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Abstract. We study the distribution of extensions of a number field k with fixed abelian Galois
group G, from which a given finite set of elements of k are norms. In particular, we show the
existence of such extensions. Along the way, we show that the Hasse norm principle holds for
100% of G-extensions of k, when ordered by conductor. The appendix contains an alternative
purely geometric proof of our existence result.
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1. Introduction

Let k be a number field. In this paper we are interested in the images of the norm
mapsNK=k WK� ! k� for finite field extensionsK=k. Specifically, given an element
˛ 2 k� and a finite groupG, does there exist an extensionK=k with Galois groupG
such that ˛ is a norm from K? We are able to answer this question positively if one
restricts to abelian extensions of k. Furthermore, in the abelian setting, we prove the
existence of such an extension from which a given finite set of elements of k� are
norms.
Theorem 1.1. Let k be a number field, G a finite abelian group and A � k� a
finitely generated subgroup. Then there exists an abelian extensionK=k with Galois
group G such that every element of A is a norm from K.

As an application, we obtain the following corollary.
Corollary 1.2. Let k be a number field, G a finite abelian group and S a finite set of
places of k. Then there exists an abelian extension K=k with Galois group G such
that every S -unit of k is a norm from K.

We prove Theorem 1.1 by counting the collection of abelian extensions under
consideration; we obtain an asymptotic formula for the number of such extensions
of bounded conductor, and show explicitly that the leading constant in this formula
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is non-zero. In particular, we prove the existence of infinitely many extensions with
the desired properties. The strategy of proving existence via counting is widely
used in analytic number theory, for example in the context of the Hardy–Littlewood
circle method. Our proof of Theorem 1.1 seems to be the first case where it is
implemented for number fields. Our methods even allow us to prove existence
of such an extension K=k which satisfies any finite collection of admissible local
conditions (Corollary 4.12).

Before we can explain these more general results, we must introduce some
notation. Fix a choice of algebraic closure xk of k and let G be a finite abelian
group. By a G-extension of k, we mean a surjective continuous homomorphism
'WGal.xk=k/ ! G. This corresponds to choosing an extension k � K � xk

together with an isomorphism Gal.K=k/ Š G. Keeping track of the isomorphism
with G simplifies the set-up and the counting. It has no qualitative effect on the
results; forgetting the choice of isomorphism merely scales all the counting results
by jAut.G/j. We write G-ext.k/ for the set of all G-extensions of k. Given ' 2 G-
ext.k/, we write K' for the corresponding number field, and ˆ.'/ for the norm of
the conductor ofK' (viewed as an ideal of k). Moreover, we write A�K' for the ideles
of the number field K' . We are interested in the counting functions

N.k;G;B/ D #f' 2 G-ext.k/ W ˆ.'/ � Bg;
Nloc.k;G;A; B/ D #f' 2 G-ext.k/ W ˆ.'/ � B;A � NK'=k A�K' g;
Nglob.k;G;A; B/ D #f' 2 G-ext.k/ W ˆ.'/ � B;A � NK'=k K

�
' g:

(1.1)

The first counts allG-extensions ' of k of bounded conductor, the second counts
only those for which every element of A is everywhere locally a norm, the third only
those for which every element of A is a global norm.

An asymptotic formula for N.k;G;B/ was first obtained by Wood in [49],
building on numerous special cases. In this paper we obtain asymptotic formulae
for the other counting functions. Our formulae are stated in terms of the invariant
$.k;G;A/ which we now define.
Definition 1.3. Let k be a number field, G a finite abelian group, and A � k� a
finitely generated subgroup. For d 2 Z�1, let kd D k.�d ;

d
p

A/. We define

$.k;G;A/ D
X

g2GXfidGg

1

Œkjgj W k�
;

where jgj denotes the order of g in G and idG 2 G is the identity element.
Theorem 1.4. Let k be a number field, G a non-trivial finite abelian group, and
A � k� a finitely generated subgroup. Then

Nglob.k;G;A; B/ � ck;G;AB.logB/$.k;G;A/�1

as B !1, for some ck;G;A > 0.
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This theorem gives an asymptotic formula for the number of G-extensions from
which every element of A is a global norm. It is natural to ask how the number of
such extensions compares with the total number N.k;G;B/ of G-extensions of k of
conductor bounded by B . We observe that N.k;G;B/ D Nglob.k;G; f1g; B/ and
note that in this case the formula of Theorem 1.4 agrees with [49, Thm. 3.1].
Example 1.5. In the special case where G D Z=2Z and ˛ 2 k� X k�2, we compute
$.k;Z=2Z; h˛i/ D 1=2 and thus

Nglob.k;Z=2Z; h˛i; B/ � ck;Z=2Z;h˛iB.logB/�1=2:

When compared to the asymptotic N.k;Z=2Z; B/ � ck;Z=2ZB , this shows that for
100% of quadratic extensions of k the number ˛ is not a norm.

The next theorem generalises this observation. It says that, unless we are in a
very special case, for 100% of G-extensions of k not all elements of A are norms.
Theorem 1.6. Let k be a number field, G a non-trivial finite abelian group of
exponent e, and A � k� a finitely generated subgroup. Then the following are
equivalent:

(1) limB!1
Nglob.k;G;A;B/
N.k;G;B/

> 0;

(2) A � k.�d /
�d for all d j e;

(3) A � k�ev for all but finitely many places v of k.
There is a nice cohomological way to interpret the condition (3) in Theorem 1.6

via certain Tate–Shafarevich groups (see Section 4.6). Together with some class field
theory, this will allow us to deduce the following result.
Corollary 1.7. Let A � k� be a finitely generated subgroup and let e be the exponent
of G. Then the limit

lim
B!1

Nglob.k;G;A; B/

N.k;G;B/
(1.2)

(i) only depends on the image Ak�e of A in k�=k�e;
(ii) equals one if A � k�e;
(iii) is zero for all but finitely many finite subgroups Ak�e � k�=k�e;
(iv) is zero for all finitely generated subgroups A 6� k�e if and only if the extension

k.�2r /=k is cyclic, where 2r is the largest power of 2 dividing e.
Condition .iv/ holds for example if 8 − e or �e � k�. Our next result shows that

if G is cyclic then in order to have

0 < lim
B!1

Nglob.k;G;A; B/

N.k;G;B/
< 1;

for some choice of A, the field k must have more than one prime lying above 2.



136 C. Frei, D. Loughran and R. Newton CMH

Theorem 1.8. Let k be a number field, let A � k� be a finitely generated subgroup,
and let G be a finite cyclic group. Suppose that k has only one prime lying above 2.
Then the following are equivalent:

(1) limB!1
Nglob.k;G;A;B/
N.k;G;B/

> 0;
(2) every element of A is a global norm from every G-extension of k.

A necessary condition for an element of k to be a global norm is that it is a
norm everywhere locally. However, this is not a sufficient condition in general
due to possible failures of the Hasse norm principle (HNP). Nevertheless, to prove
Theorem 1.4, we reduce to the case of everywhere local norms via the following
theorem, which shows that, when ordered by conductor, “most” abelian extensions
satisfy the Hasse norm principle.
Theorem 1.9. Let k be a number field, G a finite abelian group, and A � k� a
finitely generated subgroup. Then

lim
B!1

#f' 2 G-ext.k/ W ˆ.'/ � B;A � NK'=k A�K' ; K' fails the HNPg
Nloc.k;G;A; B/

D 0:

In particular, Theorem 1.9 implies that

lim
B!1

Nglob.k;G;A; B/

Nloc.k;G;A; B/
D 1:

Theorem 1.4 can thus be proved via an asymptotic formula for Nloc.k;G;A; B/,
which we obtain in Theorem 4.1. We prove Theorem 1.9 using a purely local
criterion for failure of the Hasse norm principle (Proposition 4.2). Taking A D f1g

in Theorem 1.9, we obtain the following result.
Corollary 1.10. Let k be a number field and G a finite abelian group. Then 100%
of G-extensions of k, ordered by conductor, satisfy the Hasse norm principle.

Corollary 1.10 stands in stark contrast to the results of [20], where a dichotomy
occurs when counting by discriminant: in op. cit. we showed that for certain finite
abelian groups G a positive proportion of G-extensions can fail the Hasse norm
principle, when ordered by discriminant. This contrasting behaviour illustrates the
fact, already observed by Wood in [49], that counting by conductor often leads to
more natural statements than counting by discriminant. In fact, after seeing the
results we obtained in [20] when counting extensions ordered by discriminant, Wood
remarked that the dichotomy we had observed should disappear when ordering by
conductor, and conjectured the statement of Corollary 1.10.

There are two reasons why it seems quite difficult to prove Theorem 1.1 when
counting by discriminant, rather than conductor. Firstly, the condition that every
element of A is a norm everywhere locally may be only rarely satisfied and, in the
setting of [20, Thm. 1.4] where a positive proportion of G-extensions fail the Hasse
norm principle, it becomes challenging to show the existence of a G-extension for
which every element of A is a norm everywhere locally and the Hasse norm principle
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holds. Secondly, the leading constant obtained when counting by discriminant is
very complicated, with potential for further cancellation, so it is difficult to prove
its positivity, whereas when counting by conductor we have a simple criterion for
positivity of the leading constant (see Theorem 3.1).

The counting techniques employed in this paper are fairly robust and enable us to
prove a strengthening of Theorem 1.1 in which we impose local conditions at finitely
many places. See Theorem 3.1 and Corollary 4.11 for precise statements.

Our work on the statistical behaviour of the Hasse norm principle brings together
two major areas of modern number theory: namely, counting within families of
number fields, and the quantitative study of the failure of local-global principles.
Notable recent papers on the statistics of number fields include [1, 2, 4, 5, 18, 21,
27, 33, 50].Some significant contributions to the study of local-global principles in
families include [3,6,14,15,19,29,30]. For a summary of recent progress on counting
failures of the Hasse principle, see [7]. More specifically, the statistical behaviour
of the Hasse norm principle is examined in [8, 31, 35]. In particular, in [35] Rome
obtains an asymptotic formula for the number of biquadratic extensions of Q (ordered
by discriminant) which fail the Hasse norm principle. Obtaining asymptotic formulae
for the number of such failures for other classes of field extensions would seem to be
an interesting problem.

Below, we give some examples illustrating our results in a variety of settings
to demonstrate the wide range of phenomena manifested by norms in extensions of
number fields.
Examples 1.11. (1) Take G D Z=nZ with 8 − n and ˛ 2 k� not an nth power.
Then Corollary 1.7 implies that for 100% of all Z=nZ-extensions of k ordered by
conductor, ˛ is not a norm. In the special case n D 2 of quadratic extensions, this
result can be proved using standard techniques in analytic number theory; all other
cases are new.

(2) Take k D Q; ˛ D 16 and G D Z=8Z. As is well known, 16 is an 8th power
in Q�p for all odd primes p and in R�. It therefore follows from Theorems 1.6 and 1.8
that 16 is a norm from every Z=8Z-extension K=Q, despite not being an 8th power
in Q.

(3) Take k D Q.
p
17/, ˛ D 16 and G D Z=8Z. Then, as above, we see that 16

is locally an 8th power at all places v such that v − 2. Hence 16 is a local norm
from all Z=8Z-extensions of k at all places v − 2. However, let p; q be the two
primes of k above 2. By [32, Thm. 9.2.8] there exists a Z=8Z-extension F=k such
that Fp=kp is unramified of degree 8. Therefore, 16 is not a local norm from Fp=kp,
and consequently not a global norm from F=k. Given the existence of one such an
extension, an application of [49, Cor. 1.7] (or Theorem 3.1) yields the existence of
a positive proportion of Z=8Z-extensions K=k which are unramified of degree 8
over p, thus the limit (1.2) is positive but not equal to 1 in this case.

Let us explain in more detail why [32, Thm. 9.2.8] applies here but not in the
previous example. Recall that a place v of a number field L is said to split (or
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decompose) in an extension M=L if there exist at least two distinct places of M
above v. All places of Q apart from 2 split in the non-cyclic extension Q.�8/=Q, so
that .Q; 8;�Q n f2g/ is a so-called special case and [32, Thm. 9.2.8] does not apply
in example (2). However, in example (3), q is non-split in k.�8/=k: both p and q are
totally ramified in k.�8/=k, since 2 is split in k=Q and totally ramified in Q.�8/=Q.
Therefore, .k; 8;�k n fpg/ is not a special case and [32, Thm. 9.2.8] can be applied
in example (3).

(4) Take k D Q; ˛ D 52 and G D .Z=2Z/2. A simple argument (cf. Lemma 4.4)
shows that 52 is a norm everywhere locally from every biquadratic extension of Q.
By Theorem 1.9, it is thus a global norm from 100% of biquadratic extensions of Q
ordered by conductor. However, 52 is not a global norm from K D Q.

p
13;
p
17/

(failure of the Hasse norm principle [9, Exercise 5.3, p. 360]). Therefore, it is not
true that 52 is a global norm from every biquadratic extension of Q.

Remark 1.12. A simple application of local class field theory (Lemma 4.4) shows
that every element of k�e is everywhere locally a norm from everyG-extension of k,
where e denotes the exponent of G. Using this, one can show that in our results,
the assumption that A is a finitely generated subgroup of k� can be replaced by the
weaker assumption that the image of A in k�=k�e is finite. We have chosen to make
the stronger assumption as it simplifies the exposition and some technical aspects of
the proofs.

We finish with a simple example which solves the problem analogous to
Theorem 1.1 for field extensions of degree n with maximal Galois group.

Example 1.13. Let ˛ 2 Q� and n � 3. Then the polynomial

xn C cxn�1 C tx C .�1/n˛

has Galois group Sn over Q.t/ for all but finitely many c 2 Q (see [26, Satz 1]).
Therefore, Hilbert’s irreducibility theorem implies that for infinitely many speciali-
sations t 2 Q, the Galois group is Sn, and ˛ is clearly a norm from such an extension,
being the product of the roots of the defining polynomial.

