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Abstract. We construct an example of a non-trivial homogeneous quasimorphism on the group
of Hamiltonian diffeomorphisms of the two and four dimensional quadric hypersurfaces which
is continuous with respect to both the C 0-metric and the Hofer metric. This answers a variant of
a question of Entov–Polterovich–Py which is one of the open problems listed in the monograph
of McDuff–Salamon. Throughout the proof, we make extensive use of the idea of working with
different coefficient fields in quantum cohomology rings. As a by-product of the arguments in
the paper, we answer a question of Polterovich–Wu regarding homogeneous quasimorphisms
on the group of Hamiltonian diffeomorphisms of the complex projective plane and prove some
intersection results about Lagrangians in the four dimensional quadric hypersurface.
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1. Introduction

A (real-valued) homogeneous quasimorphism on a group G is a map

�WG ! R;

which satisfies

9C > 0 s.t. 8f; g 2 G; j�.f � g/ � �.f / � �.g/j 6 C; (1a)

8k 2 Z; 8f 2 G; �.f k/ D k � �.f /: (1b)

The study of homogeneous quasimorphisms is a very rich topic with numerous
connections to other mathematical domains. For example, homogeneous quasimor-
phisms naturally appear in the theory of bounded cohomology, they play a crucial
role in the study of the commutator length and they also have many applications in
the study of algebraic and topological properties (in case G is a topological group)
of G.

In the context of symplectic topology, the study of algebraic and topological
properties of the group of symplectomorphisms and Hamiltonian diffeomorphisms
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has been an important subject. For a closed symplectic manifold .M;!/, denote
the group of Hamiltonian diffeomorphisms by Ham.M;!/ and its universal cover
by eHam.M;!/. One of the first groundbreaking results in this direction is due to
Banyaga [3], which states that Ham.M;!/ is a simple group and eHam.M;!/ is
a perfect group. This implies that there exist no non-trivial homomorphisms on
Ham.M;!/ and eHam.M;!/. However, it was discovered that non-trivial (real-
valued) homogeneous quasimorphisms on Ham.M;!/ and eHam.M;!/ do exist for
some symplectic manifolds. Various constructions have been studied extensively as
well as their applications to Hamiltonian dynamics. Just to mention a few, there are
constructions by Barge–Ghys [4], Borman [10], Entov [20], Entov–Polterovich [22],
Gambaudo–Ghys [32], Givental [33], McDuff [40], Ostrover [47], Py [48] and
Shelukhin [50]. Contact counterparts are also considered by Givental [33], Borman–
Zapolsky [11] and Granja–Karshon–Pabiniak–Sandon [34]. In particular, Entov–
Polterovich [22] introduced a Floer theoretic method to construct homogeneous
quasimorphisms on eHam.M;!/

�eW eHam.M;!/! R;

where .M;!/ is a closed monotone symplectic manifold which satisfies some
property. Recall that a closed symplectic manifold .M;!/ is called monotone if
there exists a constant � > 0, which is referred to as the monotonicity constant, such
that

!j�2.M/ D � � c1j�2.M/;

where c1 D c1.TM/ denotes the first Chern class. In this paper, we only consider
monotone symplectic manifolds unless mentioned otherwise. The precise construc-
tion of �e is explained in Section 3.7. Moreover, (a certain normalization of) �e
satisfies the so-called Calabi property which means, roughly speaking, that “locally”
it coincides with the Calabi homomorphism: we refer to [22] for the precise definition
and its proof. In some cases, it is known that this homogeneous quasimorphism
descends to Ham.M;!/. For an excellent survey of the theory of quasimorphisms in
the symplectic context and their relations to other topics, we refer to [21].

2. Main results

2.1. Homogeneous quasimorphisms. The following question concerning the con-
tinuity of quasimorphisms was posed by Entov–Polterovich–Py in [26]. This question
appears also in the list of open problems in the monograph of McDuff–Salamon.
Question 1 ([26], [41, Chapter 14, Problem 23]). (1) Does there exist a nonzero hom-

ogeneous quasimorphism
�WHam.S2/! R

that is continuous with respect to the C 0-topology on Ham.S2/?
(2) If yes, can it be made Lipschitz with respect to the Hofer metric?
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Recall that the C 0-topology on Ham.M;!/ is induced by the C 0-metric of
Hamiltonian diffeomorphisms �; 2 Ham.M;!/, which is defined by

dC0.�;  / WD max
x2M

d.�.x/;  .x//;

where d denotes the distance on M induced by a fixed Riemannian metric on M .
See Section 3.1 for further remarks on C 0-topology as well as the Hofer metric.

We provide some background and motivation concerning this question of Entov–
Polterovich–Py.
(1) Hofer metric vs. C 0-metric: The relation between C 0-topology and the Hofer
metric is very subtle. For example, C 0-topology is not continuous with respect to the
Hofer metric. Conversely, Entov–Polterovich–Py point out that on Ham.D2n.1//,
the group of compactly supported Hamiltonian diffeomorphisms of the closed unit
ball D2n.1/ in R2n, the Hofer metric is not C 0-continuous. For some striking
results that demonstrate rigidity and flexibility of symplectic objects with respect to
C 0-topology, see [13, 14] and [36].

In fact, for closed surfaces of positive genus †, there are examples of homogen-
eous quasimorphisms defined on Ham.†/ which are C 0-continuous but not Hofer
Lipschitz continuous: for their construction, see Gambaudo–Ghys [31, 32] and for
their discontinuity with respect to the Hofer metric, see [38]. On the other hand,
the aforementioned Entov–Polterovich type homogeneous quasimorphisms are Hofer
Lipschitz continuous but are not C 0-continuous: in fact, it is known that homogen-
eous quasimorphisms which have the Calabi property are not C 0-continuous; for a
proof, see [26].

(2) Homogeneous quasimorphisms on the group of Hamiltonian homeomorphisms:
Given a symplectic manifold .M;!/, consider the C 0-closure of Ham.M;!/ inside
the group of homeomorphisms of M . We denote it by Ham.M;!/ and call its
elements Hamiltonian homeomorphisms. Hamiltonian homeomorphisms are central
objects in C 0-symplectic topology. A C 0-continuous homogeneous quasimorphism
defined on Ham.M;!/ will be useful to obtain information about the algebraic
and topological properties of Ham.M;!/. In particular, when .M;!/ is either a
2-sphere S2 or a 2-disk D2, Ham.M;!/ is the identity component of the group
of area-preserving homeomorphisms. A (non-trivial) homogeneous quasimorphism
on Ham.M;!/ can be naturally obtained as an extension of a C 0-continuous (non-
trivial) homogeneous quasimorphism on Ham.M;!/ (see [26, Proposition 1.4]).
Therefore, the existence of a non-trivialC 0-continuous homogeneous quasimorphism
on Ham.S2/ and Ham.D2/ has a strong relation to a question concerning the
simplicity of groups Ham.S2/ and Ham.D2/ where the standard area-forms are
considered as symplectic forms. The latter was known under the name of
the simplicity conjecture ([41, Chapter 14, Problem 42]) and has caught the attention
of many mathematicians over the years. It has been recently settled by Cristofaro-
Gardiner–Humilière–Seyfaddini [18].
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(3) Uniqueness of homogeneous quasimorphisms on Ham.S2/: Another motivation
is the uniqueness of homogeneous quasimorphism on Ham.S2/. For example, an
affirmative answer to the first question will imply the non-uniqueness of such maps,
since Entov–Polterovich type homogeneous quasimorphisms are not C 0-continuous.

For more background on this question, see [26].
In this paper, we consider a generalized version of the question of Entov–

Polterovich–Py:

Question 2. Does there exist a closed symplectic manifold .M;!/ which admits a
non-trivial homogeneous quasimorphism on Ham.M;!/ which is C 0-continuous?
If yes, can it be Hofer Lipschitz continuous?

Entov–Polterovich–Py proved that the vector space consisting of non-trivial
homogeneous quasimorphisms on Ham.D2n.1// that are both C 0 and Hofer
Lipschitz continuous is infinite dimensional [26, Proposition 1.9]. However, no
example of a closed symplectic manifold .M;!/ which admits a homogeneous
quasimorphism on Ham.M;!/ that is both Hofer continuous and C 0-continuous
is known by the time of writing. In fact, for closed symplectic manifolds, according
to [21], constructions of Givental, Entov–Polterovich and Borman are so far the
only known examples of homogeneous quasimorphisms (on eHam.M;!/) that are
Hofer continuous. The Hofer continuity of Givental’s homogeneous quasimorphisms
was proven by Borman–Zapolsky [11]. These examples all possess the Calabi
property which implies that, in the case they descend to Ham.M;!/, they are not
C 0-continuous. The Calabi property of Givental’s homogeneous quasimorphisms
was proven by Ben Simon [6].

Our main result provides such examples for the monotone n-quadric .Qn; !/

for n D 2; 4. Throughout the paper, we consider the standard monotone symplectic
form ! of Qn with the normalizationZ

Qn
!n D 2;

so that the monotonicity constant � is 1=NQn D 1=n. Note that, .Q2; !/ is sym-
plectomorphic to the monotone product .S2 � S2; � ˚ �/, where � is the area-form
of S2 with Z

S2
� D 1;

and .Q4; !/ is symplectomorphic to GrC.2; 4/ equipped with the standard monotone
symplectic form with a certain normalization.

Precisely, we prove the following.

Theorem 3. There exist non-trivial homogeneous quasimorphisms

�WHam.Qn/! R;
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where n D 2; 4, that are C 0-continuous i.e.,

�W .Ham.Qn/; dC0/! R

is continuous, and Lipschitz continuous with respect to the Hofer metric.

Remark 4. (1) Although it is not explicitly stated, the existence of a homogeneous
quasimorphism on eHam.Qn/;8n 2 N was essentially known since [22]. The
descent of Entov–Polterovich type homogeneous quasimorphisms to Ham.Q2/ and
Ham.Q4/ was proven in [22] and [12], respectively. The homogeneous quasimor-
phisms in Theorem 3 are different from the Entov–Polterovich type homogeneous
quasimorphisms as they are defined as differences of two Entov–Polterovich type
homogeneous quasimorphisms.

(2) In the case of n D 2, if we compose �WHam.S2 � S2/! R with

Ham.S2/! Ham.S2 � S2/;
� 7! � � �;

we obtain a C 0-continuous and Hofer Lipschitz continuous homogeneous quasimor-
phism on Ham.S2/ but this turns out to be trivial and thus does not answer the
question of Entov–Polterovich–Py. See Remark 30 for further explanation.

(3) In Section 4.4, we will discuss a generalization of Theorem 3.

2.2. Question of Polterovich–Wu. One of the key ideas in proving Theorem 3 and
Theorem 39 is to work with quantum cohomology rings with different coefficient
fields, namely the field of Laurent series and the universal Novikov field. The advan-
tage of this idea in our context is explained in Section 4.2. As another application
of this idea, we answer a question of Polterovich–Wu which was posed in [55,
Remark 5.2].

We briefly review the question. Details of the question are postponed to Sec-
tion 4.5. In [55], Wu found three homogeneous quasimorphisms f�j gjD1;2;3 on
eHam.CP 2/ via the Entov–Polterovich construction for the quantum cohomology
ring with the universal Novikov field. Polterovich posed the following question.

