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Abstract. Let K be a local field with residue field ¥ and F the function field of a curve over K.
Let G be a connected linear algebraic group over F of classical type. Suppose char(x) is a
good prime for G. Then we prove that projective homogeneous spaces under G over F satisfy
a local-global principle for rational points with respect to discrete valuations of F. If G is a
semisimple simply connected group over F', then we also prove that principal homogeneous
spaces under G over F' satisfy a local-global principle for rational points with respect to discrete
valuations of F.
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Introduction

Let k be a number field and G a semisimple simply connected linear algebraic group
over k. Classical Hasse principle asserts that a principal homogeneous space under G
over k has a rational point if it has rational points over all completions of k. This
is a theorem due to Kneser (classical groups), Harder (for exceptional groups other
than Eg) and Chernousov (for Eg). Harder also proves a Hasse principle for rational
points on projective homogeneous spaces under connected linear algebraic groups
over k.

Questions related to Hasse principle have been extensively studied over ‘semi-
global fields’, namely function fields of curves over complete discretely valued fields
with respect to their discrete valuations. Considerable progress has been made
possible due to the patching techniques of Harbater, Hartmann, and Krashen. One
could look for analogous Hasse principles for simply connected groups in this context.
However, Hasse principle fails for simply connected groups in this generality [10].
If K is a p-adic field and G is a semisimple simply connected quasi split linear
algebraic group over the function field of a curve over K with p # 2,3,5, it was
proved in [11] that Hasse principle holds for G. This led to the following two
conjectures [11].
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Let F be the function field of a p-adic curve and Q2 the set of all discrete valu-
ations of F. Forv € F, let F, be the completion of F at v.

Conjecture 1. Let Y be a projective homogeneous space under a connected linear
algebraic group G over F. Then Y satisfies Hasse principle with respect to QF.

Conjecture 2. Let G be a semisimple simply connected linear algebraic group
over F and Y a principal homogeneous space under G over F. Then Y satisfies
Hasse principle with respect to Q.

There has been considerable progress towards these conjectures for classical
groups in the ‘good characteristic case’. Let G be a semisimple simply connected
linear algebraic group of classical type over F'. We say that the prime p is good for G,
if p #£ 2 for G of type By, Cy,, D,, (D4 nontrialitarian) and p does not divide n + 1
for G of type '4, and p does not divide 2(n + 1) for G of type %4,,. Let G be any
connected linear algebraic group over F. We say that G is of classical type if every
factor of the simply connected cover G of the semi-simplification of G/ Rad(G) is
of classical type. We say that p is good for G if p is good for every factor of G.

Suppose p # 2. It was proved in [11] that a quadratic form g over F of rank at
least 3 is isotropic over F' if and only if g is isotropic over F, forallv € Qf. A
local-global principle for generalized Severi—Brauer varieties, under an assumption
on the roots of unity in F, is due to Reddy and Suresh [30]. Let A be a central simple
algebra over F with an involution o of either kind. If o is of the second kind, then
assume thatind(A) < 2. Let & be a hermitian form over (A4, o). Then Wu [33] proved
the validity of Conjecture 1 for the unitary groups of (4,0). Hence, Conjecture 1
holds for all groups of type By, Cp,, D, and for special groups of type '4,, and %4,, in
the good characteristic case ([33, Corollary 1.4]).

Conjecture 2 for groups of type B,, C,, D, is due to Hu and Preeti independ-
ently [17,29]. Conjecture 2 for G = SL;(A) with index of A square-free is a
consequence of the injectivity of the Rost invariant due to Merkurjev—Suslin [25] and
a result of Kato [18] on the injectivity of

H(F,Q/Z(2)) - [] H*(F,Q/Z(2).

veEQ

The case 4,,, namely the unitary groups of algebras of index at most 2 with unitary
involution is due to Hu and Preeti [17,29].

The two main open cases concerning Conjectures 1 and 2 for classical groups
were types ‘4, and %4,,. The Conjecture 2 for '4,,, namely a local-global principle
for reduced norms in the good characteristic case was settled by the authors and
Preeti [27].

The aim of this paper is to settle Conjecture 1 and Conjecture 2 in the affirmative
in the good characteristic case for all groups of types '4,, and %4,,, thereby completing
the proof for all classical groups in the good characteristic case. In fact we prove the
following more general theorems.
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Theorem 0.1 (cf. Theorem 10.1). Let K be a local field with residue field k and F
the function field of a smooth projective curve over K. Let A be a central simple
algebra over F of index coprime to char(k). Then Conjecture 1 holds for PGL(A).

Theorem 0.2 (cf. Theorem 11.5). Let K be a local field with residue field k and Fy the
Sfunction field of a smooth projective curve over K. Let F/ Fy be a quadratic extension
and A be central simple algebra over F of index n with an F/Fy- involution o.
Suppose that 2n is coprime to char(x). Let h be a hermitian form over (A, o).
If A = F, then assume that the rank of h is at least 2. Then Conjecture 1 holds
for U(A, o, h).

Theorem 0.3 (cf. Theorem 13.1). Let K be a local field with residue field k and Fy the
function field of a smooth projective curve over K. Let F/ Fy be a quadratic extension
and A a central simple algebra over F of index n withan F | Fy- involution o. Suppose
that 2n is coprime to char(k). Then Conjecture 2 holds for SU(A, o).

As a consequence we have the following.

Theorem 0.4 (cf. Theorem 14.1). Let K be a local field with residue field k and F
the function field of a smooth projective curve over K. Let G be a connected linear
algebraic group over F of classical type (D4 nontrialitarian) with char(k) good
for G. Then Conjecture 1 holds for G.

Theorem 0.5 (cf. Theorem 14.2). Let K be a local field with residue field k and F
the function field of a smooth projective curve over K. Let G be a semisimple simply
connected linear algebraic group over F with char(k) good for G. If G is of classical
type (D4 nontrialitarian), then Conjecture 2 holds for G.

Here is an outline of the structure of the paper. The plan is to reduce the questions
on local-global principle with respect to discrete valuations to one for the patching
fields in the setting of Harbater, Hartmann and Krashen [13] and then to deal with
the question in the patching setting. The reduction to the patching setting requires
an understanding of the structure of central simple algebras with involutions of the
second kind over the branch fields [13], which are 2-local fields. This leads to the study
of cyclic extensions over quadratic extensions of local fields with zero corestriction.
Let Fy be afield, F/ Fy be aquadratic extension and L/ F a cyclic extension of degree
coprime to char(Fp). It was proved in [12, Proposition 24] that the corestriction of
L/F from F to Fyis zero if and only if L/ Fy is a dihedral extension. In Section 3 we
reprove this statement for the sake of completeness and deduce some consequences for
dihedral extensions. In Section 2 we study dihedral extensions over an arbitrary fields.
In Section 4 we describe all dihedral extensions over local fields. In Section 6 and
Section 8 we describe the structure of central simple algebras with unitary involutions
over 2-local fields and 2-dimensional complete fields with finite residue fields. These
fields surface in the patching setting. In Section 10, we prove a local-global principle
for generalized Severi—Brauer varieties without any assumption on the existence of
roots of unity, completing the proof of Conjecture 1 for groups of type 4,. In
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Section 11, we prove a local-global principle for isotropy of hermitian forms over
division algebras with unitary involutions. The idea is to construct good maximal
orders invariant under involution over 2-dimensional complete regular local rings.
This is possible due to the complete understanding of the structure of the algebras
with unitary involutions studied in Section 6. This settles Conjecture 1 for groups
of type %4, in the good characteristic case. In Section 12, we prove the local-global
principle for principal homogeneous spaces under simply connected unitary groups
in the patching setting. Finally, in Section 13 we prove the local-global principle
for special unitary groups with respect to discrete valuations, thereby completing the
validity of Conjecture 2 for groups of type 4,,. More generally (cf. Section 14), we
prove Conjectures 1 and 2 for groups of classical type over function fields of curves
over local fields.