1.1. Methodology and structure of the paper. In Section 2 we recall some of
the theory of frobenian functions from Serre’s book [42, Sec. 3.3], in order to help
analyse the Dirichlet series which arise in this paper.

In Section 3 we prove our main technical result, Theorem 3.1. This is a general
theorem for counting abelian extensions with local conditions imposed. To prove
this we study the analytic properties of the Dirichlet series corresponding to our
counting functions. We achieve this with the help of the harmonic analysis techniques
developed in our earlier paper [20]. In our case, however, the analysis is more difficult
as the singularities of our Dirichlet series will be branch point singularities, rather
than poles, in general; this is reflected in the fact that$.k;G;A/ in Theorem 1.4 can
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be a non-integral rational number. This section is the technical heart of the paper
and is dedicated to the proof of Theorem 3.1.

Let us emphasise once more that we prove Theorem 1.1 by first counting the
extensions of interest and then showing that the leading constant obtained is positive.
Our situation presents an interesting difficulty, however: the leading constant we
obtain is not an Euler product but a sum of Euler products and, in general, cancellation
within these sums may occur for some choices of local conditions. For example, a
famous theorem of Wang [47] says that there is no Z=8Z-extension of Q which
realises the unramified extension of Q2 of degree 8; in this case Wright observed
in [51, p. 48] that the Euler products appearing in the leading constant cancel out.
We have to carefully analyse these sums of Euler products and explicitly show that
no cancellation occurs in our case.

In Section 4, we prove the major results stated in the introduction via suitable
applications of Theorem 3.1 combined with Galois-cohomological techniques. At
the end of Section 4 we also give a generalisation of Theorem 1.1 which allows one
to impose local conditions on the abelian extension K=k at finitely many places.

The appendix (by Yonatan Harpaz and Olivier Wittenberg) contains a purely
geometric proof of Theorem 1.1. It uses descent and a version of the fibration
method developed in [24] to show that the Brauer–Manin obstruction controls the
failure of weak approximation on a certain auxiliary variety. The existence of the
required abelian extension is then shown using a version of Hilbert’s irreducibility
theorem due to Ekedahl [17] (see also [41, Sec. 3.5–3.6]).

1.2. Notation and conventions. We fix a number field k throughout the paper and
use the following notation:

A� the ideles of k
A�L the ideles of a finite extension L of k
Ok the ring of integers of k
�k the set of all places of k
OS the S -integers of k
v a place of k
kv the completion of k at v
Ov the ring of integers of kv . For v j 1, by convention Ov WD kv
Fv the residue field at a finite place v
qv the cardinality of the residue field at a finite place v
�k.s/ the Dedekind zeta function of k.

For locally compact abelian groups A and B , we use the following notation:
Hom.A;B/ the group of continuous homomorphisms from A to B ,

equipped with the compact-open topology
A^ the Pontryagin dual of A, A^ WD Hom.A; S1/
h�; �i the natural pairing A � A^ ! S1.

All finite groups are viewed as topological groups with the discrete topology.
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For a place v of k, a finite abelian group G, and � 2 Hom.k�v ; G/, we denote
by ˆv.�v/ the reciprocal of the v-adic norm of the conductor of Ker�v . For every
� 2 Hom.A�=k�; G/, we let ˆ.�/ be the reciprocal of the idelic norm of the
conductor of the kernel of �; this equals the norm ˆ.'/ of the conductor of the
sub-G-extension ' corresponding to � via the global Artin map.

Let K=k be an extension of number fields and ˛ 2 k�. We say that ˛ is a
(global) norm fromK if ˛ 2 NK=k K�. We say that ˛ is a local norm at v fromK if
˛ 2

Q
wjv NKw=kv K�w � k�v ; if K=k is Galois this is equivalent to the existence of

some place w j v of K such that ˛ 2 NKw=kv K�w .
IfF is a field which contains d distinct d th roots of unity and A � F � is a finitely

generated subgroup, then we denote by F. d
p

A/ the splitting field of the polynomials
xd � ˛, where ˛ runs over a set of generators of A.

For a subgroup A � k� and a place v of k, we denote by Av the image of A

in k�v .
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2. Frobenian functions

For the proofs of our main results, we will require some of the theory of frobenian
functions, as can be found in Serre’s book [42, Sec. 3.3]. Recall that a class function
on a group is a function which is constant on conjugacy classes.

Definition 2.1. Let k be a number field and �W�k ! C a function on the set of
places of k. Let S be a finite set of places of k. We say that � is S -frobenian if there
exist

(a) a finite Galois extension K=k, with Galois group � , such that S contains all
places which ramify in K=k, and

(b) a class function 'W� ! C,
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such that for all v 62 S we have

�.v/ D '.Frobv/;

where Frobv 2 � denotes a Frobenius element of v. We say that � is frobenian if
it is S -frobenian for some S . A subset of �k is called (S -)frobenian if its indicator
function is (S -)frobenian.

In Definition 2.1, we adopt a common abuse of notation (see [42, Sec. 3.2.1]), and
denote by Frobv 2 � the choice of some element of the Frobenius conjugacy class
at v; note that '.Frobv/ is well defined as ' is a class function.

We define the mean of � to be

m.�/ D
1

j�j

X
2�

'./ 2 C:

Example 2.2. Let f 2 kŒx� be a (not necessarily irreducible) polynomial. Then the
set

fv 2 �k W f .x/ has a root in kvg

is frobenian. Indeed, take K to be the splitting field of f . Then for a place v which
is unramified inK, the polynomial f has a root in kv if and only if Frobv acts with a
fixed point on the roots of f over xk; the set of such elements is a conjugacy invariant
subset of the Galois group � .

We require the following result on the zeta function of a frobenian function.
Throughout the paper, we write qv for the size of the residue field at a finite place v.
Moreover, for any place v, let �k;v.s/ be the Euler factor of �k.s/ at v if v is non-
archimedean, and �k;v.s/ D 1 otherwise.
Proposition 2.3. Let S be a finite set of places of k containing all archimedean
places and let � be an S -frobenian function. Assume that j�.v/j < qv holds for
all v … S . Then the Euler product

F.s/ D
Y
v…S

�
1C

�.v/

qsv

�
(2.1)

has the form
F.s/ D �

m.�/

k
.s/G.s/; Re s > 1; (2.2)

for a function G.s/ that is holomorphic in a region

Re s > 1 �
c

log
�
j Im sj C 3

� ; (2.3)

for some c D c� > 0, and satisfies in this region the bound

jG.s/j ��

�
1C j Im s

�1=2
: (2.4)
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Moreover,

lim
s!1

.s�1/m.�/F.s/ D
�
RessD1�k.s/

�m.�/Y
v…S

1C �.v/q�1v

�k;v.1/m.�/

Y
v2S

1

�k;v.1/m.�/
; (2.5)

and the limit in (2.5) is non-zero.

Proof. First, note that the Euler factors 1 C �.v/q�sv are holomorphic on C and
non-zero for Re s � 1, as j�.v/j < qv by assumption. Next, recall that the irreducible
characters of a finite group � form a basis for the space of complex class functions
of � [22, Prop. 2.30]. In particular, if 'W� ! C is the class function associated to �,
then we may write

' D
X
�

���;

where �� 2 C and the sum runs over the irreducible characters of � . For Re s > 1,
we find that

F.s/ D
Y
v…S

 
1C

P
� ���.Frobv/

qsv

!
D G1.s/

Y
�

L.�; s/�� ;

whereL.�; s/ denotes the ArtinL-function of � andG1.s/ is a holomorphic function
with absolutely convergent Euler product on Re s>1=2, which is non-zero on Re s�1.

For the trivial character � D 1, we have L.1; s/ D �k.s/. Since �1 D m.�/, we
get the equality (2.2) with

G.s/ D G1.s/
Y
�¤1

L.�; s/�� :

By the Brauer induction theorem [9, Thm. VIII.7, p. 225], we may decompose each
remaining L.�; s/ as a product of Z-powers of Hecke L-functions of non-trivial
Hecke characters of subfields of K. Hence, we assume from now on that each
L.�; s/ is an entire Hecke L-function (for some possibly different number field).
By [28, Thm. 5.35], L.�; s/ respects a zero-free region of the form (2.3), for some
c < 1=4 that may depend on �. Since there are only finitely many characters to
consider, we can find a constant c that works for all of them. Decreasing c further,
we obtain a bound

log jL.�; s/j � log log
�
j Im sj C 3

�
;

valid in the region (2.3) (cf. [38, p. 230]). Using this bound and the fact that
jG1.s/j �� 1 in Re s � 3=4 due to the absolute convergence of its Euler product, it
is simple to verify that G.s/ satisfies (2.4).

To verify (2.5), we start with the following fact, which is well known at least
in the classical case of Dirichlet L-functions: for non-trivial �, the Euler product
of L.�; s/ converges for s D 1 and takes the value L.�; 1/. To see this, observe that
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logL.�; s/ can be defined for Re s > 1 as a Dirichlet series, use the prime number
theorem for L.�; s/ (see [28, Thm. 5.13]) and partial summation to verify that this
Dirichlet series converges for s D 1, and apply Abel’s theorem.

Since G1.s/ has an absolutely convergent Euler product for Re s > 1=2, this
shows that the Euler product of �k.s/�m.�/F.s/ D G.s/ does indeed converge at
s D 1 and takes the value

G.1/ D lim
s!1

�k.s/
�m.�/F.s/ D .RessD1�k.s//�m.�/ lim

s!1
.s � 1/m.�/F.s/:

Recalling our assumption that j�.v/j < qv , it is clear that the right-hand side of (2.5)
is non-zero.

Remark 2.4. (1) Note that frobenian functions are bounded; thus the condition
j�.v/j < qv in Proposition 2.3 is always satisfied for all but finitely many v.

(2) The conclusion (2.5) may fail if one includes the places v 2 S in the Euler
product in Proposition 2.3. To see this, take k D Q; �.2/ D �2 and �.p/ D 0

for p ¤ 2; this is frobenian with K D Q and S D f2g. Then the Euler factor

1 �
2

2s

has a zero at s D 1, despite the fact that m.�/ D 0.

(3) The conclusion (2.5) can fail to hold for some innocuous looking Dirichlet series.
Consider for example F.s/ D �.2s � 1/=�.s/. Then

lim
s!1

F.s/ D
1

2
;

but Y
p

lim
s!1

1 � p�s

1 � p�2sC1
D 1:

3. Counting with local conditions

All of the main counting results in this paper are obtained from a more general
counting result, which we present in this section. To state this result we require some
notation.

3.1. Statement of the result. LetG be a finite abelian group, let F be a field and xF
a separable closure of F . We define a sub-G-extension of F to be a continuous hom-
omorphism Gal. xF=F / ! G. A sub-G-extension corresponds to a pair .L=F; /,
where L=F is a Galois extension inside xF and  is an injective homomorphism
Gal.L=F /! G.
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For each place v of the number field k, we fix an algebraic closure xkv and
compatible embeddings k ,! xk ,! xkv and k ,! kv ,! xkv .

Hence, a sub-G-extension ' of k induces a sub-G-extension 'v of kv at every
place v. For each place v of k, let ƒv be a set of sub-G-extensions of kv . For
ƒ WD .ƒv/v2�k we are interested in the function

N.k;G;ƒ;B/ WD # f' 2 G-ext.k/ W ˆ.'/ � B; 'v 2 ƒv8vg ; (3.1)

which counts those G-extensions of k of bounded conductor which satisfy the local
conditions imposed by ƒ at all places v. (Here ˆ is as in Section 1.2.)

In general, it is difficult to say anything about the counting function given in (3.1),
especially when there are infinitely many local conditions imposed. Even in the case
when one imposes finitely many conditions, the set being counted may be empty, as
explained in Section 1.1. Our main technical result imposes arbitrary conditions at
finitely many places, but at the remaining places we only impose those conditions
which force every element of A to be a local norm.
Theorem 3.1. Let k be a number field, G a non-trivial finite abelian group, and
A � k� a finitely generated subgroup. Let S be a finite set of places of k and
for v 2 S let ƒv be a non-empty set of sub-G-extensions of kv . For v … S

we let ƒv be the set of sub-G-extensions of kv determined by those extensions of
local fields L=kv for which every element of A is a local norm from L=kv . Let
ƒ WD .ƒv/v2�k . Then there exist ck;G;ƒ � 0 and ı D ı.k;G;A/ > 0 such that

N.k;G;ƒ;B/ D ck;G;ƒB.logB/$.k;G;A/�1 CO
�
B.logB/$.k;G;A/�1�ı

�
;

B !1;

where $.k;G;A/ is as in Definition 1.3. Moreover, we have ck;G;ƒ > 0 if there
exists a sub-G-extension of k which realises the given local conditions for all places v.

The leading constant ck;G;ƒ in this theorem is given by a finite sum of Euler
products (see Theorem 3.22 for an explicit expression). Our condition for positivity
is only the existence of some sub-G-extension of k which realises the given local
conditions; we do not require the existence of a genuine G-extension of k, so we
do not need to assume that the set of G-extensions being counted is non-empty to
deduce the positivity of the constant. This means that one need only look for an
extension with possibly smaller Galois group to prove positivity of the constant; we
use this trick to great effect when proving Theorem 1.1.

We illustrate how one applies Theorem 3.1 in some simple cases. Firstly, one
counts the total number ofG-extensions of k by applying Theorem 3.1 with A D f1g

and no local conditions, i.e. taking ƒv to be the set of all sub-G-extensions of kv for
all places v. These local conditions are realised by the sub-G-extension given by the
trivial extension k=k. For a more interesting example, consider the case A D f1g

and the trivial local conditions ƒv D f1g for v 2 S , which are again realised by the
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trivial extension k=k. This gives the following corollary. (Note that we do not need
to avoid the places above 2.)

Corollary 3.2. Let S be a finite set of places. Then a positive proportion of G-
extensions of k, ordered by conductor, are completely split at all places in S .

The rest of this section is dedicated to the proof of Theorem 3.1. All implied
constants in the O and� notation are allowed to depend on k;G;A and ƒ.

