

�1
2
�
�
N
�
S �N

�
F

��ıY�1
CB.LgLC Lg/

Z t

0

e.t�s/.��1!ACN
�
F
/

.t � s/1�ıY
'.s/ ds:

Here,Ldenotes the Lipschitz constant of the slow manifold. If now �ıY�1=.N �
S�N

�
F /

< K for a small enough constant K > 0, then�
�
�
N
�
S �N

�
F

��ıY�1 < K�N �
S �N

�
F

�ıY < �K!A��ıY :
Hence, Lemma 2.10 shows that there are constants C; c > 0 such that

'.t/ � C e�ct

0@ u0 � h

";�
X1
.v0;S /

v0;F � h
";�

Y
�
F

.v0;S /

1A
X1�Y1

:

This is the assertion.
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5.6. An approximation of the slow flow. In Section 5.3 we measured the distance
of the slow manifolds to the subset S0;� of the critical manifold given by

S0;� WD
˚
.h0.v0/; v0/ 2 S0 W pr

Y
�
F

v0 D 0
	
:

In many cases S0;� will not be invariant under the slow flow. Thus, one might wonder
how meaningful the result in Section 5.3 is. However, our aim is not to reduce the
fast-slow system (4.3) with " > 0 to the slow subsystem (4.3) with " D 0, but to the
reduced slow subsystem:

0 D Au0� .t/C f .u
0
� .t/; v

0
� .t//;

0 D pr
Y
�
F

v0� .t/;

@tv
0
� .t/ D Bv

0
� .t/C pr

Y
�
S

g.u0� .t/; v
0
� .t//;

v0� .0/ D pr
Y
�
S

v0:

(5.11)

Obviously, S0;� is invariant under the reduced slow flow generated by (5.11).

Proposition 5.8. Let !g be defined by (4.7). For all T > 0 there is a constant C > 0

such that for all t 2 Œ0; T � and all � > 0 small enough it holds that

kv0.t/ � v0� .t/kY1 � C

 
k pr

Y
�
F

v0kY1 C

�
�
�
N
�
S �N

�
F

��ıY�1�
!g � ��1!A �N

�
F

�ıY kv0kY1
!
:

Proof. Variation of constants shows that

kv0.t/ � v0� .t/kY1

�MBe.��1!ACN
�
F
/t
k pr

Y
�
F

v0kY1 C
�1
2
�
�
N
�
S �N

�
F

��ıY�1
� LgCB

Z t

0

e.��1!ACN
�
F
/.t�s/

.t � s/ıY

�
kh0.v0.s//kX1C kv

0.s/kY1
�

ds

C LgCB

Z t

0

e!B .t�s/

.t � s/ıY

�
kh0.v0.s// � h0.v0� .s//kX1C kv

0.s/ � v0� .s/kY1
�

ds

� C e!gt
 
k pr

Y
�
F

v0kY1 C

�
�
�
N
�
S �N

�
F

��ıY�1
kv0kY1�

!g � ��1!A �N
�
F

�ıY
!

C
LF kA

�1kB.XıX�1;XıX /
LgCB

1 � LF kA�1kB.XıX�1;XıX /

Z t

0

e!g.t�s/

.t � s/ıY
kv0.s/ � v0� .s/kY1 ds

Now the assertion follows from Lemma 2.8.
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Corollary 5.9. Consider the situation of Proposition 5.7. Let !g be defined by (4.7).
For all T > 0 there is a constant C > 0 such that for all t 2 Œ0; T � and all "; � > 0
with " < c0.!f =!A/� small enough it holds that

 
u".t/ � h0.v0

�
.t//

v".t/ � v0
�
.t/

!
Y1

� C

 
k pr

Y
�
F

v0kY1 C

 
"C

1�
!g � ��1!A �N

�
F

�ıY
!
kv0kY1

C
�
"ıY C e"�1!f t

�
ku0 � h

0.v0/kX1

!
:

In particular, for initial values on the slow manifold it holds that
 
u".t/ � h0.v0

�
.t//

v".t/ � v0
�
.t/

!
Y1

� C

 
"C

�
�
�
N
�
S �N

�
F

��ıY�1�
!g � ��1!A �N

�
F

�ıY C �ıY�1

N
�
S �N

�
F

!
kv0kY1 :

Proof. The first estimate is a combination of Corollary 4.15 and Proposition 5.8. For
the second estimate, we use the first estimate together with Proposition 5.5 and the
triangle inequality

k pr
Y
�
F

v0kY1 � k pr
Y
�
F

v0 � h
";�

Y
�
F

.v0/kY1 C kh
";�

Y
�
F

.v0/kY1 ;

ku0 � h
0.v0/kX1 � ku0 � h

";�
X1
.v0/kX1 C kh

";�
X1
.v0/ � h

0.v0/kX1 :

Remark 5.10. (a) Note that we do not need the existence of slow manifolds for the
first estimate in Corollary 5.9.

(b) If the initial values are not on the slow manifold, then it looks like the term
k pr

Y
�
F

v0kY1 might prevent the trajectories of semiflow generated by the fast-slow
system from converging to the ones of the reduced slow flow as "; � ! 0. However,
sometimes it holds that k pr

Y
�
F

v0kY1 ! 0 as � ! 0 uniformly in v0 running through
certain sets. For example, if one takes v0 from a bounded set in Y2, then this will
hold in many situations.

6. Three examples

In most applications nonlinearities are not Lipschitz continuous as we assume in
our abstract theory, but only locally Lipschitz continuous. This means that we have
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to use cutoff techniques and our theory can only be applied locally. So before we
start with the examples, let us briefly explain how this can be done for polynomial
nonlinearities in toroidal Bessel potential spaces H s

2 .T
n/. The space H s

2 .T
n/ with

s � 0 is defined as the space of all f 2 L2.Tn/ such that

kf kH s
2
.Tn/ WD

x 7! X
k2Zn

�
1C jkj2

�s=2 yf .k/eikx
L2.Tn/

<1;

where yf .k/ denotes the k-th Fourier coefficient.
The main idea is to use Young’s inequality for convolutions together with

Plancherel’s theorem. First, we observe that for u; v 2 H s
2 .T

n/ it holds that�
1C jkj2

�s=2cuv.k/ D �1C jkj2�s=2 X
l2Zn

yu.k � l/yv.l/

� 2s
X
l2Zn

�
1C jk � l j2

�s=2
yu.k � l/yv.l/C 2s

X
l2Zn

�
1C jl j2

�s=2
yu.k � l/yv.l/

D 2s
��
1C jkj2

�s=2
yu.k/

�
k2Zn

�
�
yv.k/

�
k2Zn

C 2s
�
yu.k/

�
k2Zn

�
�
.1C jkj2/s=2yv.k/

�
k2Zn

:

Now it follows from Young’s inequality for convolutions together with Plancherel’s
theorem that

kuvkH s
2
.Tn/ D k

��
1C jkj2

�s=2cuv.k/�
k2Zn
k`2.Zn/

� 2sk
��
1C jkj2

�s=2
yu.k/

�
k2Zn
k`2.Zn/k

�
yv.k/

�
k2Zn
k`1.Zn/

C 2sk
�
yu.k/

�
k2Zn
k`1.Zn/k

��
1C jkj2

�s=2
yv.k/

�
k2Zn
k`1.Zn/

D 2sk
�
yv.k/

�
k2Zn
k`1.Zn/kukH s2 .Tn/ C 2

s
k
�
yu.k/

�
k2Zn
k`1.Zn/kvkH s2 .Tn/:

(6.1)
Therefore, a first idea to make polynomial nonlinearities Lipschitz continuous
via a cutoff would be to use a smooth cutoff function on `1.Zn/ and cut off
functions for which the `1.Zn/-norm of the Fourier series is large. However, it
is well known that nontrivial smooth functions with bounded support do not exist
on `1.Zn/, see for example [7, Theorem 2]. Fortunately, the situation is better
for other integrability parameters. More generally, it was observed in [26] that a
separable Banach space X admits an equivalent continuously differentiable norm
(i.e., a norm that is continuously Fréchet differentiable on X n f0g) if and only if
its topological dual is also separable. This also includes our Bessel potential spaces
with integrability parameter 2. Note that (6.1) together with

k
�
yu.k/

�
k2Zn
k`1.Zn/

� k
��
1C jkj2

��s=2�
k2Zn
k`2.Zn/k

��
1C jkj2

�s=2
yu.k/

�
k2Zn
k`2.Zn/

D cskukH s
2
.Tn/
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for s > n=2 and cs WD k..1C jkj2/�s=2/k2Znk`2.Zn/ yields the well-known fact that
the Bessel potential spaces with regularity s > n=2 and integrability parameter 2 are
an algebra. More precisely, we obtain

kuvkH s
2
.Tn/ � 2

scskukH s
2
.Tn/kvkH s

2
.Tn/: (6.2)

On Banach spaces X with continuously differentiable norm, e.g., H s
2 .T

n/, one can
now define a cutoff function as follows: One may take a function � 2 C1.RI Œ0; 1�/
with support in B.0; C2/ for some C2 > 0 and with �.x/ D 1 for jxj � C1 for some
C12.0; C2/ and compose it with the differentiable norm k�kX . Then�X WD �.k�kX /
is a continuously differentiable and Lipschitz continuous cutoff function from X

to Œ0; 1�. The function �X may even have an arbitrarily small Lipschitz constant, if �
is chosen accordingly.

The observations on smooth cutoff functions can now be combined with the
estimate (6.1) in order to obtain the following result:

Proposition 6.1. Let pWR2 ! C be a polynomial of degree d 2 N0 given by

p.u; v/ D
X

˛2N2
0
; j˛j1�d

a˛u
˛1v˛2

for some a˛ 2 C. We fix s > n=2 and define

cs WD k
��
1C jkj2

��s=2�
k2Zn
k`2.Zn/

as above. Let � be a continuously differentiable cutoff function on H s.Tn/ with
Lipschitz constant L� > 0 which is supported in B.0;R/ � H s.Tn/ for some
R > 0 as described before. Then the mapping

p�WH
s.Tn/ �H s.Tn/! H s.Tn/; .u; v/! p.�.u/u; �.v/v/

is globally Lipschitz continuous with Lipschitz constant not larger thanX
˛2Z2; j˛j1�d

ja˛jj˛j1.2
scsR/

j˛j1�1.1C 2sC1csRL�/:

Proof. (i) In a first step, we show that

H s.Tn/! H s.Tn/; u 7! �.u/u

is Lipschitz continuous. So let u; u0 2 H s.Tn/. If kukH s.Tn/; ku0kH s.Tn/ > R,
then it trivially holds that

k�.u/u � �.u0/u0kH s.Tn/ D 0 � ku � u0kH s.Tn/:
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If kukH s.Tn/; ku0kH s.Tn/ � 2R, then it follows that

k�.u/u � �.u0/u0kH s.Tn/

� k�.u/u � �.u/u0kH s.Tn/ C k.�.u/ � �.u0//u0kH s.Tn/

� ku � u0kH s.Tn/ C 2
sC1csRL�ku � u0kH s.Tn/

D .1C 2sC1csRL�/ku � u0kH s.Tn/

If kukH s.Tn/ � R and ku0kH s.Tn/ > 2R, then ku � u0kH s.Tn/ � R so that

k�.u/u � �.u0/u0kH s.Tn/ D k�.u/ukH s.Tn/ � R � ku � u0kH s.Tn/:

The same holds if kukH s.Tn/ > 2R and ku0kH s.Tn/ � R. Altogether, we have
shown that

k�.u/u � �.u0/u0kH s.Tn/ � .1C 2
sC1csRL�/ku � u0kH s.Tn/

for all u; u0 2 H s.Tn/.

(ii) In the second step, we show that

H s.Tn/! H s.Tn/; u 7! .�.u/u/k

is Lipschitz continuous for any k 2 N. Let again u; u0 2 H s.Tn/. Then it holds
that

k.�.u/u/k � .�.u0/u0/
k
kH s.Tn/

D

k�1X
jD0

.�.u/u/j .�.u0/u0/
k�1�j .�.u/u � �.u0/u0/


H s.Tn/

� 2scs

k�1X
jD0

k.�.u/u/j .�.u0/u0/
k�1�j

kH s.Tn/k�.u/u � �.u0/u0kH s.Tn/

� .2scs/
k�1kRk�1.1C 2sC1csRL�/ku � u0kH s.Tn/:

(iii) Finally, we turn to the assertion. So let u; u0; v; v0 2 H s.Tn/. Then it holds
that X
˛2Z2
j˛j1�d

a˛.�.u/u/
˛1.�.v/v/˛2 �

X
˛2Z2
j˛j1�d

a˛.�.u0/u0/
˛1.�.v0/v0/

˛2


H s.Tn/

� 2scs
X
˛2Z2
j˛j1�d

ja˛j
�
k.�.u/u/˛1 � .�.u0/u0/

˛1kH s.Tn/k.�.v/v/
˛2kH s.Tn/

C k.�.v/v/˛2 � .�.v0/v0/
˛2kH s.Tn/k.�.u0/u0/

˛1kH s.Tn/

�
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� 2scs
X
˛2Z2
j˛j1�d

ja˛j
�
.2scs/

˛1�1˛1R
˛1�1.1C 2sC1csRL�/.2

scs/
˛2�1

� R˛2ku � u0kH s.Tn/

C .2scs/
˛2�1˛2R

˛2�1.1C 2sC1csRL�/.2
scs/

˛1�1R˛1ku � u0kH s.Tn/
�

D

� X
˛2Z2
j˛j1�d

ja˛jj˛j1.2
scsR/

j˛j1�1.1C 2sC1csRL�/

�
ku � u0kH s.Tn/:

6.1. The spatial Stommel model. Now we apply our methods to a version of Stom-
mel’s box model for oceanic circulation in the North Atlantic (see [30] and [6, (6.2.4)])
in which we add diffusion in both variables. These equations are then given by

"@tu
"
D �u" � u" C 1 � "u"

�
1C �2..u"/2 � .w"/2/

�
;

@tw
"
D �w" C � � w"

�
1C �2..u"/2 � .w"/2/

�
;

u".0/ D u0; w".0/ D v0;

