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1. Introduction

Consider a geometrically rational variety X , smooth and projective over a field k.
Is X rational over k? A necessary condition is that X.k/ ¤ ;, which is sufficient in
dimension one, as well as for quadric hypersurfaces and Brauer–Severi varieties
of arbitrary dimension. When the dimension of X is at most two, rationality
over k was settled by work of Enriques, Manin, and Iskovksikh [14]. Rationality is
encoded in the Galois action on the geometric Néron–Severi group – varieties with
rational points that are ‘minimal’ in the sense of birational geometry need not be
rational. In dimension three, recent work [2, 3, 11, 13, 19] has clarified the criteria
for rationality: one also needs to take into account principal homogeneous spaces
over the intermediate Jacobian, reflecting which curve classes are realized over the
ground field. The case of complete intersections of two quadrics was an important
first step in understanding the overall structure [12]; rationality in dimension three is
equivalent to the existence of a line over k [3, 11, 19].

These developments stimulate investigations in higher dimensions [18]; the
examples considered are rational provided there are rational points. In this paper,
we focus on the case of four-dimensional complete intersections of two quadrics,
especially over the real numbers R. Here we exhibit rational examples without lines
and explore further rationality constructions.

Theorem 1.1. A smooth complete intersection of two quadrics X � P 6 over R is
rational if and only if X.R/ is nonempty and connected.

https://creativecommons.org/licenses/by/4.0/
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In general, a projective variety X that is rational over R has connected nonempty
real locus X.R/. The point of Theorem 1.1 is that this necessary condition is also
sufficient.

Corollary 1.2. A smooth complete intersection of two quadrics X � P 6 is rational
over R if and only if there exists a unirational parametrization P 4 Ü X , defined
over R, of odd degree.

Indeed, odd degree rational maps are surjective on real points, which guarantees
thatX.R/ is connected. Smooth complete intersections of two quadrics, of dimension
at least two, are unirational provided they have a rational point; see Section 3.1 for
references and discussion.

We also characterize rationality in dimension six, with the exception of one isotopy
class that remains open (see Section 6.2).

Here is the roadmap of this paper. In Section 2 we recall basic facts about
quadrics in even-dimensional projective spaces and their intersections. All interesting
cohomology is spanned by the classes of projective subspaces inX of half-dimension,
and the Galois group acts on these classes via symmetries of the primitive part of
this cohomology, a lattice for the root systemD2nC3. In Section 3 we present several
rationality constructions. The isotopy classification, using Krasnov’s invariants, is
presented in Section 4; we draw connections with the Weyl group actions. In Section 5
we focus attention on cases where rationality is not obvious, e.g., due to the presence
of a line. In Section 6 we prove Theorem 1.1 and discuss the applicability and
limitations of our constructions in dimensions four and six. We speculate on possible
extensions to more general fields in Section 7.

Acknowledgements. The first author was partially supported by NSF grant 1701659
and Simons Foundation Award 546235, the second author by the NSF grant DMS-
1901855, and the third author by NSF grant 2000099. We are grateful to Sarah
Griffith for a comment on the combinatorics of the isotopy types.

2. Geometric background

2.1. Roots and weights. LetD2nC3 be the root lattice of the corresponding Dynkin
diagram, expressed in the standard Euclidean lattice

hL1; : : : ; L2nC3i; Li � Lj D ıij

as the lattice generated by simple roots

R1 D L1 � L2; R2 D L2 � L3; : : : ; R2nC1 D L2nC1 � L2nC2;

R2nC2 D L2nC2 � L2nC3; R2nC3 D L2nC2 C L2nC3:
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Its discriminant group is cyclic of order four, generated by

1

4

�
2.R1 C 2R2 C � � � C .2nC 1/R2nC1/C .2nC 1/R2nC2 C .2nC 3/R2nC3

�
:

Multiplication by �1 acts on the discriminant via ˙1. The outer automorphisms
of D2nC3 also act via automorphisms of D2nC3 acting on the discriminant via ˙1,
e.g., exchanging R2nC2 and R2nC3 and keeping the other roots fixed.

The Weyl group W.D2nC3/ acts in the basis fLig via signed permutations with
an even number of�1 entries. The outer automorphisms act via signed permutations
with no constraints on the choice of signs, e.g.,

Li 7! Li ; i D 1; : : : ; 2nC 2; L2nC3 7! �L2nC3:

The odd and even half-spin representations have weights indexed by subsets
I � f1; 2; : : : ; 2nC 3g, with jI j odd or even, written

wI D
1

2

�X
i2I

Li �

X
j2I c

Lj

�
:

The odd and even weights are exchanged by outer automorphisms.

2.2. Planes. In this section, we assume that the ground field is algebraically closed
of characteristic zero.

Let X � P 2nC2 be a smooth complete intersection of two quadrics. We will
identify subvarieties in X with their classes in the cohomology of X when no
confusion may arise.

Let h denote the hyperplane section and consider the primitive cohomology ofX
under the intersection pairing. Reid [21, Theorem 3.14] shows that

.hn/? ' .�1/nD2nC3:

In other words, the primitive sublattice ofH 2n.X;Z.n// – the Tate twist of singular
cohomology for the underlying complex variety – may be identified with the root
lattice. This is the target of the cycle class map

CHn.X/! H 2n.X;Z.n//

so the sign convention is natural.
Remark 2.1 (Caveat on signs). When X is defined over R, codimension-n sub-
varieties Z � X defined over R yield classes in H 2n.X;Z.n// that are invariant
under complex conjugation. However, the corresponding classes in H 2n.X;Z/ are
multiplied by .�1/n. When we mention invariant classes, it is with respect to the
former action.
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Given a plane P ' P n � X , we have