3.2. The set of places S . To prove Theorem 3.1, we are free to increase the size of S
if we wish. Henceforth, we will assume that S contains all archimedean places of k
and all places of k lying above the primes p � jGj, that A � O�S , and that OS has
trivial class group.

The reader should note that many of the formulae which follow are only valid
for finite sets of places S which satisfy these conditions. For example, in the case
where k D Q, G D Z=8Z, A D f1g, S D ;, the expression for the leading constant
in Theorem 3.22 does not hold. To compute ck;G;ƒ in this instance, we may take
S D f1; 2; 3; 5g instead.

3.3. Dirichlet series. To prove Theorem 3.1 we study the associated Dirichlet series

Fƒ.s/ D
X

'2G-ext.k/

fƒ.'/

ˆ.'/s
; (3.2)

with fƒ the indicator function of those sub-G-extensions ' 2 Hom.Gal.xk=k/;G/
for which 'v 2 ƒv for all v 2 �k . Hence, fƒ is the product of the local indicator
functions fƒv of ƒv . As jfƒ.'/j � 1, this Dirichlet series defines a holomorphic
function on Re s > 1. (This follows from [49, Lem. 2.10], but also from the analysis
later in this paper.)

3.3.1. Möbius inversion. Recall that a G-extension of k is a surjective continuous
homomorphism 'WGal.xk=k/! G. The condition that ' be surjective is difficult to
deal with, hence we perform a Möbius inversion to remove it. Let � be the Möbius
function on isomorphism classes of finite abelian groups. That is,

�.G/ D 0

if G has a cyclic subgroup of order pn with p a prime and n � 2,

�.G1 �G2/ D �.G1/�.G2/

if G1 and G2 have coprime order, and

�..Z=pZ/n/ D .�1/npn.n�1/=2
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for a primep andn 2 Z�0. Let f be a function on the subgroups ofG. For subgroups
H � G, we consider the function

g.H/ D
X
J�H

f .J /;

where the sum runs over all subgroups J � H . The Möbius inversion formula for
finite abelian groups [16] states that

f .G/ D
X
H�G

�.G=H/g.H/: (3.3)

Lemma 3.3. We have

Fƒ.s/ D
X
H�G

�.G=H/
X

'2Hom.Gal.xk=k/;H/

fƒ.'/

ˆ.'/s
:

Proof. Sorting the sub-H -extensions 'WGal.xk=k/! H by their images, we getX
J�H

X
'2J -ext.k/

fƒ.'/

ˆ.'/s
D

X
'2Hom.Gal.xk=k/;H/

fƒ.'/

ˆ.'/s
:

Call the right-hand side g.H/ and apply Möbius inversion (3.3).

We now consider the contribution to Fƒ.s/ of each subgroupH in turn. The con-
tribution from H D f1g is either 0 or 1. From now on we focus on the contributions
of the non-trivial subgroups H .

3.3.2. Class field theory. Via global class field theory, we make the identification

Hom.Gal.xk=k/;H/ D Hom.A�=k�;H/: (3.4)

The canonical isomorphism (3.4) is induced by the global Artin map

A�=k� ! Gal.kab=k/:

Using this isomorphism, we consider fƒ now as a function on Hom.A�=k�;H/.
For every � 2 Hom.A�=k�;H/, let ˆ.�/ be the reciprocal of the idelic norm of
the conductor of the kernel of �, which is precisely the norm of the conductor of
the sub-H -extension corresponding to �. Together with Lemma 3.3, this discussion
shows the following:
Lemma 3.4. We have

Fƒ.s/ D
X
H�G

�.G=H/
X

�2Hom.A�=k�;H/

fƒ.�/

ˆ.�/s
:
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Hence, in our analysis of Fƒ.s/ we can now focus on the inner sumsX
�2Hom.A�=k�;H/

fƒ.�/

ˆ.�/s
:

Our counting problem fits very well within the class-field-theoretic framework. For
each place v 2 �k , we use local class field theory (specifically, the local Artin map
k�v ! Gal.kab

v =kv/) to make the identification

Hom.Gal.xkv=kv/;H/ D Hom.k�v ;H/:

Thus, we consider ƒv as a subset of Hom.k�v ;H/. By the compatibility of local and
global class field theory, we still have fƒ D

Q
v fƒv , with fƒv the indicator function

of ƒv .
Lemma 3.5. Let v … S and let �v 2 Hom.k�v ; G/. Then

fƒv .�v/ D 1 , Av � Ker�v:

Proof. Let 'v be the sub-G-extension of kv associated to �v . By local class field
theory we have

Ker�v D NK'v =kv K
�
'v
;

where K'v is the extension field of kv associated to 'v . However, as v … S , by
assumption in Theorem 3.1 we have fƒv .�v/ D 1 if and only if every element of A

is a local norm from K'v ; the result follows.

3.4. Harmonic analysis. To deal with the sumsX
�2Hom.A�=k�;H/

fƒ.�/

ˆ.�/s

we shall use a version of the Poisson summation formula from harmonic analysis.
The theory relevant to us was worked out in detail in [20, Sec. 3] when counting by
discriminant. The same theory transfers almost verbatim to show the validity of the
Poisson summation formula for counting by conductor.

However, for the purposes of Theorem 3.1, our case is special enough that we
merely require a simplified version of the Poisson summation formula that can be
proved using only character orthogonality for finite abelian groups. We may therefore
forego some of the general theory from [20, Sec. 3] and proceed in a more explicit
manner. We first recall the set-up for the harmonic analysis.

3.4.1. Fourier transforms. The group Hom.A�=k�;H/ is locally compact. Its
Pontryagin dual is naturally identified with A�=k� ˝H^ (see [20, Sec. 3.1]). We
denote the associated pairing by

h�; �iWHom.A�=k�;H/ � .A�=k� ˝H^/! S1:
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Similarly, the Pontryagin dual of Hom.k�v ;H/ is naturally identified with k�v ˝H^,
and we also denote the relevant Pontryagin pairing by h�; �i. For each place v, we
equip the finite group Hom.k�v ;H/ with the unique Haar measure d�v such that

vol.Hom.k�v=O
�
v ;H// D 1:

If v is non-archimedean, this is jH j�1 times the counting measure; for archimedean v,
recalling our convention that Ov D kv , we obtain the counting measure. The product
of these measures yields a well-defined measure d� on Hom.A�;H/. We say that
an element of Hom.k�v ;H/ is unramified if it lies in the subgroup Hom.k�v=O�v ;H/,
i.e. if it is trivial on O�v , and that it is tamely ramified if it is ramified and trivial
on 1C �vOv .

The function fƒ=ˆs is a product of local functions fƒv=ˆsv on Hom.k�v ;H/,
where ˆv.�v/ is the reciprocal of the v-adic norm of the conductor of Ker�v .
For v … S , these local functions take only the value 1 on the unramified elements
by our choice of S and Lemma 3.5, and thus fƒ=ˆs extends to a well-defined and
continuous function on Hom.A�;H/. We define its Fourier transform to be

yfƒ;H .xI s/ D

Z
�2Hom.A�;H/

fƒ.�/h�; xi

ˆ.�/s
d�;

where xD.xv/v2A�˝H^. Similarly, for xv2k�v ˝H^ we have the local Fourier
transform

yfƒv ;H .xvI s/ D

Z
�v2Hom.k�v ;H/

fƒv .�v/h�v; xvi

ˆv.�v/s
d�v:

For Re s � 1, the global Fourier transform exists and defines a holomorphic function
in this domain, and there is an Euler product decomposition

yfƒ;H .xI s/ D
Y
v

yfƒv ;H .xvI s/: (3.5)

3.4.2. The local Fourier transforms. Let v 2 �k and xv 2 k�v ˝H^.

Lemma 3.6. The local Fourier transform yfƒv ;H .xvI s/ is holomorphic on C and
satisfies yfƒv ;H .xvI s/�k;H 1 on Re s � 0. Moreover, yfƒv ;H .1I s/ > 0 for s 2 R.

Proof. We prove the result when v is non-archimedean, the case of archimedean v
being analogous. By our choice of measures, we have

yfƒv ;H .xvI s/ D
1

jH j

X
�v2Hom.k�v ;H/

fƒv .�v/h�v; xvi

ˆv.�v/s
: (3.6)

This finite sum clearly defines a holomorphic function on C. If Re s � 0 then the
sum is �k;H 1, since every summand is bounded absolutely and the number of
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summands is�k;H 1. For the last part, we have

yfƒv ;H .1I s/ D
1

jH j

X
�v2ƒv

1

ˆv.�v/s
:

For v 2 S the set ƒv is non-empty by assumption. For v … S the set ƒv is again
non-empty, as it always contains the trivial homomorphism k�v ! H by Lemma 3.5.
For s 2 R, we therefore obtain a finite non-empty sum of positive real numbers,
which is positive.

Now let v be non-archimedean. Choosing a uniformiser of kv identifies k�v=O�v
with Z and gives a splitting of the exact sequence

1! O�v ! k�v ! k�v=O
�
v ! 1: (3.7)

This implies that the sequence

1! Hom.k�v=O
�
v ;H/! Hom.k�v ;H/! Hom.O�v ;H/! 1

is split exact. Thus,

yfƒv ;H .xvI s/ D
1

jH j

X
 v2Hom.k�v =O�v ;H/

X
�v2Hom.O�v ;H/

fƒv . v�v/h v�v; xvi

ˆv.�v/s
;

(3.8)
since  v is unramified and hence ˆ. v�v/ D ˆv.�v/.
Lemma 3.7. Let v … S . Then fƒv is Hom.k�v=O�v ;H/-invariant and, in particular,
fƒv . v/ D 1 for all  v 2 Hom.k�v=O�v ;H/.

Proof. Let �v 2 Hom.k�v ;H/ and let  v 2 Hom.k�v=O�v ;H/. We use the criterion
from Lemma 3.5. We have Av � O�v � Ker v . Therefore, Av � Ker v�v if and
only if Av � Ker�v , whence

fƒv . v�v/ D fƒv .�v/;

as required. With �v D 1, this also shows the second assertion.

In the statement of the following lemma, note that the natural map

O�v ˝H
^
! k�v ˝H

^

is injective, as the sequence (3.7) is split exact. Therefore, we may naturally view
O�v ˝H

^ as a subgroup of k�v ˝H^.
Lemma 3.8. Let v … S . Then

yfƒv ;H .xvI s/ D

� X
�v2Hom.O�v ;H/

fƒv .�v/h�v; xvi

ˆv.�v/s
if xv 2 O�v ˝H

^;

0 otherwise:
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Proof. From (3.8) and Lemma 3.7 we have

yfƒv ;H .xvI s/ D
1

jH j

X
�v2Hom.O�v ;H/

fƒv .�v/h�v; xvi

ˆv.�v/s

X
 v2Hom.k�v =O�v ;H/

h v; xvi:

Now character orthogonality givesX
 v2Hom.k�v =O�v ;H/

h v; xvi D

(
jHom.k�v=O�v ;H/j if xv 2 O�v ˝H

^;

0 otherwise:

Indeed, the subgroup O�v˝H
^ � k�v˝H

^ is naturally identified with the Pontryagin
dual of Hom.k�v=O�v ;H/. The result now follows on noting that k�v=O�v Š Z and
hence jHom.k�v=O�v ;H/j D jH j.

3.4.3. Poisson summation. We now prove the version of Poisson summation that
we will require. In the statement, we view O�S ˝H

^ as a subgroup of k� ˝H^ as
follows: we have the exact sequence

0! O�S ! k� ! P.OS /! 0; (3.9)

where P.OS / denotes the group of non-zero principal fractional ideals of OS . Since
P.OS / is a free abelian group, we have Tor.P.OS /;H^/ D 0. Therefore applying
.�/˝H^ to (3.9) we find that the map O�S˝H

^ ! k�˝H^ is injective, as required.
Proposition 3.9. For Re s > 1 the Fourier transform yfƒ;H .�I s/ exists and defines a
holomorphic function on this domain. Moreover, we have the Poisson formulaX
�2Hom.A�=k�;H/

fƒ.�/

ˆ.�/s
D

1

jO�
k
˝H^j

X
x2O�

S
˝H^

yfƒ;H .xI s/; Re s > 1: (3.10)

Note that the group O�S˝H
^ is finite by Dirichlet’s S -unit theorem; in particular,

the right-hand sum is finite.

Proof. Let x 2 O�S ˝ H
^. Let xv denote its image in k�v ˝ H^. Recall that we

have normalised our Haar measures on Hom.k�v ;H/ to be jH j�1 times the counting
measure for non-archimedean v, and equal to the counting measure for archimedean v.
We let Sf be the set of non-archimedean places in S . Now Lemma 3.8 and (3.5) give

yfƒ;H .xI s/ D
1

jH jjSf j

Y
v2S

X
�v2Hom.k�v ;H/

fƒv .�v/h�v; xvi

ˆv.�v/s

�

Y
v…S

X
�v2Hom.O�v ;H/

fƒv .�v/h�v; xvi

ˆv.�v/s

D
1

jH jjSf j

X
�2Hom.A�

S
;H/

fƒ.�/h�; xi

ˆ.�/s
;
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where A�S D
Q
v2S k

�
v �

Q
v…S O�v . We now change the order of summation in the

right-hand sum of (3.10) to obtainX
x2O�

S
˝H^

yfƒ;H .xI s/ D
1

jH jjSf j

X
�2Hom.A�

S
;H/

fƒ.�/

ˆ.�/s

X
x2O�

S
˝H^

h�; xi:

As A�S and A�S=O
�
S are locally compact groups and their subgroups of nth powers

are closed, an application of [20, Lem. 3.2] gives canonical isomorphisms of abelian
groups

Hom.A�S ;H/ Š .A
�
S ˝H

^/
^ and Hom.A�S=O

�
S ;H/ Š .A

�
S=O

�
S ˝H

^/
^
:

Therefore, we can view an element � 2 Hom.A�S ;H/ as a character of A�S ˝H^.
It is easily seen that � induces the trivial character on O�S ˝ H^ if and only if
� 2 Hom.A�S=O

�
S ;H/. Thus, we may apply character orthogonality to find that

X
x2O�

S
˝H^

h�; xi D

(
jO�S ˝H

^j if � 2 Hom.A�S=O
�
S ;H/;

0 otherwise:

We therefore obtainX
x2O�

S
˝H^

yfƒ;H .xI s/ D
jO�S ˝H

^j

jH jjSf j

X
�2Hom.A�

S
=O�
S
;H/

fƒ.�/

ˆ.�/s
:

Dirichlet’s S -unit theorem gives a (non-canonical) isomorphism O�S Š O�
k
� ZSf ,

whereby
jO�S ˝H

^j

jH jjSf j
D jO�k ˝H j:

Moreover, as OS has trivial class group, the natural map A�S=O
�
S ! A�=k� is an

isomorphism [49, Lem. 2.8]. The result now easily follows.