Question 5 ([55, Remark 5.2], see also Question 43). Is it possible to distinguish the
three homogeneous quasimorphisms f�j gjD1;2;3?

We answer this in the negative.

Theorem 6. The three homogeneous quasimorphisms f�j gjD1;2;3 coincide i.e.,

�1 D �2 D �3:
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2.3. Application. The relation between the Hofer-topology and the C 0-topology
on the group of Hamiltonian diffeomorphisms on closed symplectic manifolds still
remains a mystery. In [39], Le Roux posed the following question.
Question 7 ([39]). Let .M;!/ be any closed symplectic manifold. For any R > 0,
does

Ham>R WD f� 2 Ham.M;!/ W dHof.id; �/ > Rg

have a non-empty C 0-interior?

We answer to this question affirmatively for the quadric hypersurface Qn �M ,
where n D 2; 4.
Theorem 8. For any R > 0,

Ham>R WD f� 2 Ham.Qn/ W dHof.id; �/ > Rg

has a non-empty C 0-interior, where n D 2; 4.

Theorem 8 seems to be the first case where the question of Le Roux was verified
for closed simply connected manifolds. In fact, according to [26, Section 1.4], “for
closed simply connected manifolds (and already for the case of the 2-sphere) the
question is wide open.”
Remark 9. Our proof applies to any closed monotone symplectic manifold for which
the spectral norm can be arbitrarily large, see Theorem 53. See also Theorem 52 for
a slightly generalized statement.

On a different note, Theorem 3 has an application to the Rokhlin property of
the group of Hamiltonian homeomorphisms. In fact, it implies that the group of
Hamiltonian homeomorphisms of the two and four complex dimensional quadric
hypersurfaces are not Rokhlin. We refer the readers to [51, Section 1.1.1] on this
topic.

2.4. Strategy of the proof and structure of the paper. The strategy of the proof
of Theorem 3, which divides into two parts, is as follows:

We first prove that a homogeneous quasimorphism on eHam.M;!/ which
is obtained as the difference of any two Entov–Polterovich type homogeneous
quasimorphisms descends to Ham.M;!/ and is bounded by the spectral norm 
 .
Next we show that it is C 0-continuous by using a result on the C 0-control of the
spectral norm obtained by the author in [37] (Theorem 26). This is the first part of
the proof. Note that this part applies to any monotone symplectic manifold.

In the second part of the proof, we will see that in order to prove that the
resulting homogeneous quasimorphism is non-trivial, it suffices to find two disjoint
Lagrangian submanifolds with non-vanishing Floer cohomology. We use examples
found by Fukaya–Oh–Ohta–Ono and Eliashberg–Polterovich for the case of Q2

and by Nishinou–Nohara–Ueda and Nohara–Ueda for the case of Q4 where the
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Floer cohomology of Lagrangian fibers of a Gelfand–Cetlin system was studied via
superpotential techniques.

The crucial idea of the proof is to work with different quantum cohomology
rings in Parts 1 and 2. The differences of the two quantum cohomology rings as
well as their advantages are explained in Section 4.2. In Section 4.5, we answer a
question of Polterovich–Wu also by applying this idea. In Section 4.6, we discuss
some consequences of the argument to Lagrangian intersections.
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3. Preliminaries

Let .M;!/ be a closed monotone symplectic manifold i.e.,

!j�2.M/ D � � c1j�2.M/

for some monotonicity constant � > 0, where c1 D c1.TM/ denotes the first
Chern class. In this paper, we only consider monotone symplectic manifolds unless
mentioned otherwise. The positive generators of h!; �2.M/i and hc1; �2.M/i � Z
are respectively called the rationality constant and the minimal Chern number and
will be respectively denoted by �0 and NM .

A HamiltonianH onM is a smooth time dependent functionH WR=Z�M ! R.
A Hamiltonian H is called mean-normalized if the following holds:

8t 2 R=Z;

Z
M

Ht .x/!
n
D 0:

We define its Hamiltonian vector field XHt by

�dHt D !.XHt ; � /:
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The Hamiltonian flow of H , denoted by �tH , is by definition the flow of XHt . A
Hamiltonian diffeomorphism ofH is a diffeomorphism which arises as the time-one
map of a Hamiltonian flow and will be denoted by �H . It is well known that the set
of Hamiltonian diffeomorphisms forms a group and will be denoted by Ham.M;!/.
We denote its universal cover by eHam.M;!/.

Denote the set of smooth contractible loops in M by L0M and consider its
universal cover. Two elements in the universal cover, say Œz1; w1� and Œz2; w2�, are
equivalent if z1 D z2 and their boundary sum w1#w2 i.e., the sphere obtained by
gluingw1 andw2 along their common boundary with the orientation onw2 reversed,
satisfies

!.w1#w2/ D 0; c1.w1#w2/ D 0:

We denote by AL0M the space of equivalence classes.
For a Hamiltonian H , define the action functional AH WAL0M ! R by

AH
�
Œz; w�

�
WD

Z 1

0

H.t; z.t// dt �

Z
D2
w�!;

where wWD2 ! M is a capping of zWR=Z! M . Critical points of this functional
are precisely the capped 1-periodic Hamiltonian orbits of H which will be denoted
by zP.H/. The set of critical values of AH is called the action spectrum and is
denoted by Spec.H/:

Spec.H/ WD fAH .zz/ W zz 2 zP.H/g:

3.1. Hofer and C 0 topologies on Ham.M; !/. Studying the topology of the group
of Hamiltonian diffeomorphisms Ham.M;!/ is an important topic in symplectic
topology. In this section we recall two topologies of Ham.M;!/.

The Hofer metric (or distance) is defined by

dHof.�;  / WD inf
nZ 1

0

�
sup
x
Ht .x/ � inf

x
Ht .x/

�
dt W �H D  

�1
ı �
o

for �; 2 Ham.M;!/. The Hofer-topology is the topology induced by the Hofer
metric.

TheC 0-metric (or distance) of Hamiltonian diffeomorphisms�; 2 Ham.M;!/
is defined by

dC0.�;  / WD max
x2M

d.�.x/;  .x//;

where d denotes the distance onM induced by a fixed Riemannian metric onM . The
C 0-topology is the topology induced by the C 0-metric. Note that the C 0-topology
is independent of the choice of the Riemannian metric.
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3.2. Hamiltonian Floer homology. In this section, we give a quick overview of Floer
theory. A standard reference is [42]. We work with the ground field C in this paper.
We say that a Hamiltonian H is non-degenerate if the diagonal

� WD f.x; x/ 2M �M g

and the graph of �H ,

��H WD f.x; �H .x// 2M �M g;

intersect transversally. We define the Floer chain complex of a non-degenerate
Hamiltonian H , denoted by CF�.H/ as follows:

CF�.H/ WD
n X
zz2zP.H/

azz � zz W 8� 2 R; #fzz W azz 2 C n f0g;AH .zz/ 6 �g < C1
o
:

The Floer chain complex CF�.H/ is Z-graded by the so-called Conley–Zehnder
index �CZ . The differential map counts certain solutions of a perturbed Cauchy–
Riemann equation for a chosen !-compatible almost complex structure J on TM ,
which can be viewed as isolated negative gradient flow lines of AH . This defines
a chain complex .CF�.H/; @/ called the Floer chain complex whose homology is
called the Floer homology of .H; J / and is denoted by HF�.H; J /. Often it is
abbreviated to HF�.H/ as Floer homology does not depend on the choice of an
almost complex structure. Note that our convention of the Conley–Zehnder index is
as follows.

Let f denote a C 2-small Morse function. For every critical point x of f , we
require that

�CZ
�
Œx; wx�

�
D i.x/;

where i denotes the Morse index and wx is the trivial capping.
Recapping a capped orbit zz D Œz; w� by gluing A 2 �2.M/ changes the action

and the Conley–Zehnder index as follows:

AH
�
Œz; w#A�

�
D AH

�
Œz; w�

�
� !.A/; (2a)

�CZ
�
Œz; w#A�

�
D �CZ

�
Œz; w�

�
� 2c1.A/: (2b)

We extend the action functional AH as follows:

AH WCF�.H/! R;

AH

� X
zz2zP.H/

azz � zz
�
WD max

azz¤0
AH .zz/:

We then define the R-filtered Floer chain complex of H by the filtration of AH :

CF �� .H/ WD fz 2 CF�.H/ W AH .z/ < �g D
n X
zz2zP.H/

azzzz W AH .zz/ < � if azz ¤ 0
o
:
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As the Floer differential map decreases the action, .CF �� .H/; @/ defines a chain
complex whose homology is called the filtered Floer homology ofH and is denoted
by HF �� .H/.

3.3. Quantum (co)homology and semi-simplicity. Consider a monotone symplec-
tic manifold .M;!/. Let the following denote the field of Laurent series of a formal
variable s:

CŒŒs�1; s� WD
nX
k6k0

aks
k
W k0 2 Z; ak 2 C

o
:

By identifying the variable s with the generator of � WD �2.M/= �, where the
equivalence relation is defined by A;B 2 �2.M/,

A � B” !.A/ D !.B/

satisfying
!.s/ D �0; c1.s/ D NM ;

one can define the quantum homology ring QH�.M IC/ as

QH�.M IC/ WD H�.M IC/˝C CŒŒs�1; s�:

The quantum homology ring has the following valuation:

�QH� WQH�.M IC/! R;

�QH�

�X
k6k0

aks
k
�
WD maxfk � !.s/ D k � �0 W ak ¤ 0g:

Similarly, for a formal variable t , one can define the quantum cohomology ring
QH�.M IC/ as

QH�.M IC/ WD H�.M IC/˝C CŒt�1; t ��;

where
CŒt�1; t �� WD

nX
k>k0

bkt
k
W k0 2 Z; bk 2 C

o
:

The quantum homology and quantum cohomology rings are isomorphic under the
Poincaré duality map:

PDWQH�.M IC/
�
�! QH2n��.M IC/;

a WD
X
k>k0

Akt
k
7! PD.a/ WD

X
k>k0

A#
ks
�k;

where # denotes the usual Poincaré duality between singular homology and singular
cohomology. Note that t satisfies

!.t/ D �0; c1.t/ D NM :
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The quantum cohomology ring has the following valuation:

� WD �QH� WQH
�.M IC/! R;

�
�X
k>k0

akt
k
�
WD minfk � !.t/ D k�0 W ak ¤ 0g:

The ring structure ofQH�.M IC/ (and ofQH�.M IC/) is given by the quantum
product which is denoted by �. It is defined by a certain count of pseudo-holomorphic
spheres. More precisely, in the case of QH�.M IC/,

8a; b; c 2 H�.M/; .a � b/ ı c WD
X
k2Z

GW3;sk .a; b; c/˝ s
k;

where ı denotes the usual intersection index in homology andGW3;sk .a; b; c/ denotes
the 3-pointed Gromov–Witten invariant for a; b; c 2 H�.M/ in the classA 2 �2.M/,
where ŒA� D sk 2 � i.e., the count of pseudo-holomorphic spheres in the homotopy
class A passing through cycles representing a; b; c 2 H�.M/; see [41] for details.

It is known that the Floer homology defined in Section 3.2 is canonically
isomorphic to the quantum homology ring via the PSS-map:

PSSH WQH�.M IC/
�
�! HF�.H/:

Note that the PSS-map preserves the ring structure where the ring structure on the
right-hand side is given by the pair-of-pants product; see [42] for details.