Throughout this paper, a projective homogeneous space Z under a connected
linear algebraic group G is a projective variety Z with transitive G-action over the
separable closure such that the stabilizer is a parabolic subgroup.

1. Preliminaries

Lemma 1.1. Let Fy be the finite field with g elements and T ;2 the degree two extension
of Fy. Suppose q is odd and ~—1 ¢ ;. Then F 2 = Fy(~/—1). Let d be the
maximum integer such that I¥ ;> contains a primitive 2¢-th root of unity p. Then

NF /8, (P) = —1.

Proof. Since v/—1 ¢ [, and ¢ is odd, we have ]Fq*/IF;2 = {1, —1}. Since there is a
unique extension of degree 2 of IF;, we have

F,» = Fy(v/=1).

Let d be the maximum integer such that [F > contains a primitive 24 _th root of unity p.

2d+1

. . . .. . . 2
Since there is no -th primitive root of unity in F 2, p ¢ IF;Z . Hence,

Since N]qu/Fq : IF;‘Z — T is surjective, N]qu/]pq : IF;z/IF;22 — IF;/]F;z is surjective.
Hence,
2
NF 5 /8, (p) = =0

for some 6 € F;z. Since N]qu/]Fq (p)zd = land v—1 € F}, it follows that 6 = 1
and Nqu/]Fq (p) = —1. O
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Corollary 1.2. Let K¢ be a local field and K / K¢ the quadratic unramified extension.
Suppose that the characteristic of the residue field of K¢ is odd and ~/—1 &€ K. Then

K = Ko(v/—1).

Let d be the maximum integer such that K contains a primitive 24 th root of unity p.
Then Nk k,(p) = —1.

Lemma 1.3. Let Fy be the finite field with g elements and I ;2 the degree two extension
of Fy. Let m > 1. Suppose q is odd and VA ¢ Fy. If F 2 contains a primitive
2+ 1_th root of unity, then F; C Fq*fm.

Proof. Since v/—1 ¢ F7, the only 2™-th roots of unity in [, are +1. Hence, we
have an exact sequence of groups

1> {£1} > Fy > F2" > 1,

where the last map is given by x — x*". Thus, the order of F*/F2" is 2. Since
—1 ¢]F*2,
2m _ 2 2m
S1IgF” and FP =F2" U (-2

Since F*, contains a primitive 2" !-th root of unity, —1 e F*2”". Thus, F* c F*2" .
q q q q 0

Corollary 1.4. Let K¢ be a local field and K |/ K¢ the quadratic unramified extension.
Suppose that the characteristic of the residue field of Ky is odd and V-1 g K.
Letm > 1. If K contains a primitive 21 -th root of unity, then every unit in the
valuation ring of Kg is in K*?".

Lemma 1.5. Let [, be the finite field with q elements. Let m > 1 be coprime to q.
Suppose that F; does not contain any nontrivial m-th root of unity. Then IF ; = IF,;‘ mn,

Proof. Since F; does not contain nontrivial m-th roots of unity, the only m-th root
of unity in I, is 1. Hence, the homomorphism

m m
]F;—>IF; , XX

. . . m
is an isomorphism. Thus, Fj = F;". O

Corollary 1.6. Let K¢ be a local field. Let m > 1 be coprime to the characteristic
of the residue field of Ky. Suppose that Ky does not contain any nontrivial m-th root
of unity. Then every unit in the valuation ring of K is in K.

Let F be a discretely valued field with valuation ring R and residue field K. We
say that an elementa € F isaunitin FF ifa € R is aunit. Let n > 1 be an integer
coprime to char(K). Then we have the residue map

0: H(F.p) — HOH (K 20
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Let HZ.(F, u®") be the kernel of 3. An element @ € HZ (F, u®") is called an

r n n
unramified element. If F is complete, then we have an isomorphism

We end this section with the following result on reduced norms.

Proposition 1.7. Let K be a global field with no real places and F a complete
discretely valued field with residue field K. Let A be a central simple algebra over F
of index n coprime to char(K). Let (L,0) € H'(K,Z/nZ) be the residue of A. Let
0 € F* be a unit. If the image of 0 € K* is a norm from the extension L/ K, then 0
is a reduced norm from A.

Proof. Let E/F be the unramified extension with residue field L and & a generator
of Gal(E/ F) lifting 0. Let R be the valuation ring of F and = € R be a parameter.
Then A = Ay + (E, 0, ) for some central simple algebra A over F representing a
class in H2,(F, jtn) (cf. [27, Lemma 4.1]). Since F is complete and the image of 6
in K is a norm from L/K, 6 is a norm from E/F. Hence,

(E,G,7)-(0) =0e H>(F, u2?).

Since Ao is unramified on R and 6 is a unit, Ao - (0) € H}.(F, u®?). Since K is a
global field with no real places, cd(K) = 2 and H3(K, u®?) = 0. Hence,

H2.(F,u2*) =0 and Ao-(9) =0.

In particular, 4 - (0) = 0 € H3(F, u®?) and, by [27, Theorem 4.12], 6 is a reduced
norm from A. O

2. Dihedral extensions

Let G be a dihedral group of order 2m > 4. Let o and t be the generators of G with
0™ = 1,712 = 1, and tot = o~!. The subgroup generated by o is the rotation
subgroup of G and for 0 <i <m — 1, ol are the reflections.

Let Fy be a field and E/ Fy a field extension. We say that E/ Fy is a dihedral
extension if E/Fy is Galois with Galois group isomorphic to a dihedral group. In
this section we prove some basic facts about dihedral extensions.

Lemma 2.1. Let Fy be a field and E/ Fy a dihedral extension. Let F be the fixed
field of the rotation subgroup of Gal(E/ Fy). If M/ F is a subextension of E | F with
M # F, then M/ Fy is a dihedral extension.

Proof. Let Gal(E/ Fy) be generated by o and t witho™ =1,72=1,and ror=0""'.
Then E/F is cyclic with Gal(E/F) generated by 0. Let M/ F be a subextension
of E/F. The extension M/ F is cyclic with Gal(M/ F) generated by the restriction
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of 0 to M. Since M = E°' for some i and to't = o, the extension M/ Fy is
Galois with the Gal(M/ Fy) generated by the restriction of o and 7 to M. Since
M +# F, the restriction of o to M is nontrivial. Since F' C M, the restriction of ©
to M is nontrivial. Hence, M/ Fy is dihedral. O

Lemma 2.2. Let E/ Fy be a dihedral extension and F the fixed field of the rotation
subgroup of Gal(E / Fy). Let Fo € L € E with F ¢ L. If L/ Fy is Galois, then

[L: Fo] <2.