3.5. Analytic continuation of the Fourier transforms. We now use the Poisson
formula to study the analytic behaviour of the Dirichlet series under consideration.
To do so, we shall calculate explicitly the local Fourier transforms for v … S . Fix
some subgroup H of G. By a slight abuse of notation, for xv 2 k�v ˝H^ we write
xv 2 Av ˝H

^ to express that xv is in the image of the (not necessarily injective)
map Av ˝H

^ ! k�v ˝H
^.

Lemma 3.10. Let v … S and let xv 2 O�v ˝H
^. Then

yfƒv ;H .xvI s/ D

(
1C

�
jHom.F�v =.A mod v/;H/j � 1

�
q�sv if xv 2 Av ˝H

^;

1 � q�sv if xv … Av ˝H
^:
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Proof. An element �v 2 Hom.O�v ;H/ is unramified if and only if it is trivial.
Furthermore, since v … S and our assumptions on S in Section 3.2, the ramification is
tame and hence for non-trivial characters �v 2 Hom.O�v ;H/, we haveˆv.�v/ D qv .
Therefore, by Lemmas 3.5 and 3.8 we have

yfƒv ;H .xvI s/ D
X

�v2Hom.O�v ;H/

fƒv .�v/h�v; xvi

ˆv.�v/s

D 1C
X

�v2Hom.O�v ;H/
�v¤1

fƒv .�v/h�v; xvi

qsv

D 1C q�sv

X
�v2Hom.O�v ;H/

�v¤1
Av�Ker�v

h�v; xvi

D 1 � q�sv C q
�s
v

X
�v2Hom.O�v ;H/

Av�Ker�v

h�v; xvi: (3.11)

We claim that the natural map

Hom.F�v =.A mod v/;H/! f�v 2 Hom.O�v ;H/ W Av � Ker�vg (3.12)

is an isomorphism. To see this, recall that Hensel’s lemma yields a split short exact
sequence

1! 1C pv ! O�v ! F�v ! 1;

where pv denotes the maximal ideal of Ov . Applying Hom.�;H/, we obtain

1! Hom.F�v ;H/! Hom.O�v ;H/! Hom.1C pv;H/! 1:

The kernel of a continuous homomorphism 1C pv ! H contains 1C pnv for some
n 2 N, and the successive quotients in the filtration

1C pv � 1C p2v � � � � � 1C pnv

each have order jOv=pvj D qv (see [39, Prop. IV.2.6]). Consequently, the quotient
.1Cpv/=.1Cpnv/ has order a power of qv . Now recall that we assumed in Section 3.2
that gcd.qv;H/ D 1. Therefore, any continuous homomorphism 1 C pv ! H is
trivial. It follows that

Hom.F�v ;H/ D Hom.O�v ;H/:

Moreover, A mod v lies in the kernel of a homomorphism F�v ! H if and only
if Av lies in the kernel of the induced homomorphism O�v ! H ; whence (3.12) is
an isomorphism as claimed.
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Orthogonality of characters now gives

X
�v2Hom.O�v ;H/

A�Ker�v

h�v; xvi D

(
jHom.F�v =.A mod v/;H/j if xv 2 Av ˝H

^;

0 otherwise:

Inputting this into (3.11), the result follows.

To study the analytic behaviour of the global Fourier transforms yfƒ;H .xI s/, we
use the theory of frobenian functions from Section 2.

Lemma 3.11. Let e be the exponent of H . Consider a function dA;H W�k ! C
which for all v … S satisfies

dA;H .v/ D max
˚
d 2 Z W d divides gcd.e; qv � 1/ and A mod v � F�dv

	
:

Then

(1) dA;H is S -frobenian, and

(2) for v … S , we have jHom.F�v =.A mod v/;H/j D jHŒdA;H .v/�j.

Proof. (1) For every d j e, consider the number field kd D k.�d ;
d
p

A/. The subset

†d D Gal.ke=kd / X
[
d 0j e

d

d 0¤1

Gal.ke=kdd 0/ � Gal.ke=k/

is a union of conjugacy classes, since each Gal.ke=kd / is normal in Gal.ke=k/. The
sets †d for d j e form a partition of Gal.ke=k/. Let 'WGal.ke=k/ ! C be the
class function that takes the constant value d on †d , for all d j e. We claim that
dA;H .v/ D '.Frobv/ for all v … S , so in particular it is S -frobenian.

Note that Frobv 2 †d if and only if d is the largest divisor of e such that v splits
completely in kd=k. Equivalently, d is the largest divisor of e such that d j qv � 1
and xd � ˛ has a root in kv for all ˛ 2 A. By Hensel’s lemma, this is equivalent to
d D dA;H .v/, and thus '.Frobv/ D dA;H .v/, as desired.

(2) Letm be the largest divisor of qv�1 such that A mod v�F�mv . Then A mod v D
F�mv , and thus F�v =.A mod v/ Š Z=mZ. Hence,

jHom.F�v =.A mod v/;H/j D jHom.Z=mZ;H/j D jHom.Z;H Œm�/j
D jHŒm�j D jHŒgcd.m; e/�j D jHŒdA;H .v/�j:

Lemma 3.12. Let x 2 O�S ˝H
^. Then the set

fv 2 �k W xv 2 Av ˝H
^
g
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isS -frobenian. In the special caseH^DZ=eZ, on identifyingk�˝H^ withk�=k�e ,
this set equals�

v 2 �k W the polynomial
Y

˛2A=Ae

.te � x˛/ has a root in kv
�
: (3.13)

Note that the group A=Ae is finite. Moreover, our slight abuse of notation
is harmless, as whether or not the polynomial appearing in (3.13) has a root is
independent of the choice of representative of each element of A=Ae .

Proof. To prove this we choose a presentation ofH^. We then work coordinate-wise
onH^, using the fact that the intersection of finitely many frobenian sets is frobenian.
Thus, we reduce to the case H^ D Z=eZ. Here we have O�S ˝ H

^ D O�S=O
�e
S .

For x 2 O�S , we have to show that the set

fv 2 �k W xv 2 Avk
�e
v g

is S -frobenian. However, we have xv 2 Avk
�e
v if and only if xv˛v 2 k�ev for some

˛v 2 Av (depending on v). We find that the set in question is the set of places v such
that the equation Y

˛2A=Ae

.te � x˛/ D 0

has a solution in kv; this set is frobenian (see Example 2.2). As x is an S -unit, it is
easily seen that this is S -frobenian for our choice of S in Section 3.2.

Corollary 3.13. Let x 2 O�S ˝H
^. Then the function

v 7!

(
jHom.F�v =.A mod v/;H/j � 1 if xv 2 Av ˝H

^;

�1 if xv … Av ˝H
^;

is S -frobenian.

Proof. The product or sum of two S -frobenian functions is clearly S -frobenian (in
Definition 2.1 one takes the compositum of the relevant field extensions). Moreover,
the complement of a S -frobenian set is S -frobenian. The result therefore follows
from Lemmas 3.11 and 3.12.

Definition 3.14. We denote by$.k;H;A; x/ the mean of the S -frobenian function
described in Corollary 3.13.

We now compare $.k;H;A; x/ with $.k;H;A/, as defined in Definition 1.3.

Lemma 3.15. We have $.k;H;A; x/ � $.k;H;A/ for all x 2 O�S ˝ H^.
Moreover, $.k;H;A; 1/ D $.k;H;A/.
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Proof. As clearly $.k;H;A; x/ � $.k;H;A; 1/, the first assertion follows
immediately from the second. So let us prove the second assertion. By Corollary 3.13
and Lemma 3.11, we see that$.k;H;A; 1/ is the mean of an S -frobenian function �
with

�.v/ D jHom.F�v =.A mod v/;H/j � 1 D jHŒdA;H .v/�j � 1

for all v … S . With the notation of the proof of Lemma 3.11, the corresponding class
function on Gal.ke=k/ is given by � 7! jHŒ'.�/�j � 1. Hence,

$.k;H;A; 1/ D
1

Œke W k�

X
�2Gal.ke=k/

�
jHŒ'.�/�j � 1

�
D

1

Œke W k�

X
d je

�
jHŒd�j � 1

�
j†d j:

By inclusion-exclusion, we get j†d j D
P
cj e
d
�.c/ jGal.ke=kcd /j, and thus

$.k;H;A; 1/ D
X
d je

�
jHŒd�j � 1

�X
cj e
d

�.c/

Œkcd W k�

D

X
f je

1

Œkf W k�

X
d jf

�
jHŒd�j � 1

�
�.f=d/

D �1C
X
f je

1

Œkf W k�

X
d jf

jHŒd�j�.f=d/

D �1C
X
f je

#fg 2 H W jgj D f g
Œkf W k�

D $.k;H;A/:

Recall that �k;v.s/ is the Euler factor of �k.s/ at a non-archimedean place v. If v
is archimedean, then we let �k;v.s/ D 1.
Proposition 3.16. Let x 2 O�S ˝H

^. Then the Fourier transform satisfies

yfƒ;H .xI s/ D �k.s/
$.k;H;A;x/G.xI s/; Re s > 1;

where G.xI s/ is holomorphic in the region (2.3), for some c > 0, and satisfies (2.4).
Moreover, we have

lim
s!1

.s � 1/$.k;H;A;x/ yfƒ;H .xI s/

D
�
RessD1�k.s/

�$.k;H;A;x/ Y
v2�k

yfƒv ;H .xvI 1/

�k;v.1/$.k;H;A;x/
:

In the case x D 1, this limit is non-zero.
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Proof. We consider the Euler product expansion of yfƒ;H .xI s/ from (3.5), where the
Euler factors at v … S were determined in Lemma 3.10. By Corollary 3.13 and our
assumptions on S , we may apply Proposition 2.3 to obtain

F.s/ WD
Y
v…S

yfƒv ;H .xvI s/ D �k.s/
$.k;H;A;x/H .xI s/;

with a function H .xI s/ that is holomorphic in a region (2.3) and satisfies the
bound (2.4). By Lemma 3.6, we may multiply H .xI s/ by the Euler factors
yfƒv ;H .xvI s/ for v 2 S while still preserving these properties (possibly for a smaller
c > 0 in (2.3)). Finally, the explicit form of the limit follows from (2.5) which,
together with Lemma 3.6, also shows that the limit is non-zero if x D 1.

3.6. The asymptotic formula in Theorem 3.1. We now bring all our tools together
to prove the first part of Theorem 3.1. Recall from Lemma 3.4 that we performed
a Möbius inversion to obtain a sum over the subgroups H of G. Moreover, in
Proposition 3.9 we used Poisson summation to understand the inner sums from
Lemma 3.4. In summary,

Fƒ.s/ D
X
H�G

�.G=H/

jO�
k
˝H^j

X
x2O�

S
˝H^

yfƒ;H .xI s/; Re s > 1; (3.14)

where Fƒ is the Dirichlet series from (3.2). Furthermore, we described the analytic
properties of the Fourier transforms yfƒ;H .xI s/ in Proposition 3.16.

By Lemma 3.10, we can expand each of the Euler products yfƒ;H .xI s/ as a
Dirichlet series

yfƒ;H .xI s/ D
X
n2Z�1

an.H; x/

ns
; (3.15)

with coefficients an.H; x/ 2 C.

Lemma 3.17. Let H � G be a subgroup, let x 2 O�S ˝H
^, and let an.H; x/ be

the Dirichlet coefficient from (3.15). ThenX
n�B

an.H; x/ D cH;xB.logB/$.k;H;A;x/�1 CO
�
B.logB/$.k;H;A;x/�2

�
;

where
cH;x D

1

�.$.k;H;A; x//
lim
s!1

.s � 1/$.k;H;A;x/ yfƒ;H .xI s/:

Proof. Let start by recalling that for every ı > 0 there is a value of c D c.ı/ > 0

such that
j�k.s/=�.s/j �ı

�
j Im sj C 3

�ı
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for all s in the region (2.3). Indeed, in the case Re.s/ � 2 a stronger bound follows
directly from the fact that the Euler product of �k.s/=�.s/ converges absolutely. In
the compact region defined by

j Im.s/j � 2 and 1 � c= log
�
j Im sj C 3

�
� Re s � 2

for some small enough c, the function �k.s/=�.s/ is holomorphic and thus bounded.
It remains to consider the case j Im sj�2, where we stay away from the poles at sD1.
It is well known that �.s/¤0 and j1=�.s/j� log j Im sj for small enough c (e.g. [46,
(3.11.8)]). Sufficient upper bounds for j�k.s/j follow from standard convexity bounds
(e.g. [28, Theorem 5.30]).

Write $ D $.k;H;A; x/. Let G.xI s/ be as in Proposition 3.16, and let the
constant c be small enough to ensure that

�.s/ ¤ 0; �k.s/ ¤ 0; and j�k.s/=�.s/j
$
�
�
j Im sj C 3

�1=4
for all s in the region (2.3). Then the function h.s/ WD �k.s/

$=�.s/$ , defined
on Re s > 1 via the binomial series applied to the Euler factors, has an analytic
continuation to the region (2.3). Hence, the function H.xI s/ D h.s/G.xI s/ is
holomorphic and satisfies H.xI s/� .j Im sj C 3/3=4 in the region (2.3). Since

yfƒ;H .xI s/ D �.s/
$H.xI s/;

we may apply the Selberg–Delange method in the form of [45, Thm. II.5.2]
(with N D 0) to obtain the required asymptotic. (For the sequence .bn/n required
in [45, Thm. II.5.2], we take the coefficients an.H; 1/. One can observe directly
from the definition of the Euler factors yfƒv ;H .xvI s/ that these coefficients satisfy
an.H; 1/ � jan.H; x/j.)