(6.3)

where �; � > 0 are certain parameters. We study this system with periodic boundary
conditions, i.e., on the torus T , and partly also on Tn.
Theorem 6.2. Let s � 0, n 2 N and ıY 2 .12 ; 1/ such that 2s C 4.1 � ıY / > n.
Let further T > 0 be fixed. We write .u"; w"/ for the strict solution of (6.3) with
" > 0 and .u0; w0/ for corresponding slow flow. Then for all R > 0 there are
constants "0 > 0 and C; c > 0 such that for all " 2 .0; "0�,

u0 2 H
sC2
2 .Tn/ with ku0kH sC2

2
.Tn/
� R;

v0 2 H
sC2C2.1�ıY /
2 .Tn/ with ku0k

H
sC2C2.1�ıY /

2
.Tn/
� R

it holds that

sup
0�t�T.R/

�
ku".t/ � u0.t/k

H
sC2
2

.Tn/
C kw".t/ � v0.t/k

H
sC2C2.1�ıY /

2
.Tn/

�
� C."ıY C e�c"�1t /;

where T .R/ is defined by

T .R/ WD inf
˚
t 2 Œ0; T � W max

˚
ku0.t/k

H
sC2
2

.Tn/
; kw0.t/k

H
sC2C2.1�ıY /

2
.Tn/

;

ku".t/k
H
sC2
2

.Tn/
; kw".t/k

H
sC2C2.1�ıY /

2
.Tn/

	
> R

	
:

Theorem 6.3. Let n D 1, s � 0 and ıY 2 .12 ; 1/ such that 2s C 4.1 � ıY / > 1

and let T > 0 be fixed. Then for all R > 0 there are �0 > 0 and a family of finite-
dimensional slow manifolds S";� � H sC2

2 .T /�H sC2C2.1�ıY /
2 .T / with 0 < � � �0

and 0 < " � c.!f =!A/� for constants !f ; !A which we define later and some
c 2 .0; 1/ such that the following assertions hold:
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(a) For each � 2 .0; �0� there is a splitting

H
sC2.1�ıY /
2 .T / D Y �F ˚ Y

�
S ;

where Y �S is the projection of H sC2.1�ıY /
2 .T / to the k-th Fourier modes with jkj

being smaller than a certain number k.�/ depending on �. We also have that Y �F is
the projection to the remaining Fourier modes.

(b) Let B
Y
�
S

.0; R/ be defined as

B
Y
�
S

.0; R/ WD
˚
f 2 Y

�
S W kf kH sC2C2.1�ıY /

2
.T/

< R
	
:

Then S";� is given as the graph of a differentiable mapping

h";� W
�
B
Y
�
S

.0; R/; k � k
H
sC2C2.1�ıY /

2
.T/

�
! H sC2

2 .T / �
�
Y
�
F \H

sC2C2.1�ıY /
2 .T /; k � k

H
sC2C2.1�ıY /

2
.T/

�
:

(c) S";� is locally invariant under the semiflow generated by (6.3), i.e., the semiflow
can only leave S";� through its boundary.

(d) Let
S0;� WD

˚
.u;w/ 2 S0 W w 2 BY �

S

.0; R/
	

be the submanifold of the critical manifold which consists of all points whose slow
components are elements of B

Y
�
S

.0; R/. Then there is a constant C > 0 depending
on R such that

dist.S";� ; S0;� / � C
�
"C �ıY�1=2

�
� C�ıY�1=2:

(e) Suppose that

ku0kH sC2
2

.T/
� R; kv0k

H
sC2C2.1�ıY /

2
.T/
� R; kh0.v0/kH sC2

2
.T/
� R

and let .u0
�
; w0

�
/ be the solution of the truncated slow subsystem of the diffusive

Stommel model given by

0 D �u0� � u
0
� C 1;

@tw
0
� D pr

Y
�
S

�
�w0� C � � w

"Œ1C �2..u0� /
2
� .w0� /

2/�
�
;

u0� D h
0.pr

Y
�
S

v0/; w0� .0/ D pr
Y
�
S

v0:

(6.4)

Assume that .u0; v0/ 2 S";� . Then for each T > 0 there is a constant C > 0 such
that

sup
0�t�T.R/

�
ku".t/�u0� .t/kH sC2p .T/

Ckw".t/�w0� .t/kH sC2C2.1�ıY /p .T/

�
� C�ıY�1=2;
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where T .R/ is defined by

T .R/ WD inf
˚
t 2 Œ0; T � W max

˚
ku0� .t/kH sC2p .T/

; kw0� .t/kH sC2C2.1�ıY /p .T/
;

ku".t/k
H
sC2
p .T/

; kw".t/k
H
sC2C2.1�ıY /
p .T/

	
> R

	
:

Remark 6.4. (a) In both theorems the condition 2sC4.1�ıY / > n is not essential,
but cutoff techniques would get more tedious without this assumption. This condition
has the advantage that the nonlinearities are already well-defined and locally Lipschitz
continuous in the spaces we work with later on without having to cut them off.
Cutoff techniques are then only required to turn local Lipschitz continuity into global
Lipschitz continuity.

(b) In Theorem 6.2 we may allow Tn as underlying domain, as its proof only uses
the results of Section 4, which do not require large spectral gaps in the slow variable.

(c) We could also work in H s
p with p ¤ 2. But then the proofs would be more

complicated since we would have to use Fourier multiplier theorems instead of just
Plancherel’s theorem.

Now we show how our general theory can be applied to derive Theorem 6.2 and
Theorem 6.3.

In order to remove constants in the nonlinear terms, we introduce the dummy
variable zw which takes values in R3 and satisfies

@t zw
"
D 0; zw".0/ D .

p
";M;�/

for some M > 0 that we choose later. We make the following choices:
� The fast variable is given byu". The slow variable is given byv"D.w"; zw"1; zw"2; zw"3/.
As underlying spaces we choose

X D H s
2 .T

n/ and Y D H
sC2.1�ıY /
2 .Tn/ �R3

such that 2s C 4.1 � ıY // > n.

� The linear operator in the fast variable is given by

AWH s
2 .T

n/ � H sC2
2 .Tn/! H s

2 .T
n/; u 7! �u � u:

The linear operator in the slow variable is given by

BWH
sC2.1�ıY /
2 .Tn/ �R3 � H sC2C2.1�ıY /

2 .Tn/ �R3 ! H
sC2.1�ıY /
2 .Tn/ �R3;

.v; z1; z2; z3/
T
7! .�v1;�z1;�z2;�z3/

T

for some ıY 2 .12 ; 1/; we compensate the terms zj 7! �zj from the linear part by
inserting maps zj 7! zj in the nonlinear part defined below.
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� The Banach scales are given by

X˛ D H
sC2˛
2 .Tn/ and Y˛ D H

sC2.1�ıY /C2˛
2 .Tn/ �R3:

� We have already chosen ıY 2 .12 ; 1/. Moreover, we take X D 1�ıY and ıX D 1.
Thus, we have to define continuous nonlinearities

f WX1 � Y ! X; gWX1 � Y1 ! YıY

satisfying the Lipschitz conditions

kf .x1; y1/ � f .x2; y2/kX1�ıY � Lf
�
kx1 � x2kX1 C ky1 � y2kY1

�
;

kf .u1; v1/ � f .u2; v2/kC1.Œ0;t�IX/ � Lf
�
ku1 � u2kC1.Œ0;t�IX1/

C kv1 � v2kC1.Œ0;t�IY /
�
;

kg.x1; y1/ � g.x2; y2/kYıY � Lg
�
kx1 � x2kX1 C ky1 � y2kY1

�
:

With our choices of spaces this translates into

f WH sC2
2 .Tn/ �H

sC2.1�ıY /
2 .Tn/ �R3 ! H s

2 .T
n/;

gWH sC2
2 .Tn/ �H

sC2C2.1�ıY /
2 .Tn/ �R3 ! H sC2

2 .Tn/ �R3
(6.5)

and

kf .x1; y1/ � f .x2; y2/k
H
sC2.1�ıY /

2
.Tn/

� Lf
�
kx1 � x2kH sC2

2
.Tn/
C ky1 � y2k

H
sC2C2.1�ıY /

2
.Tn/�R3

�
;

kf .u1; v1/ � f .u2; v2/kC1.Œ0;t�IH s
2
.Tn//

� Lf
�
ku1 � u2kC1.Œ0;t�IH sC2

2
.Tn//

C kv1 � v2k
C1.Œ0;t�IH

sC2.1�ıY /

2
.Tn/�R3/

�
;

kg.x1; y1/ � g.x2; y2/kH sC2
2

.Tn/�R3

� Lg
�
kx1 � x2kH sC2

2
.Tn/
C ky1 � y2k

H
sC2C2.1�ıY /

2
.Tn/�R3

�
: (6.6)

Note that if

f WH sC2
2 .Tn/ �H

sC2.1�ıY /
2 .Tn/ �R3 ! H

sC2.1�ıY /
2 .Tn/;

gWH sC2
2 .Tn/ �H

sC2C2.1�ıY /
2 .Tn/ �R3 ! H sC2

2 .Tn/ �R3
(6.7)

are differentiable with

kDf .x; y/k
B.H

sC2
2

.Tn/�H
sC2.1�ıY /

2
.Tn/�R3;H

sC2.1�ıY /

2
.Tn//

� Lf ;

kDg.x; y/k
B.H

sC2
2

.Tn/�H
sC2C2.1�ıY /

2
.Tn/�R3;H sC2

2
.Tn/�R3/

� Lg ;
(6.8)
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then both (6.5) and (6.6) as well as (5.6) are satisfied. Since H s
2 .T

n/ is a multipli-
cation algebra whenever 2s > n, it follows that the nonlinearities

zf WH sC2
2 .Tn/ �H

s2.1�ıY /
2 .Tn/ �R3 ! H

sC2.1�ıY /
2 .Tn/;

.x; y; z1; z2; z3/ 7!
1

M
z2 C z

2
1x
�
1C �2.x2 � y2/

�
;

zgWH sC2
2 .Tn/ �H

sC2C2.1�ıY /
2 .Tn/ �R3 ! H sC2

2 .Tn/ �R3;

.x; y; z1; z2; z3/ 7!
�
z3 � y

�
1C �2.x2 � y2/

�
; z1; z2; z3

�
;

are well-defined and satisfy (6.8) locally. In order to obtain these properties globally,
we use cutoff techniques as described in Proposition 6.1. Let R > 0 be arbitrary and
choose C 1-functions

�1WH
sC2.1�ıY /
2 .Tn/! Œ0; 1�; �2WH

sC2
2 .Tn/! Œ0; 1�;

�3WH
sC2C2.1�ıY /
2 .Tn/! Œ0; 1�;

which equal 1 on the ballB.0;R/ around 0with radiusR in their respective topologies
and which equal to 0 in the complement of B.0; 2R/. For � > 0 we further choose
 � 2 C

1.R/ taking values in Œ0; 1� such that

 � .z/ D 1 if jzj � �;  � .z/ D 0 if jzj � 2�; and j 0� .z/j �
2

�
for z 2 R:

Now, the nonlinearities

f WH sC2
2 .Tn/ �H

sC2.1�ıY /
2 .Tn/ �R3 ! H

sC2.1�ıY /
2 .Tn/;

.x; y; z1; z2; z3/ 7!
1

M
z2 C  � .z1/z

2
1�2.x/x

�
1C �2

�
.�2.x/x/

2
� .�1.y/y/

2
��
;

gWH sC2
2 .Tn/ �H

sC2C2.1�ıY /
2 .Tn/ �R3 ! H sC2

2 .Tn/ �R3;

.x; y; z1; z2; z3/ 7!
�
z3 � �3.y/y

�
1C �2

�
.�2.x/x/

2
� .�3.y/y/

2
��
; z1; z2; z3

�
;

satisfy (6.8) globally. Moreover, if we choose � > 0 small enough, then we have

Lf <
2

M
:

With these choices, we may rewrite (6.3) as

"@tu
"
D Au" C f .u"; v"1;

p
";M;�/;

@tv
"
D Bv" C g.u"; v"1;

p
";M;�/;

u".0/ D u0; v"1.0/ D v0:

(6.9)

If ku"k
H
sC2
2

.Tn/
; kv"1kH sC2C2.1�ıY /

2
.Tn/
� R and " � �2, then (6.3) and (6.9)

coincide. This is why we have to introduce T .R/ in the statements of Theorem 6.2
and Theorem 6.3. For the proof Theorem 6.2 we just have to check whether the
assumptions of Section 4.3 are satisfied:
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(i) It is well known that X D H s
2 .T

n/ and Y D H sC2.1�ıY /
2 .Tn/�R3 are Banach

spaces.

(ii) The Laplacian generates a bounded holomorphic C0-semigroup .et�/t�0 on any
of the spaces H sC˛

2 .Tn/, ˛ 2 R, which is given by

et�f .x/ D
X
k2Z

e�jkj2t yf .k/eikx;

where yf .k/ denotes the k-th Fourier coefficient. Accordingly, A generates an exp-
onentially decaying holomorphic C0-semigroup and B generates a holomorphic C0-
semigroup.

(iii) It follows from complex interpolation that the spaces X˛ D H sC2˛
2 .Tn/ and

Y˛ D H
sC2.1�ıY /C2˛
2 .Tn/ �R3 are valid choices for our Banach scales.

(iv) We used cutoff techniques in order to ensure that f and g satisfy the continuity
assumptions of Section 4.3.

(v) We introduced the dummy variable zw" the ensure thatf .0; 0/D0 andg.0; 0/D0.

(vi) Theorem 2.1 ensures that there are constants MA; CA and CB such that

ketAkB.X1/ �MAe!At ; ketAkB.XX ;X1/ � CAt
X�1e!At ;

ketAkB.XıX ;X1/ � CAt
ıX�1e!At ;

and
ketBkB.Y1/ �MBe!B t ; ketBkB.YıY ;Y1/ � CB t

ıY�1e!B t

hold for all t > 0. Since .et�/t�0 is a bounded holomorphic semigroup on any of the
spacesH sC˛

p .Tn/, ˛ 2 R, we may take !A to be an arbitrary number larger than�1.