Proof. Suppose that F ¢ L and L/ Fy is Galois. Let M = FL. Suppose that L # Fy.
Then M # F, and hence M/ Fj is dihedral (Lemma 2.1). Since F ¢ L, we have

M :F]=[L: F.

Since L/Fy and F/F, are Galois extensions, M/ F, is Galois with Gal(M/ Fy)
isomorphic to Gal(L/Fy) x Gal(F/Fp). Since the only dihedral group which is
isomorphic to a direct product of two nontrivial subgroups is Z/2 x Z /2, we have

[L: Fo] = 2. O

Lemma 2.3. Let Fy be a field and E | Fy a dihedral extension of degree 2m. Let F
be the fixed field of the rotation subgroup of Gal(E/Fy). Then there exist exactly m
subfields E’ of E containing Fo with

[E': Fo))=[E:F] and E'F =E.

Further, if E' is any such subfield of E and 1,45, --- ,{, is any sequence of prime
numbers with [E : F| = £y ---£,, then there exist subfields

F0=L()CL1C"'CL,~=E/
with [Li ZLi_l] = Ei.

Proof. Leto be a generator of the rotation subgroup of Gal(E/ Fy) and 7 a reflection.
ForO<i<m-—1,letE; = E™" be the subfield of E fixed by rol. Then

[E:E]=2, [Ei:Fo)=m, and E;F=E.

Since the only elements of order 2 in Gal(E/Fy) which are not the identity on F
are the reflections to?, 0 < i < m — 1, any E’ with the given properties coincides
with E; for some i.

Let E' = E; for some i. Suppose m = £y ---£, with £;’s primes. Since E/F is
a cyclic extension, there exist subfields

F=MycMyC---CM,=E

such that [M; : M;_;] = {; for all i. Then L; = E’ N M; have the required
property. O
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Lemma 2.4. Let Fy be a field and F/ Fy a quadratic Galois extension. Let m > 2
be coprime to char(Fy). Suppose that F contains a primitive m-th root of unity p.
Leta € F§. Suppose that

[F("/a): F] = m.
Then F('%/a)/ Fy is dihedral if and only if Np;g,(p) = 1.
Proof. Let E = F(%/a) and E' = Fy("Y/a). Since a € F;, we have E = E'F.
Since [E : Fo] = 2m, we have
[E:E]=2.

Let o be the automorphism of F(%/a)/F given by o(%/a) = p"/a and t the
nontrivial automorphism of E/E’. Since t is nontrivial on F, it follows that t # o’

for any i. Hence, E/ Fy is Galois and Gal(E/ Fy) is generated by o and 7. Since the

order of o is m and 2 = 1, Gal(E/ Fy) is dihedral if and only if to7 = o~ .

We have
tot(Va) = to(Va) = t(p Va) = t(p) Va
= t(p)pp " Va = t(p)po ' (¥a).
Hence, tot = o~ ! if and only if Ng/F,(p) = t(p)p = 1. O

We end this section with the following lemma.

Lemma 2.5. Let Fy be a field and n > 2 an integer with 2n coprime to char(Fy).
Let E | Fo be a dihedral extension of degree 2n and o and t generators on Gal(E / Fy)
with o a rotation and t a reflection. Let F = E® and E; = E®' " for 1 <i < n.
Let M/ Fy be a field extension. Suppose F ®p, M is a field and E ®F, M is
isomorphic to ]_['1’ (F ®F, M). Then there exists i such that

Ei®p, M ~ M X E]
for some M -algebra E.
Proof. The proof is by induction on n. Suppose that n = 2. Then
F=F(Ja), Ei=F(b). Ey=F(ab). E=Fb).

Suppose that M(/a) = F ®f, M is afield and E ® g, M is not a field. Then a is
not a square in M and E ® p, M ~ M(\/a) x M(/a). Then either b is a square
in M or ab is a square in M. Thus, either

Ei1Qp, M =M xM or E,Qp, M =M x M.
Suppose n > 3. Suppose that M (y/a) = F @, M is a field and

E®p, M ~ [ M(Va).
1
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Suppose 7 is odd. Since E; @, F >~ E and F/ Fy is of degree 2, it follows that
r N
Ei ®p, M ~ HM X ]_[M(ﬁ).
1 1

Since [E; : Fo] = nisodd, r > 1.

Suppose that n is even. Then, by Lemma 2.3, there exists a quadratic extension
F/Fycontainedin E and F; # F. Let F' = FF;. Then F’/ Fy is a biquadratic ext-
ension. Hence, there is a quadratic extension F5/Fy contained in F’ with F # F,
and F; # F,. Further, every quadratic extension of Fy contained in E is either F,
Fy, or F,. Since every E; contains a quadratic extension of Fy (Lemma 2.3)
and F ¢ E;, half of E; contain F; and the remaining half of E; contain F5. Further,
E/F; and E/ F, are dihedral extensions of degree n.

Since E ® p, M ~ [[] M(/a), we have

F' ®F, M =~ M(\/a) x M(Va).

Thus, by the case n = 2, either F; ® py, M >~ M x M or F, @y M >~ M x M.
Without loss of generality, assume that 'y ® p, M >~ M x M. Then F; is isomorphic
to a subfield of M, and hence M/ F; is an extension of fields.

Since F’ = F;(y/a) and a is not a square in M, then F' @ r, M is a field. Since

EQp, M ~EQ®p F1 ®r, M
2E®F1(MXM)2E®F1MXE®F1M

and

E®p M ~]]MWa),
1

it follows that
n/2

E®p M ~ [ M(Va).
1
Since E/F is dihedral and [E : Fi] < [E : Fy], by induction there exists an i such
that £; @ ;, M ~ M x E for some M -algebra E. We have

EiQr, M ~ E; QF, F1 ®p, M ~ E; @, (M x M)
~E ®r, M XEi Qp, M ~M X E/ x E; ®, M.

Hence, E; ® F, M ~ M x E] for some E. O
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3. Corestriction of cyclic extensions over quadratic extensions

In this section we realize cyclic extensions over quadratic extensions with corestriction
zero as dihedral extensions.

Let K be a field and A a Galois module over K. For n > 0, let H*(K, A)
denote the n-th Galois cohomology group with values in A (cf. [26, Ch. VI]). For an
extension of fields M/ K, let

res =resy /g H" (K, A) - H"(M, A)
be the restriction homomorphism and for a finite extension L /K, and let
cores = coresy /x: H" (L, A) — H"(K, A)

be the corestriction homomorphism (cf. [26, p. 47]).

Let Fy be afield and F/ Fy a Galois extension of degree 2. Let 7 be the nontrivial
automorphism of F/Fy. Let F be an algebraic closure of F. Let T € Gal(F/F,) be
such that T restricted to F is 7. Since T ¢ Gal(F/F) and [F : Fy] = 2, we have

Gal(F/Fy) = Gal(F/F) U Gal(F/F)T and 72 € Gal(F/F).

Let Hom, (Gal(F/F),7Z/mZ) be the group of continuous homomorphisms from
Gal(F/F) to Z/mZ with profinite topology on Gal(F/F) and discrete topology
on Z/mZ. Since the action of Gal(F /F) on Z/mZ is trivial, we have

HY(F,7Z/mZ) ~ Hom.(Gal(F /F),Z/mZ).