The quantum cohomology ringQH�.M IC/ is called semi-simple if it splits into
a finite direct sum of fields i.e.,

QH�.M IC/ D Q1 ˚Q2 ˚ � � � ˚Ql

for some l 2 N, where each Qj is a field. The identity 1 2 QH�.M IC/ can then
be decomposed into a sum of units ej 2 Qj :

1 D e1 C e2 C � � � C el :

Remark 10. The notion of semi-simplicity depends on the algebraic set-up of the
quantum (co)homology. The notion explained above is the same as the one in [22]
which is not suitable to non-monotone settings as the Novikov ring is no longer a
field. A more general notion of semi-simplicity was introduced in [47] and [24].
Theorem 5.1 of [24] states that in the monotone case, this generalized notion of
semi-simplicity coincides with the one of [22].

Examples of monotone symplectic manifolds whose quantum cohomology rings
are semi-simple include CP n, 1, 2 and 3 point monotone blow-ups of CP 2, complex
Grassmannians GrC.2; n/ and their products; see [22, 24].
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Later, we will consider quantum cohomology with a different coefficient field,
namely the universal Novikov field ƒ defined by

ƒ WD
n 1X
jD1

ajT
�j W aj 2 C; �j 2 R; lim

j!C1
�j D C1

o
:

Fukaya–Oh–Ohta–Ono [27,30] study Floer theory with coefficients in ƒ rather than
in the field of Laurent series and considers the following quantum cohomology:

QH�.M Iƒ/ WD H�.M IC/˝C ƒ:

It has the following valuation:

�WQH�.M Iƒ/! R;

�
� 1X
jD1

ajT
�j

�
WD minf�j W aj ¤ 0g:

By considering
t 7! TC�0 ;

one can embed QH�.M IC/ into QH�.M Iƒ/:

QH�.M IC/ ,! QH�.M Iƒ/:

3.4. Quantum homology of quadrics. In this section, we review some information
about the quantum homology ring structure of quadric hypersurfaces. For n > 2, the
n-quadric Qn is defined as a hypersurface in CP nC1 as follows:

Qn
WD f.z0 W z1 W � � � W znC1/ 2 CP nC1 W z20 C z

2
1 C � � � C z

2
nC1 D 0g:

Recall that the minimal Chern number NQn of the n-quadric is n. It is well known
that Q2 and Q4 are respectively symplectomorphic to S2 � S2 and GrC.2; 4/. The
ring structure of (quantum) homology of Qn can be found in [9, Section 6.3]. We
just recall that QH�.QnIC/ satisfies

Œpt � � Œpt � D ŒQn�s�2;

where Œpt � and ŒQn� denote, respectively, the point class and the fundamental class.
The semi-simplicity of the quantum homology ring of Qn follows from a result of
Beauville [5]. In fact, it is easy to see that QH�.QnIC/ splits into a direct sum of
two fields by using that the minimal Chern number is NQn D n.
Proposition 11. For n > 2, QH�.QnIC/ splits into a direct sum of two fields Q˙:

QH�.Q
n
IC/ D QC ˚Q�:
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3.5. Hamiltonian spectral invariants. In this section, we review spectral invariants
and their basic properties. For a non-degenerate Hamiltonian H , let

i � WCF �� .H/ ,! CF�.H/

be the natural inclusion map and denote the map it induces on homology by

i �� WHF
�
� .H/! HF�.H/:

For a quantum cohomology class a 2 QH�.M IC/ n f0g, define its spectral inv-
ariant by

�.H; a/ WD inff� 2 R W PSSH ı PD.a/ 2 Im.i ��/g:

The concept of spectral invariants was introduced by Viterbo [54] for R2n in
terms of generating functions and was later adapted to the Floer theoretic setting by
Schwarz for symplectically aspherical manifolds [49], and by Oh for general closed
symplectic manifolds [46].

Spectral invariants are invariant under homotopy rel. end points i.e., if t 7!�tH
and t 7! �tG are homotopic paths in Ham.M;!/, where H and G are both mean-
normalized Hamiltonians, then �.H; �/ D �.G; �/. Thus, we can see spectral invari-
ants as follows:

�W eHam.M;!/ �QH�.M/! R;

�.z�; a/ WD �.H; a/

for any mean-normalized H such that the Hamiltonian path t 7! �tH represents the
homotopy class z�.

We list further properties of spectral invariants.

Proposition 12. Spectral invariants satisfy the following properties, whereH;G are
Hamiltonians:

(1) For any a 2 QH�.M IC/ n f0g,

E�.H �G/ 6 �.H; a/ � �.G; a/ 6 EC.H �G/;

where

E�.H/ WD

Z 1

0

inf
x2M

Ht .x/ dt; (3a)

EC.H/ WD

Z 1

0

sup
x2M

Ht .x/ dt; (3b)

E.H/ WD EC.H/ � E�.H/ D

Z 1

0

˚
sup
x2M

Ht .x/ � inf
x2M

Ht .x/
	
dt: (3c)
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(2) If H is non-degenerate, then for any a 2 QH�.M IC/ n f0g,

�.H; a/ 2 Spec.H/:

Moreover, if a 2 QH deg.a/.M IC/, then there exists zz 2 CF2n�deg.a/.H/ such
that

�.H; a/ D AH .zz/:

(3) For any a 2 QH�.M IC/ n f0g,

�.0; a/ D �.PD.a//;

where 0 is the zero-function.
(4) For any a; b 2 QH�.M IC/ n f0g,

�.H#G; a � b/ 6 �.H; a/C �.G; b/;

where
.H#G/.t; x/ WD H.t; x/CG

�
t; .�tH /

�1.x/
�

and satisfies �tH#G D �
t
H�

t
G .

Remark 13. A priori spectral invariants �.H; � / can be defined only if H is non-
degenerate as they are defined via Floer homology ofH . However, by the continuity
property i.e., Proposition 12 (1), one can define�.H; � / for anyH2C 0.R=Z �M;R/
by considering an approximation of H with non-degenerate Hamiltonians.

The spectral pseudo-norm 
 for Hamiltonians is defined as follows:


 WC1.R=Z �M;R/! R>0;


.H/ WD �.H; 1/C �. xH; 1/;

where 1 2 QH 0.M IC/ denotes the identity element of QH�.M IC/. We can see
the spectral pseudo-norm as a function on eHam.M;!/ as well:


 W eHam.M;!/! R>0;


.z�/ WD �.z�; 1/C �.z��1; 1/:

The spectral norm for Hamiltonian diffeomorphisms is defined by using the spec-
tral pseudo-norm for Hamiltonians as follows:


 WHam.M;!/! R>0;


.�/ WD inf
�HD�


.H/:

Spectral invariants for Floer homology and quantum cohomology with ƒ-coeff-
icients were defined in a similar fashion in [30] and they were proven to satisfy
analogous properties to those listed in Proposition 12. We refer to [30] for details.



Vol. 97 (2022) Quasimorphisms, C 0-topology and Lagrangians 223

3.6. Lagrangian Floer cohomology with bounding cochain. In this section, we
sketch the construction of Lagrangian Floer cohomology deformed by a bounding
cochain due to Fukaya–Oh–Ohta–Ono [27]. In this paper, we mainly consider mono-
tone Lagrangian submanifolds but it is worth mentioning that the theory of Fukaya–
Oh–Ohta–Ono sketched in this section applies to any closed oriented Lagrangian
submanifold which is relatively spin. We refer to [27], especially Chapter 3.1, for a
detailed description of the material.

Let L be a closed oriented Lagrangian submanifold with a fixed relatively spin
structure. Recall that an oriented Lagrangian submanifold is relatively spin if its
second Stiefel–Whitney class w2.TL/ is in the image of the restriction map

H 2.M IZ=2Z/! H 2.LIZ=2Z/I

see [27, Definition 3.1.1]. For example, if a Lagrangian is spin, then it is relatively
spin and in particular, oriented Lagrangians are always relatively spin if dimRM 6 6.

Define the universal Novikov ring

ƒ0 WD
n 1X
jD1

ajT
�j W aj 2 C; �j > 0; lim

j!C1
�j D C1

o
:

The universal Novikov field is given by

ƒ WD
˚ 1X
jD1

ajT
�j W aj 2 C; �j 2 R; lim

j!C1
�j D C1

o
:

Define also

ƒC WD
n 1X
jD1

ajT
�j W aj 2 C; �j > 0; lim

j!C1
�j D C1

o
:

Lagrangian intersection Floer theory equips theƒ0-valued cochain complex ofL
with the structure of an A1-algebra. By taking the canonical model, one obtains an
A1-structure fmkg06k61 on H�.LIƒ0/; we refer to [27, Section 5.4] for details.
An element b 2 H 1.LIƒC/ is called a weak bounding cochain (in the sequel, we
will simply call it a bounding cochain) if it satisfies the weak Maurer–Cartan equation

1X
kD0

mk.b; b; : : : ; b/ D 0 mod ƒ0 � PD
�
ŒL�
�
: (4)

The set of (weak) bounding cochains will be denoted by yMweak.L/. Note that
yMweak.L/ might be an empty set. We say that the Lagrangian L is unobstructed if

yMweak.L/ ¤ ;:
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In the case L is unobstructed, for any b 2 yMweak.L/, one can twist the Floer differ-
ential as

mb1.x/ WD
X
k;l>0

mkClC1.b
˝k
˝ x ˝ b˝l/:

The Maurer–Cartan equation 4 implies

mb1 ım
b
1 D 0

and the resulting cohomology group

HF..L; b/Iƒ0/ WD
Ker.mb1 W H�.LIƒ0/! H�.LIƒ0//

Im.mb1 W H�.LIƒ0/! H�.LIƒ0//

will be called the Floer cohomology deformed by a (weak) bounding cochain b 2
yMweak.L/. We also define

HF..L; b/Iƒ/ WD HF..L; b/Iƒ0/˝ƒ0 ƒ:

3.7. Quasimorphisms via spectral invariants. In this section, we recall the Floer
theoretic construction of homogeneous quasimorphisms on eHam.M;!/ and the
notion of (super)heaviness both due to Entov–Polterovich which are taken from [22,
25]. However, unlike their version, we use quantum cohomology instead of quantum
homology.

Assume e 2 QH 0.M IC/ is an idempotent. Then we define the asymptotic
spectral invariant

�eWC
1.R=Z �M;R/! R;

�e.H/ WD lim
k!C1

�.H k; e/

k
;

where �.�; e/ denotes the spectral invariant corresponding to e 2 QH 0.M IC/ and
the k-times iterated Hamiltonian

H k
WD H#H# � � � #H„ ƒ‚ …

k-times

:

Its restriction to C1.M;R/ i.e., �ejC1.M;R/WC1.M;R/ ! R is often referred to
the symplectic quasi-state [23].

We can also see �e as a function of homotopy classes of Hamiltonian paths:

�eW eHam.M;!/! R;

�e.z�/ WD lim
k!C1

�.z�k; e/

k
:
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Recall that �.z�; � / D �.H; � /, where H is the mean-normalized Hamiltonian such
that the Hamiltonian path t 7! �tH represents the homotopy class z�. It was first
discovered by Entov–Polterovich that when some additional condition is satisfied,
�eW eHam.M;!/! R is a homogeneous quasimorphism. We will state their result as
well as its variant due to Fukaya–Oh–Ohta–Ono.