.P � P /X D cn;

where (see [21, Corollary 3.11])

c0 D 1; c1 D �1; c2 D 2; c3 D �2; : : : ; cn D .�1/
n
�jn
2

k
C 1

�
:

The projection of P into rational primitive cohomology takes the form

P �
1

4
hn;

which has self-intersection cn � 1=4. The corresponding element wP 2 D2nC3 has

wP � wP D .2nC 3/=4:

By [21, Corollary 3.9], we obtain bĳections

fwP gP'Pn�X D fwI gjI j has fixed parity:

Note that the residual intersections to P n � X

X \ P nC2
D P n

[ S

give cubic scrolls S � X ; these realize the weights of opposite parity.
By [21, Theorem 3.8], two planes P1 and P2 are disjoint if and only if

wP1
� wP2

D .�1/nC1=4:

For example, if n D 1 and wP1
is identified with .L1 �L2 �L3 �L4 �L5/=2 then

the relevant weights are

.L1 C L2 C L3 � L4 � L5/=2; : : : ; .L1 � L2 � L3 C L4 C L5/=2;

�L1 C L2 C L3 C L4 � L5/=2; : : : ; .�L1 � L2 C L3 C L4 C L5/=2;

a total of 10 D
�

5
2

�
such lines. When n D 2 and wP1

is identified with

.L1 � L2 � � � � � L7/=2

then the relevant weights are

.L1 C L2 C L3 C L4 C L5 � L6 � L7/=2; : : : ;

.L1 � L2 � L3 C L4 C L5 C L6 C L7/=2;

.�L1 C L2 C L3 C L4 � L5 � L6 � L7/=2; : : : ;

.�L1 � L2 � L3 � L4 C L5 C L6 C L7/=2;
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a total of
�

6
4

�
C
�

6
3

�
D 35 D

�
7
3

�
planes. The planes P1 and P2 meet at a point if and

only if

wP1
� wP2

D .�1/n
3

4
:

If they meet along an r-plane then an excess intersection computation gives (see [21,
Lemma 3.10])

P1 � P2 D .�1/
r
�jr
2

k
C 1

�
;

wP1
� wP2

D .�1/rCn
�jr
2

k
C 1

�
� .�1/n

1

4
:

In particular, they meet along an .n � 1/-plane when

wP1
� wP2

D �

�jn � 1
2

k
C 1

�
� .�1/n

1

4
I

for a fixed wP1
there are 2nC 3 planes P2 meeting P1 in this way. For example, if

n D 1 and wP1
D .L1 � L2 � L3 � L4 � L5/=2 then the possibilities for wP2

are

.L1 C L2 C L3 C L4 C L5/=2; .�L1 � L2 C L3 C L4 C L5/=2;

.�L1 C L2 � L3 C L4 C L5/=2; .�L1 C L2 C L3 � L4 C L5/=2;

.�L1 C L2 C L3 C L4 � L5/=2:

2.3. Quadrics. We retain the notation of Section 2.2.
Our next task is to analyze quadric n-folds Q � X , i.e., Q a degree-two

hypersurface in P nC1. Let fQtg, t 2 P 1 denote the pencil of quadric hypersurfaces
cutting out X . The degeneracy locus

D WD ft 2 P 1
W Qt singularg

consists of 2n C 3 points; since X is smooth, each has rank 2n C 2. The Hilbert
scheme of quadric n-folds Q � X is isomorphic to the relative Fano variety of
.nC 1/-planes

F .Q=P 1/ D f… ' P nC1
� Qt for some t 2 P 1

g;

which consists of 2.2nC 3/ copies of the connected isotropic Grassmannian

OGr.nC 1; 2nC 2/:

Given a quadric Q, its projection to rational primitive cohomology

Q �
1

2
hn
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corresponds to an element

wQ 2 D2nC3; wQ 2 f˙L1; : : : ;˙L2nC3g:

In particular, we have

Q �Q D

(
2 if n even;
0 if n odd.

Residuation in a complete intersection of linear forms

Q [Q0 D X \ hn

reverses signs, i.e., wQ D �wQ0 . On the other hand, if Q1 and Q2 are not residual
then

Q1 �Q2 D 1: (2.1)

We summarize this as follows:
Proposition 2.2. The signed permutation representation of W.D2nC3/ is realized
via the action on classes ŒQ�, where Q � X is a quadric n-fold.

Note that there are
22nC1.2nC 3/

reducible quadrics – unions of two n-planes meeting in an .n � 1/-plane – with 22n

reducible quadrics in each copy of the isotropic Grassmannian.

3. Rationality constructions

We now work over an arbitrary field k of characteristic zero.

3.1. General considerations. Let X � P dC2 denote a smooth complete intersec-
tion of two quadrics of dimension at least two. Recall the following:
� If X.k/ ¤ ; then X is unirational over k and has Zariski dense rational points

(see [7, Remark 3.28.3]).
� If there is a line ` � X defined over k then projection induces a birational map
�`WX

�
Ü P d .

For reference, we recall Amer’s theorem [20, Theorem 2.2]:
Theorem 3.1. Let k be a field of characteristic not two, F1 and F2 quadrics over k,
and Qt D fF1 C tF2g the associated pencil of quadrics over k.t/. Then

X D fF1 D F2 D 0g

has an r-dimensional isotropic subspace overk if and only if Qt has an r-dimensional
isotropic subspace over k.t/.
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We apply this for k D R, where X � P dC2 is a smooth complete intersection of
two quadrics and Q! P 1 is the associated pencil.

Recall Springer’s theorem: A quadric hypersurface Q over a fieldL has a rational
point if it admits a rational point over some odd-degree extension of L. Applying
this to the pencil Q ! P 1 associated with a complete intersection of two quadrics,
with Amer’s theorem, yields the following proposition.

Proposition 3.2. If d � 1 and X contains a subvariety of odd degree over k, then
X.k/ ¤ ;.