Let us note that the leading term will come from H D G.

Lemma 3.18. LetH � G be a proper subgroup. Then$.k;H;A/ < $.k;G;A/.

Proof. Follows immediately from Definition 1.3.

We are now finally in the position to prove the required asymptotic formula.

Proposition 3.19. Write $ D $.k;G;A/. There exists ı D ı.k;G;A/ > 0 such
that

N.k;G;ƒ;B/ D ck;G;ƒB.logB/$�1 CO
�
B.logB/$�1�ı

�
;

where

ck;G;ƒ D
1

�.$/jO�
k
˝Gj

X
x2O�

S
˝G^

$.k;G;A;x/D$

lim
s!1

.s � 1/$ yfƒ;G.xI s/:
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Proof. By (3.14) and (3.15), the Dirichlet coefficients fn of Fƒ.s/ satisfy

fn D
X
H�G

�.G=H/

jO�
k
˝H^j

X
x2O�

S
˝H^

an.H; x/:

Since N.k;G;ƒ;B/ D
P
n�B fn, the proposition now follows from Lemmas 3.15,

3.17, and 3.18.

This proves the asymptotic formula in Theorem 3.1. Next, we study the leading
constant.

3.7. Formula for the leading constant. To calculate the leading constant, we first
need to understand exactly which elements of O�S ˝ H

^ give rise to the leading
singularity in the Poisson sum (Proposition 3.9).
Lemma 3.20. Let

X.k;G;A/ D fx 2 k� ˝G^ W xv 2 Av ˝G
^ for all but finitely many vg:

Then X.k;G;A/ is finite and

X.k;G;A/ D fx 2 O�S ˝G
^
W xv 2 Av ˝G

^ for all v … Sg:

Proof. It is enough to prove the result for G^ a cyclic group of prime power order.
Henceforth, let G^ D Z=qZ, where q D pr is a prime power. We view X.k;G;A/

as a subgroup of k�=k�q .
First, we claim that the image of X.k;G;A/ in k.�q/�=k.�q/�q is equal to the

image of A. One containment is clear, as A ˝ G^ � X.k;G;A/. For the other,
let K D k.�q;

q
p

A/, so K D kq in the notation of Definition 1.3. Let Kv be the
completion of k at a choice of place of K above v. The image of X.k;G;A/ in
k.�q/

�=k.�q/
�q is contained in the following set:

fx 2 k.�q/
�=k.�q/

�q
W xv 2 K

�q
v for all but finitely many vg:

As �q � K, an application of the Chebotarev density theorem shows that this set
equals .k.�q/� \K�q/=k.�q/�q (this also follows from Lemma 4.9). On the other
hand, Kummer theory shows that .k.�q/�\K�q/=k.�q/�q is equal to the image of A

in k.�q/�=k.�q/�q , and the claim is proved. In particular, the image X.k;G;A/

in k.�q/�=k.�q/�q is finite, as A is finitely generated.
Next, the map

k�=k�q ! k.�q/
�=k.�q/

�q

is none other than the restriction map

H1.k; �q/! H1.k.�q/; �q/;
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which has kernel H1.Gal.k.�q/=k/; �q/. By [32, Prop. 9.1.6], we have

H1.Gal.k.�q/=k/; �q/ D 0

unless we are in the special case where p D 2, r � 2 and Q.�2r /\ k is real. In this
special case,

H1.Gal.k.�2r /=k/; �2r / Š Z=2Z:

In particular, the kernel of the natural map k�=k�q ! k.�q/
�=k.�q/

�q is finite,
and hence the finiteness of X.k;G;A/ follows from the finiteness of its image
in k.�q/�=k.�q/�q .

We now show that X.k;G;A/ � O�S ˝ G^; the rest follows from the fact
that our condition is S -frobenian (see Lemma 3.12). Let x 2 k� be such that
its image in k�=k�q is in X.k;G;A/. By the argument above, the image of x
in k.�q/�=k.�q/�q is in .k.�q/� \ K�q/=k.�q/�q . In particular, x D yq for
some y 2 K�. By our assumptions in Section 3.2 that A � O�S and that S includes
all primes dividing jGj, the extension K=k is unramified at all v … S . Therefore,
for all v … S , the valuation ordv.x/ D ordv.yq/ is divisible by q. Consequently,
the fractional ideal xOS is the qth power of some fractional ideal I of OS . By our
assumption in Section 3.2 that OS has trivial class group, I D zOS for some z 2 k�.
Therefore, x D uzq for some u 2 O�S . This completes the proof.

Lemma 3.21. Let x 2 O�S ˝ G
^. Then $.k;G;A; x/ D $.k;G;A/ if and only

if x 2 X.k;G;A/.
Moreover, yfƒv ;G.xvI 1/ D yfƒv ;G.1I 1/ for x 2 X.k;G;A/ and v … S .

Proof. Let x 2 X.k;G;A/. It follows from the definition, S -frobeniality, Cor-
ollary 3.13, and Lemma 3.15 that $.k;G;A; x/ D $.k;G;A/. The equality of
Fourier transforms follows from Lemma 3.10 and Lemma 3.20.

So assume that x … X.k;G;A/. Let v … S be such that xv … Av ˝G
^. Then

�1 < jHom.F�v =.A mod v/;G/j � 1

as this group always contains the trivial homomorphism. The result now follows
from the fact that the function in Corollary 3.13 is S -frobenian.

These lemmas show that the leading singularity comes from finitely many terms
which are independent of S and our choice of local conditions for v 2 S . This makes
applications much easier when one is varying S (we require such applications for the
proof of Theorem 1.9).

Theorem 3.22. Retain the assumptions of Theorem 3.1 and the additional ass-
umptions on the finite set of places S from Section 3.2. Let X.k;G;A/ be as in
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Lemma 3.20 and let Sf be the set of non-archimedean places in S . Write $ D
$.k;G;A/. Then

ck;G;ƒ D

�
RessD1�k.s/

�$
�.$/jO�

k
˝GjjGjjSf j

Y
v…S

� X
�v2Hom.O�v ;G/

Av�Ker�v

1

ˆv.�v/

�
�k;v.1/

�$

�

� X
�2Hom.

Q
v2S k

�
v ;G/

�v2ƒv8v2S

1Q
v2S ˆv.�v/�k;v.1/

$

X
x2X.k;G;A/

Y
v2S

h�v; xvi

�
;

where the product over v … S is non-zero.

Proof. From Proposition 3.16, Proposition 3.19, and Lemma 3.21, we get the leading
constant

ck;G;ƒ D

�
RessD1�k.s/

�$
�.$/jO�

k
˝Gj

X
x2X.k;G;A/

Y
v

yfƒv ;G.xvI 1/

�k;v.1/$
:

We have yfƒv ;G.xvI 1/ D yfƒv ;G.1I 1/ for x 2 X.k;G;A/ and v … S by Lemma 3.21,
and these factors are non-zero by Lemma 3.6. The explicit expressions for v … S
follow from Lemma 3.8. For v 2 S , we simply apply directly the definition of
the local Fourier transforms from Section 3.4.1 (see (3.6) for a formula in the non-
archimedean case) and change the order of summation.

Note that the expression for ck;G;ƒ is independent of S , for any S which satisfies
the assumptions of Section 3.2.
Remark 3.23. In the special case A D f1g, our constant agrees with the constant
which Wood obtains in [49, Thm. 3.1], up to the factor .RessD1�k.s//$.k;G;A/. This
factor is missing from Wood’s paper: in the proof of [49, Thm. 3.1], she mistakenly
uses the equality

lim
s!1

.s � 1/�K.s/ D 1;

which holds for K D Q but does not hold in general (the residue is given by the
analytic class number formula). Thus the right-hand side of [49, Thm. 3.1] should
contain an additional factor of .RessD1�K.s//wK;C .
Remark 3.24. Let yG D Hom.G^;Gm/ denote the Cartier dual of G^. Then

X.k; yG/ D Ker.k� ˝G^ ! A� ˝G^/:

An examination of the proof of Lemma 3.20 gives the bounds

jX.k; yG/ � .A˝G^/j � jX.k;G;A/j � j2G^=4G^jjA˝G^j:

The following examples show that either bound can be sharp.
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For the lower bound, take k D Q, A D f1g andG^ D Z=4Z. Then A˝G^ D 1,
X.k;G; f1g/ DX.k; yG/ D 0, and j2G^=4G^j D 2.

For the upper bound, take k D Q, A D f˙1g and G^ D Z=4Z. Then one
checks that X.Q;Z=4Z; f˙1g/ D h˙1;˙4i, despite the fact that X.Q; �4/ D 0.

An example where both bounds coincide is given by taking A D f1g and G^ D
Z=2Z. One easily sees that in this case X.k;G; f1g/ is trivial.

3.8. Positivity of the leading constant. To finish the proof of Theorem 3.1, we need
to show that ck;G;ƒ > 0 if there exists some sub-G-extension which realises all the
given local conditions. It suffices to consider the contributions from v 2 S to the
explicit expression given in Theorem 3.22, as the factors at v … S are clearly non-zero.
By character orthogonality we haveX
x2X.k;G;A/

Y
v2S

h�v; xvi D

(
jX.k;G;A/j if

Q
v2S �v is trivial on X.k;G;A/;

0 otherwise:

In particular, this sum is non-negative for all � 2 Hom.
Q
v2S k

�
v ; G/. Hence, it

suffices to show the existence of some � such that this sum is non-zero. However,
we have assumed the existence of a sub-G-extension ' which realises all the local
conditions. Let  WA�=k� ! G be the associated homomorphism coming from
class field theory. Note that

Q
vh v; xvi D 1 for all x 2 k� ˝G^, henceY

v2S

h v; xvi D
Y
v…S

1

h v; xvi
:

It therefore suffices to show that

h v; xvi D 1 for all v … S and all x 2 X.k;G;A/: (3.16)

However, for x 2 X.k;G;A/we have xv 2 Av˝G
^ for all v … S , by Lemma 3.20.

Moreover, by assumption every element of A is a local norm from K' for all v … S ,
thus Av � Ker v for all v … S by Lemma 3.5. The claim (3.16) follows, which
completes the proof of Theorem 3.1.

4. Proof of results

We now apply Theorem 3.1 in various ways to prove the results from the introduction.

4.1. Asymptotic formula for everywhere local norms. We first derive an asymp-
totic formula for Nloc.k;G;A; B/ (see (1.1)) using Theorem 3.1.
Theorem 4.1. We have

Nloc.k;G;A; B/ D ck;G;A;locB.logB/$.k;G;A/�1 CO
�
B.logB/$.k;G;A/�1�ı

�
as B !1, for some ck;G;A;loc > 0 and some ı D ı.k;G;A/ > 0.
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Proof. For all v 2 �k , let ƒv be the set of sub-G-extensions of kv corresponding
to those extensions L=kv for which every element of A is a local norm from L=kv .
Thus, in this setting ƒ D .ƒv/v2�k is determined by A. We clearly have

Nloc.k;G;A; B/ D N.k;G;ƒ;B/:

It therefore suffices to show that the leading constant in Theorem 3.1 is positive.
To do so, we need to exhibit some sub-G-extension of k for which every element
of A is everywhere locally a norm. However, the trivial extension k=k is such an
extension.

4.2. Proof of Theorem 1.9. As cyclic extensions always satisfy the Hasse norm
principle, we may assume that G is non-cyclic. We use the following criterion
for failure of the Hasse norm principle in the abelian setting, which was originally
pointed out to us by Melanie Matchett Wood. (We use the notation from Section 3.1.)
Proposition 4.2. Let ' be aG-extension of k. Then ' fails the Hasse norm principle
if and only if there exists a proper subgroup ‡ � ^2.G/ that contains the image of
the natural map Y

v

^
2.Im'v/! ^2.G/:

Proof. Let K be the number field determined by '. Recall that the failure of the
Hasse norm principle is measured by the Tate–Shafarevich group

X.k;R1K=k Gm/ WD Ker
�
H1.k;R1K=k Gm/!

Y
v

H1.kv;R1K=k Gm/
�
;

where R1K=k Gm denotes the associated norm 1 torus, see [34, Sec. 6.3]. This group
is finite by [34, Prop. 6.9]. AsK=k is Galois, a theorem of Tate [34, Thm. 6.11] (see
also [36, Ex. 5.6]) implies that there is an exact sequence

0! Hom
�
X.k;R1K=k Gm/;Q=Z

�
! H3.G;Z/!

Y
v

H3.Im'v;Z/:

However, as G is abelian, we have a well-known canonical isomorphism

H3.G;Z/ Š Hom.^2.G/;Q=Z/

(see e.g. [20, Lem. 6.4]). Using this and applying Hom.�;Q=Z/, we therefore obtain
the exact sequenceY

v

^
2.Im'v/! ^2.G/!X.k;R1k'=k Gm/! 0: (4.1)

Thus, failure of the Hasse norm principle is equivalent to the first map in (4.1) failing
to be surjective.
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Therefore, to prove Theorem 1.9, it suffices to show the following.
Theorem 4.3. Let ‡ � ^2.G/ be a proper subgroup. Then

lim
B!1

#f' 2 G-ext.k/ W ˆ.'/ � B;A � NK'=k A�K' ;^
2.Im'v/ � ‡ 8vg

Nloc.k;G;A; B/
D 0:

Note that in Theorem 4.3, and henceforth, we abuse notation by writing^2.Im'v/
� ‡ to mean that the image of the natural map ^2.Im'v/ ! ^2.G/ is contained
in ‡ , despite the fact that this map is not injective in general.