We denote the even degree part of QH�.M IC/ as follows:

QH even.M IC/ WD
M
k2Z

H 2k.M IC/˝C CŒt�1; t ��:

Theorem 14 ([22, Theorem 1.1], [30]). (1) If e2QH 0.M IC/ is an idempotent and
e �QH even.M IC/ is a field, then

�eW eHam.M;!/! R

is a homogeneous quasimorphism.
(2) If e 2 QH�.M Iƒ/ is an idempotent and e �QH�.M Iƒ/ is a field, then

�eW eHam.M;!/! R

is a homogeneous quasimorphism.
Remark 15. All the examples that appear in this paper satisfy

QH even.M IC/ D QH�.M IC/:

Definition 16. Let .M;!/ be any closed symplectic manifold and let e2QH�.M IC/
be an idempotent. A subset S of M is called e-heavy or �e-heavy (respectively,
e-superheavy or �e-superheavy) if it satisfies the following:

inf
x2S

H.x/ 6 �e.H/ .resp., �e.H/ 6 sup
x2S

H.x//

for any H 2 C1.M;R/.
Remark 17. In general, e-heaviness follows from e-superheaviness but not vice versa.
In a special case where �eW eHam.M;!/ ! R is a homogeneous quasimorphism, e-
heaviness and e-superheaviness are equivalent; see [25] for discussions in this topic.

The following is a basic intersection property of (super)heavy sets from [25].
Proposition 18. Let .M;!/be any closed symplectic manifold and let e2QH�.M IC/
be an idempotent. Let S1 and S2 be two disjoint subsets ofM . If S1 is e-superheavy,
then S2 is not e-heavy.

Proof. If we assume that S2 is e-heavy, then by the definitions, we have

inf
x2S2

H.x/ 6 �e.H/ 6 sup
x2S1

H.x/

for any H 2 C1.M;R/. As S1 \ S2 D ;, one can take H to be larger on S2 than
on S1, which contradicts the inequality.
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3.8. Closed-open map and heaviness. In this section, we review some properties
of the closed-open map defined by Fukaya–Oh–Ohta–Ono in [27, Theorem 3.8.62].
Note that they also consider the case where the absolute and the relative Floer
cohomology groups are deformed with a bulk. However, as bulk deformations are
not relevant to the arguments in this paper, we only state a version without them.

Denote the ring homomorphism called the closed-open map, which is a quantum
analogue of the restriction map, by

CO0
bWQH

�.M Iƒ/! HF �..L; b/Iƒ/;

where b is a bounding cochain. Note that the original notation used in [27] for CO0
b

is i�
qm;b

.
Fukaya–Oh–Ohta–Ono proved the following in [30] to detect the heaviness of the

Lagrangian L, which generalizes the result of Albers [1] and Entov–Polterovich [25,
Theorem 1.17].
Theorem 19 ([30, Theorem 1.6]). Assume

HF �..L; b/Iƒ/ ¤ 0

for a certain bounding cochain b. If

CO0
b.e/ ¤ 0

for an idempotent e 2 QH�.M Iƒ/, then L is e-heavy.

3.9. Flag manifolds and Gelfand–Cetlin systems. In this section, we provide a brief
description of (partial) flag manifolds and Gelfand–Cetlin systems. Materials dis-
cussed in this section are only needed to precisely understand the statement of
Theorem 37 and will not be used in other parts of the paper. Thus, readers can
skip this section in order to read the other parts.

Fix a sequence

0 D n0 < n1 < � � � < nr < nrC1 D n

of integers, and set
ki WD ni � ni�1

for i D 1; 2; : : : ; r C 1. The (partial) flag manifold F D F.n1; n2; : : : ; nr ; n/ is a
complex manifold parametrizing nested subspaces

0 � V1 � V2 � � � � � Vr � Cn; dimVi D ni :

The dimension of F D F.n1; n2; : : : ; nr ; n/ is given by

dimC F.n1; n2; : : : ; nr ; n/ D

rX
iD1

.ni � ni�1/.n � ni / D

rX
iD1

ki .n � ni /: (5)
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Let P D P.n1; n2; : : : ; nr ; n/ � GL.n;C/ be the isotropy subgroup of the
standard flag

Cn1 � f0g � Cn2 � f0g � � � � � Cnr � f0g � �Cn:

Then, as

U.n/ \ P.n1; n2; : : : ; nr ; n/ D U.k1/ � U.k2/ � � � � � U.krC1/;

F .n1; n2; : : : ; nr ; n/ is written as follows:

F.n1; n2; : : : ; nr ; n/ D GL.n;C/=P.n1; n2; : : : ; nr ; n/

D U.n/=.U.k1/ � U.k2/ � � � � � U.krC1//:

Remark 20. Note that this description gives the following different expression of the
dimension formula (5):

dimC F.n1; n2; : : : ; nr ; n/ D n
2
�

rC1X
iD1

k2i :

In this paper, we identify flag manifolds with (co)adjoint orbits. Using a U.n/-
invariant inner product on the Lie algebra u.n/ of U.n/, denoted by h�;�i, we
identify the dual u.n/� of u.n/ with the space

p
�1 �u.n/ of Hermitian matrices. We

fix
� D diag.�1; �2; : : : ; �n/ 2

p
�1 � u.n/

with

�1 D � � � D �n1„ ƒ‚ …
k1

> �n1C1 D � � � D �n2„ ƒ‚ …
k2

> � � � > �nrC1 D � � � D �n„ ƒ‚ …
krC1

:

ThenF is identified with the adjoint orbit O� of� (i.e., a set of Hermitian matrices
with fixed eigenvalues �1; �2; : : : ; �n) by

F D U.n/=.U.k1/ � � � � � U.krC1//
�
�! O�;

Œg� 7! g�g�:

The manifold O� has a standard symplectic form !� called the Kirillov–Kostant–
Souriau form. Recall that tangent vectors of O� at x can be written as

ad�.x/ D Œx; ��

for � 2 u.n/, where Œ�;�� denotes the Lie bracket. Then the Kirillov–Kostant–
Souriau form !� is defined by

!�.ad�.x/; ad�.x// WD
1

2�
hx; Œ�; ��i:
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The following choice of � gives us a monotone symplectic form !� on O�:

� D .n � n1; : : :„ ƒ‚ …
k1

; n � n1 � n2; : : :„ ƒ‚ …
k2

; : : : ; : : : ; n � nr�1 � nr„ ƒ‚ …
kr

;�nr ; : : :„ ƒ‚ …
krC1

/C .m; : : : ; m/„ ƒ‚ …
nDk1C���CkrC1

for any m 2 R. When � is of this form, we have

c1.TO�/ D Œ!��:

For x 2 O� and k D 1; 2; : : : ; n�1 let x.k/ denote the upper-left k�k submatrix
of x. Since x.k/ is also a Hermitian matrix, it has real eigenvalues

�
.k/
1 6 �

.k/
2 6 � � � 6 �

.k/

k
:

Let I D I.n1; : : : ; nr ; n/ denote the set of pairs .i; k/ such that each �.k/i is
non-constant as a function of x. It follows that the number of such pairs coincides
with dimC F i.e., jI j D dimC F . The Gelfand–Cetlin system is defined by

ˆWF ! RdimC F ;

ˆ.x/ WD f�
.k/
i .x/g.i;k/2I :

Theorem 21 (Guillemin–Sternberg [35]). The mapˆ defines a completely integrable
system on .F.n1; n2; : : : ; nr ; n/; !/. The image� WD ˆ.F / is a convex polytope. A
fiber of each interior point u 2 Int.�/ is a Lagrangian torus:

ˆ�1.u/ ' T n

for any u 2 Int.�/.
We call the convex polytope� WD ˆ.F /, the Gelfand–Cetlin polytope. The major

difference between Delzant polytopes of toric manifolds and Gelfand–Cetlin poly-
topes appears at fibers of points at the boundary of polytopes. While for a Delzant
polytope, a fiber of a relative interior of a k-dimensional face is never Lagrangian, for
a Gelfand–Cetlin polytope, a fiber of a relative interior point of a k-dimensional face
can be a (non-torus) Lagrangian submanifold. Differences between the two types of
polytopes are listed by Cho–Kim–Oh in [17].

4. Proofs

4.1. Proof of Theorem 3, part 1. The goal of this subsection is to prove the foll-
owing result and to see how it leads to Theorem 3.
Theorem 22. Let .M;!/ be a monotone symplectic manifold. Assume its quantum
cohomology ring QH�.M IC/ is semi-simple i.e.,

QH�.M IC/ D Q1 ˚Q2 ˚ � � � ˚Ql



Vol. 97 (2022) Quasimorphisms, C 0-topology and Lagrangians 229

for some l 2N, where eachQj is a field. We decompose the identity 12QH�.M IC/
into a sum of idempotents with respect to this split:

1 D e1 C e2 C � � � C el ; ej 2 Qj :

Then for any i; j 2 f1; 2; : : : ; lg,

� WD �ei � �ej

defines a homogeneous quasimorphism on Ham.M;!/ which is C 0-continuous i.e.

�W .Ham.M;!/; dC0/! R

is continuous. Moreover, it is Hofer Lipschitz continuous.
Remark 23. (1) As we do not know if �ei ¤ �ej , the resulting homogeneous
quasimorphism

�WHam.M;!/! R

might be trivial i.e., � � 0. Thus, the point in proving Theorem 3 is to prove
�eC ¤ �e� for the two idempotents e˙ 2 QH�.QnIC/ .n D 2; 4/.

(2) For examples of monotone symplectic manifolds whose quantum cohomology
ring is semi-simple, see Section 3.3.

(3) In the spirit of McDuff [40], instead of the semi-simplicity we can pose a weaker
assumption that QH�.M IC/ has two fields as a direct summand

QH�.M IC/ D Q1 ˚Q2 ˚ A;

where Q1;Q2 are fields and no condition is posed on A.
We first show the following estimate.

Proposition 24. For any z� 2 eHam.M;!/, we have

j�.z�/j 6 
.z�/:

Proof of Proposition 24. By the triangle inequality,

�.z�k; e1/ 6 �.z�k; 1/C �.zid; e1/; (6a)

��.z�k; e2/ 6 �..z��1/k; 1/ � �.zid; e2/: (6b)

By adding these inequalities, we obtain

�.z�/ D lim
k!C1

�.z�k; e1/ � �.z�
k; e2/

k

6 lim
k!C1

�.z�k; 1/C �.zid; e1/C �..z��1/k; 1/ � �.zid; e2/
k

D lim
k!C1


.z�k/C �.e1/ � �.e2/

k
6 
.z�/:
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As � is homogeneous, we have

��.z�/ D �.z��1/

for any z�, and thus

��.z�/ D �.z��1/ 6 
.z��1/ D 
.z�/:

Thus,
j�.z�/j 6 
.z�/:

This completes the proof of Proposition 24.

One can strengthen the statement as follows.
Proposition 25. The function

�W eHam.M;!/! R

descends to Ham.M;!/ i.e., if z� and z have the same endpoint, then �.z�/ D �. z /.
Thus, for any � 2 Ham.M;!/, we define

�.�/ WD �.z�/;

where z� 2 eHam.M;!/ is any element having � as the endpoint. We can thus define
a map

�WHam.M;!/! R:

It satisfies
j�.�/j 6 
.�/

for any � 2 Ham.M;!/.