We can prove a bit more as follows.

Proposition 3.3. If d � 2 and X has a curve of odd degree defined over k, then X
is rational over k.

Proof. Recall that double projection from a sufficiently general rational pointx2X.k/
yields a diagram

X
�

Ü Y ! P 1;

where Y is a quadric bundle of relative dimension d � 1. A curve C � X of odd
degree yields an multisection of this bundle of odd degree. Thus, Y ! P 1 has
a section by Springer’s theorem and its generic fiber Yt is rational over k.P 1/. It
follows that X is rational over the ground field.

Remark 3.4. The pencil defining X gives a quadric bundle

Q! P 1

of relative dimension dC1. We apply Witt’s Decomposition theorem to ŒQt � and ŒYt �,
understood as quadratic forms over k.P 1/ D k.t/, to obtain

ŒQt � D ŒYt �˚

�
0 1

1 0

�
:

Thus, a section of Y ! P 1 yields an isotropic line of Q ! P 1, and Theorem 3.1
implies that X contains a line defined over k.

Corollary 3.5 (see appendix by Colliot-Thélène [12, Theorem A5]). Let X � P dC2

denote a smooth complete intersection of two quadrics of dimension at least two.
Suppose there exists an irreducible positive-dimensional subvariety W � X of odd
degree, defined over k. Then X is rational over k.

Given these results, we focus on proving rationality in cases where X does not
contain lines or positive-dimensional subvarieties of odd degree.
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3.2. Rationality using half-dimensional subvarieties. We now turn to even-dim-
ensional intersections of two quadrics

X � P 2nC2; n � 1:

Throughout, we assume that X.k/ ¤ ;, and thus X is k-unirational and k-rational
points are Zariski dense.

Construction I. Suppose that
� X has a pair of conjugate disjoint n-planes P; xP , defined over a quadratic

extension K of k.
Projecting from a general x 2 X.k/ gives a birational map

X
�

Ü X 0 � P 2nC1;

where X 0 is a cubic hypersurface.
Since X.k/ � X is Zariski dense, we may assume that the images of P and xP

in X 0 remain disjoint. The ‘third point’ construction gives a birational map

RK=k.P /
�

Ü X 0;

where the source variety is the restriction of scalars. We conclude that X is rational
over k. This construction appears in [7, Theorem 2.4].

Construction II. Suppose that
� X has a pair of conjugate disjoint quadric n-folds Q; xQ, defined over a quadratic

extension K of k, and meeting transversally at one point.
Projecting from x 2 Q \ xQ, which is a k-rational point X , gives a birational map

X
�

Ü X 0 � P 2nC1;

where X 0 is a cubic hypersurface.
The proper transforms Q0; xQ0 � X 0 are disjoint unless there exists a line

x 2 ` � P 2nC2

with
fxg ¨ ` \Q; ` \ xQ

as schemes. We may assume that ` 6� X as we already know X is rational in this
case. Thus, the only possibility is

` \Q D ` \ xQ

as length-two subschemes, which is precluded by the intersection assumption.
Repeating the argument for Construction I thus gives rationality.
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Construction III. Suppose that

� X contains a quadric Q of dimension n, defined over k.

Projection gives a fibration
qWBlQ.X/! P n

with fibers quadrics of dimension n. Now suppose thatX contains a second n-fold T
with the property that

deg.T / � T �Q

is odd, i.e., a multisection for q of odd degree. It follows that the generic fiber of q
is rational, and thus Y is rational over k.

When dim.X/ D 4 a number of T might work, e.g.,

� a plane disjoint from Q,

� a second quadric meeting Q in one point,

� a quartic or a sextic del Pezzo surface meeting Q in one or three points,

� a degree 8 K3 surface meeting Q in one, three, five, or seven points.

Construction IV. Suppose that

� dim.X/ D 4 and X contains a quartic scroll T , defined over k.

Geometrically, T is the image of the ruled surface

F0 D P 1
� P 1 ,! P 5

under the linear series of bidegree .1; 2/. Over R we are interested in cases where
T D P 1 � C with C a nonsplit conic. We do not want to force X to have lines!
(Note that quartic scrolls geometrically isomorphic to F2 contain lines defined over
the ground field, and thus are not useful for our purposes.)

On projecting from a point x 2 X.k/ we get a cubic fourfold

X 0 � P 5;

containing a quartic scroll. The Beauville–Donagi construction [1] – concretely, take
the image under the linear system of quadrics vanishing along T – shows that X 0 is
birational to a quadric hypersurface thus rational over k.

Recall that an n-dimensional smooth variety W � P 2nC1 is said to have one
apparent double point if a generic point is contained in a unique secant to W .
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Construction V. Suppose that X contains a varietyW defined over k of dimension
n � 2 such that
� W spans a P 2nC1 and has one apparent double point; or
� W has a rational point w such that projecting from w maps W birationally to a

variety with one apparent double point.
Then X is rational over k.

As before, one projects from a rational point to a get cubic hypersurface X 0 �
P 2nC1. Cubic hypersurfaces containing varieties W with one apparent double point
are rational [22, Proposition 9]. Indeed, intersecting secant lines ofW withX 0 yields

Sym2.W / Ü X 0;

which is birational when each point lies on a unique secant to W .
Quartic scrolls in P 5 have one apparent double point so Construction IV is a

special case of Construction V.

4. Isotopy classification

4.1. Krasnov invariants. We review the classification of smooth complete intersec-
tions of two quadrics X � P 2nC2 over R, following [17].