(vii) We chose � >0 such thatLf <2=M . If we takeM>32CA and!A close to�1,
then we have

!A C .2CALf /
1=X

� 1
X

�.1�X /=X
< !A C

1
p
2
< 0;

so that we may take !f such that

!A C .2CALf /
1=X

� 1
X

�.1�X /=X
< !f < 0:

Altogether, all the assumptions of Section 4.3 are satisfied and we obtain Theorem 6.2
Let us turn to Theorem 6.3. Our task now is to find the splitting

Y D Y
�
F ˚ Y

�
S
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for any � > 0 small enough. For the Stommel model we may simply take the trunc-
ation to certain Fourier modes. If�.jk0jC1/2 < ��1!A � �jk0j2 for some k0 2 N,
then we take

zY
�
S WD span

˚
Œx 7! eikx� W k 2 Z; jkj � jk0j � 1

	
;

zY
�
F WD cl

H
sC2.1�ıY /
p .T/

�
span

˚
Œx 7! eikx� W k 2 Z; jkj � jk0j

	�
;

where cl
H
sC2.1�ıY /
p .T/

A means that we take the closure of a set

A � H sC2.1�ıY /
p .T / in H sC2.1�ıY /

p .T /:

Now we choose
Y
�
S WD

zY
�
S �R3; Y

�
F WD

zY
�
F � f0R3g:

These definitions indeed yield a splitting

Y D Y
�
F ˚ Y

�
S :

Let us check the conditions of Section 5.1.
(i) Since Y �S is finite-dimensional and since Y �F is defined as a closure, both spaces
are closed. Moreover, in the Fourier image it is easy to see that the their projections
commute with B .

(ii) By our construction zY �F consists of all f 2 H sC2.1�ıY /
2 .T / such that yf .k/ D 0

for all k 2 Z such that jkj � jk0j � 1. Therefore,

zY
�
F \H

sC2C2.1�ıY /
2 .T /

consists of all f 2 H sC2C2.1�ıY /
2 .T / such that yf .k/ D 0 for all k 2 Z such that

jkj � jk0j � 1. This makes Y �F a closed subspace of Y1 D H sC2C2.1�ıY /
2 .T / �R3.

(iii) Obviously, Y �S is a closed subspace of Y1 and thus the same holds trivially for
Y
�
S \ Y1. In addition, we know that

gWX1 � Y1 ! YıY

is Lipschitz continuous and Plancherel’s theorem yields

k pr
Y
�
S

kB.YıY ;Y1/
� �ıY�1:

Hence, we obtain that
pr
Y
�
S

gWX1 � Y1 ! Y1

is Lipschitz continuous with Lipschitz constant Lg�ıY�1.
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(iv) Y �S is a finite-dimensional space. Therefore, the realization of B in Y �S is
bounded and thus generates a C0-group .etBY�

S
/t2R. It is obvious that is group

coincides with .etB j
Y
�
S

/ for t � 0.

(v) We show that the realization ofB in Y �F has 0 in its resolvent set by simply giving
a formula for the inverse. It is given by

B�1
Y
�
F

WH
sC2C2.1�ıY /
2 .T / � f0R3g ! H

sC2.1�ıY /
2 .T / � f0R3g;� X

k2Z;
jkj�jk0j

yf .k/eikx; 0; 0; 0

�
7!

� X
k2Z;
jkj�jk0j

yf .k/eikx

jkj2
; 0; 0; 0

�
:

This is well-defined if � is small as k D 0 does not appear in the sum.

(vi) We have already observed that .etB/t�0 is given by

etBf D
�
x 7!

X
k2Z

e�jkj2t yf .k/eikx
�
:

Thus, Plancherel’s theorem shows that for yS 2 Y �S and t � 0 it holds that

ke�tBySk
H
sC2.1�ıY /

2
.T/
� e.jk0j�1/2t ;

so that we may take
N
�
S WD ��

�1!A �
�
jk0j � 1

�2
:

Since �.jk0j C 1/2 < ��1!A � �jk0j2 it holds that N �
S > 0. Similarly, we can take

N
�
F D ��

�1!A � jk0j
2
C jk0j C 1;

so that N �
S � N

�
F D jk0j �

p
���1!A. Therefore, we have N �

S � N
�
F > 1

2
��1=2

if � is small and if !A is close to �1. For (5.1) we now have to verify that there is a
constant C > 0 which is independent of yF 2 H sC2C2.1�ıY /, jkj � jk0j, t � 0 and
� > 0 small enough such that� X
jkj2�jk0j2

�
1C jkj2

�sC2C2.1�ıY /
yy2F;ke

�2jkj2t

�1=2
� C

�
t�
�
N
�
S �N

�
F

��ıY�1e.N �FC��1!A/t� X
jkj2�jk0j2

�
1C jkj2

�sC2
yy2F;k

�1=2
:

We do this buy showing that there is a constant C > 0 independent of jkj � jk0j,
t � 0 and � > 0 such that�

1C jkj2
�1�ıY e�jkj2t � C �t��N �

S �N
�
F

��ıY�1e.N �FC��1!A/t :
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Using the definition of N �
F and the fact that N �

S � N
�
F � ��1=2 � jk0j this is the

case if and only if there is a constant C > 0 such that

jkj2.1�ıY /e�jkj
2t
�
�
1C jkj2

�1�ıY e�jkj2t � C� t

jk0j

�ıY�1
e.�jk0j

2Cjk0jC1/t :

Thus, it suffices to show that

.t; k; k0/ 7!
� t jkj2
jk0j

�1�ıY
e.jk0j

2�jkj2�jk0j�1/t

for t � 0 and jkj � jk0j is bounded. For fixed k; k0, one can compute the critical
points in t . This yields that the maximum is attained at

t D
1 � ıY

jkj2 C jk0j C 1 � jk0j2

and is given by �
.1 � ıY /jkj

2�
jkj2 C jk0j C 1 � jk0j2

�
jk0j

�1�ıY
eıY�1:

But for jkj � jk0j this expression is decreasing in jkj so that its maximum is attained
at jk0j D jkj and is given by�

.1 � ıY /jk0j
2�

jk0j C jk0j2
��1�ıY eıY�1;

which is bounded by .1 � ıY /1�ıY eıY�1. This shows that (5.1) is satisfied.

(vii) If we take � > 0 small enough and " < c.!f =!A/� for some constant c 2 .0; 1/,
then (5.3) is satisfied for ıY > 1

2
.

Altogether, all the assumptions we need to apply our theory are satisfied.
The application of our abstract results to the diffusive Stommel model to obtain
Theorem 6.3 is straightforward. We should point out though that for the proof of
Theorem 6.3 (e) one formally has different initial conditions for .u"; w"/ and .u�0; w

�
0/

due to our dummy variables: For (6.3) we have z2 D
p
" and for (6.4) we have z2 D 0.

However, the well-posedness (6.3) ensures that the difference of the solutions of (6.3)
with z2 D

p
" and z2 D 0 are of the order O.

p
"/ on bounded time intervals. Thus,

for the derivation of Theorem 6.3 (e) we can just use Corollary 5.9 together with an
application of the triangle inequality.