The group Hom,(Gal(F /F),Z/mZ) also classifies isomorphism classes of pairs
(E,o0) with E/F a cyclic extension of degree dividing m and o a generator of
Gal(E/F).

Lemma 3.1. Let ¢ € Hom.(Gal(F/F),Z/mZ). Then
cores(¢): Gal(F / Fo) — Z/mZ

is the homomorphism given by

cores(¢)(0) = ¢(0) + ¢(TOT ")
forall 6 € Gal(F / F) and cores(¢)(T) = ¢(T2).
Proof. See [26, p.53]. ]

Proposition 3.2 (cf. [12, Proposition 24]). Let Fy be a field and F/ Fy a quadratic
Galois field extension. Let E/ F be a cyclic extension of degree m and o a generator
of Gal(E/F). Then coresg/r,(E,0) is zero if and only if E/Fy is a dihedral
extension.
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Proof. Since E/F is a cyclic extension with generator o, we have an isomorphism
¢o:Gal(E/F) — Z/mZ

given by ¢pg(0?) — i € Z/mZ. Let ¢: Gal(F/F) — Z/mZ be the composition

Gal(F/F) — Gal(E/F) 2 7/mZ.
The pair (E, o) corresponds to the element ¢ in Hom,(Gal(F/F), Z/mZ). Then
cores(¢): Gal(F / Fo) — Z./mZ

is the homomorphism given by cores(¢)(8) = ¢ (0) +¢(T07~") forall @ € Gal(F / F)
and cores(¢)(7) = ¢(7?) (cf. Lemma 3.1).
Suppose coresr, g, (E, 0) is the zero homomorphism. Then

cores(¢): Gal(F / Fo) — Z/mZ
is the zero homomorphism. Let § € Gal(F /F). Then

0 = cores(¢)(60) = ¢(0) + ¢(TOT 1),

and hence ¢(70T') = —¢(0).

Suppose 6 € Gal(F/E) € Gal(F/F). Since Gal(F/E) is the kernel of ¢, we
have

$(EOT") = —¢(0) =0,

and hence 70T~! € Gal(F/E). Since Gal(F/ Fy) is generated by Gal(F /F) and 7,
Gal(F /E) is a normal subgroup of Gal(F / Fy). Hence, E/ Fy is a Galois extension.

Let us denote the restriction of 7 to E by 7. Since tot™! is the identity on F
and E/F is Galois, tot~! € Gal(E/F). Let & € Gal(F/F) with restriction to E
equal to 0. Since

p(T57T") = —¢(G) =G "),

it follows that ¢o(tot™ ') = ¢o(0™!). Since ¢y is an isomorphism, o7~ ! =571,
Since

¢ (%) = cores($)(7) =0,

it follows that ¢o(z2) = 0. Since ¢y is an isomorphism, 72 is the identity on E.
Since Gal(E/ Fy) is generated by o and 7, with 0™ =1, t>=1,and ot ' =071,
Gal(E/ Fy) is a dihedral group of order 2m.

Conversely, suppose Gal(E/ Fp) is a dihedral extension. Since the subgroup of
Gal(E/ Fy) generated by o is of index 2, Gal(E/ Fy) is generated by o and 7 with
r2=1and ror~ ! =0"!. Since t #0o’ for all i, T is not an identity on F. Let 7 be
an extension of 7 to F. Then we have

cores(¢)(6) = ¢(0) + $(TOT ™)
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for all @ € Gal(F/F) and cores(¢)(7) = ¢(72) (Lemma 3.1). Let 6 € Gal(F/F).
Since Gal(E/F) is cyclic and generated by o,  restricted to E is " for some i.
Since to't™! = o7, we have TOT~' € Gal(F/E). Since the kernel of ¢ is
Gal(F /E), we have

cores(¢)(9) = ¢p(0) + ¢(TOT 1) = p(0T6T 1) =0
for all # € Gal(F/F). Since 72 is identity on E, we have 72 € Gal(F/E), and

hence

cores(¢)(T) = ¢(7%) = 0.
Since Gal(F / Fy) is generated by Gal(F/F) and 7, cores(¢) = 0. O
Corollary 3.3. Let Fy be a field and F/ Fy a quadratic Galois extension. Let m > 2

be coprime to char(Fy). Suppose that F contains a primitive m-th root of unity p.
Let a € F§. Suppose that [F("/a) : F] = m. Let o be the automorphism of

F(%/a) given by o("%/a) = p"7/a. Then cores(F("Y/a),o) is zero if and only
if Nr/Fy(p) = 1.

Proof. The lemma follows from Proposition 3.2 and Lemma 2.4. U

Lemma 3.4. Let Fy be a field of characteristic not 2 and F | Fy a quadratic extension.
Let n > 1. Let p be a 2"-th root of unity in F. Suppose that ~—1 & Fy. Then

Nr/r,(p) = £L.
Proof. It n = 1, then p = —1, and hence
Nr/R (1) = (=1)* = 1.

Suppose n > 2. Let ¢ be the nontrivial automorphism of F/Fy. Since p is a 2"-th
root of unity, 7(p) is also 2”-th root of unity, and hence pz(p) is a 2”-th root of unity
in Fy. Since £1 are the only 2”-th roots of unity in Fy, we have

Nrry(p) = pt(p) = £1. O

Corollary 3.5. Let Fy be a field of characteristic not 2 and F/Fy a quadratic
extension. Let n > 2. Suppose that F contains a primitive 2" -th root of unity p and
=1 Fy. Leta € F§. Let 1 <d < n. Suppose that

[F(Ya): F] =24
Let a4 be the automorphism of F( 2%) given by
04(2Ya) = pzn_d *a.

If d < n, then coresg g, (F( 2%), 0q) is zero. Further, Nr/g,(p) = 1 if and only
if cores(F(%/a), 0,) is zero.
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Proof. Suppose d < n. Then

n—d—1

n—d
Nejry(p> ) = Nejpy (07 ) =1
(see Lemma 3.4), and hence cores(F( 2‘(/5), 04) is zero (Corollary 3.3).
Suppose n = d. Then, by Corollary 3.3, cores(F( 2\/a), 0,) is zero if and only

ifNF/FO(,O): 1. O

Lemma 3.6. Let Fy be a field of characteristic not 2 and F | Fy a quadratic extension.
Let € be a prime not equal to char(Fy). Letn > 1. Suppose that F contains a primitive
£"-th root of unity p and Fy does not contain any nontrivial £-th root of unity. Let
a € Fy. Suppose that

[F(%/a): F] = ("
Let o be the automorphism of F( ©\/a) given by

o(Va)=p Va.
Then cores g/, (F( “J/a), o) is zero.

Proof. Since p*" = 1, we have Np /Fo (p)¥" = 1. Since Fy has no nontrivial £-th
root of unity, Nr/f,(p) = 1 and, by Corollary 3.3, cores(E,0) = 0. O

4. Dihedral extensions over local fields

Let Fy be a complete discrete valued field with residue field xo. Let E/Fy be a
dihedral extension of degree 2m with 2m coprime to char(kg). Let F C E be the
fixed field of the rotation subgroup of Gal(E/ Fy). In this section we first determine
the degree of E/ Fy if F/ Fy is ramified and then we go on to describe all the dihedral
extensions of local fields.