Express X D fF1 D F2 D 0g where F1 and F2 are real quadratic forms. We
continue to use D for the degeneracy locus of the associated pencil

Qt D ft1F1 C t2F2 D 0g:

Let r D jD.R/j which is odd with r � 2nC 3. Consider the signatures .IC; I�/ of
the forms

s1F1 C s2F2; .s1; s2/ 2 S1
D f.s1; s2/ 2 R2

W s2
1 C s

2
2 D 1g:

Record these at the 2r points lying over D, in order as we trace the circle counter-
clockwise. We label each of these points with + or - depending on whether the
positive part IC of the signature increases or decreases as we cross the point. Each
point of D.R/ yields a pair of antipodal points on S1 labelled with opposite signs.

We give examples for n D 0 and r D 3. Consider the sequence of signatures,
with alternating singular (underlined) and smooth members,

.0; 2/ .1; 2/ .1; 1/ .2; 1/ .2; 0/ .3; 0/ .2; 0/ .2; 1/ .1; 1/ .1; 2/ .0; 2/ .0; 3/:

We encode this with +++---. The sequence

.1; 1/ .2; 1/ .1; 1/ .1; 2/ .1; 1/ .2; 1/ .1; 1/ .1; 2/ .1; 1/ .2; 1/ .1; 1/ .1; 2/
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yields +-+-+-. These sequences are well-defined up to cyclic permutations and
reversals. The signature of a singular fiber may be read off from the signatures of the
adjacent smooth fibers; the signatures of the smooth fibers may be recovered, up to
cyclic permutation, from the signatures of the singular fibers.

A pencil with anisotropic (definite) smooth members – with signatures .2nC3; 0/
or .0; 2nC 3/ – necessarily has X.R/ D ;.

Suppose the sequence of + and - has maximal unbroken chains of +’s of lengths
r1; r2; : : : ; r2sC1, where

r D r1 C r2 C � � � C r2sC1:

The number of terms is odd because antipodal points have opposite signs. In the
examples above we have 3 D 3 and 3 D 1 C 1 C 1, i.e., .3/ and .1; 1; 1/. Our
invariant is the sequence .r1; : : : ; r2sC1/ up to cyclic permutations and reversals – a
complete isotopy invariant of X over R (see [17]).

r possible invariants

1 .1/

3 .3/, .1; 1; 1/
5 .5/, .3; 1; 1/, .2; 2; 1/, .1; 1; 1; 1; 1/
7 .7/, .5; 1; 1/, .4; 2; 1/, .3; 3; 1/, .3; 2; 2/, .3; 1; 1; 1; 1/, .2; 2; 1; 1; 1/,

.2; 1; 2; 1; 1/, .1; 1; 1; 1; 1; 1; 1/
9 .9/, .7; 1; 1/, .6; 2; 1/, .5; 3; 1/, .5; 2; 2/, .4; 4; 1/, .4; 3; 2/, .3; 3; 3/,

.5; 1; 1; 1; 1/, .4; 2; 1; 1; 1/, .4; 1; 2; 1; 1/, .3; 3; 1; 1; 1/, .3; 1; 3; 1; 1/,

.3; 2; 2; 1; 1/, .3; 2; 1; 2; 1/, .3; 2; 1; 1; 2/, .3; 1; 2; 2; 1/, .2; 2; 2; 2; 1/,

.3; 1; 1; 1; 1; 1; 1/, .2; 2; 1; 1; 1; 1; 1/, .2; 1; 2; 1; 1; 1; 1/, .2; 1; 1; 2; 1; 1; 1/,

.1; 1; 1; 1; 1; 1; 1; 1; 1/

Table 1. Even-dimensional Krasnov invariants for dim.X/ � 6 with r D jD.R/j real singular
members.

4.2. Relation to the Weyl group. We observed in Section 2 that the primitive co-
homology of a complete intersection of two quadrics X � P 2nC2 has W.D2nC3/

symmetry. When X is defined over R, complex conjugation yields an involution in
this group. Here we relate Krasnov invariants to these involutions. We will use this
dictionary in Section 6 to make geometric constructions based on the isotopy class.

Given .r1; : : : ; r2sC1/; r D
P
ri ; we derive a sequence of ˙1’s of length r as

follows: For each point ofD.R/, record the sign of the discriminant of the associated
rank-.2n C 2/ quadratic form, determined by the parity of .IC � I�/=2. In the
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examples above, we obtain .�1;C1;�1/ and .C1;C1;C1/. The number of �1’s is
always even.

The analysis in Section 2.3 shows that complex conjugation acts onH 2n.X;Z.n//
in the basis fL1; : : : ; L2nC3g as a signed permutation of order two. This is a direct
sum of blocks

.C1/; .�1/;˙

�
0 1

1 0

�
:

Actually, we may assume the sign is positive in the third case after conjugating by�
0 �1

1 0

�
:

Suppose there are a blocks .C1/, 2b blocks .�1/, and c blocks of the third kind,
with

aC 2b C 2c D 2nC 3:

These correspond to the conjugacy classes of involutions � 2W.D2nC3/ [16, Sec-
tions 3.2 and 3.3]. We have r D a C 2b, reflecting the number of points of D.R/
with positive and negative discriminants respectively, and 2c D 2nC3�r , reflecting
the number of complex-conjugate pairs in D.C/ nD.R/.

The passage from isotopy classes to conjugacy classes in W.D2nC3/ results in a
loss of information. We give an example for real quartic del Pezzo surfacesX � P 4.
Example 4.1. The isotopy class .5/ has singular members with signatures

.0; 4/ .1; 3/ .2; 2/ .3; 1/ .4; 0/ .4; 0/ .3; 1/ .2; 2/ .1; 3/ .0; 4/

with involution given by the diagonal 5 � 5 matrix

diag.1;�1; 1;�1; 1/;

where the emboldened 1 corresponds to a degenerate fiber Qt whose rulings sweep
out quadric curves (conics) on X defined over R. (There is only one pair of such
conics.) Here X.R/ D ; as it is contained in an anisotropic quadric threefold.