We prove Theorem 4.3 via an application of Theorem 3.1. Note, however,
that one cannot apply Theorem 3.1 directly, as the local conditions imposed at the
infinitely many places will not be compatible with the assumptions of Theorem 3.1.
We therefore apply Theorem 3.1 to a suitable finite set of places, which we then allow
to increase.

4.2.1. Proof of Theorem 4.3. Let S0 be a finite set of places of k satisfying the
conditions of Section 3.2, which we consider as being fixed. Let T be a finite set of
places of k which is disjoint from S0. Eventually, we will consider what happens
as T increases. Let S D S0 [ T .

We consider the local conditions ƒv given by

f'v 2 Hom.Gal.xkv=kv/; G/ W Av � NK'v =kv .K
�
'v
/g; v … T I

f'v 2 Hom.Gal.xkv=kv/; G/ W Av � NK'v =kv .K
�
'v
/;^2.Im'v/ � ‡g; v 2 T:

We denote the collection of such conditions by ƒT . Note that we clearly have

#
˚
' 2 G-ext.k/ W ˆ.'/ � B;A � NK'=k A�K' ;

^
2 .Im'v/ � ‡ 8v

	
Nloc.k;G;A; B/

�
N.k;G;ƒT ; B/

Nloc.k;G;A; B/

for all B . Applying Theorem 3.1 gives

lim
B!1

N.k;G;ƒT ; B/

Nloc.k;G;A; B/
D

ck;G;ƒT
ck;G;A;loc

;

where ck;G;A;loc > 0 by Theorem 4.1. To prove Theorem 4.3 it therefore suffices to
show that

lim
S0[T!�k

ck;G;ƒT
ck;G;A;loc

D 0; (4.2)

where as explained we consider S0 as fixed and T as increasing and disjoint
from S0. We do this using the explicit expression for the leading constant given in
Theorem 3.22. We let e be the exponent of G. We require the following elementary
observation.
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Lemma 4.4. Let ˛ 2 k�. If v is such that ˛ 2 k�ev , then ˛ is a local norm at v from
every sub-G-extension of k.

Proof. LetK be an extension of k with Galois group isomorphic to a subgroup ofG
and v a place of k such that ˛ 2 k�ev . Let Kv be the completion of k at a choice of
place of K above v. Then local class field theory yields

k�v=NKv=kv K
�
v Š Gal.Kv=kv/ ,! G:

NowG has exponent e, whereby the group k�v=NKv=kv K�v has exponent dividing e.
It follows that an eth power in k�v is a local norm.

We now obtain the following bounds.
Lemma 4.5. Let ke D k.�e; e

p
A/. Then

ck;G;ƒT
ck;G;A;loc

�

Y
v2T

v completely split in ke=k

P
�v2Hom.k�v ;G/
^2.Im�v/�‡

1=ˆv.�v/P
�v2Hom.k�v ;G/ 1=ˆv.�v/

:

Proof. The factors in Theorem 3.22 cancel out in the quotient ck;G;ƒT =ck;G;A;loc,
except those at places v 2 S . By Lemma 3.20, we have

X.k;G;A/ D fx 2 O�S0 ˝G
^
W xv 2 Av ˝G

^ for all v … S0g

(this statement holds for any set of places satisfying the assumptions of Section 3.2).
Moreover, for v 2 T any element of Av is a local norm at v by our choice of ƒv; it
follows that h�v; xvi D 1 for �v 2 ƒv as in Theorem 3.22, henceX

x2X.k;G;A/

Y
v2S

h�v; xvi D
X

x2X.k;G;A/

Y
v2S0

h�v; xvi:

Therefore, we can split off Euler factors for all v 2 T from the term involvingS , while
the remaining sum over Hom.

Q
v2S0

k�v ; G/ is the same in ck;G;ƒT and ck;G;A;loc.
We have obtained the equality

ck;G;ƒT
ck;G;A;loc

D

Y
v2T

P
�v2ƒv

1=ˆv.�v/P
�v2Hom.k�v ;G/

Av�Ker�v
1=ˆv.�v/

:

The quotient of each local factor is at most 1, so to obtain an upper bound we may
just consider those places v 2 T which are completely split in ke=k. For such places
every element of A is an eth power in k�v , hence the condition that they are local
norms is automatic by Lemma 4.4. The result follows.

We will make use of the following fact from [20, Lem. 6.9]. Here, we use the
term bicyclic for a non-cyclic group that is a direct sum of two cyclic groups.
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Lemma 4.6. Let G be a finite abelian non-cyclic group. Then there exists a finite
collection of bicyclic subgroups Gi � G for i 2 I such that the natural mapM

i2I

^
2.Gi /! ^

2.G/

is an isomorphism.
As ‡ � ^2.G/ is a proper subgroup, there exists some i such that ^2.Gi / 6� ‡ .

Fix this i and writeGi Š Z=nZ�Z=mZ,where n;m j e. Let v 2 T be a place of k
which is completely split in the extension k.�e; e

p
A/. There exists a Gi -extension

of kv: simply adjoin an nth root of a uniformiser to the unique unramified extension
of kv of degree m. Thus, by local class field theory, there exists �v 2 Hom.k�v ; G/
such that Im�v D Gi . In particular,we have ^2.Im�v/ 6� ‡ . For such places v we
find that

#f�v 2 Hom.k�v ; G/ W ^
2.Im�v/ � ‡;�v ramifiedg

< #f�v 2 Hom.k�v ; G/ W �v ramifiedg:

Let av D #f�v 2 Hom.k�v ; G/ W �v ramifiedg. Recall that tamely ramified �v have
conductor qv and there are jGj unramifiedG-characters. Using Lemma 4.5, it follows
that

ck;G;ƒT
ck;G;A;loc

�

Y
v2T

v completely split in ke

jGj C .av � 1/=qv CO.1=q
2
v/

jGj C av=qv CO.1=q2v/

D

Y
v2T

v completely split in ke

�
1 �

1

jGjqv
CO

� 1
q2v

��
However, this diverges to 0 as S0 [ T ! �k since

�

X
v completely split in ke

1

qv

diverges by the Chebotarev density theorem. This proves (4.2) and completes the
proof of Theorem 4.3, hence the proof of Theorem 1.9.
Remark 4.7. Lemma 4.6 is the first part of the statement of [20, Lem. 6.9].
Unfortunately the second part of the statement [20, Lem. 6.9] is false (this claims that
if the exponent of ^2.G/ divides a prime p, then all the Gi may chosen isomorphic
to .Z=pZ/2). A counterexample is given by the group G D Z=2Z � Z=4Z and the
subgroup G1 D Z=2Z � Z=2Z; here the induced map

Z=2Z D ^2.G1/! ^
2.G/ D Z=2Z

is trivial. This mistake in [20, Lem. 6.9] has various consequences for [20] which
will be addressed in a forthcoming corrigendum.
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4.3. Proof of Theorem 1.4. Follows from Theorems 4.1 and 1.9.

4.4. Proof of Theorem 1.1. Follows immediately from Theorem 1.4.

4.5. Proof of Theorem 1.6. The implication (3))(1) in Theorem 1.6 follows from
Lemma 4.4, Theorem 3.1 and Theorem 1.9, as clearly $.k;G;A/ D $.k;G; f1g/

in this case (we are only imposing finitely many local conditions). The implication
(1))(2) is clear from Definition 1.3 and Theorem 1.4. For the remaining implication
(2))(3), we note that (2) clearly implies that

Av � k
�d
v for all d j e and all v −1 with qv � 1 mod d: (4.3)

Moreover, we have the following elementary observation.
Lemma 4.8. Let e 2 Z�1, let ˛ 2 k�, and let v be a place of k such that e; ˛ 2 O�v .
Let d D gcd.e; qv � 1/. If ˛ 2 k�dv then ˛ 2 k�ev .

Proof. As ˛ 2 k�dv and ˛ is a unit, its image in the residue field lies in F�dv .
However, as d D gcd.e; qv � 1/, we have F�dv D F�ev . The result therefore follows
from Hensel’s lemma.

Hence, the remaining implication (2))(3) in Theorem 1.6 follows immediately
from (4.3) and Lemma 4.8.

4.6. Proof of Corollary 1.7. Let ˛ 2 A and consider ˛ˇe for some ˇ 2 k�. By
Lemma 4.4, we see that ˇe is a norm everywhere locally from all G-extensions of k.
It follows that ˛ˇe is a norm everywhere locally from a given G-extension if and
only if ˛ is a norm everywhere locally. Part (i) now follows from Theorem 1.9 and
Theorem 4.1. Part .i i/ also follows from Lemma 4.4 and Theorem 1.9.

For parts (iii) and (iv), we use the!-version of Tate–Shafarevich groups. Namely,
for a finite abelian group scheme M over k we let

X!.k;M/ D fc 2 H1.k;M/ W cv D 0 2 H1.kv;M/ for all but finitely many vg:

By Kummer theory we have H1.L; �e/ D L�=L�e for any fieldL of characteristic 0.
Therefore, part (iii) of Theorem 1.6 is equivalent to

Ak�e �X!.k; �e/:

The key observation is now the following.
Lemma 4.9. Let k be a number field, let e 2 Z�1 and let 2r be the largest power
of 2 dividing e. Then X!.k; �e/ D 0, unless the extension k.�2r /=k is non-cyclic,
where we have X!.k; �e/ Š Z=2Z.

Proof. Follows immediately from [32, Thm. 9.1.11].

The remaining parts of Corollary 1.7 now follow from Lemma 4.9.
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Remark 4.10. Even though we have

Nloc.k;G;A; B/ D Nloc
�
k;G;Ahˇei; B

�
and

Nglob.k;G;A; B/ � Nglob
�
k;G;Ahˇei; B

�
;

we can still have
Nglob.k;G;A; B/ ¤ Nglob

�
k;G;Ahˇei; B

�
:

For example, take kDQ, GD.Z=2Z/2, ADf1g, and ˇD5 (see Example 1.11 (4)).

4.7. Proof of Theorem 1.8. The implication (2)) (1) is self-evident. So suppose
that

lim
B!1

Nglob.k;G;A; B/

N.k;G;B/
> 0:

Then by Theorem 1.6 there exists a cofinite set of places T � �k such that A � k�ev
for all v 2 T . By [32, Thm. 9.1.11],

Ker
�
k�=k�e !

Y
v2T

k�v=k
�e
v

�
D Ker

�
k�=k�e !

Y
v2T[fv−2g

k�v=k
�e
v

�
;

so we may assume that T contains all v − 2. Let p be the unique prime of k lying
above 2. Let �WGal.xk=k/! G be a G-extension and let ˛ 2 A. Then at all places
v ¤ p, the cyclic algebra .�; ˛/ over k has local invariant zero, because ˛ is a local
norm at v by Lemma 4.4. Now the Albert–Brauer–Hasse–Noether theorem [32,
Thm. 8.1.17] shows that .�; ˛/ has local invariant zero at p, meaning that ˛ is also
a local norm at p. Therefore, all elements of A are everywhere local norms from
all G-extensions of k. But G is cyclic, hence every G-extension satisfies the Hasse
norm principle; (2) now follows.

4.8. Variants of Theorems 1.1 and 1.4. We finish with some variants of our results,
which allow one to impose local conditions at finitely many places. Our first result is a
variant of Theorem 1.4, and follows immediately from Theorem 3.1 and Theorem 1.9.

Corollary 4.11. Retain the assumptions of Theorem 3.1. Assume further that every
element of A is a local norm from every extension inƒv for all v, and that there exists
a sub-G-extension of k which realises the given local conditions for all places v. Then

#f' 2 G-ext.k/ W ˆ.'/ � B; 'v 2 ƒv 8v; A � NK'=k K
�
' g

D ck;G;ƒB.logB/$.k;G;A/�1.1C o.1//;

for some leading constant ck;G;ƒ > 0.
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From this we immediately obtain the following strengthening of Theorem 1.1.
Corollary 4.12. Let k be a number field, S a finite set of places of k,G a finite abelian
group, and A � k� a finitely generated subgroup. Let  be a sub-G-extension of k
such that every element of A is everywhere locally a norm from K . There exists a
G-extension ' of k such that every element of A is a global norm from K' and such
that 'v D  v for all v 2 S .

Remark 4.13. Taking  to correspond to the trivial extension k=k, we find the
existence of an extension K=k with Galois group G such that every element of A is
a norm from K and such that K is completely split at all places of S .

A. An algebro-geometric point of view on Theorem 1.1
(by Yonatan Harpaz and Olivier Wittenberg)

We give, in this appendix, an algebro-geometric proof of Theorem 1.1, based on a
combination of the descent and fibration methods in the formulation they are given
in [24]. The main argument is described in Sections A.1–A.3. In Section A.4 we
show that the refinement of Theorem 1.1 formulated in Corollary 4.12 can also be
deduced in this manner by proving a certain verticality result on the Brauer groups
of the varieties in question. This verticality uses in an essential way the fact that G
is abelian. In Section A.5 we show that when G is not abelian, the statement of
Corollary 4.12 is false, by constructing a counterexample in the form of an explicit
2-group. Nonetheless, as we show in the upcoming work [25], Theorem 1.1 does
hold for 2-groups (and more generally for nilpotent groups, even for supersolvable
groups).

Let us fix, for the whole of Sections A.1–A.4, a finite abelian group G, a field k
of characteristic 0, a finite collection ˛1; : : : ; ˛m 2 k� and an algebraic closure xk
of k. In Sections A.1–A.3, we assume that k is a number field.

A.1. Statements. Let us choose an embeddingG ,!SLn.k/ for some n�1. Let SLn
and Gm implicitly denote the corresponding algebraic groups over k. For any ˛ 2 k�,
let T ˛ �

Q
g2G Gm denote the subvariety whose xk-points are the maps t WG ! xk�

such that
Q
g2G t .g/ D ˛. Thus, T ˛ is a (trivial) torsor under the (trivial) torus T 1.