6.2. The doubly-diffusive FitzHugh–Nagumo equation. The techniques we used
for the Stommel model can also be applied to the doubly-diffusive FitzHugh–Nagumo
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equation, which has recently been of interest in pattern formation [8]. It is a
modification of the classical FitzHugh–Nagumo equation and given by

"@tu
"
D �u" C u".1 � u"/.u" � a/ � w";

@tw
"
D �w" C u" � w";

u".0/ D u0; w".0/ D v0;

(6.10)

where  > 0 and a 2 .0; 1
2
/. Of course, it is well known from many works (see [21]

and references therein) that at the two fold points of nonlinearity, there is loss of
normal hyperbolicity even without the Laplacian terms. Our methods can be applied
to describe the dynamics in the stable parts of the phase space away from the set
of bifurcation points. In order to study the full dynamics, additional techniques
are needed to treat the behavior close to the bifurcation points. First steps in this
direction for a transcritical bifurcation have been taken in [12], but much more work
has to be done before this can be applied to describe pattern forming phenomena.
Hence, we just illustrate our methods locally at a point on an attracting branch of the
critical manifold. We simply select this point as the origin but other points could be
treated similarly upon translation of the coordinates locally. Furthermore, compared
to the Stommel model we have the additional difficulty that the nonlinearity in the
fast variable does not get small as " ! 0. However, we have the advantage that
we do not have to introduce dummy variables and that all terms are actually linear
in the slow variable. The latter property will help us to derive better convergence
results, since we can avoid certain cutoffs that would cause problems with different
topologies. This way, we obtain:
Theorem 6.5. Let E 2 fT ;Rg, i.e., let E either be the torus or the real line. We write
.u"; w"/ for the strict solution of (6.10) with " > 0 and .u0; w0/ for corresponding
slow flow. Then there is a neighborhood U � H 2

2 .E
n/ of 0 which only depends

on a, and constants "0 > 0 and C; c > 0 such that for all " 2 .0; "0�, u0 2 U and
v0 2 H

2
2 .E

n/ it holds that

sup
0�t�T.R;U /

�
ku".t/ � u0.t/kH2

2
.En/ C kw

".t/ � v0.t/kH2
2
.En/

�
� C."C e�c"�1t /;

where T .R;U / is defined by

T .R;U / WD inf
˚
t 2 Œ0; T � W u0 … U or u" … U

	
:

Theorem 6.6. There is a neighborhood U � H 2
2 .T / of 0 which only depends on a,

a constant �0 > 0, and a family of finite-dimensional manifolds S";� � H 2
2 .T / �

H 2
2 .T / with 0 < � � �0 and 0 < " � C.!f =!A/� for some C 2 .0; 1/ such that the

following assertions hold:
(a) For each � 2 .0; �0� there is a splitting

L2.T / D Y
�
F ˚ Y

�
S ;
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where Y �S is the projection of L2.T / to the k-th Fourier modes with jkj being
smaller than a certain number k.�/ depending on �. We also have that Y �F is the
projection to the remaining Fourier modes.

(b) The manifolds S";� are given as the graph of a differentiable mapping

h";� W
�
Y
�
S ; k � kH sC2

2
.T/

�
! H 2

2 .T / �
�
Y
�
F \H

2
2 .T /; k � kH2

2
.T/

�
:

(c) The intersection of S";� with U � Y is a slow manifold which is locally invariant
under the semiflow generated by (6.10), i.e., the semiflow can only leave S";� \
U � Y through its boundary.

(d) Let
S0;�;U WD

˚
.u;w/ 2 S0 W w 2 Y

�
S

	
\ U � Y

be the intersection of U � Y with the submanifold of the critical manifold which
consists of all points whose slow components are elements of Y �S . Then constant
C > 0 such that

dist.S";� ; S0;� / � C."C �1=2/ � C�1=2:

(e) Suppose that u0 2 U and let .u0
�
; w0

�
/ be the solution of the truncated slow sub-

system of (6.10) given by

0 D �u0� � u
0
� .1 � u

0
� /.u

0
� � a/ � v

0
� ;

@tw
0
� D pr

Y
�
S

�
�w0� C u

0
� � v

0
�

�
;

u".0/ D h0.pr
Y
�
S

v0/; w".0/ D pr
Y
�
S

v0:

(6.11)

Assume that .u0; v0/ 2 S";� \ U � Y . Then for each T > 0 there is a constant
C > 0 such that

sup
0�t�T.U/

�
ku".t/ � u0� .t/kH2

2
.T/ C kw

0
� .t/ � v

0.t/kH2
2
.T/

�
� C�1=2;

where T .R;U / is defined by

T .U / WD inf
˚
t 2 Œ0; T � W u0� … U or u" … U

	
:

Remark 6.7. One might wonder why we have to introduce the neighborhood U in
Theorem 6.5 and Theorem 6.6. The reason is that we have only treated the attracting
case in our general theory. In order to ensure that we stay in this attracting case, we
use cutoff techniques to modify the nonlinearity in the fast variable where it would be
positive. However, this means that our results are only related to the system (6.10) as
long as the fast variable stays in the region where we did not modify the nonlinearity.
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Let us give a sketch on how these results can be obtained. Again, we only treat
the case E D T . First, we rescale the slow variable and define v" D 2

a
w" so that

(6.10) turns into

"@tu
"
D �u" C u".1 � u"/.u" � a/ �

a

2
v";

@tv
"
D �v" C

2

a
u" � v";

u".0/ D u0; v".0/ D
2

a
v0:

(6.12)

Now we make the following choices:
� As underlying spaces we choose X D L2.Tn/ and Y D L2.Tn/.

� The linear operator in the fast variable is given by

AWL2.T
n/ � H 2

2 .T
n/! L2.T

n/; u 7! �u � au:

The linear operator in the slow variable is given by

BWL2.T
n/ � H 2

2 .T
n/! L2.T

n/; u 7! �u � u:

� The Banach scales are given by X˛ D H 2˛
2 .Tn/ and Y˛ D H 2˛

2 .Tn/.

� We choose X D ıX D ıY D 1. This is the main difference to the Stommel
model and will lead to better convergence rates. With these parameters, it suffices to
choose a differentiable mapping f WX1 � Y ! X which is also differentiable as a
mapping from X1 � Y1 to X1 such that

kDf.x; y/kB.X1�Y;X/ � Lf < a;

kDf.x; y/kB.X1�Y1;X1/ � Lf < a:

Moreover, for the nonlinearity in the slow variable we may choose a continuous
mapping gWX � Y ! Y which is differentiable as a mapping gWX1 � Y1 ! Y1 with
bounded derivative. With our choices of spaces this translates into

f WH 2
2 .T

n/ � L2.T
n/! L2.T

n/;

gWL2.T
n/ � L2.T

n/! L2.T
n/;

and

kDf .x; y/kB.H2
2
.Tn/�L2.Tn/;L2.Tn//

� Lf < a;

kDf .x; y/kB.H2
2
.Tn/�H2

2
.Tn/;H2

2
.Tn// � Lf < a;

kDg.x; y/kB.H2
2
.Tn/�H2

2
.Tn/;H2

2
.Tn/// � Lg :
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For the definition of f , we choose a small number 1 > � > 0 and a C 1-function

�WH 2
2 .T

n/! Œ0; 1�

such that

�.u/ D 1 if kukH2
2
.Tn/ � �

2;

�.u/ D 0 if kukH2
2
.Tn/ � 2�;

and kD�kB.H2
2
.Tn/IR/ � � . Then we define

f WH 2
2 .T

n/ � L2.T
n/! L2.T

n/;

.u; v/ 7! �.�.u/u/3 C .1C a/.�.u/u/2 �
a

2
v;

gWL2.T
n/ � L2.T

n/! L2.T
n/;

.u; v/ 7!
2

a
u:

If � is small enough, then it will hold that Lf < a.
With these choices, the equation

"@tu
"
D Au" C f .u"; v"/;

@tv
"
D Bv" C g.u"; v"/

is equivalent to (6.12) as long as ku"kH2
2
.Tn/ � �

2. Concerning the splitting
Y D Y

�
F ˚ Y

�
S we make analogous choices as for the Stommel model. Now, as

for the Stommel model one can verify that our theory can be applied.