Proof of Proposition 25. It suffices to show �j�1.Ham.M;!// � 0, where we see

�1.Ham.M;!// � eHam.M;!/:

This is for the following reason.
Assume �j�1.Ham.M;!// � 0. Let z�; z be two homotopy classes of Hamiltonian

paths having the same endpoint. For any k 2 N, .z��1/k z k defines a homotopy
class of a Hamiltonian loop i.e., an element in �1.Ham.M;!//. Since � is a
quasimorphism on eHam.M;!/, there exists a constant C > 0 such that

j�..z��1/k z k/ � �. z k/ � �..z��1/k/j 6 C

for any k 2 N. From our assumption, the first term vanishes and

�. z k/ D k � �. z /;

�..z��1/k/ D �k � �.z�/:
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Thus, we have
8k 2 N; k � j�. z / � �.z�/j 6 C:

Therefore, we attain �.z�/ D �. z /.
Now, we prove that �j�1.Ham.M;!// � 0. We make use of the following theorem

proved in [37]. We restate it with a special emphasis on a particular case which will
be used in our argument:

Theorem 26 ([37, Theorem 4 (1)]). Let .M;!/ be a monotone symplectic manifold.
For any " > 0, there exists ı > 0 such that if dC0.id; �H / < ı, then


.H/ <
dim.M/

NM
� �0 C ";

where NM denotes the minimal Chern number. In particular, for any  2

�1.Ham.M;!//, we have


. / 6
dim.M/

NM
� �0:

Now we continue the proof of Proposition 25. Let 2 �1.Ham.M;!//. For any
k 2 N, we have

k � j�. /j D j�. k/j 6 
. k/ 6
dim.M/

NM
� �0:

Thus,
j�. /j 6 lim

k!C1

dim.M/

NM
�
�0

k
D 0:

This completes the proof of the first assertion. The second follows immediately from
Proposition 24.

Remark 27. The estimate of the spectral norm for Hamiltonian loops that appear in
Theorem 26 can be deduced by using basic facts about the Seidel elements as well.

We will use the following criterion due to Shtern to detect the C 0-continuity of
homogeneous quasimorphisms; see [52] and [26, Proposition 1.3].
Proposition 28 ([52], [26, Proposition 1.3]). Let G be a topological group and
�WG ! R a homogeneous quasimorphism. Then � is continuous if and only if it is
bounded on a neighborhood of the identity.

We now complete the proof of Theorem 22.

Proof of Theorem 22. By Propositions 25 and 28, the C 0-continuity of

�WHam.M;!/! R

is reduced to the boundedness of the spectral norm 
 around a C 0-neighborhood
of id. Theorem 26 implies that the spectral norm is bounded around the identity of
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eHam.M;!/ (thus, on Ham.M;!/ as well) with respect to the C 0-topology when
.M;!/ is monotone and therefore, � is C 0-continuous. As �ei and �ej are both
Hofer Lipschitz continuous, � is also Hofer Lipschitz continuous. This completes
the proof of Theorem 22.

By Proposition 11, QH�.QnIC/ is semi-simple and splits into a direct sum of
two fields

QH�.Qn
IC/ D QC ˚Q�

and we decompose the identity element as follows:

1 D eC C e�:

By the Entov–Polterovich theory, we obtain homogeneous (Calabi) quasimorphisms

�e˙ W
eHam.Qn/! R;

�e˙.
z�/ WD lim

k!C1

�.z�k; e˙/

k
:

In the second part of the proof (Section 4.3), we will prove the following.
Theorem 29. For Qn .n D 2; 4/,

�eC ¤ �e� :

Once we prove this, Theorems 22 and 29 imply that

� WD �eC � �e�

defines a non-trivial homogeneous quasimorphism on Ham.Qn/ .n D 2; 4/, which
is both C 0 and Hofer Lipschitz continuous and we complete the proof of Theorem 3.
Remark 30. As noted in Remark 4 (2), the composition of �WHam.S2 � S2/! R
and

Ham.S2/! Ham.S2 � S2/;
� 7! � � �

vanishes. This is because, by Proposition 25, we have

j�.� � �/j 6 
.� � �/ D 2
.�/

for any � 2 Ham.S2/. Note that the first and the second 
 both denote the spectral
norm but the former is for Ham.S2�S2/ and the latter is for Ham.S2/. As remarked
in Remark 51, the spectral norm for Ham.S2/ is bounded, and thus the homogeneity
of � implies �.� � �/ D 0 for any � 2 Ham.S2/.
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4.2. Comparing different quantum cohomology rings. In the first part of the proof
of Theorem 3, we have used the quantum cohomology ring denoted byQH�.M IC/
but in the second part of the proof, we work with a different quantum cohomology
ring, namely the quantum cohomology ring with the universal Novikov field which
is denoted by QH�.M Iƒ/. In this section, we explain the different advantages of
working with QH�.M IC/ and QH�.M Iƒ/. Working with these two different
quantum cohomology rings plays a crucial role not only in the proof of Theorem 3
but also in the proof of Theorem 6. We also compare spectral invariants of a quantum
cohomology class in QH�.M IC/ and its embedded quantum cohomology class
in QH�.M Iƒ/. Note that results in this subsection concern not only the n-quadric
but any monotone symplectic manifold.

Let .M;!/ be a monotone symplectic manifold. Recall from Section 3.3 that
QH�.M IC/ was defined by

QH�.M IC/ WD H�.M IC/˝C CŒt�1; t ��;

where the variable t represents an element in �2.M/ that satisfies

!.t/ D �0; c1.t/ D NM :

On the other hand, QH�.M Iƒ/ is defined by

QH�.M Iƒ/ WD H�.M IC/˝C ƒ

and one can embed QH�.M IC/ to QH�.M Iƒ/ by

�WQH�.M IC/ ,! QH�.M Iƒ/;

t 7! TC�0

and � is a ring homomorphism.
We explain the different advantages of working withQH�.M IC/ andQH�.M Iƒ/

as well as examples of cases where those advantages are used.

The advantage of working with QH �.M I C/.
(1) The ringQH�.M IC/ carries a Z-grading whileQH�.M Iƒ/ does not. Thus, to
use spectral invariants it is preferable to work withQH�.M IC/ thanQH�.M Iƒ/ as
the Z-grading allows us to study both the action and the index of spectral invariants.
Example. Theorem 26, which plays a crucial role in the first part of the proof of
Theorem 3, is proven by using the information of both the action and the index of
spectral invariants and thus, it is proven only in the setting where we have a Z-grading
of the quantum cohomology ring.

(2) The algebraic structure of QH�.M IC/ tends to be simpler than that of
QH�.M Iƒ/.
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Example. WhileQH�.CP 2IC/ is a field,QH�.CP 2Iƒ/ splits into a direct sum of
three fields; see Section 4.5. Similarly,QH�.S2 � S2IC/ splits into a direct sum of
two fields andQH�.S2�S2Iƒ/ splits into a direct sum of four fields; see Remark 44.

The quantum cohomology ring QH�.CP 2IC/ being a field has important
consequences as pointed out in Remark 51 which do not follow only from semi-
simplicity. This is precisely what we use in the proof of Theorem 6.

The advantage of working with QH �.M I ƒ/. Withƒ-coefficients, we have a very
rich Lagrangian Floer theory developed by Fukaya–Oh–Ohta–Ono. In particular, the
superpotential techniques are very useful to detect Lagrangian submanifolds that have
non-trivial Floer cohomology groups.
Example. Finding certain Lagrangian submanifolds that have non-trivial Floer
cohomology groups via superpotential techniques is a key step in the second part of
the proof of Theorem 3 explained in Section 4.3.

To sum up, in the first part of the proof of Theorem 3 (Section 4.1), we need
to work with QH�.M IC/ while in the second part of the proof of Theorem 3
(Section 4.3), we greatly benefit from the advantage of working with QH�.M Iƒ/.
In order to connect arguments in parts 1 and 2, which are done in different algebraic
settings, we will need the following comparison between spectral invariants of a
quantum cohomology class inQH�.M IC/ and its embedded quantum cohomology
class in QH�.M Iƒ/.
Lemma 31. Let .M;!/ be a monotone symplectic manifold. For any class a 2
QH�.M IC/ n f0g and a Hamiltonian H , we have

�.H; �.a// D �.H; a/:

The value �.�; a/ denotes the spectral invariant of a 2 QH�.M IC/ while
the value �.�; �.a// denotes the spectral invariant of its embedded element �.a/ 2
QH�.M Iƒ/.

The following is a direct consequence of Lemma 31.
Lemma 32. Let e 2 QH 0.M IC/ be an idempotent. Assume that e �QH even.M IC/
is a field. Then, we have

��.e/.z�/ D �e.z�/

for any z� 2 eHam.M;!/. In particular,

��.e/W eHam.M;!/! R

is a homogeneous quasimorphism.
Remark 33. A priori Lemma 32 is not obvious as we do not know if �.e/ is a unit
of a field factor ofQH�.M Iƒ/ i.e., �.e/ �QH�.M Iƒ/ is a field (Theorem 14). For
example,QH�.CP 2IC/ is a field butQH�.CP 2Iƒ/ splits into a direct sum of three
fields and the identity element 1 2 QH�.CP 2IC/ embeds to 1ƒ 2 QH�.CP 2Iƒ/
which is not an unit of a field factor.
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Proof of Lemma 31. Similar technical results have appeared in the literature, e.g., [9,
Section 5.4], [53, Propositions 2.21 and 6.6]. Nevertheless, we give a proof for the
sake of clarity.

We start by briefly recalling the construction of the Fukaya–Oh–Ohta–Ono type
Floer chain complex from [30, Chapter 2]. First of all, we introduce the downward
universal Novikov field

ƒ# WD
nX
j>0

ajT
�j W aj 2 C; lim

j!C1
�j D �1

o
and recall that an element zz D Œz; w� of zP.H/ is a capped periodic orbit ofH , i.e., a
pair of a periodic orbit z and its capping w, as we have defined in Section 3. For a
non-degenerate Hamiltonian H , define

bCF �.H Iƒ#/ WD
nX
j>0

aj � zzjT
�j W aj 2 C; zzj 2 zP.H/; lim

j!C1
�j D �1

o
: (7)

We define the Floer chain complex by the following quotient

CF�.H Iƒ
#/ WDbCF �.H Iƒ#/= �;

where the equivalence relation is defined by

Œz; w� � Œz0; w0�˝ T �” z D z0; !.w/ D !.w0/C �:

We describe a natural chain map from the Floer chain complex CF�.H/, which
was defined in Section 3.2, to the Fukaya–Oh–Ohta–Ono type Floer chain complex
CF�.H Iƒ

#/:
j WCF�.H/ ,! CF�.H Iƒ

#/:

Consider,

bCF �.H IC/ WD
n X
k6k0; k02Z

ak � zzks
k
W ak 2 C; zzk 2 zP.H/

o
; (8)

where s is the formal variable used to define the field of Laurent series CŒŒs�1; s� that
appear in the definition of the quantum homology in Section 3.3. Then, CF�.H/
satisfies

CF�.H/ DbCF �.H IC/= �;
where

Œz; w� � Œz0; w0�˝ sk” z D z0; !.w/ D !.w0/C k � �0:

It is easy to see that the inclusion

j WCŒŒs�1; s� ,! ƒ#;

s 7! T �0
(9)
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induces the inclusion

yj WbCF �.H IC/ ,!bCF �.H Iƒ#/;
Œz; w�˝ s 7! Œz; w�˝ T �0 ;

(10)

which induces the following chain map (by abuse of notation):

j WCF�.H/! CF�.H Iƒ
#/: (11)

Now, notice that ƒ# is a CŒŒs�1; s�-module and by using the inclusion (9), it has
the following split of CŒŒs�1; s�-modules:

ƒ# D j
�
CŒŒs�1; s�

�
˚ j

�
CŒŒs�1; s�

�?
; (12)

where

j
�
CŒŒs�1; s�

�?
WD

nX
j>0

ajT
�j W aj 2 C; lim

j!C1
�j D �1; �j … �0 � Z

o
: (13)

Similarly, by considering the chain map (11), the Floer chain complex splits as
follows:

CF�.H Iƒ
#/ D j.CF�.H//˚ j.CF�.H//

?; (14)

where

j.CF�.H//
?
WD

nX
j>0

aj zzjT
�j W aj 2 C; zzj 2 zP.H/;

lim
j!C1

�j D �1; �j … �0 � Z
o
:

(15)

Now, we start the proof of Lemma 31. We first prove

�.H; �.a// 6 �.H; a/

for any a 2 QH�.M IC/ and a Hamiltonian H . By the continuity property of
spectral invariants (Proposition 12 (1)), it is enough to prove the case where H is
non-degenerate. Let a 2 QH�.M IC/nf0g andH be a non-degenerate Hamiltonian.
The inclusion j induces the following map on homology:

j�WHF�.H/! HF�.H Iƒ
#/:

Note that
PSSH;ƒ ı PD ı � D j� ı PSSH ı PD;

where PSSH on the right-hand side denotes the PSS-isomorphism

PSSH WQH�.M IC/
�
�! HF�.H/;
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while PSSH on the left-hand side denotes the PSS-isomorphism

PSSH;ƒ# WQH�.M Iƒ
#/
�
�! HF�.H Iƒ

#/

and PD denotes the Poincaré duality between quantum homology and quantum co-
homology. Consider the diagram

HF �� .H/
i��
����! HF�.H/

PSSH ıPD
 �������� QH�.M IC/??yj� ??yj� ??y�

HF �� .H Iƒ
#/

i��
����! HF�.H Iƒ

#/
PSS

H;ƒ#
ıPD

 ���������� QH�.M Iƒ/:

As j� preserves the action filtration, the diagram commutes and for tautological
reasons, we get

�.H; �.a// 6 �.H; a/: (16)
We next show

�.H; �.a// > �.H; a/

for any a 2 QH�.M IC/ and a Hamiltonian H . We prove this inequality
for “nice” Hamiltonians where a “nice” Hamiltonian H has the properties that
it is non-degenerate and the action functional AH induces a bĳection between
zP.H/ and Spec.H/. As one can approximate any Hamiltonian with a sequence
of “nice” Hamiltonians, restricting our focus to this class of Hamiltonians is enough.
We argue by contradiction: assume there is a “nice” Hamiltonian H and a class
a 2 QH�.M IC/ such that

�.H; �.a// < �.H; a/: (17)

There exist Floer cycles ˛ 2 CF�.H/, ˛0 2 CF�.H Iƒ#/ such that

�.H; a/ D AH .˛/; (18a)
Œ˛� D PSSH ı PD.a/; (18b)

and

�.H; �.a// D AH .˛
0/; (19a)

Œ˛0� D PSSH;ƒ# ı PD.�.a//: (19b)

As Œj.˛/� D �.Œ˛�/ D Œ˛0�, there exists ˇ 2 CF�.H Iƒ#/ such that

˛0 D j.˛/C @.ˇ/:

First of all, as �.H; a/ 2 Spec.H/ and H is “nice”, there exists the “action carrier”
zz 2 zP.H/ such that

AH .zz/ D AH .˛/; (20a)
˛ D � � zz C low (20b)
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for some � 2 C n f0g, where low denotes some chain which satisfies

AH .low/ < AH .zz/ D AH .˛/:

We will repeatedly use this convenient notation in the sequel analogously. Next, as
we have

AH .j.˛/C @.ˇ// D AH .˛
0/ < AH .j.˛// D AH .˛/

from the assumption (17), equations (20a) and (20b) imply the following about @.ˇ/:

@.ˇ/ D �� � j.zz/C low: (21)

Now, we decompose ˇ 2 CF�.H Iƒ#/ with respect to the split (14):

ˇ D j.ˇ1/C ˇ2 (22)

where ˇ1 2 CF�.H/, ˇ2 2 j.CF�.H//?. The Floer boundary map preserves the
split (14), so @.ˇ/ splits as follows:

@.ˇ/ D @.j.ˇ1//C @.ˇ2/: (23)

By comparing equations (21) and (23), as �� � j.zz/ 2 j.CF�.H//, we see that
�� � j.zz/ is contained in @.j.ˇ1// and not in @.ˇ2/:

j.@.ˇ1// D @.j.ˇ1// D �� � j.zz/C low (24)

Consider the Floer cycle
˛ C @.ˇ1/ 2 CF�.H/:

This satisfies

Œ˛ C @.ˇ1/� D Œ˛� D PSSH ı PD.a/; (25a)
AH .˛ C @.ˇ1// < AH .˛/ D �.H; a/: (25b)

Note that inequality (25b) follows from cancellation of the action carriers zz of ˛
and @.ˇ1/. The relations (25a) and (25b) contradict the definition of �.H; a/. This
completes the proof of

�.H; �.a// > �.H; a/: (26)

Inequalities (16) and (26) imply Lemma 31.

We obtain the following from Lemma 32.
Corollary 34. Let .M;!/ be a monotone symplectic manifold. Assume that e 2
QH 0.M IC/ is an idempotent and e �QH even.M IC/ is a field. If a subset S � M
is �.e/-heavy, then S is e-superheavy.

Proof of Corollary 34. Lemma 32 implies that S is e-heavy. However, as e 2
QH 0.M IC/ is a unit of a field factor of QH even.M IC/, �e is a homogeneous
quasimorphism so S is e-superheavy.
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4.3. Proof of Theorem 3, part 2. In this section, we prove Theorem 29, which was
used to complete the proof of Theorem 3 at the end of Section 4.1.

Proof of Theorem 29. We argue the cases n D 2 and n D 4 separately.

Case n D 2. In this case, �eC ¤ �e� was already proved by Eliashberg–Polterovich
in [19] by an approach different to what we discuss in this section. In this section, we
will prove �eC ¤ �e� by using the following result of Fukaya–Oh–Ohta–Ono [29,30].
The same argument will be used in the case where n D 4.

Theorem 35 ([29, Lemmas 23.3 (1) and 23.5]). (1) In S2�S2, there exists a mono-
tone Lagrangian submanifold L0 diffeomorphic to T 2 such that

HF..L0; b0/Iƒ/ ¤ 0

for a certain bounding cochain b0 2 H 1.L0Iƒ0/=H
1.L0I 2�iZ/.

(2) The anti-diagonal in S2 � S2 denoted by L1 is unobstructed and satisfies

HF.L1Iƒ/ ¤ 0:

(3) L0 and L1 are disjoint:
L0 \ L1 D ;:

Now, consider the natural embedding

�WQH�.Q2
IC/ ,! QH�.Q2

Iƒ/:

As the closed-open map maps the identity element of the quantum cohomology ring
to the identity element of the Lagrangian Floer cohomology group, we have

CO0
b.1/ D PD

�
ŒL0�

�
¤ 0 2 HF �..L0; b/Iƒ/;

CO0.1/ D PD
�
ŒL1�

�
¤ 0 2 HF �.L1Iƒ/:

(27)

Since
1 D �.eC/C �.e�/;

it is
CO0

b.�.eC// ¤ 0 or CO0
b.�.e�// ¤ 0:

As �.e˙/ are both idempotents, by Theorem 19, we deduce that L0 is at least
either �.eC/-heavy or �.e�/-heavy. Corollary 34 implies that L0 is at least either
eC-superheavy or e�-superheavy. Next, by looking at the second equation, the same
argument implies that L1 is at least either eC-superheavy or e�-superheavy. As L0
and L1 are disjoint, Proposition 18 implies that they cannot be both eC-superheavy
or both e�-superheavy at once. This implies

�eC ¤ �e� :



240 Y. Kawamoto CMH

Remark 36. From this argument, it follows that either
� L0 is eC-superheavy and L1 is e�-superheavy, or

� L0 is e�-superheavy and L1 is eC-superheavy,

but it is not clear which one of the two actually holds. Eliashberg–Polterovich’s
approach shows that the former holds [19].

Case n D 4. The key of the proof is to find two disjoint Lagrangian submanifolds
in Q4 having non-vanishing Floer cohomology just as in the previous case. We
use results of Nishinou–Nohara–Ueda and Nohara–Ueda which we will now briefly
explain.

The relation between the superpotential and Lagrangian Floer cohomology has
been studied extensively. After a pioneering work of Cho [15], Fukaya–Oh–
Ohta–Ono computed the superpotential for toric symplectic manifolds in [28].
Later, Nishinou–Nohara–Ueda computed the superpotential for symplectic manifolds
admitting a toric degeneration in [43]. This lead Nohara–Ueda to study the Floer
cohomology of non-torus fibers in partial flag manifolds in [44]. We state some of
their results which will be relevant for us.

Theorem 37 ([43, Theorem 10.1, Section 11], [44, Theorem 1.2, Example 3.3]). Let
ˆWGrC.2; 4/! R4 be the Gelfand–Cetlin system with the Gelfand–Cetlin polytope
� WD ˆ.GrC.2; 4//. Denote the fiber of u 2 � by L.u/:

L.u/ WD ˆ�1.u/:

We identify GrC.2; 4/ with the adjoint orbit of

� D diag.4; 4; 0; 0/;

so that it is monotone.

(1) Foru0 WD.2; 3; 1; 2/2 Int.�/, there exists a bounding cochain b2H 1.L.u0/Iƒ/

such that
HF..L.u0/; b/Iƒ/ ' QH

�.T 4Iƒ/:

(2) There exists u1 2 @� such that its fiber L.u1/ is Lagrangian and diffeomorphic
to U.2/ ' S1 � S3 with non-trivial Floer cohomology:

HF..L.u1/;˙�i=2 � e1/Iƒ/ ' QH
�.S1 � S3Iƒ/

for a bounding cochainbD˙�i=2�e1, where e1 is the generator ofH 1.L.u1/IZ/.

Remark 38. (1) Q4 is symplectomorphic to GrC.2; 4/.
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(2) Theorem 37 (1) was proven for any identification of GrC.2; 4/ with O�, where

� D diag.2˛; 2˛; 0; 0/;
u0 WD .˛; 3˛=2; ˛=2; ˛/ 2 Int.�/

for any˛ > 0. If we choose˛ D 2, the Kirillov–Konstant form!� defines a monotone
symplectic form by the monotonicity criterion in Section 3.9.

(3) Note that L.u0/ ' T 4 and L.u1/ ' U.2/ ' S1 � S3 are both monotone
since they are both located in the center of a Lagrangian facet of the Gelfand–Cetlin
polytope. This follows from a result of Yunhyung Cho and Yoosik Kim [16], where
they classify monotone fibers of Gelfand–Cetlin polytopes.