Let Y D SLn � T ˛1 � � � � � T ˛m . Let G act on SLn by right multiplication,
on T ˛ (for any ˛) by the right action .t � /. 0/ D t . 0/, and on Y by the resulting
diagonal right action. As G acts freely on SLn, it acts freely on Y ; hence, letting
X D Y=G, the quotient map � WY ! X is a G-torsor.

The fibre of � above any rational point of X is a G-torsor over Spec.k/, say
Spec.K/, where K is an étale k-algebra endowed with elements ˇ1; : : : ; ˇm 2 K�
such thatNK=k.ˇi / D ˛i for all i . Namely ˇi is the restriction to the fibre in question
of the invertible function .s; t1; : : : ; tm/ 7! ti .1/ on Y , where 1 denotes the identity
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element of G. If the algebra K is a field, then K=k is Galois with group G, since
it is a G-torsor. Thus, all we need to do, to show Theorem 1.1, is to prove that
there exists x 2 X.k/ such that ��1.x/ is irreducible. Letting X 0 denote a smooth
compactification of X (i.e. any smooth and proper variety containing X as a dense
open subset), we shall in fact prove the following theorem.
Theorem A.1. The set X 0.k/ is dense in the Brauer–Manin set X 0.Ak/Br.X 0/.

We note that X 0.Ak/Br.X 0/ is non-empty since so is X.k/; indeed, even Y.k/ is
non-empty. The desired result now follows from Theorem A.1:
Corollary A.2. The set of x 2 X.k/ such that ��1.x/ is irreducible is dense in the
(non-empty) Brauer–Manin set X 0.Ak/Br.X 0/.

Proof. This is essentially an application of a theorem of Ekedahl [17, Thm. 1.3] (also
discussed and proved in [41, Sec. 3.5–3.6]). What Ekedahl really shows in [17]
is that for any finite étale morphism � WY ! X between geometrically irreducible
varieties over k and for any finite set S of places of k, there exist a finite set S 0 of
places of k, disjoint from S , and a collection .x0v/v2S 0 2

Q
v2S 0 X.kv/ such that for

any x 2 X.k/ close enough to .x0v/v2S 0 for the product topology on
Q
v2S 0 X.kv/,

the scheme ��1.x/ is irreducible. Theorem A.1 implies Corollary A.2 in view of
this statement and of the remark that the Brauer–Manin set is open in X 0.Ak/ as X
is geometrically unirational (see [48, Rem. 2.4 (i)–(ii)]).

As we have seen, Corollary A.2 implies Theorem 1.1. In a less immediate way,
it also implies Corollary 4.12. Indeed, noting that any sub-G-extension of k, in the
terminology of Section 3.1, arises as the fibre of the quotient map SLn ! SLn=G
above a rational point of SLn=G (see [40, Ch. I, Sec. 5.4, Cor. 1] and recall that
H1.k;SLn/ is a singleton by Hilbert’s Theorem 90), we see that Corollary 4.12
follows from combining Corollary A.2 with Proposition A.3 below.
Proposition A.3. Let B D SLn=G and b 2 B.k/. Let f WX ! B be the map
induced by the first projection Y ! SLn. Let � denote the set of places of k. Let
.xv/v2� 2

Q
v2�X.kv/. If f .xv/ D b for all v 2 �, then .xv/v2� 2 X 0.Ak/Br.X 0/.

We shall prove Theorem A.1 in Sections A.2–A.3 and Proposition A.3 in Sec-
tion A.4.

A.2. Descent. To prove Theorem A.1, we first perform a descent, in the sense of
Colliot-Thélène and Sansuc [12], to reduce ourselves to studying the arithmetic of
hopefully simpler auxiliary varieties. If V is a variety over k, we denote by xkŒV ��
the group of global invertible functions on V ˝k xk.
Proposition A.4. We have xkŒX�� D xk�.

Proof. We first remark that there is a canonical exact sequence of abelian groups

0! xk� ! xkŒY �� !
�
ZŒG�=Z

�m
! 0 (A.1)
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whose arrows are equivariant with respect to the actions of Gal.xk=k/ and of G;
indeed, Rosenlicht’s lemma (see [11, Lem. 10]) shows that

xkŒY ��=xk� D xkŒSLn��=xk� ˚ xkŒT ˛1 ��=xk� ˚ � � � ˚ xkŒT ˛m ��=xk�, (A.2)

while it is well known that xkŒSLn�� D xk� and that xkŒT ˛��=xk�, for any ˛ 2 k�, is the
character group of the torus under which T ˛ is a torsor. On the other hand, by the
exact sequence

0! Z! ZŒG�! ZŒG�=Z! 0 (A.3)

and by the vanishing of H1.G;Z/, we have H0.G;ZŒG�=Z/ D 0. We can now
deduce from (A.1) that xkŒX�� D .xkŒY ��/G D xk�.

Set yG D Hom.G; xk�/. We recall that the type of the G-torsor � WY ! X is, by
definition, the isomorphism class of

� ˝k xkWY ˝k xk ! X ˝k xk

as a G-torsor over X ˝k xk and that it can be identified, thanks to Proposition A.4,
with a homomorphism �W yG ! Pic.X ˝k xk/. (See [24, (3.3)], for this (standard)
identification.) The homomorphism� is injective asG is finite andY is geometrically
connected (see [44, p. 40, Exercise 2]).

Let us denote by �W yT ,! Pic.X 0˝k xk/ the inverse image of �W yG ,! Pic.X˝k xk/
by the restriction map Pic.X 0 ˝k xk/ ! Pic.X ˝k xk/. As in [24, (3.1)], we have a
short exact sequence of Gal.xk=k/-modules

0 // bQ // yT // yG // 0, (A.4)

where bQ is a permutation Gal.xk=k/-module, and, dually, a short exact sequence

1 // G // T // Q // 1 (A.5)

of commutative algebraic groups over k, where Q is a quasi-trivial torus and G is
viewed as a constant k-group. We note that T is a torus since Pic.X 0 ˝k xk/tors D 0

(see [37, Prop. 1]).
As X 0.k/ ¤ ¿, there exists a torsor over X 0, under T , of type � (see [44,

Cor. 2.3.9]). Applying [24, Cor. 2.2]1 to such a torsor, we now see that in order to
prove Theorem A.1, it suffices to prove that rational points are dense in the Brauer–
Manin set for a smooth compactification of any torsor over X 0, under T , of type �.

1All of the Brauer groups that appear in Corollaire 2.2 of [24] are unramified Brauer groups, hence
this corollary is really a statement about Brauer–Manin sets of smooth compactifications of torsors, even
though smooth compactifications do not figure explicitly in it.
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A.3. Fibration. By [24, Prop. 3.1], which we can apply since xkŒX�� D xk� (see
Proposition A.4), any torsor over X 0, under T , of type � contains an open subset W
admitting a smooth map p W W ! Q whose fibres over the rational points of Q are
torsors over X , under G, of type �. In order to prove that rational points are dense in
the Brauer–Manin set for a smooth compactification of W , we shall first prove that
the baseQ and the fibres of p over the rational points ofQ satisfy this property, then
solve the “fibration problem” to deduce it for W .

The varietyQ is rational over k since it is a quasi-trivial torus, so the assertion on
the base is trivial. The fibre of p above any rational point of Q is in fact a twist Y �
of Y by a 1-cocycle � 2 Z1.k;G/, since two torsors of a given type can only differ
by such a twist. As G acts diagonally on Y D SLn � T ˛1 � � � � � T ˛m , we have

Y � D .SLn/� � .T ˛1/� � � � � � .T ˛m/� :

On the one hand, we have .SLn/� ' SLn since H1.k;SLn/ is a singleton (Hilbert’s
Theorem 90); hence .SLn/� is rational over k. On the other hand, for any ˛ 2 k�, the
variety .T ˛/� is a torsor under the torus .T 1/� . All in allY � is birationally equivalent
to a torsor under a torus over k. We conclude that for any smooth compactificationZ
of a fibre of p above a rational point ofQ, the setZ.k/ is indeed dense inZ.Ak/Br.Z/

(see [44, Thm. 6.3.1], [10, Prop. 6.1 (iii)]).
A positive solution to the fibration problem for fibrations into rationally connected

varieties over a quasi-trivial torus is obtained in [24, Th. 4.2 (ii)] under the assumption
that a rational section exists over xk. (The existence of such a rational section ensures
that the hypothesis of loc. cit. is satisfied, as shown in [43, Lem. 1.1 (b)].) Fortunately,
this last condition holds in our situation.
Proposition A.5. The generic fibre of p ˝k xkWW ˝k xk ! Q ˝k xk possesses a
rational point.

Proof. This generic fibre is a twist of Y ˝k xk.Q/ by a 1-cocycle � 2 Z1.xk.Q/;G/.
Arguing as above, we see that it has a rational point if and only if .T ˛i ˝k xk.Q//�
has a rational point for each i . Writing ˛i as a jGj-th power in xk� determines a
G-invariant xk-point of T ˛i , hence a G-equivariant isomorphism

T ˛i ˝k xk D T
1
˝k
xk:

Thus, .T ˛i ˝k xk.Q//� is isomorphic to .T 1 ˝k xk.Q//� , a variety which certainly
has a rational point since it is a torus.

Applying [24, Th. 4.2 (ii)] to a suitable compactification of p therefore completes
the proof of Theorem A.1.

A.4. Verticality of the Brauer group. It remains to prove Proposition A.3. Since
X 0.Ak/

Br.X 0/ is closed in X 0.Ak/, we are free to replace xv , for v outside of an
arbitrarily large finite set of places of k, with another kv-point of the same fibre of f .
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In particular, we may assume that .xv/v2� is an adelic point of this fibre. We may
then view it as an adelic point of X . As such, it is orthogonal, for the Brauer–Manin
pairing

X.Ak/ � Br.X/! Q=Z;

to f �Br.B/. Proposition A.3 therefore results from the following purely algebraic
statement, in which k is allowed to be an arbitrary field of characteristic 0.

Proposition A.6. Viewing Br.X 0/ and f �Br.B/ as subgroups of Br.X/, one has an
inclusion Br.X 0/ � f �Br.B/.

Proof. Let V be a smooth compactification of the generic fibre V 0 of f . As V 0 is a
torsor under a torus over k.B/ split by the extension k.SLn/=k.B/, as V 0 ˝k xk is a
torsor under a torus over xk.B/ split by the extension xk.SLn/=xk.B/ and as the natural
map

Gal.xk.SLn/=xk.B//! Gal.k.SLn/=k.B//

is an isomorphism, the following well-known lemma implies that the pull-back map

Br.V /=f �Br.k.B//! Br.V ˝k xk/=f �Br.xk.B//

is injective.

Lemma A.7. Let T be a torus over a fieldK, with character group yT , split by a finite
Galois extension L=K. For any smooth and proper variety V over K containing a
torsor under T as a dense open subset, there is a canonical embedding

Coker.Br.K/! Br.V // ,! H2.Gal.L=K/; yT /:

Proof. Let xL denote a separable closure of L and V 0 the open subset in question.
As Br.V ˝K xL/ D 0 and Br.L/� Br.V ˝K L/, the Hochschild–Serre spectral
sequence provides an embedding of Coker.Br.K/ ! Br.V // into the kernel of the
restriction map

H1.K;Pic.V ˝K xL//! H1.L;Pic.V ˝K xL//;

that is, into H1.Gal.L=K/;Pic.V ˝K L//. On the other hand, the exact sequence

0! yT ! Div.V nV 0/˝KL.V ˝K L/! Pic.V ˝K L/! 0

(see [44, p. 130]) embeds this group into H2.Gal.L=K/; yT /.

As f is smooth and surjective, we have f �Br.k.B// \ Br.X 0/ � f �Br.B/ as
subgroups of Br.k.X//. It follows that the pull-back map

Br.X 0/=
�
Br.X 0/ \ f �Br.B/

�
! Br.X 0 ˝k xk/=

�
Br.X 0 ˝k xk/ \ f �Br.B ˝k xk/

�
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is injective as well. Thanks to this injectivity, we now see that in order to prove
Proposition A.6, we may assume that k is algebraically closed.

The generic fibre of the natural map X ! .T ˛1 � � � � � T ˛m/=G is a left torsor
under SLn, hence is isomorphic to SLn (Hilbert’s Theorem 90). It follows that X is
stably birationally equivalent to .T ˛1 � � � � � T ˛m/=G. This variety is isomorphic
to .T 1 � � � � � T 1/=G when k is algebraically closed, as we have seen in the proof
of Proposition A.5. In addition, the unramified Brauer group of .T 1 � � � � � T 1/=G
vanishes when k is algebraically closed, by Saltman’s formula [13, Thm. 8.7] and by
the next lemma. Hence, Br.X 0/ D 0 in this case.

Lemma A.8. Let BG denote the set of subgroups of G generated by two elements.
For any finite abelian group G and for M D ZŒG�=Z or M D Q=Z, the product of
restriction maps H2.G;M/!

Q
H2BG

H2.H;M/ is injective.

Proof. As H2.G;Q/ and H2.G;ZŒG�/ vanish, this follows from the injectivity of the
product of restriction maps

H3.G;Z/!
Y

H2BG

H3.H;Z/. (A.6)

It is a general fact, valid for an arbitrary finite group G, that the kernel of (A.6)
remains unchanged if one replaces BG with the set of abelian subgroups ofG (see [13,
Thm. 7.1]), which implies the desired injectivity when G is abelian. Alternatively,
this injectivity results from Lemma 4.6 and [20, Lem. 6.4].

This completes the proof of Proposition A.6.