The isotopy class .2; 2; 1/ has singular members with signatures

.1; 3/ .2; 2/ .2; 2/ .2; 2/ .3; 1/ .3; 1/ .2; 2/ .2; 2/ .2; 2/ .1; 3/

with involution
diag.�1; 1; 1; 1;�1/:

This has the same Galois action but contains three pairs of conics defined over R,
represented by the emboldened 1’s.

These are distinguished cohomologically by the arrow

Z3
' H 0.G;Pic.XC//! H 2.G; �.O�XC

// D Br.R/ ' Z=2Z

of the Hochschild–Serre spectral sequence.
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Proposition 4.2. Fix a conjugacy class Œ� D �abc� of involutions in W.D2nC3/.
Consider the isotopy classes of X.R/ � P 2nC2 such that complex conjugation acts
by �. The possible isotopy classes correspond to shuffles of

. 1; : : : ; 1̃

a times

;�1; : : : ;�1™
2b times

/

up to cyclic permutations and reversals.

Proof. Observe first that points in D.C/ n D.R/ are irrelevant to the Krasnov
invariant, assuming the dimension is given. So it makes sense they are not relevant
in the enumeration.

We have already seen that sequences of the prescribed form arise from each
isotopy class; we present the reverse construction.

Choose such a sequence, e.g.,

.1; 1; 1;�1; 1;�1;�1; 1;�1/:

The key observation is that local maxima and minima of IC�I� – which necessarily
occur at smooth points – arise precisely between points of the degeneracy locus where
signs do not change. We indicate smooth fibers achieving maxima/minima with j,
e.g.,

1 j 1 j 1;�1; 1;�1 j �1; 1;�1;

or equivalently
j 1 j 1;�1; 1;�1 j �1; 1;�1; 1 j

after cyclic permutation.
Lifting to the double cover S1 entails concatenating two such expressions:

j 1 j 1;�1; 1;�1 j �1; 1;�1; 1 j 1 j 1;�1; 1;�1 j �1; 1;�1; 1 j :

From this, we read off the points of D.R/ on which IC increases and decreases

+----++++-++++----;

which determines the Krasnov invariant – .1; 4; 4/ in this example.

5. Applying quadratic forms

5.1. Quadric fibrations over real curves. Let C be a smooth projective geom-
etrically connected curve over R with function field K D R.C /. Let Q � P dC1

be a smooth (rank d C 2) quadric hypersurface over K and Fi .Q/ the variety
parametrizing i -dimensional isotropic subspaces, so that F0.Q/ D Q and Fm.Q/
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is empty when 2m > d . If d D 2m then Fm.Q/ has two geometrically connected
components; otherwise it is connected.

Suppose that � WQ ! C is a regular projective model of Q, such that the fibers
are all quadric hypersurfaces of rank at least d C1. The locusD � C corresponding
to fibers of rank d C 1 is called the degeneracy locus.

Fundamental results of Witt – see [5, Section 2] and [23] for a modern formulation
in terms of local-global principles – assert that:
� if d > 0, then Q.K/ ¤ ; if Qc D ��1.c/ has a smooth real point for each
c 2 C.R/;

� if d > 2, then F1.Q/.K/ ¤ ; if F1.Qc/ has a smooth real point for each
c 2 C.R/.

We can translate these into conditions on the signatures of the smooth fibers
� if d > 0, then Q.K/ ¤ ; if Qc is not definite for any c 2 .C nD/.R/;
� if d > 2, thenF1.Q/.K/ ¤ ; if Qc does not have signatures .dC2; 0/, .dC1; 1/,
.1; d C 1/, or .0; d C 2/ for any c 2 .C nD/.R/.

In other words, we have points and lines over K if the fibers permit them.
This reflects a general principle: Suppose X is regular and has a flat proper

morphism $ WX ! C to a curve C , all defined over R. The local-global and
reciprocity obstructions to sections of $ are reflected in the absence of continuous
sectionsC.R/!X.R/ for the induced map of the underlying real manifolds (see [8]).

5.2. Implications of Amer’s theorem. LetX � P dC2 be a smooth complete inter-
section of two quadrics over R and Q! P 1 the associated pencil of quadrics.

The results of Section 5.1 imply that Q ! P 1 has a section unless the Krasnov
invariant is .d C 3/; the variety of lines F1.Q=P 1/ ! P 1 has a section unless the
Krasnov invariant is

.d C 3/; .d C 2 � e; e; 1/ with 1 � e �
d C 2

2
; .d C 1/:

Thus, the Krasnov invariant determines which dimensional linear subspaces and
quadrics appear on X :
Proposition 5.1. Let X � P dC2 be a smooth complete intersection of two quadrics
defined over R. The only isotopy classes of X that fail to contain a line are:
� .d C 3/;
� .d C 2 � e; e; 1/ with 1 � e � .d C 2/=2;
� .d C 1/.

As observed in Section 4.1, the pencil in case .d C 3/ has anisotropic members
so X.R/ D ;. The case .d C 1; 1; 1/ has disconnected real locus X.R/ [17, p. 117];
thus,X cannot be rational over R. The cases .dC2�e; e; 1/with 2 � e � .dC2/=2
are connected.
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5.3. Quadric n-folds over R. Assume now that X has even dimension d D 2n.
We may read off from the invariant .r1; : : : ; r2sC1/ which classes of quadric n-folds
Q � XC are realized by quadrics defined over R.