6.3. The Maxwell–Bloch equations. We consider the Maxwell–Bloch equations
in the slow time scale

"@tu
"
1 D �w

"u"2 � .1C iı/u
"
1;

"@tu
"
2 D k.�C 1 � u

"
2/ �

�

2

�
w"u"1 C w

"u"1
�
;

@tw
"
D �@xw

"
C �

� 1
�
u"1 � w

"
�
;

u"1.0/ D u0;1; u"2.0/ D u0;2; w".0/ D v0;

(6.13)

on the one-dimensional torus T . Here, k; �; ı; � > 0 are certain parameters and
� D

p
�k. The existence of slow manifolds for this system which are given as

graphs over a certain subset of the slow variable space has been shown in [25] by
a direct approach. We want to illustrate that these equations are a special case
accessible through our more general methods. In order to be consistent with [25],
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we work with the scale generated by .C.T /;�.@x C �// and write C�1.T / for the
extrapolation space of .C.T /;�.@x C �//. Concerning the cutoff of nonlinearities,
this scale is more difficult and easier at the same time. It is more difficult because
smooth functions with bounded support do not exist on these spaces; see [7]. But
on the other hand, cutoff techniques are easier because we may use superposition
operators instead. Although the set of globally Lipschitz continuous superposition
operators on C k.T / for k 2 N is quite small (see, for example, [3, Theorem 8.4]),
they have nice properties in C.T /; see [3, Section 6]. In particular, if we choose
a globally Lipschitz continuous C1-function �WRn ! Œ0; 1� which is equal to 1 in
a ball of a given radius and which is 0 outside of a ball of a given radius, then the
superposition operator

p�WC.T / � C.T /! C.T /; .u; v/ 7! p.�.u/u; �.v/v/

for a polynomial pWR2 ! K is smooth and globally Lipschitz continuous.

Theorem 6.8. Let R > 0 be large enough, T > 0 and w0 2 C.T ;C/ be fixed. Let
further .u"; w"/ be the strict solution of (6.13) with " > 0 and let .u0; w0/ be the
corresponding slow flow. Then there are a neighborhood U � C.T ;C/ of w0 and
constants "0; C; c > 0 such that for all " 2 .0; "0�, u0 2 C.T IC/ � C.T IR/ with
ku0;1kC.T IC/ C ku0;2kC.T IR/ � R and v0 2 U it holds that

sup
0�t�T.R;U /

�
ku".t/ � u0.t/kC.T IC/�C.T IR/ C kw

".t/ � w0.t/kC.T IC/
�

� C."C e�c"
�1t /;

where T .R;U / is defined by

T .R;U / WD inf
˚
t 2 Œ0; T � W max

˚
ku0.t/kC.T IC/�C.T IR/;

ku".t/kC.T IC/�C.T IR/
	
> R

or w0.t/ … U or w".t/ … U
	
: (6.14)

Theorem 6.9. LetR > 0 be large enough and letw0 2 C.T ;C/ be fixed. Then there
are "0 > 0, a neighborhoodU � C.T ;C/ ofw0 and a family of infinite-dimensional
slow manifolds S" � C.T ;C/ � C.T ;R/ � C.T ;C/ with 0 < " � "0 such that the
following assertions hold:

(a) The slow manifold S" is given as the graph of a differentiable mapping

h"W
�
U; k � kC.T ;C/

�
! C.T ;C/ � C.T ;R/:

(b) S" is locally invariant under the semiflow generated by (6.13), i.e., the semiflow
can only leave S" through its boundary.
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(c) Let
S0;U WD

˚
.u;w/ 2 S0 W w 2 U

	
be the submanifold of the critical manifold which consists of all points whose
slow components are elements of U . Then there is a constant depending on R
such that

dist.S"; S0;U / � C":

(d) Suppose that ku0kC1.T IC/�C.T IR/ � R, v0 2 U . Assume that .u0; v0/ 2 S".
Then for each T > 0 there is a constant C > 0 such that

sup
0�t�T.R;U /

�
ku".t/ � u0.t/kC.T IC/�C.T IR/ C kw

".t/ � w0.t/kC.T IC/
�
� C";

where T .R;U / is again defined by (6.14).
First, we rescale (6.13) so that the constants in front of the nonlinearities in the

fast variable can be chosen small. We define zv" WD ��1w" for some � > 0 and
obtain

"@tu
"
1 D ��zv

"u"2 � .1C iı/u
"
1;

"@tu
"
2 D �ku

"
2 C k.1C �/ �

��

2

�
zv"u"1 C zv

"u"1
�
;

@t zv
"
D �@xzv

"
C �

� 1
��
u"1 � zv

"
�
;

u"1.0/ D u0;1; u"2.0/ D u0;2; zv".0/ D
v0

�
:

(6.15)

A straightforward calculation shows that the critical manifold to this rescaled equation
is given as the graph of

h0�

�v0
�

�
D

0@�.1 � iı/ .�C1/�v0
1Cı2C�2�jv0j2

.1Cı2/.�C1/

1Cı2C�2�jv0j2

1A : (6.16)

In particular, h0� will be bounded in the spaces we choose later with a bound that can
be chosen independently of � . This fact will be useful for the cutoff procedure of the
nonlinearities.

As for the Stommel model, we introduce the dummy variable zw" to ensure that
the nonlinearities vanish at 0. This way, we may rewrite (6.15) as

"@tu
"
1 D ��

�
zv" �

v0

�

�
u"2 � .1C iı/u

"
1 C �v0u

"
2;

"@tu
"
2 D �

�

2

�
v0u

"
1 C v0u

"
1

�
� ku

"
2 C � zw

"
�
��

2

��
zv" �

v0

�

�
u"1 C

�
zv" �

v0

�

�
u"1

�
;

@t zv
"
D �@xzv

"
C �

� 1
��
u"1 � zv

"
�
; (6.17)

@t zw
"
D 0;

u"1.0/ D u0;1; u"2.0/ D u0;2; zv".0/ D
v0

�
; zw".0/ D

.�C 1/k

�
:
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Now we make the following choices:
� As base spaces we take

X WD C.T IC/ � C.T IR/ and Y WD C�1.T IC/ �C:

Here, we identify C D R � R and treat it as a real vector space. This way complex
conjugation is a differentiable mapping.

� The fast variable is given by u" WD .u"1; u
"
2/ and the slow variable is given by

v" WD .zv"; zw"/.