We begin with the following lemma.

Lemmad.1. Let Fy be a complete discrete valued field with residue field ky. Let E [ Fy
be a dihedral extension of degree 2m with 2m coprime to char(kg). Suppose the
subfield F of E fixed by the rotation subgroup of Gal(E/Fy) is ramified over Fy.
Let L/ Fy be an extension contained in E. If F € L and L/ Fy is either unramified
or totally ramified, then [L : Fy] < 2.

Proof. Let L/ Fy be an extension contained in £ with F' € L. We show that L/ Fy
is cyclic.

Suppose that L/ Fy is unramified. Let « be the residue field of F and «’ the
residue field of L. Then

k =ko and [k :ko]=[L: Fp].
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Since F/Fy is totally ramified, L F/F is an extension of degree [L : Fp] and the
residue field of L F is also x’. Since LF C E and E/F is cyclic, LF/F is cyclic.
In particular, «’/kg is cyclic. Since L/ Fp is unramified and Fy is complete, L/ Fy is
cyclic and by Lemma 2.2, [L : Fp] < 2.

Suppose that L/ Fy is totally ramified of degree d. Since d is coprime to char(xy),
L = Fy( ¢/m) for some parameter = € Fy (cf. [27, Lemma 2.4]). Since F ¢ L, we
have

[LF: F]=[L: F).

Since E/ F is cyclic, LF/F is cyclic. Since
LF = F(¥n) and [LF:F]=[L:F)=d,

then F contains a primitive d-th root of unity. Since F/Fy is totally ramified,
Fy contains a primitive d-th root of unity. In particular, L/Fy is cyclic and by
Lemma 2.2, [L : Fo] < 2. O

Proposition 4.2. Let Fy be a complete discrete valued field with residue field k.
Let E/Fy be a dihedral extension of degree 2m with 2m coprime to char(kg). If
the subfield of E fixed by the rotation subgroup of Gal(E [ Fy) is ramified over Fy,
then [E : Fp] < 4.

Proof. Let F be the subfield of E fixed the rotation subgroup of Gal(E/ Fy). Then
[F: Fo] = 2.

Suppose that F/ Fy is ramified. Then F/ Fy is totally ramified.

Suppose that [E : Fo] = 2m > 5. Suppose there is an odd prime £ dividing m.
Then there exists an extension L/Fy of degree £ such that L C F and F ¢ L
(Lemma 2.3). Since £ is a prime, L/ Fy is either unramified or totally ramified.
Then, by Lemma 4.1, we have

[L: Fo]=1¢<2,

leading to a contradiction.

Suppose there is no odd prime dividing m. Then 4 divides m. Thus, there exists
an extension L/ Fy of degree 4 such that L C E and F ¢ L (Lemma 2.3). Since
[L : Fo] = 4, by Lemma 4.1, L/ Fy is neither totally ramified nor unramified. Also
since [L : Fy] = 4, we have

L = Fo(~u)(v/m)

for some u € Fy a unit and 7 a parameter in Fo(,/u). Since F/ Fy is ramified,

F = Fo(/m1)
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for some parameter 1 in Fy. Since Fo(\/u)/Fp is unramified, 7y is a parameter
in Fo(/u), and hence w = vy for some unitv € Fo(/u). Let L’ = Fo(/u)(/v).
Since [LF : Fy] = 8 and LF = Fo(/u)(y/v, /71), we have

[L': Fy] = 4.
Since L'/ Fy is unramified, by Lemma 4.1, we have
[L: Fo] <2,
leading to a contradiction. L

Corollary 4.3. Let Fy be a complete discrete valued field with residue field ko of
characteristic not 2. Let F/ Fy be a ramified quadratic field extension. Let E/F be
a cyclic extension of degree coprime to char(kg) and o a generator of Gal(E/F).
If corespr,(E,0) is zero, then [E : F] < 2.

Proof. Suppose coresg/r,(E,0) is zero. Then E/Fy is Galois with Gal(E/Fo)
dihedral (Proposition 3.2). Since F/ Fy is ramified, by Proposition 4.2, [E : F] < 2.
O

Proposition 4.4. Let Ky be a local field and L/Ky be a dihedral extension of
degree 2m. Let K be the subfield of L fixed by the rotation subgroup of Gal(L/K).
If K/ Ky is unramified, then L /K is totally ramified.

Proof. Let L™ be the maximal unramified subextension of L /K. Suppose K/ Ky
is unramified. Then K € L"". Suppose that K # L"". Then, by Lemma 2.1,
L™ /Ky is dihedral. Since Ky is a local field and L"" /K is unramified, L"" /K is
cyclic. Since a dihedral group can not be cyclic, L"" = K. O

Remark 4.5. Let Ky be a local field with characteristic of the residue field not 2.
Let m € Ky be a parameter and u € Ky a unit which is not a square. Since
Ky/Ky? = {1, 7, u,un} (cf. [32, Theorem 4.1, p.217]), L = Ko(J/u, /) is the
unique degree four extension with Galois group Z /27 x Z /2Z. Since Z /27 X 7 /27
is the dihedral group of order 4, L/ Ky is the unique dihedral extension of degree 4.

Theorem 4.6. Let K be a local field with characteristic of the residue field not 2
and w € Ky be a parameter. Let d be the maximum integer such that Ko(~/—1)
contains a primitive 2% -th root of unity. Then there exists a dihedral extension of Ko

of degree 2" 1 with n > 2 if and only if /—1 & Ko and n < d. In this case,
Ko(v/—1, 2/7) is the unique dihedral extension of degree 2" 1.

Proof. Suppose that +/—1 &€ Kgand2 <n < d. Let # € K, be a parameter and

L, = Ko(V—1, 2/7).
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Let p € Ko(~/—1) be a primitive 2¢-th root of unity. Then p’ = ,ozd_" is a primitive
2"-th root of unity and

d—n
Ny =ik 0 = (=D* 7 =1

(cf. Corollary 1.2). Hence, by Lemma 2.4, L, /Ky is a dihedral extension.

Suppose, conversely, there exists a dihedral extension L/ K of degree 2”1 with
n > 2. Let K be the subfield of L fixed by the rotation subgroup of Gal(L/Kj).
Since n > 2, by Proposition 4.2, K/ K is unramified. By Proposition 4.4, L./ K is
totally ramified. By Proposition 2.3, there exists a subfield L’ of L with [L' : K] =
[L: K]and L'K = L . Since K/Kj is unramified and L/K is totally ramified,
L'/ Ky is totally ramified. Since the characteristic of the residue field of Ky is not 2
and [L" : Ko] = [L : K] = 2", we have that

L' = Ko( /7o)

for some parameter 7y € K. Hence, L = K(%/mo).

Suppose that v/—1 € K. Let L; = Ko(¥/mo) C L'. Then L,/Kj is cyclic of
degree 4, leading to a contradiction (Lemma 2.2). Hence, v/—1 & K.

Since L = K(%/mo) is a cyclic extension of K of degree 2", K contains a
primitive 2 -th root of unity p. Since n > 2, we have /—1 € K, and hence

K = Ko(v/—1).