Fix a smooth real quadric hypersurface

Q D fF D 0g � P 2nC1:

Recall that F is classified up to real changes in coordinates by the signatures IC.F /
and I�.F /. The following conditions are equivalent [10, Section 85]:
� the geometric components of the variety of maximal isotropic subspaces OGr.Q/

are defined over R;
� the discriminant of F is positive;
� IC.F / � I�.F / is divisible by four.
This means that complex conjugation fixes the class of a maximal isotropic subspace.
Witt’s Decomposition theorem [10, Section 8] gives an equivalence between:
� there is a maximal isotropic subspace P n � Q defined over R;
� IC.F / D I�.F / D nC 1.

Thus, quadric n-folds
Q � X � P 2nC2

defined over R correspond to rulings of degenerate fibers Qt ; t 2 D.R/, where Qt

has signature .nC 1; nC 1/. As in Example 4.1, the corresponding .C1/-blocks in
the complex conjugation involution � 2 W.D2nC3/ will be designated 1, in boldface.

5.4. Analysis of the remaining even-dimensional isotopy classes. We continue to
assume that X has even dimension d D 2n, focusing on the isotopy classes without
lines.

The cases

.2nC 2 � e; e; 1/ D .e; 1; 2nC 2 � e/; 2 � e � nC 1

have degeneracy consisting of 2nC3 real points. The signatures of nonsingular mem-
bers are

.1; 2nC 2/ : : : .e C 1; 2nC 2 � e/ .e; 2nC 3 � e/ .e C 1; 2nC 2 � e/ : : :

.2nC 1; 2/ .2nC 2; 1/ : : : .2nC 2 � e; e C 1/ .2nC 3 � e; e/

.2nC 2 � e; e C 1/ : : : .2; 2nC 1/:

For .n C 1; n C 1; 1/ the resulting signed permutation matrix is the diagonal
matrix

diag. .�1/n; : : : ;�1; 1œ
nC1 terms

; 1; 1;�1; : : : ; .�1/nœ
nC1 terms

/; (5.1)

with the emboldened 1’s corresponding to singular fibers with signature .nC1; nC1/.
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The number ofC1’s

a D

(
nC 2 if n odd;
nC 3 if n even.

For e ¤ nC 1 we have

diag. .�1/n; : : : ; .�1/nCe�1

�
e terms

; .�1/nCe�1; .�1/nC.2nC2�e/�1; : : : ; .�1/n�
2nC2�e terms

/:

Note that .�1/nCe�1 D .�1/nC.2nC2�e/�1, so the three middle terms are equal.
There is exactly one 1 corresponding to the singular fiber with signature .nC1; nC1/.
The number ofC1’s is given

a D

†
n if n; e odd;
nC 2 if n odd and e even;
nC 3 if n even and e odd;
nC 1 if n; e even.

(5.2)

For case .2nC 1/ the signatures of nonsingular members are

.2; 2nC 1/ : : : .2n; 3/ .2nC 1; 2/ .2nC 2; 3/ : : : .2; 2nC 1/:

The signed permutation matrix has one factor�
0 1

1 0

�
and diagonal entries

..�1/n�1; : : : ;�1; 1;�1; : : : ; .�1/n�1/

The number of positive terms is

a D

(
n if n odd;
nC 1 if n even.

6. Application of the constructions

6.1. Proof of Theorem 1.1. Rationality is evident for isotopy classes of varieties
that contain a line defined over R. Proposition 5.1 enumerates the remaining cases

.5/; .1; 3; 3/; .1; 2; 4/:

These are covered by the following propositions.
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Proposition 6.1. LetX � P 2nC2 be a smooth complete intersection of two quadrics
over R with invariant .2nC 1/. Then X is rational.

Proof. The analysis in Section 5.4 indicates that complex conjugation exchanges two
classes of quadric n-folds associated to complex conjugate points in D.C/ nD.R/.
Denote these by ŒQ� and Œ xQ� – recall from (2.1) that

ŒQ� � Œ xQ� D 1:

Choosing a suitably general complex representationQ � XC , the intersectionQ\ xQ
is proper. ThenQ\ xQ consists of a single rational point of X with multiplicity one.
In particular, the hypotheses of Construction II are satisfied.

Proposition 6.2. LetX � P 2nC2 be a smooth complete intersection of two quadrics
over R with invariant

.2nC 2 � e; e; 1/ D .e; 1; 2nC 2 � e/; 2 � e � nC 1:

Assume that either e is even or e D nC 1. Then X is rational.

Proof. Assume first that e D nC1. It follows from (5.1) in Section 5.4 thatX admits
three classesQ1,Q2, andQ3 (see Table 2) with eachQi realized by a quadric n-fold
defined over R. Construction III gives rationality in this case.

hn Q1 Q2 Q3

hn 4 2 2 2

Q1 2 1C .�1/n 1 1

Q2 2 1 1C .�1/n 1

Q3 2 1 1 1C .�1/n

Table 2.

Now assume that e is even. The formula (5.2) shows that the numbers of C1’s
and �1’s appearing in the � 2 W.D2nC3/ associated with complex conjugation are
as close as possible. If n is even then we have nC 1 of the former and nC 2 of the
latter; when n is odd we have nC 2 of the former and nC 1 of the letter. Given an
n-plane P � XC , the formulas in Section 2.2 yield

wP � w xP D .�1/
nC1=4;

whence P and xP are disjoint in XC . Thus, we may apply Construction I to conclude
rationality.

Remark 6.3. Remark 3.4 implies that X does not admit curves (or surfaces!) of
odd degree defined over R. These would force the existence of lines defined over R,
which do not exist in this isotopy class.
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6.2. Remaining six-dimensional case. To settle the rationality of six-dimensional
complete intersections of two quadrics X � P 8, there is one remaining case in the
Krasnov classification: .1; 3; 5/.