Let L.u0/; L.u1/ be as in Theorem 37. We argue exactly as in the case n D 2.
As the closed-open map maps the identity element of the quantum cohomology ring
to the identity element of the Lagrangian Floer cohomology group, we have

CO0
b.1/ D PD

�
ŒL.u0/�

�
¤ 0 2 HF �..L.u0/; b/Iƒ/; (28a)

CO0
˙�i=2�e1

.1/ D PD
�
ŒL.u1/�

�
¤ 0 2 HF �..L.u1/;˙�i=2 � e1/Iƒ/: (28b)

Since
1 D �.eC/C �.e�/;

the first equation and Theorem 19 imply that L.u0/ is eC-superheavy or e�-
superheavy. We have used that by Corollary 34, �.e˙/-heaviness is equivalent to
e˙-superheaviness. Next, by looking at the second equation, the same argument
implies that L.u1/ is eC-superheavy or e�-superheavy. As L.u0/ and L.u1/ are
disjoint (recall that they are fibers of distinct points in the Gelfand–Cetlin polytope),
we conclude that they cannot be both eC-superheavy or both e�-superheavy at once.
This implies

�eC ¤ �e� ;

which completes the proof.

4.4. Generalization of Theorem 3. In this section, we prove the following slight
generalization of Theorem 3.
Theorem 39. Let .M;!/ be a monotone symplectic manifold (with the same mono-
tonicity constant as Qn; n D 2; 4/ such that QH�.M IC/ is semi-simple. Assume
that there exists a Lagrangian submanifoldL of .M;!/ such thatHF..L; b/Iƒ/¤0
for some bounding cochain b. Then, there exists a non-trivial homogeneous quasi-
morphism

�WHam.Qn
�M/! R;

which is both C 0-continuous and Hofer Lipschitz continuous, where Qn �M .n D

2; 4/ denotes the monotone product.
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Remark 40. The existence of a homogeneous quasimorphism on Ham.Qn �M/

.n D 2; 4/ (instead of on the universal cover), where .M;!/ is as in Theorem 39,
was not known to the best of our knowledge. Note that examples of .M;!/ which
satisfy the assumptions in Theorem 39 include CP n, 1, 2 and 3 point monotone
blow-ups of CP 2, Qn and their monotone products.

We start with some preliminary results on the product of semi-simple algebras.
Let .Mj ; !j / .j D 1; 2/ be monotone symplectic manifolds. Denote the gener-

ators of �2.Mj /=Ker.!j / by sj which satisfy

!j .sj / D �Mj ; c1.TMj /.sj / D NMj ;

where �Mj denotes the rationality constant and NMj denotes the minimal Chern
number of .Mj ; !j /.

In the case where the monotonicity constants of .Mj ; !j / .j D 1; 2/ coincide,
one can consider their product .M1 � M2; !1 ˚ !2/ which is also a monotone
symplectic manifold. It has the same monotonicity constant as .Mj ; !j / .j D 1; 2/

and its minimal Chern number NM1�M2 is the greatest common divisor of NM1
and NM2 . As above, we denote the generator of the �2.M1 �M2/=Ker.!1 ˚ !2/
by s, which satisfies

.!1 ˚ !2/.s/ D �M1�M2 ; c1.T .M1 �M2//.s/ D NM1�M2 :

Entov–Polterovich proved the following in [24].

Theorem 41 ([24, Theorems 5.1 and 6.1]). Let .Mj ; !j / .j D 1; 2/ be monotone
symplectic manifolds. Assume that their quantum homology rings

QHeven.Mj IC/ D Heven.Mj IC/˝CŒŒs�1j ; sj �

are both semi-simple and at least one of Mj .j D1; 2/ satisfies H2k�1.Mj IC/D0
for all k 2 Z. Then,

QHeven.M1 �M2IC/ D Heven.M1 �M2IC/˝CŒŒs�1; s�

is semi-simple.

One can consider the following embedding:

� WQH�.M1IC/ ,! QH�.M1 �M2IC/;

a � s1 7! a˝ ŒM2� � s
NM1=NM1�M2 :

Of course, one can consider an analogous embedding for M2.
We are now ready to prove Theorem 39. We will use the cohomological counter-

part of the results above.
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Proof of Theorem 39. As QH�.M IC/ is semi-simple, it splits into a direct sum of
fields fQj g:

QH�.M IC/ D Q1 ˚Q2 ˚ � � � ˚Ql :

We decompose the identity element 1M 2 QH�.M IC/ with respect to this decom-
position:

1M D e1 C e2 C � � � C el ;

where ej is a unit of Qj . As we argued in the proof of Theorem 3, as

CO0
b.1M / D CO0

b.�.e1//C CO0
b.�.e2//C � � � C CO0

b.�.el// ¤ 0;

Proposition 19 implies thatL is �.ej /-heavy for some j 2 f1; 2; : : : ; lg. Without loss
of generality, we assume j D 1. Moreover, Corollary 34 implies that L is actually
e1-superheavy.

Recall that in the proof of Theorem 3, we have seen that in Qn; n D 2; 4, there
exist two disjoint Lagrangian submanifolds L0 and L1, which satisfy either
(1) L0 is eC-superheavy and L1 is e�-superheavy, or
(2) L0 is e�-superheavy and L1 is eC-superheavy.
Without loss of generality, we assume the former. By [25, Theorem 1.7], L0 � L is
eC ˝ e1-superheavy and L1 � L is e� ˝ e1-superheavy.

Now, as QH�.Qn �M IC/ is also semi-simple, we consider its decomposition
into fields and the decomposition of the identity element1Qn�M 2QH�.Qn �M IC/
with respect to this split:

QH�.Qn
�M IC/ D Q01 ˚Q

0
2 ˚ � � � ˚Q

0
l 0 ;

1Qn�M D e
0
1 C e

0
2 C � � � C e

0
l 0

for some l 0 2 N. As eC ˝ e1 and e� ˝ e1 are idempotents of QH�.Qn �M IC/,
by [25, Theorem 1.5 (3)], there exist j0; j1 2 f1; 2; : : : ; l 0g such that L0 � L is
e0j0-heavy and L1 � L is e0j1-heavy. For

�e0
j0

; �e0
j1

W eHam.Qn
�M/! R

both being homogeneous quasimorphisms, heaviness and superheaviness are equiv-
alent for e0j0 and e0j1 , thus L0 � L is e0j0-superheavy and L1 � L is e0j1-superheavy.
As L0 � L and L1 � L are disjoint, L1 � L is not e0j0-superheavy. This implies

�e0
j0

¤ �e0
j1

:

Thus, it follows from Theorem 22 that

� WD �e0
j0

� �e0
j1

defines a non-trivial homogeneous quasimorphism

�WHam.Qn
�M/! R;

which is both C 0-continuous and Hofer Lipschitz continuous.
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4.5. Proof of Theorem 6. In this section, we precisely state the question of Polter-
ovich–Wu which appeared in Section 2.2 and prove Theorem 6 as an application of
Lemma 32.

According to a computation due to Wu [55], QH�.CP 2Iƒ/ is semi-simple and
splits into a direct sum of three fields:

QH�.CP 2Iƒ/ D Q1 ˚Q2 ˚Q3:

We denote the corresponding split of the identity element 1ƒ 2 QH�.CP 2Iƒ/ as
follows:

1ƒ D e1 C e2 C e3;

where fej gjD1;2;3 are

ej WD
1

3

�
1ƒ C �

juT �
1
3�0 C �2ju2T �

2
3�0

�
;

u is the generator of H 2.CP 2IC/, and

�0 WD h!FS ; ŒCP
1�i; � WD e

2�i
3 :

Note that u satisfies
u3 D T �0 :

These idempotents give rise to three homogeneous quasimorphisms (or symplectic
quasi-states) f�ej gjD1;2;3:

�ej W
eHam.CP 2/! R;

�ej .
z�/ WD lim

k!C1

�.z�k; ej /

k

for each j D 1; 2; 3.
Remark 42. It will not be used in this paper but we point out that �ej descends to
Ham.CP 2/ as �1.Ham.CP 2// D Z3.

Polterovich posed the following question:
Question 43 ([55, Remark 5.2]). Is it possible to distinguish the symplectic quasi-
states/morphisms for the three idempotents of QH�.CP 2Iƒ/?

Note that �j which appeared in the statement of this question in Section 2.2 is
precisely �ej defined above. We now prove Theorem 6 which answers this question
in the negative.

Proof of Theorem 6. We will show that

�ej D �1ƒ
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for all j D 1; 2; 3, where 1ƒ 2 QH�.CP 2Iƒ/. By the triangle inequality, we have

�.z�k; ej / 6 �.z�k; 1ƒ/C �.ej /

for any k 2 N. Thus,
�ej 6 �1ƒ ; (29)

where

�1ƒ.
z�/ WD lim

k!C1

�.z�k; 1ƒ/

k

for z� 2 eHam.CP 2/. As QH�.CP 2IC/ is a field, by Lemma 32, we see that

�1ƒ D �1 (30)

are both homogeneous quasimorphisms, where 12QH�.CP 2IC/. Thus, the inequal-
ity (29) and the homogeneity of �ej and �1ƒ imply

�ej D �1ƒ : (31)

Thus, putting equalities (30) and (31) together, we have proved that

�e1 D �e2 D �e3 D �1ƒ D �1:

Remark 44. A similar argument is applicable to the case where M WD S2 � S2:
As we have seen in Section 3.4, QH�.S2 � S2IC/ splits into a direct sum of
two fields. On the other hand, Fukaya–Oh–Ohta–Ono have computed in the proof
of [30, Theorem 23.4] that QH�.S2 � S2Iƒ/ splits into a direct sum of four fields.
Denote the two units of field factors of QH�.S2 � S2IC/ by e˙, which satisfy

PD.e˙/ D
ŒM �˙ Œpt � pt�s

2
:

Denote the four units of the field factors of QH�.S2 � S2Iƒ/ by e.˙;˙/, which
satisfy

PD.e.C;˙// D
ŒM �C P � T �0

4
˙
.AC B/T �0=2

4
;

PD.e.�;˙// D
ŒM � � P � T �0

4
˙
.A � B/T �0=2

4
;

where

ŒM � WD ŒS2 � S2�; P WD Œpt � pt�;

A WD ŒS2 � pt�; B WD Œpt � S2�:
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By using

�.eC/ D e.C;C/ C e.C;�/;

�.e�/ D e.�;C/ C e.�;�/;

we obtain

�eC D ��.eC/ D �e.C;C/ D �e.C;�/ ;

�e� D ��.e�/ D �e.�;C/ D �e.�;�/ :

4.6. Results on Lagrangian intersections. In this section, we discuss consequences
of the proof of Theorem 3 for Lagrangian intersections.

In proving Theorem 3, detecting disjoint Lagrangian submanifolds whose Floer
cohomology is non-trivial is a crucial step which we discussed in Section 4.1. As a
by-product, we obtain certain results on Lagrangian intersections.