Thus, by the maximality of d, n < d. Suppose n = d. Since Ky is a local field,
by Corollary 1.2, we have

Nk/ko(p) = —1.

Hence, by Lemma 2.4, L/ Ky is not dihedral, a contradiction. Therefore, n <d.Let R
be the valuation ring of K. Since ~/—1 € K, we have

R* = R*Z U (_R*Z)’

and hence R* = R*?" U (—R*?"). Since —1 is a 2"-th power in K, R* ¢ K*?".
Since m = umg for some u € R*, we have L ~ L,, proving the uniqueness of
dihedral extensions of degree 2" ™1 over K. O

Theorem 4.7. Let Ky be a local field with characteristic of the residue field not 2
and w € Ky be a parameter. Let L be an odd prime not equal to the characteristic of
the residue field of Kg. Let p be a primitive £-th root of unity and d be the maximum
integer such that Ko(p) contains a primitive 02 -th root of unity. Then there exists a
dihedral extension of Ky of degree 2¢™ with n > 1 if and only if [Ko(p) : Ko] = 2
and 1 < n < d. In this case Ko(p, */7) is the unique dihedral extension of
degree 20".
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Proof. Suppose [Ko(p) : Ko] =2and 1 <n < d. Let 1 € K{ be a parameter.
Let L, = Ko(p, “/m). Let p, € Ko(p) be a primitive £"-th root of unity. Since
Nko(0)/Ko(Pr) is an £"-th root of unity in K and the only £” root of unity in Ko
is 1, we have

Nko(p)/Ko(Pn) = 1.

By Lemma 2.4, L, /Ky is a dihedral extension.

Suppose, conversely there exists a dihedral extension L/ K of degree 2£". Let K
be the subfield of L fixed by the rotation subgroup of Gal(L/Ky). Since [L : K] =
{" > 3, by Proposition 4.2, K/ Ky is unramified. Then, by Proposition 4.4, L/ K is
totally ramified. Let L’ be a subfield of L with [L’ : Ko] = [L : K] and L'K = L
(Proposition 2.3). Since K/Kj is unramified and L/K is totally ramified, L'/ K
is totally ramified. Since the characteristic of the residue field of Kg is not £ and
[L: Ko] =][L:K]=1<£", wehave

L' = Ko( /7o)

for some parameter 7o € Ko. Hence, L = K(‘/mg). Since L/K is cyclic, K

contains a primitive £”-th root of unity. Thus, n < d. Sincen > 1, p € K*.
Suppose [Ko(p) : Ko]#2. Since Ko(p) € K and [K : K¢] =2, we have p € K.

Let L1 = Ko({/mo), then L1/Kj is cyclic. Since K € L, by Lemma 2.2, we have

[L1:K0]=£§2,
leading to a contradiction. Hence,
[Ko(p) : Ko] = 2.

Since p € K and [K : Ky] = 2, we have K = Ky(p). Since p ¢ Ky (as in the
proof of Theorem 4.6), every unit in the valuation ring of Ky is an £”-th power in K.
In particular, L. >~ L,, proving the uniqueness of dihedral extensions of degree 2¢£"
over K. O

Corollary 4.8. Let Ko be a local field with the residue field ko and m > 3 with 2m
coprime to char(kg). Let L/Kqy be an extension of degree 2m and w1 € Kg be a
parameter. Then L/ Ky is a dihedral extension if and only if there exists a primitive
m-th root of unity p € L with [Ko(p) : Ko] = 2, Nkyp)/ko(p) = 1, and L =
Ko(p, %/).

Proof. Suppose L /Ky is a dihedral extension of degree 2m. Suppose m = 2". Letd
be the maximum integer such that K (\/—_1 ) contains a primitive 24 _th root of unity.
Then, by Theorem 4.6, we have v/—1 & Ko, n < d, and L = Ko(~/—1, /7). Let
p € Ko(~/—1) be a primitive 2”-th root of unity. Since Ko(p)/Ko is unramified
and Ko(+/—1) is the maximal unramified extension of L /K, we have

Ko(v/=1) = Ko(p).



272 R. Parimala and V. Suresh CMH

In particular,
[Ko(p) : Kol =2 and L = Ko(p, V7).
Since L/ K is dihedral, by Lemma 2.4, we have

Nio(v=1)/ko(P) = 1.

Assume that there is an odd prime dividing m. Let m = £3°€]"---£7" with
Lo = 2,fori > 1, ¢; are distinct odd primes, nop > Oandn; > 1 foralli > 1. Leto
be a generator of the rotation subgroup of Gal(L/Ky). For0 <i <r, let

o
_gaoii
M, =L ,

then [M; : Ko] = 2£}.

Let 1 <i <r. Then M; /K is a dihedral extension of degree 25:” with £; odd. By
Theorem 4.7, there exists a primitive E:” -th root of unity p; € M;, [Ko(p;) : Ko] =2
and "

M; = Ko(pi. “i/70).
Let mg = E'l” -«-£y". Since ¢; are distinct primes and M; € L, ™/ € L and
o = p1---pr € L is a primitive mq-th root of unity. If ng = 0, then my = m.
Since p; € Ko for all i > 1 and £;’s are distinct primes, it follows that o’ ¢ Kp.
Since Ko(p')/ Ko is an unramified extension and Ko( %/m)/ Ky is a totally ramified
extension of degree m, it follows that

[Ko(p') : Kol =2 and L = Ko(p', V).

By Lemma 2.4, Nk, (»)/k,(0") = 1.
Suppose ng = 1. Then M/ Ky is the unique bi-quadratic extension, and hence

Mo = Ko(Vu, J/7)

(cf. Remark 4.5). Suppose ng > 2. Then, as in the first case, M contains a primitive
2"0-th root of unity po,

[K(po) : Kol =2 and Mo = Ko(po. > ¥7).

Hence, in either case, the maximal unramified extension of My/Kj is of degree 2
over K.

Since My < L, we have znoﬁ € L. Since m = 2"mg, we have Y/ € L.
Since Ko(Y/m)/ Ky is a totally ramified extension of degree m, the degree of the
maximal unramified extension of L /Ky is 2. Since L contains a primitive 2"0-th
root of unity and mg-th root of unit, L contains a primitive m-th root of unity p.
Since m > 3, either ng > 2 or mgy > 2. Hence,

[Ko(p) : Ko] =2 and L = Ko(p, /7).

By Lemma 2.4, Nk, 0)/ ko (p) = 1.
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Conversely, suppose there exists a primitive m-th root of unity p € L, with

[Ko(p) : Kol =2, Nk/ko(p) =1, and L = Ko(p, ¥/7).
Then, by Lemma 2.4, L/ Ky is a dihedral extension. O

We conclude this section with the following result on norms from dihedral
extensions over local fields.