The sequence of signatures of nonsingular elements of fQtg is:

.1; 8/ .2; 7/ .3; 6/ .4; 5/ .5; 4/ .6; 3/ .5; 4/ .6; 3/ .7; 2/

.8; 1/ .7; 2/ .6; 3/ .5; 4/ .4; 5/ .3; 6/ .4; 5/ .3; 6/ .2; 7/:

The signed permutation is the diagonal matrix

diag.�1; 1;�1; 1;�1;�1;�1; 1;�1/

and the invariant cycles are as in Table 3.

h3 Q1 Q2 Q3

h3 4 2 2 2

Q1 2 0 1 1

Q2 2 1 0 1

Q3 2 1 1 0

Table 3.

Here,Q1 corresponds to the singular fiber of signature .4; 4/ andQ2 andQ3 corre-
spond to the singular fibers of signatures .2; 6/ and .6; 2/. If P � X is a three-plane
then wP � w xP D �3=4 and P and xP meet in a single point.

7. Extensions and more general fields

We work over a field k of characteristic zero. In this section, we give further examples
of rationality constructions for 2n-dimensional intersections of two quadrics over k,
relying on special subvarieties of dimension n.

7.1. Dimension four: Intersection computations. GivenX � P 6, a smooth com-
plete intersection of two quadrics, we have

ct .TX / � .1C 7ht C 21h
2t2/=.1C 2ht/2 .mod t3/

� .1C 7ht C 21h2t2/.1 � 2ht C 4h2t2/2 .mod t3/
� 1C 3ht C 5h2t2 .mod t3/:

If T � X is a smooth projective geometrically connected surface then

ct .NT=X / D .1C 3ht C 5h
2t2/=.1 �KT t C �.T /t

2/

D 1C .3hCKT /t C .5h
2
C 3hKT CK

2
T � �.T //t

2;
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where �.T / is the topological Euler characteristic. The expected dimension of the
deformation space of T in X is

�.NT=X / D 2 �
1

2
.3hCKT /KT C

1

2
.3hCKT /

2

� .5h2
C 3hKT CK

2
T � �.T //

D 2�.OT /C
1

2
.�h2

� 3hKT / �K
2
T C �.T //:

For example,
� if T D P 2 is embedded as a plane then .T � T /X D 2 and T is rigid;
� if T is a quadric then .T � T /X D 2 and T moves in a three-parameter family;
� if T is a quartic scroll then .T � T /X D 6 and moves in a five-parameter family;
� if T is a sextic del Pezzo surface then .T � T /X D 12 and T moves in an eight-

parameter family.

7.2. Dimension four: Surfaces with one apparent double point. Recall that Con-
struction V gives the rationality of fourfolds admitting a surface with one apparent
double point. A classical result asserted by Severi – see [4, Theorem 4.10] for a
modern proof – characterizes smooth surfaces T � P 5 with one apparent double
point, i.e., surfaces that acquire one singularity on generic projection into P 4:
� deg.T / D 4: T is a quartic scroll

T ' P .OP1.2/2/; P .OP1.1/˚OP1.3//I

� deg.T / D 5: T is a quintic del Pezzo surface.
Thus, Construction V says that a smooth complete intersection of two quadrics
X � P 6 is rational if it contains a quartic scroll, a quintic del Pezzo surface, or a
sextic del Pezzo surface with a rational point. Rationality always holds when there
are positive-dimensional subvarieties of odd degree (see Section 3.1), so we focus
attention to the first case.

We seek criteria for the existence of a quartic scroll T � X , defined over k.
Clearly, the class ŒT � must be Galois-invariant; however, Galois-invariant classes
need not be represented by cycles over k.

The intersection computations above imply that

ŒT � D ŒQ2�C ŒQ3�;

whereQ2 andQ3 represent quadric surfaces inX , defined over the algebraic closure.
Assume that the class ŒQ2� C ŒQ3� is Galois invariant and represents algebraic
cycles defined over the ground field. We look for quartic scrolls T � X with class
ŒT � D ŒQ2�C ŒQ3�.
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Remark 7.1. Over k D R, case .1; 2; 4/ has signed permutation

diag.1;�1;�1;�1; 1;�1; 1/:

The intersection form on the invariant part of H 4.XC;Z/ is shown in Table 4.

h2 Q1 Q2 Q3

h2 4 2 2 2

Q1 2 2 1 1

Q2 2 1 2 1

Q3 2 1 1 2

Table 4.

Here, we assume Q1 (and h2 �Q1) are associated with the element of fQtg with
signature .3; 3/ andQ2 andQ3 are contributed by the elements with signatures .1; 5/
and .5; 1/. While Q1 is definable over R, Q2 and Q3 are not definable over R (see
Section 5.3).

The requisite real cycles exist in ŒT � D ŒQ2�C ŒQ3�. This follows from the exact
sequence in [6, Section 4], using the rationality of X over R to ensure the vanishing
of the unramified cohomology. It would be interesting to deduce this directly using
cohomological machinery [15]. However, we do not know whether such X contain
quartic scrolls, in general.

Let M denote the moduli space of quartic scrolls in a fixed cohomology class
on X . There is a morphism

M ! .P 6/_;

T 7! span.T /;

which assigns to each scroll the hyperplane it spans.
Hyperplane sections Y D H \ X containing such scrolls are singular by the

Lefschetz hyperplane theorem. Computations in Macaulay2 indicate that a generic
such Y has four ordinary singularities. If a complete intersection of two quadrics
Y � P 5 contains a quartic scroll, it contains two families of such scrolls, each
parametrized by P 3: These arise from residual intersections in quadrics in

IT .2/=IY .2/:

Thus, the residual family has class

2h2
� ŒT � D

�
h2
� ŒQ2�

�
C
�
h2
� ŒQ3�

�
:

The hyperplane sections of X with four singularities should be parametrized by a
reducible surface with distinguished component † � .P 6/_.
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We speculate that † is a quartic del Pezzo surface, constructed as follows:
Consider the pencil of quadrics Qt defining X and fix the pair of rank-six quadrics

Qt2 ;Qt3 ;

whose maximal isotropic subspaces sweep out Q2 and Q3. Let vi 2 Qti denote the
vertices and ` the line they span, which is defined over k even when t2 and t3 are
conjugate over k. Projecting from ` gives a degree-four cover

X ! P 4:

Geometrically, the covering group is the Klein four-group and the branch locus
consists of two quadric hypersurfaces Y2; Y3 intersecting in a degree-four del Pezzo
surface S23. Is † ' S23 over k?