� The linear operator A of the fast variable is even a bounded operator

AWX ! X;

0@Re.u1/
Im.u1/
u2

1A 7! 0@ �Re.u1/C ıIm.u1/C �Re.v0/u2
�ıRe.u1/ � Im.u1/C �Im.v0/u2

��Re.v0/Re.u1/ � �Im.v0/Im.u1/ � k

1A ;
i.e., it is given by the multiplication with matrix0@ �1 ı �Re.v0/

�ı �1 �Im.v0/
��Re.v0/ �Im.v0/ �k

1A :
The eigenvalues �1; �2; �3 of this matrix have a negative real part. Let

K WD jmaxfRe.�1/;Re.�2/;Re.�3/gj:

The linear operator B of the slow variable is given by

BWY � D.B/! Y; .v1; v2/ 7! .�@xv1 � �v1; 0/;

where the domain is given by

D.B/ D C.T IC/ �C:

� We choose the parameters X D ıY D 1 and ıX D 0. Thus, we only need the
Banach scales for ˛ 2 f0; 1g. Since A is a bounded operator, the Banach scale in the
fast variable is just given byX D X1. For the fast variable we haveY1 D C.T IC/�C
endowed with the norm

k.v1; v2/kY1 D kv1kC.T IC/ C jv2j:

� The nonlinearities zf , zg are given by

zf WX � Y1 ! X;

�
.x1; x2/

T

.y1; y2/
T

�
7!

0@ ��
�
y1 �

v0
�

�
x2

�y2 �
��
2

��
y1 �

v0
�

�
x1 �

�
y1 �

v0
�

�
x1
�
1A ;
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gWX � Y ! Y;

�
.x1; x2/

T

.y1; y2/
T

�
7!

� �
��
x1

0

�
:

In order to make zf globally Lipschitz continuous, we use cutoff functions again,
this time in form of superposition operators. Suppose that the critical manifold is
bounded by

M WD sup
v2C1.T IC/;0<�<1

kh0� .v/kC1.T IC/�C1.T IR/:

Let further R � 2M and �1WR! Œ0; 1� be a C1-function such that

�1.x/ D 1 for jxj � 2R;
�1.x/ D 0 for jxj � 2RC 2:

Moreover, let zK > 0 large enough and �2WR! Œ0; 1� be a C1-function such that

�2.x/ D 1 for jxj � K=2 zK��;

�2.x/ D 0 for jxj � K= zK��;

j�0.x/j � 3 zK��=K for all x 2 R:

Now we define

f WX � Y ! X;�
.x1; x2/

T

.y1; y2/
T

�
7!

0@ ��
�
y1 �

v0
�

�
x2�1.x2/�2

�
y1 �

v0
�

�
�y2 �

��
2

��
y1 �

v0
�

�
x1 �

�
y1 �

v0
�

�
x1
�
�1.x1/�2

�
y1 �

v0
�

�
1A :

With these choices it holds that (6.13) is given by

"@tu
"
D Au" C f

�
u"; v"1;

k.1C �/

�

�
;

@tv
"
D Bv"g.u"; v"/;

u"1.0/ D u0;1; u"2.0/ D u0;2; zv".0/ D
v0

�
;

(6.18)

as long as ku"1kC.T IC/ � R, ku"2kC.T IR/ � R and k�v"1 � v0kC.T IC/ � K=10 zK�.
Let us now check the conditions of Section 4.3 for this example.
(i) It is well known that X D C.T IC/ � C.T IR/ and Y D C�1.T IC/ � C are
Banach spaces.

(ii) Since all eigenvalues of A have a negative real part and since A is bounded, it
follows that it generates an exponentially stable analytic semigroup. Moreover, it is
well known and straightforward to verify that

@x WC
�1.T IC/ � C.T IC/! C�1.T IC/; v 7! v
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generates the translation group .T .t//t2R given

T .t/v.x/ D v.t C x/:

Therefore, also B generates a C0-group which even is exponentially decaying.

(iii) Since X D ıY D 1 and ıX D 0, we only need the spaces X; Y;X1; Y1 which
we already defined. If we wanted, we could complete the scales by adding Hölder
spaces, but this is not necessary for our considerations.

(iv) The differentiability of f WX � Y1 ! X and gWX � Y ! Y in the real sense is
obvious. It is also clear that gWX1 � Y1 ! Y1 is Lipschitz continuous. We also have
that f WX � Y1 ! X is globally Lipschitz continuous due to the cutoff. We need the
Lipschitz constant of f to be smaller than the decay rate of etA, i.e., smaller thanK.
But if � ! 0 and zK !1, then we have that

kDf .x; y/kB.X�Y1;X/ ! 0:

This shows that both Lipschitz conditions on f hold true with small Lipschitz
constant Lf .

(v) We introduced the dummy variable zw" so that f .0; 0/ D 0 and g.0; 0/ D 0.

(vi) Let !A 2 .�K; 0/ be close to �K. Since we have X D ıY D 1 and ıX D 0,
the estimates

ketAkB.X1/ �MAe!At ; ketAkB.XX ;X1/ � CAt
X�1e!At ;

ketAkB.XıX ;X1/ � CAt
ıX�1e!At ;

ketBkB.Y1/ �MBe!B t ; ketBkB.YıY ;Y1/ � CB t
ıY�1e!B t

hold trivially.

(vii) Since we can make Lf arbitrarily small by choosing � small and zK large
enough, we can choose an !f satisfying !A C CALf < !f < 0.

Now, the proof of Theorem 6.8 is a direct application of Corollary 4.15.
Concerning Theorem 6.9 we are in the easy situation that B already generated a
C0-group. Thus, we may choose the trivial splitting

Y D Y
�
F ˚ Y

�
S WD f0g ˚ Y

for all � > 0. Therefore, we may take � D C" for some C 2 .0; 1/, N �
F D 0 and

N
�
S D �!A�

�1 � �. If " > 0 is small enough, then all the conditions of Section 5.1
can easily be verified and Theorem 6.9 follows from the results in Section 5.
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7. Outlook

We have provided a quite general theory to use time scale separation in infinite-
dimensional evolution equations with a focus on slow manifolds. Evidently, there are
always further generalizations one could pursue. Examples are trying to weaken the
conditions on the linear operators A and B , trying to lift the theory into a completely
non-standard form setting [34], or extending it to quasilinear problems [2]. In
addition, the case of loss of invertibility/hyperbolicity of the fast dynamics has been
a key focus in many finite-dimensional problems [21], i.e., in this scenario one has
to track invariant slow manifolds through special regions. Therefore, combining our
slow manifold theory here with the recent development of the blow-up method for
fast-slow PDEs [12] is a natural challenge for future work. Furthermore, it would
be interesting to connect our results to the normally elliptic (instead of the normally
hyperbolic) case occurring in fast-slow Hamiltonian systems [20, 24].

From the viewpoint of applications, several directions are likely to be important.
First, one may want to compute the invariant slow manifolds numerically, and
we refer to [21, Ch. 11] for a survey of methods available for computing slow
manifolds for finite-dimensional fast-slow systems. In fact, our analytically
intermediate approximation (4.5) provides a hint, how to prove rigorous error
estimates for computational methods based upon the invariance equation and/or
iterated asymptotics for infinite-dimensional fast-slow dynamics. Second, working
out concrete examples from pattern formation problems will be relevant as this can
provide additional insights, which aspects of the theory need extensions, while others
are immediately applicable. Third, trying to make many results, which have been
obtained only via formal asymptotic matching methods for PDEs, rigorous is likely
to be possible since a similar strategy using Fenichel theory has worked already in
finite dimensions [19, 21].
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