Proposition 4.9. Let Ky be a local field and m > 2 with 2m coprime to the
characteristic the residue field of Ko. Let L/Ky be a dihedral extension of
degree 2m. Let K be the subfield of L fixed by the rotation subgroup of Gal(L/Kj).
Let Lo, ..., Ly—1 be the subfields of L with L;K = L and [L : L;] = 2 (see
Proposition 2.3). Let 6y € K. Then for every 0 <i < m — 1, there exists j1; € Lj;,

such that
m—1

[ Nei/xo(mi) = bo.

i=0

Proof. Suppose m = 2. Then L/Kj is a biquadratic extension, Lo and L; are non
isomorphic quadratic extensions of K. Then, by local class field theory (cf. [8,
Proposition 3, p.142]), Np,/k,(Lg) and Ny, /k,(LT) are two distinct subgroups
of Kj of index 2. Let b € N, /k,(Lg), which is notin Ny, /k,(LT). Leta € K.
Suppose a & Np,,/k,(L7),thena € bNy, /k,(L7). Hence,

a = bc

for some ¢ € Ny, /k,(L7T). Inparticular, a € Nr,/x,(L5)NL, ko (L7)-
Suppose m > 3. Let p be a primitive m-th root of unity. Then, for any parameter
m € Ky, by Corollary 4.8,
L = Ko(p, /7).

Let € K¢ be a parameter. Since L = Ko(p, Y/7)[L: Ko(Y/7)]=2and K = Ko(p),
we have

Ko( %) =L,

for some r. In particular, (—=1)”"'7 is a norm from the extension L,/Kj. Let
u € Ky be a unit. Since um is a parameter in Ky, we have

YWumr € L and Ko(um) = Ly

for some s. Hence, (—1)"'u is a norm from the extension Lg/Kjy. In particular,
u is a product of norms from the extensions L,/ K¢ and Lg/Kj. Since every element
in Ko is un” for some u € Kg a unit, it follows that every element in K is a product
of norms from the extensions L; /K. ]
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5. Approximation of norms from dihedral extensions over global fields

Proposition 5.1. Let Ko be a global field and n > 2 an integer with 2n coprime
to char(Ko). Let E /Ko be a dihedral extension of degree 2n and o and t generators
of Gal(E/Ky) with o a rotation and t a reflection. Let K = E® and E; = E°'*
for1 <i <n. Letv be a place of Ko and A, € Ky,. Suppose that the characteristic
of the residue field at v is coprime to 2n. If A, is a norm from the extension

E ®K() KO\)/K ®K() KOV?
then Ay, is a product of norms from the extensions
E; ® Kov/Ko.

Proof. Suppose A, is a norm from the extension £ ® x, Kov/K @k, Kov.
Suppose that K ®@ g, Ko, is not a field. Then

K ®k, Kov >~ Koy X Koy.
Since KE; = E, we have
E ®ky, Kov @ E; ®k, K Qk, Kov = Ei ®k, Koy X E; ®k, Kov.

Since A, is a norm from the extension E ®x, Kov/K ®k, Ko, it follows that A, is
anorm from E; @k, Kov/Koy.

Suppose K ®k, Koy is a field. Suppose E Qk, Koy = ]_['1’ K ®k, Kov. Then,
by Lemma 2.5, there exists an i such that

El’ ®K0 K()v >~ K()U X Ellv

for some K, -algebra E{v. In particular, A, is norm from E; ® x, Kov/Koy.
Suppose E ® k,, Koy is notisomorphic to [} K ® k, Koy Since E /Ky is Galois,
we have
E ®k, Koy ~ ]_[ E,

for some field extension E, /Ko, and K ® g, Ko is a proper subfield of E,. Hence,
E, /Ky, is a dihedral extension. Since the characteristic of the residue field at v is
coprime to 2n, by Proposition 4.9, A, is a product of norms from E; ® x, Kov/Kov.

]

Corollary 5.2. Let Ko, E and K be as in Proposition 5.1. Let S be a finite set of
places of Ko with 2n coprime to the characteristic of the residue field at places in S.
Forv € S, let A, € Koy, be a norm from the extension

E ®k, Kov/K ®k, Kov.
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Then there exists A € Kq such that A is a norm from the extension E/K and

M1 e (K ®ky Kow)™
forallv € S.

Proof. Leto,t € Gal(E/Ky)beasinProposition5.1. Let E; = E° Tforl <i<n.
Let v € §. Then, by Proposition 5.1, for 1 <i < n, there exists z;, € E; Qk, Koy
such that

A’v = l_[ NEi@K()KOv/KOU (Zil))-

For1 <i <n,letz; € E; beclose to z;, forallv € S. Let A = [[ Ng, /k,(zi)-
Since z; is close to z;, forall v € S, A is close to A,, for all v € S. In particular,

A e (K @k, Kow)™.

Since KE; = E, A is a norm from the extension E/K. O

6. Central simple algebras with involutions of second kind over 2-local fields

In this section we give a description of central simples algebras having involutions
of second kind over complete discretely valued fields with residue fields local fields
(such fields are called 2-local fields).

We begin with the following lemma.

Lemma 6.1. Let F be a complete discretely valued field and &7 € F a parameter.
Let E/ F be a cyclic unramified extension and o a generator of Gal(E/ F). Then the
cyclic algebra (E, 0, ) is unramified if and only if E = F.

Proof. Let m = [E : F]. Since E/F is unramified, the order of the class of &
in F*/Ng,p(E*) is m, and hence D = (E, 0, ) is a division algebra of degree m
(see [3, Theorem 6, p.95]). Let v be the discrete valuation on F and vV be the
extension of v to D (see [31, Theorem 12.10, p. 138]). Let e be the ramification
index of D. Since there exists y € D with y” = 7, we have V(7)) > m, and hence
e = m (see [31, Theorem 13.7, p. 142]). Suppose D is unramified. Then e = 1, and
hence m = 1. In particular, £ = F. L

Lemma 6.2. Let Fy be a complete discrete valued field with residue field of
characteristic not 2. Let m € Fy be a parameter and F = Fy(\/7). Let E/F be an
unramified cyclic extension and o a generator of Gal(E/ F). Ifcores g p,(E, 0, /T)
is unramified, then (E, 0, \/7) is zero.

Proof. Let E¢ be the maximal unramified extension of £/ Fy. Since E/ F is unrami-
fied and F'/ Fy is ramified extension of degree 2, E/ Eg is of degree 2 and E = EyF.
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Since F/ Fy is ramified, E¢/ Fy is unramified. Since E/ F is cyclic, Eo/ Fy is cyclic
(cf. proof of Lemma 4.1). Let 0 be the restriction of o to Ey. Then

(Eo,00) ® F = (E,0).
Hence,
coresg/, (E, 0, /) = (Eo, 00, Nr/Fy(v/7)) = (Eo, 00, —7)

(see [26, Proposition 1.5.3]).

Suppose that coresr, , (E, 0, /1) = (Eyp, 09, —m) is unramified. Since 7 is a
parameter in Fy and Eo/ Fp is unramified, by Lemma 6.1, Eqg = Fy. In particular,
E = F and (E, 0, \/T) is zero. O

Lemma 6.3. Let Fy be a complete discrete valued field with residue field Ky
and F/Fy a ramified quadratic field extension. Let m > 1 with 2m coprime to
char(Ko) and & € H*(F, j). If coresp, g, () is zero, then & = ag ® F for some
oo € HZ, (Fo, m). In particular, per(a) < 2.