7.3. Dimension six: Threefolds with one apparent double point. Construction V
indicates that the existence of a threefold W � X with one apparent double point
yields rationality. The following classification [4] builds on constructions of Edge [9]:

� deg.W / D 5: a scroll in planes associated with two lines and twisted cubic, or
one line and two conics;

� deg.W / D 6: an Edge variety constructed as a residual intersection

Q \ .P 1
� P 3/ D …1 […2 [W;

whereQ is a quadric hypersurface and the…i ' P 3 are fibers of the Segre variety
under the first projection;

� deg.W / D 7: an Edge variety constructed as a residual intersection

Q \ .P 1
� P 3/ D … [W

with the notation as above;

� deg.W / D 8: a scroll in lines over P 2 of the form P .E/ (one-dimensional quotients
of E), where E is a rank-two vector bundle given as an extension

0! OP2 ! E ! Ip1;:::;p8
.4/! 0

for eight points p1; : : : ; p8 2 P 2, no four collinear or seven on a conic.

Given that rationality follows when there are positive-dimensional subvarieties of
odd degree (see Section 3.1) we focus on the varieties of even degree.
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7.4. Dimension six: Degree six Edge variety. LetW � P 7 denote an Edge variety
arising as follows: Consider the Segre fourfold

P 1
� P 3

� P 7

and take the residual intersection to two copies of P 3

f0;1g � P 3
� P 1

� P 3

in a quadric hypersurface. The resulting threefold

W ' P 1
�†;

where† � P 3 is a quadric hypersurface. Note that the ideal ofW � P 7 is generated
by nine quadratic forms. Complete intersections of two quadrics

W � Y � P 7

depend on five parameters. A Magma computation shows that a generic such Y has
eight ordinary singularities.

Suppose we have an embedding W ,! X , where X � P 8 is a smooth complete
intersection of two quadrics. For fixed X , the Hilbert scheme of such threefolds has
dimension eight. Realizing

W ' P 1
� P 1

� P 1;

we have

c1.NW=X / D 3.h1 C h2 C h3/;

c2.NW=X / D 8.h1h2 C h1h3 C h2h3/;

c3.NW=X / D 4h1h2h3:

The Riemann–Roch formula gives �.NW=X / D 8. Since .W � W /X D 4, the
primitive class is �

ŒW � �
3

2
h3
�2

D 4 � 18C 9 D �5:

Remark 7.2. Suppose thatX is defined over R, and corresponds to the .1; 2; 6/ case,
with signed permutation matrix (see Section 5.4)

diag.�1; 1; 1; 1;�1; 1;�1; 1;�1/:

The invariant cycles are as in Table 5. Here, Q1 corresponds to the singular fiber
of signature .4; 4/ and the classes Q2; : : : ;Q5 correspond to the singular fibers of
signatures .2; 6/ and .6; 2/.

The class
ŒQ2�C ŒQ3�C ŒQ4�C ŒQ5� � ŒQ1�

has degree six and self-intersection four. Is it represented by cycles defined over R?
Does it admit an Edge variety of degree six over R? Over more general k where the
requisite cycles exist?
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h3 Q1 Q2 Q3 Q4 Q5

h3 4 2 2 2 2 2

Q1 2 0 1 1 1 1

Q2 2 1 0 1 1 1

Q3 2 1 1 0 1 1

Q4 2 1 1 1 0 1

Q5 2 1 1 1 1 0

Table 5.

7.5. Dimension six: Degree eight variety. Let E be a stable rank-two vector bundle
on P 2 with invariants c1.E/ D 4L and c2.E/ D 8L

2. Note that �.E/ has dimension
eight, giving an inclusion

V WD P .E_/ � P 7:

We have a tautological exact sequence

0! OV .��/! E_V ! Q! 0;

whence
0! Q.�/! TV ! TP2 ! 0:

Thus, we have the following

�2
� 4L� C 8L2

D 0;

c.Q.�// D 1C .2� � 4L/C .�2
� 4L� C 8L2/;

c.TV / D .1C 3LC 3L
2/.c.Q.�//

D 1C .2� � L/C .�2
� 4L� C 8L2

C 6�L � 12L2
C 3L2/;

and we find

c1.NV=X / D 3� C L;

c2.NV=X / D 5�
2
� �LC 2L2;

c3.NV=X / D 3�
3
� 3�2LC 2L2� � 9L3:

Note that

deg.L3/ D 0; deg.L2�/ D 1; deg.L�2/ D 4; and deg.�3/ D 8;

so we conclude that
.V � V /X D 14:
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The primitive class ŒV � � 2h3 has self-intersection 14 � 4 � 8 C 16 D �2, which
means that

ŒV � D h3
C ŒQ2�C ŒQ3�; .Q2 �Q3/ D 1;

where Q2 and Q3 are classes of quadric threefolds in X , defined over the algebraic
closure. (Up to the action of the Weyl group W.D9/ this is the only possibility.)

Returning to the only remaining case in dimension six where rationality over R
remains open (see Section 6.2):
Question 7.3. Let X � P 8 be a smooth complete intersection of two quadrics
over R in isotopy class .1; 3; 5/. Which classes of codimension-three cycles X are
realized over R? Are there varieties with one apparent double point, defined over R,
representing these classes?
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