A.5. Nonabelian Galois groups. The descent-fibration argument described in Sec-
tion A.2 and Section A.3 is modelled after a similar argument appearing in [24],
profiting in addition from the favourable circumstance ofG being abelian. In general,
the inductive argument of [24] is constructed to handle also nonabelian groups, as long
as they admit a suitable filtration into normal subgroups whose successive quotients
are cyclic; such groups are also known as supersolvable. Though the variety X
considered here is more complicated than the one considered in [24], the argument of
loc. cit. can be adapted to yield the statement of Theorem 1.1 for any supersolvableG,
see [25]. Interestingly enough, though, it turns out that the stronger claim appearing
in Corollary 4.12 does not hold for a general nonabelian group G, even when G is
supersolvable (indeed, even when G is a 2-group). This is due to the fact that the
variety X may contain unramified Brauer classes which are not vertical with respect
to the projection f WX ! B , and which can obstruct the weak approximation of local
points onX , even when those local points lie over a rational point ofB . (Such Brauer
classes do not exist in the abelian case; see Proposition A.6.) Let us now illustrate
how one can construct a nonabelian example where exactly this happens.
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We shall say that a group H is weakly bicyclic if it is an extension of a cyclic
group by a cyclic group. We note that if K=k is a Galois extension with Galois
group G then the decomposition subgroups Hv � G are weakly bicyclic at every
finite place v which does not divide the order of G. Given a group G, we shall
denote by BG the set of weakly bicyclic subgroups of G (a notation compatible with
Lemma A.8 when G is abelian).

Proposition A.9. Let G be a finite 2-group satisfying the following properties:

(i) G has exponent � 16.

(ii) The abelianization Gab has exponent 2 and is generated by images of elements
of G of order 2.

(iii) There exists an element ' 2 H2.G;Z=2Z/ whose restriction to every cyclic
subgroup of G of order 16 vanishes, whose restriction to at least one cyclic
subgroup of G of order 8 does not vanish, and whose image by the natural
map ıWH2.G;Z=2Z/ ! H2.G;Q=Z/ belongs to, and spans, the kernel of the
product of restriction maps

HH 2.G;Q=Z/!
Y

H2BG

H2.H;Q=Z/:

Let H � G be a cyclic subgroup of order 8 on which ' does not vanish. Then:

(1) There exist G-extensions K=Q which are unramified at 2 and whose decompo-
sition groups at 2 are conjugate to H .

(2) For every G-extension K=Q as in (1), the element 256 2 Q� is a local norm
from K at every place of Q, but not a global norm from K.

In particular, the statement of Corollary 4.12 does not hold for G with k D Q,
S D f2g and A � k� the subgroup generated by 256.

The proof of Proposition A.9 requires a bit of preparation. In the next lemma, we
denote by Brnr.B/, Br1.B/, Br1;nr.B/, Br0.B/ the subgroups of Br.B/ consisting,
respectively, of unramified, algebraic, algebraic unramified, constant classes.

Lemma A.10. Let G � SLn.Q/ be a finite subgroup. Let B D SLn=G.

(1) If G satisfies condition (ii) of Proposition A.9, then Br1;nr.B/ D Br0.B/.

(2) If G satisfies condition (iii) of Proposition A.9, then Brnr.B/ D Br1;nr.B/.

In particular, for G as in Proposition A.9, we have Brnr.B/ D Br0.B/.

Proof. Condition (ii) implies that for any fieldK, the group H1.K;Gab/ is generated
by elements in the image of the pointed set H1.K;G/ (and even by elements coming
from H1.K;Z=2Z/ via homomorphisms Z=2Z! G). The first claim then follows,
by local and global duality, from [23, Prop. 4]. Let us now explain why condition (iii)
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implies that Brnr.B/ D Br1;nr.B/. For every subgroup H � G, the Hochschild–
Serre spectral sequences for the H -coverings �H WSLn ! SLn=H and SLn; xQ !
SLn; xQ=H , together with the inclusion of roots of unity �1 � xQ�, give rise to a
commutative diagram

Ker
�
Br.SLn=H/! Br.SLn/

�
��

H2.H;Q�/�oo

��

H2.H;�2/oo

����
Ker

�
Br.SLn; xQ=H/! Br.SLn; xQ/

��Q H2.H; xQ�/�Q
�oo H2.H;�1/�Q ,�oo

(A.7)
where �Q D Gal.xQ=Q/ is the absolute Galois group of Q. The horizontal arrows
between the first two columns are isomorphisms since Pic.SLn/ D Pic.SLn; xQ/ D 0,
and the bottom right horizontal map is an isomorphism since xQ�=�1 is uniquely
divisible. In addition, the rightmost vertical map is surjective: indeed, this map fits
in the middle of the commutative diagram with exact rows

0 // Ext1.H1.H/; �2/ //

��

H2.H;�2/ // //

����

Hom.H2.H/; �2/

o

��
0

� // Ext1.H1.H/; �1/�Q // H2.H;�1/�Q
� // Hom.H2.H/; �1/�Q

determined by the universal coefficient theorem, where Ext1.H1.H/; �1/ D 0

since �1 is a divisible group.
We now fix a ˇ 2 Brnr.B/ and aim to show that ˇ is algebraic. By adding to ˇ

a constant class, we may assume that ˇ.�G.1// D 0. As SLn is rational over Q, we
have

Brnr.SLn/ D Br0.SLn/;

and so ��Gˇ D 0. Considering the diagram (A.7) for G D H and using the sur-
jectivity of its right vertical map, we find ˇG 2 H2.G;�2/ whose eventual image
in Br.B xQ/ is the same as the image of ˇ. Now by Bogomolov’s formula (see, for
example, [13, Thm. 7.1]), the group Brnr.SLn; xQ=H/ vanishes wheneverH is weakly
bicyclic, and so by the naturality of (A.7), the image of ˇG in H2.H;�1/ vanishes
for everyH 2 BG . Since�1 Š Q=Z as abelian groups via a choice of a compatible
system of roots of unity, Condition (iii) implies that the image of ˇG in H2.G;�1/
is either 0 or the image of ' 2 H2.G;Z=2Z/ D H2.G;�2/ under the natural map

H2.G;�2/! H2.G;�1/:

By possibly amending the choice of ˇG , we may assume that ˇG 2 f0; 'g. We then
write ˇ1 2 Br.B/ for the image of ˇG , and set ˇ2 WD ˇ � ˇ1. By construction, ˇ1
(and hence also ˇ2) vanishes when pulled back to SLn, and ˇ2 also vanishes when
pulled back to B xQ. In particular, ˇ2 2 Ker.Br1.B/! Br1.SLn//.
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Let now H � G be a cyclic subgroup of order 8 on which ' does not vanish.
As ˇ is unramified, there exists a prime p0 such that ˇ evaluates trivially on B.Qp/

for all p > p0. Choose p > p0 such that there exists a cyclic extension L=Qp of
degree 4 that does not extend to a cyclic extension of degree 8 (any p such that �1
is a square but not a 4th power modulo p will do). Embed Gal.L=Qp/ into H . The
image of the class of L=Qp by the resulting map

H1.Qp;Gal.L=Qp//! H1.Qp; G/

is the class of the torsor ��1G .b/ for some point b 2 B.Qp/ (see [23, Sec. 1.2]), which
we fix.

By the choice of p, we have ˇ.b/ D 0. We claim that ˇ2.b/ D 0 as well. Indeed,
as ˇ2 is algebraic and ˇ2.�G.1// D 0, it follows that ˇ2 vanishes when pulled back
to the universal torsor SLn=G0 ! B , where G0 WD Ker.G ! Gab/ is the derived
subgroup of G. On the other hand, since Gab has exponent 2 and the subgroup
Gal.L=Qp/ � H consists of elements divisible by 2, we have Gal.L=Qp/ � G0.
This means that b lifts to SLn=G0 and so ˇ2.b/ D 0. Therefore,ˇ1.b/ D 0.

Let us prove that ˇG D 0. By contradiction, assume that ˇG D '. Then the
restriction of ˇG to H is the non-trivial element of H2.H;Z=2Z/ D Z=2Z, which
is the one classifying the central extension zH ! H with zH cyclic of order 16.
This element restricts to the non-trivial element of H2.Gal.L=Qp/;Z=2Z/ for the
cyclic order 4 subgroup Gal.L=Qp/ � H , and further to a non-trivial element
of H2.Qp;Z=2Z/ by the assumption that L does not extend to a cyclic degree 8
extension. As ˇ1.b/ D 0, this is absurd. We conclude that ˇG D 0 and ˇ D ˇ2,
which completes the proof that Brnr.B/ D Br1;nr.B/.

Proof of Proposition A.9. Fix an embedding G ,! SLn.Q/ and let B D SLn=G.
By Lemma A.10, we have Brnr.B/ D Br0.G/, and so the existence of a G-extension
K=Q as in (1) follows from [24, Th. B], since G is nilpotent and in particular
supersolvable. Let us choose such an extension K=Q. As 256 is positive, it is a
norm from K1. In addition, 16 is an 8th power (and hence 256 is a 16th power)
in Qp for every odd p; indeed, one of 2;�2 or �1 is a square, and in the latter
case 2i D .1 C i/2 is a square. Since G has exponent at most 16 and 256 is a
unit outside 2, it follows that in K=Q, the element 256 is a local norm at every odd
finite place. Finally, at 2 the extension K=Q is unramified with Frobenius element
of order 8, and hence 256 D 28 is a norm from K2 as well.

It is left to show that 256 is not a global norm from K. Let us first recall some
notation used above. For ˛ 2 k�, we consider the variety X˛ WD .SLn � T ˛/=G,
equipped with the projection X˛ ! B . Given a rational point b 2 B.k/, the fibre
of X1 ! B over b is naturally isomorphic to the norm 1 torus of K=k, which we
denote by T 1

b
. The fibre X˛

b
of X˛ ! B over b is then naturally isomorphic to the

norm ˛ torsor of T 1
b

. We also recall that yT 1 denotes the character lattice of T 1,
which carries a natural action of G.
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Let b 2 B.Q/ be such that Œb� 2 H1.Q; G/ classifies the extensionK=Q (see [23,
Sec. 1.2]). In order to prove that X256

b
.Q/ D ¿, i.e. that 256 is not a norm from K,

we shall now exhibit a Brauer–Manin obstruction on X256
b

.
As G D �1.B; �G.1//, we may identify G-modules with locally constant étale

sheaves of abelian groups on B . In this way, we view yT 1=2 yT 1 as an étale sheaf on B
and ' as an element of H1.B; yT 1=2 yT 1/ via the natural isomorphism

H1.B; yT 1=2 yT 1/ D H2.G;Z=2Z/:

The mappWX16 ! X256 induced by the squaring map T 16 ! T 256 is a torsor under
the 2-torsion subgroup scheme of X1 ! B , which we identify with the G-module

T 1Œ2� D fx 2 T 1.xQ/ W x2 D 1gI

this torsor is classified by an element  2 H1.X256; T 1Œ2�/. We set P WD  [ ' 2
H2.X256; �2/. We will abusively identifyPwith its image in Br.X256/ and consider
it as a Brauer element of order 2.

We have already seen thatX256
b
.Qv/ ¤ ¿ for any place v of Q. Let us show that

the evaluation X
v

invv.x�vP/ 2 Q=Z

is well defined and non-zero for any collection .xv/v of local points in X256
b

.
Our assumptions on ' imply that we can choose, for every weakly bicyclic

subgroup H � G, a class z'H 2 H1.H;Q=Z/ whose image, under the boundary
map

H1.H;Q=Z/! H2.H;Z=2Z/;
is the restriction 'H 2 H2.H;Z=2Z/ of '.

For any place v of Q, let Kv denote the completion of K at a place of K
dividing v. The corresponding decomposition group Dv � G is weakly bicyclic
since G is a 2-group and K2=Q2 is unramified. Letting Qv � Kz'Dv � Kv denote
the intermediate cyclic extension determined by z'Dv 2 H1.Dv;Q=Z/, a direct
computation now reveals that

x�vP D .16;Kz'Dv =Qv/ 2 Br.Qv/:

Since ' is assumed to vanish on every cyclic subgroup of order 16, the class z'Dv
becomes divisible by 2 when restricted to every such subgroup. Since the exponent
of G divides 16, it follows that

8z'Dv 2 H1.Dv;Q=Z/ D Hom.Dv;Q=Z/

vanishes when restricted to any cyclic subgroup of Dv , and hence vanishes; in other
words, the degree of the extension Kz'Dv =Qv divides 8. On the other hand, as D2 is
cyclic of order 8 and ' does not vanish when restricted to D2 we have that

z'D2 2 H1.D2;Q=Z/ Š Z=8Z
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is not divisible by 2 and soKz'D2 DK2. We conclude that invv.x�vP/D0 for all v¤2
(recall that 16 is an 8th power at such v) while inv2.x�2P/ D 1=2 2 Q=Z.

We shall now construct a 2-groupG satisfying the conditions of Proposition A.9.
Let N be the group generated by 4 generators x; y; zC; z� under the following
relations:
(1) x16 D y16 D z8C D z8� D 1;
(2) each of zC; z� commutes with each of x; y; zC; z�;
(3) Œx; y� D zCz�.
In particular, N is a central extension of the bicyclic group Z=16Zhx; yi by the
bicyclic group Z=8ZhzC; z�i. Let � WN ! N be the involution given by

�.x/ D x�1; �.y/ D y�1; �.zC/ D z�; �.z�/ D zC:

We define G WD N Ì Z=2Zh�i to be the associated semi-direct product and view �

as an element of G.
It is straightforward thatG satisfies conditions (i) and (ii) of Proposition A.9. Let

us now construct an element ' 2 H2.G;Z=2Z/ satisfying condition (iii). The hom-
omorphism �WN ! Z=8Z which sends x; y to 0, zC to 1 and z� to �1 intertwines
the action of � with the action of �1WZ=8Z ! Z=8Z. Consequently, it induces a
homomorphism

�0WG D N Ì Z=2Z! Z=8Z Ì Z=2Z DW D8

to the dihedral group of order 16. Consider the short exact sequence

1! Z=2Z! D16
q
! D8 ! 1; (A.8)

where D16 WD Z=16Z Ì Z=2Z is the dihedral group of order 32 and the map q is
induced by the surjective map Z=16Z!Z=8Z. Let 'D8 2H2.D8;Z=2Z/ be the
element classifying the central extension (A.8) and let' WD.�0/�'D8 2H2.G;Z=2Z/.
We leave it to the reader to verify that ' has the desired properties.
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