A closed Lagrangian submanifold L is called monotone if it satisfies

!j�2.M;L/ D � � �j�2.M;L/

for some � > 0 where � D �L denotes the Maslov class. The minimal Maslov
number NL is the positive generator of �.�2.M;L//, i.e., �.�2.M;L// D NLZ.
Recall that ƒ denotes the universal Novikov field

ƒ D
n 1X
jD1

ajT
�j W aj 2 C; �j 2 R; lim

j!C1
�j D C1

o
:

All the Lagrangian submanifolds concerned in the following are assumed to be
oriented and relatively spin (for its definition, see Section 3.6). The statements in
this section include the notion of deformed Floer cohomology defined by Fukaya–
Oh–Ohta–Ono [27]. For a quick review, see Section 3.6.

The main statement for Lagrangian intersection is the following.
Theorem 45. InQn .n D 2; 4/, there exist two monotone Lagrangian submanifolds
L0, L1 that satisfy the following:
(1) L0 and L1 are respectively diffeomorphic to

� T 2 and S2 when n D 2,
� T 4 and S1 � S3 when n D 4.

(2) L0 and L1 are disjoint.
(3) Let L be a Lagrangian submanifold in Qn, which is

� oriented when n D 2,
� oriented and relatively spin when n D 4.
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If L is disjoint from both L0 and L1, i.e., if

L \ .L0 [ L1/ D ;;

then
HF..L; b/Iƒ/ D 0

for any bounding cochain b.
Remark 46. (1) Under the symplectomorphism betweenQ2 andS2�S2, the Lagrang-
ian submanifoldsL0 andL1 in Theorem 45 correspond, respectively, to the so-called
exotic torus defined by

f.x; y/ 2 S2 � S2 W x1y1 C x2y2 C x3y3 D �1=2; x3 C y3 D 0g;

which was studied in [25, 29] and the anti-diagonal

f.x; y/ 2 S2 � S2 W x D �yg:

(2) For more information about the two Lagrangian submanifolds in Theorem 45,
see Theorems 35, 37 and related references.

For example, Theorem 45 can be applied to the following two well-known Lagrang-
ians in Q2 and Q4. In Q2, there is a Lagrangian torus T which corresponds to the
product of equatorial circles S1 � S1 in S2 � S2 under the symplectomorphism
betweenQ2 and S2 � S2. InQ4, there is the standard Lagrangian sphere S4, which
appears as the real locus

S4 D f.x0 W � � � W x5/ 2 CP 5 W x20 C � � � C x
2
4 D x

2
5 ; xj 2 R; j D 0; : : : ; 5g:

These Lagrangians T and S4 are known to have non-trivial Floer cohomology groups

HF.T Iƒ/ ¤ 0; HF.S4Iƒ/ ¤ 0:

Theorem 45 directly implies the following.
Corollary 47. Any Hamiltonian deformation of T inQ2 or the standard Lagrangian
sphere S4 in Q4 intersects either one of L0 or L1 in Theorem 45.

For any � 2 Ham.Q2/, we have

L0 \ �.T / ¤ ; or L1 \ �.T / ¤ ;:

For any � 2 Ham.Q4/, we have
L0 \ �.S

4/ ¤ ; or L1 \ �.S
4/ ¤ ;:

Remark 48. In Theorem 45, it is crucial that we consider Floer cohomology without
bulk-deformation. As it was studied by Fukaya–Oh–Ohta–Ono [29] and Cho–Kim–
Oh [17], there exist Lagrangians in Qn .n D 2; 4/ intersecting neither L0 nor L1
that have non-trivial bulk-deformed Floer cohomology.
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There are several ways to construct monotone Lagrangian submanifolds in Qn

such as the Albers–Frauenfelder-type construction [2] and the Biran-type construc-
tion [7, 8]. Their precise constructions and the relations among them are explained
in [45]. In particular, Oakley–Usher constructs monotone Lagrangian submanifolds
in Q4 which are diffeomorphic to S1 � S3 by the methods in [45, Section 1.2]
denoted by LQ0;3 and SQ0;3, which turn out to be Hamiltonian isotopic (see [45,
Theorem 1.4]). However, the monotone Lagrangian submanifold L1 in Q4 which
appeared in Theorem 45 is not Hamiltonian isotopic to these examples due to Oakley–
Usher asL1 has minimal Maslov number 4 (see [44, Section 4.4]) and Oakley–Usher’s
Lagrangian submanifold has minimal Maslov number 2. Thus, we have the following.
Proposition 49. The 4-quadricQ4 has two monotone Lagrangian submanifolds diff-
eomorphic to S1 � S3 which are not Hamiltonian isotopic.

Basically, Theorem 45 comes from the fact that the quantum cohomology ring

QH�.Qn
IC/ D H�.Qn

IC/˝C CŒt�1; t ��

splits into a direct sum of two fields. In the case where the quantum cohomology
ring does not split, i.e., itself is a field, we have a stronger rigidity result as follows.
Proposition 50. Let .M;!/ be a closed symplectic manifold for which the spectral
pseudo-norm is bounded, i.e.,

supf
.H/ W H 2 C1.R=Z �M;R/g < C1:

Let L1 be a Lagrangian submanifold such that

HF..L1; b1/Iƒ/ ¤ 0

for some bounding cochain b1. Then, any Lagrangian submanifold L2 which is dis-
joint from L1 has a vanishing Floer cohomology

HF..L2; b2/Iƒ/ D 0

for any bounding cochain b2.
Remark 51. (1) When .M;!/ is monotone, if QH�.M IC/ is a field, then the
spectral norm is bounded. Thus, Proposition 50 applies to CP n (see [22]).

(2) Proposition 50 is not restricted to monotone symplectic manifolds. Examples of
non-monotone symplectic manifolds for which the spectral norm is bounded includes
a large one point blow-up of CP 2 and .S2�S2; �˚��/ for � > 1, where � denotes
an area form with Z

S2
� D 1:

See Section 4.6 for further remarks.



Vol. 97 (2022) Quasimorphisms, C 0-topology and Lagrangians 249

Proof of Theorem 45. We assume that there exists a bounding cochain b such that

HF..L; b/Iƒ/ ¤ 0

and show that L must intersect either L0 or L1. As the closed-open map maps
the identity element of the quantum cohomology ring to the identity element of the
Lagrangian Floer cohomology group, we have

CO0
b.1/ D PD.ŒL�/ ¤ 0 2 HF �..L; b/Iƒ/:

Since

QH�.Qn
IC/ WD QC ˚Q�;

1 D eC C e�;

Theorem 19 implies that L is either �.eC/-heavy or �.e�/-heavy, where

�WQH�.Qn
IC/ ,! QH�.Qn

Iƒ/:

Thus, by Corollary 34, L is either eC-superheavy or e�-superheavy (This argument
was explained in more detail in the proof of Theorem 3.) If L intersects neither
of L0, L1, then we have two disjoint sets which are either both eC-superheavy or
both e�-superheavy, which contradicts Proposition 18. Thus, Lmust intersect either
L0 or L1, and this completes the proof.

We now prove Proposition 50.

Proof of Proposition 50. Assume there exist two Lagrangian submanifolds L1
and L2 such that

L1 \ L2 D ;

and
HF..L1; b1/Iƒ/ ¤ 0; HF..L2; b2/Iƒ/ ¤ 0:

Then by Theorem 19, L1 and L2 are both �1-heavy where �1 denotes the asymptotic
spectral invariant with respect to the idempotent 1 2 QH�.M Iƒ/. Thus, for any
Hamiltonian H , we have


.H/ D �.H; 1/C �. xH; 1/ > �1.H/C �1. xH/

> inf
x2L1

H.x/C inf
x2L2

xH.x/:

AsL1\L2 D ;, we can consider a Hamiltonian which is arbitrarily large onL1 and
arbitrarily small on L2, which contradicts the assumption

supf
.H/ W H 2 C1.R=Z �M;R/g < C1:

This completes the proof.
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As we have pointed out in Remark 51, examples of closed symplectic manifolds
that satisfy

supf
.H/ W H 2 C1.R=Z �M;R/g < C1

include CP n, a large one point blow-up of CP 2 and .S2 �S2; � ˚��/ with � > 1.
We provide a brief explanation to these examples.

One can easily check that, for any closed symplectic manifold .M;!/, the con-
dition

supf
.H/ W H 2 C1.R=Z �M;R/g < C1

is equivalent to
�. � ; 1/W eHam.M;!/! R

being a quasimorphism, where 12QH�.M IC/. When .M;!/ is monotone, then
�. � ; 1/ is a quasimorphism when QH�.M IC/ is a field. Thus, the case of CP n

follows. When .M;!/ is non-monotone, [47, Theorem 1.3] or [24, Theorem 3.1]
imply that �.�; 1/ is a quasimorphism when “QH 0.M IC/” is a field where a different
set-up of the quantum cohomology is considered. For a precise definition of this
set-up, we refer to [23, 47]. As pointed out in [47, Lemma 3.1 and Remark 3.4],
“QH 0.M IC/” is a field when .M;!/ is a large one point blow-up of CP 2 or
.S2 � S2; � ˚ ��/ with � > 1.

4.7. Proof of application. In this section, we prove the following theorem, which
includes Theorem 8.
Theorem 52. Let .M;!/ be a symplectic manifold which is either symplectically
aspherical or monotone with the same monotonicity constant as Qn .n D 2; 4/ (we
also allow it to be an empty set). For any R > 0,

Ham>R WD f� 2 Ham.Qn
�M/ W dHof.id; �/ > Rg

has a non-empty C 0-interior.
Theorem 52 follows as a corollary of the following statement.

Theorem 53. Let .M;!/ be a monotone symplectic manifold. Assume that

supf
.�/ W � 2 Ham.M/g D C1:

For any R > 0,

Ham>R WD f� 2 Ham.M;!/ W dHof.id; �/ > Rg

has a non-empty C 0-interior.

Proof of Theorem 53. From the assumption, for anyR>0, we can find�2Ham.M;!/
such that


.�/ > RC
2 dim.M/

NM
� �0;
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where NM is the minimal Chern number of M . By Theorem 26, there exists ı > 0

such that if dC0.id; �0/ < ı, then


.�0/ <
2 dim.M/

NM
� �0:

Thus, for any  2 Ham.M;!/ such that dC0.�;  / < ı, we have


. / > 
.�/ � 
. ı ��1/ > RC
2 dim.M/

NM
� �0 �

2 dim.M/

NM
� �0 D R

and thus,  2 Ham>R. This completes the proof.

Now Theorem 52 follows immediately.

Proof of Theorem 52. From the Künneth formula for spectral invariants (see [25,
Section 5.1]), we have

supf
.H/ W H 2 C1.S1 �Qn
�M/g > supf
.G ˚ 0/ W G 2 C1.S1 �Qn/g

D supf
.G/ W G 2 C1.S1 �Qn/g > supf�.�/ W � 2 Ham.Qn/g D C1

for n D 2; 4. Note that the last equality uses the non-triviality and the homogeneity
from Theorem 3. The following claim implies that the above estimate is equivalent
to

supf
.�/ W � 2 Ham.Qn
�M/g D C1;

which completes the proof of Theorem 52 via Theorem 53.

Claim 54. Let .M;!/ be a closed monotone symplectic manifold. For any Hamilton-
ian H , we have


.H/ �
dim.M/

NM
� �0 6 
.�H / 6 
.H/:

Proof of Claim 54. It is an easy consequence of the estimate concerning the spectral
norm of Hamiltonian loops in Theorem 26.
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