Proof. Since F/ Fy is aramified quadratic extension and char(Ko) #2, F = Fo(/7)
for some 7w € Fy a parameter. Since m is coprime to char(Ky), we have

a=a +(E, o0 Jm)

forsome o’ € H2,(F, ji,y) and E / F anunramified cyclic field extension of F (cf.[27,
Lemma 4.1]). Since coresr, f,(a) = 0, we have

coresf, F, (—a') = coresp /g, (E, 0, /7).

Since o’ is unramified, cores f/r, (—’) is also unramified (cf. [9, p.48]), and hence
coresg,f, (E, 0, /) is unramified. Thus, by Lemma 6.2, (E, 0, /) is zero, and
hence ¢ = «'. Since the residue field of F and Fy are equal and both F and F are
complete, it follows that « = @’ = @9 ® F for some ag € anr(Fo, Um)- O

Lemma 6.4. Let Fy be a complete discrete valued field and F/Fy an unramified
quadratic extension. Let m € Fy be a parameter and m > 1. Suppose 2m is coprime
to the characteristic of the residue field of Fy. Let

oa=a +(E,o,n) e HX(F, tm)

for some o' € H2,.(F, um) and let E/F be an unramified cyclic field extension.
If cores g/ F, () is zero, then cores g, p, (o) and coresp ) f, (E, 0, ) are zero.

Proof. Since F/Fy is unramified extension, 7 is a parameter in F. Since & € Fy,
we have
coresg/f,(E,0,m) = coresp/p,(E,0) - ().
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Since cores g g, (o) = cores /g, (@) + coresg, g, (E, 0, ) is zero, we have
coresp/p,(E,0) - () = —coresg/p, ().

Since o’ is unramified, then cores g, f, («’) is unramified. Since E/F is unramified,
then coresr, r, (E, o) is unramified, and hence

8(E’O-) : (7[) = (576)’

where E is the residue homomorphism and & is the induced automorphism. Since
coresg/f,(E,0) - () is unramified and Fy is complete, coresr,r,(E,0) is zero
(Lemma 6.1). Hence,

coresg/f,(E,0,m) = coresp/p,(E,0) - ()

is zero and, in particular, cores g, g, (&') is zero. O

Lemma 6.5. Let Fy be a complete discrete valued field with residue field K a local
field, F/Fy a quadratic field extension and w € Fy a parameter. Let m> 1 with 2m
coprime to char(Ky). Let o« € H?(F, [iy) with cores g, (o) =0. If ind(et) > 3, then
F/ Fy is unramified and o = (E, 0, 7w) for some unramified cyclic extension E ] F.

Proof. Suppose coresg () = 0 and ind(o) > 3. Suppose also that F/Fy is
ramified. Then, by Lemma 6.3, « is unramified and per(or) < 2. Let K be the residue
field of F and B € H?(K, i) be the image of . Since per(ar) < 2, we have that
per(f8) < 2. Since K is alocal field, we have

ind(B) = per(B).
Since F is complete, we have
ind(«) = ind(B)
(cf. [6, Proof of Corollary 6.2]). Hence,
ind(o) <2,

leading to a contradiction. Hence, F/ Fy is unramified and 7 is a parameter in F.
Since m is coprime to char(Ky), we have

a=a +(E, o)
for some o’ € HZ.(F, ity) and E/F is an unramified cyclic extension (cf. [27,
Lemma 4.1]). Then, by Lemma 6.4, cores g/ f, (') and cores g/ g, (E, 0, 1) are zero.
Let B’ € H?(K, [tm) be the image of o’. Since coresp,p,(e’) = 0, we have
coresk/k,(B') = 0.

Since K/ K is a quadratic field extension of local fields, 8/ = 0 (cf. [21, Theorem 10,
p.237]). Since F is complete, o’ = 0, and hence & = (E, 0, 7). O
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Let F be a field and m > 1 coprime to char(F'). Suppose F contains a primitive
m-th root of unity p. Fora,b € F*,let (a, b),, be the cyclic algebra generated by x
and y with relations x™ = a, y™ = b, and yx = pxy.

Proposition 6.6. Let Fy be a complete discrete valued field with residue field K
a local field. Let m > 3 with 2m coprime to the characteristic of the residue field

of Ko. Let m € Fy be a parameter and § € Fy a unit such that the image of § in K
is a parameter. Let F/Fy be a quadratic field extension and « € H*(F, jin). If

coresg/f,(@) =0 and ind(a) = m,

then F/ Fy is unramified, F contains a primitive m-th root of unity p, Nr;r,(p) = 1
and o = (8, ).

Proof. Suppose coresg/r, (o) = 0 and ind(cr) = m. Since m > 3, by Lemma 6.5,
F/ Fyisunramified and @« = (E, 0, ) for some E/ F an unramified cyclic extension.
Let K be the residue field of F and L the residue field of E. Since F// Fgand E/F
are unramified, K/Ky is an extension of degree 2 and L/K is a cyclic extension
of degree [E : F]. We denote the image of p in K by p again. Let oy denote the
automorphism of L/K induced by o. Since coresg,r,(E,0) = 0, we have

coresk/k,(L,09) = 0.

Hence, by Proposition 3.2, L/ Ky is a dihedral extension. Let §e K be the image
of §. Then, by the assumption, § is a parameter in Ky. Since Ky is a local field and
[L : K] = m > 3, by Corollary 4.8, then K = Ky(p) for a primitive m-th root of
unity,

Nk/ko(p) =1 and L = Ko(p, V3).
Since Fy is complete, F = Fy(p) and E = F('V/$). Since Nk/k,(p) = 1, we have
Nr;F,(p) = 1. Since F contains a primitive /m-th root of unity, we have

a=(E,on)=6,7)m. O

Proposition 6.7. Let F be a complete discrete valued field with residue field K,
valuation ring R, m € R a parameter and u € R a unit. Let n > 2 which is coprime
to char(K). Suppose that F contains a primitive n-th root of unity and the cyclic
algebra D = (7w, u), is a division algebra. Let x,y € D be with x" = &, y" = u,
and xy = pyx. Then

R[x] + R[x]y +---+ R[x]y" ' = Ryl + R[y]x +---+ R[y]x" "' c D
is the maximal order of D.

Proof. Since D is a division algebra and F is complete, V: D* — Z given by
V(z) = v(Nrd(z)) is a discrete valuationon D and A = {z € D* | v(z) > 0} U {0}
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is the unique maximal order of D (see [31, Theorem 12.8]). Since every element
in R[y]x’ has reduced norm in R, we have

Ryl + R[ylx + -+ RyIx""' € A.

Since Nrd(x) = (—=1)""!7, we have D(x) = 1. Since y” = u isaunitin R and n
is coprime to the characteristic of K, the extension F(y)/F is unramified and R[y]
is the integral closure of R in F(y). Since deg(D) = n, we have [F(y) : F] = n.
Hence, for any a € R[y], we have

Nrd(a) = NF(y)/F(a).
Since F(y)/F is unramified, V(a) is divisible by n for all ¢ € R[y]. Let z € A.
Then {
z= E(ao +aix + -+ a1 X"
forsome b € R, b # 0 and a; € R[y]. Since Va; is divisible by n and V(x) = 1, we

have that
V(ao + a1x + -+ + ay_1x" )

is equal to the minimum of ¥(a;x’) for0 <i < n — 1. Since ¥(z) > 0, we have
V(ao + a1x + -+ + an—1x""1) > 9(b).

In particular, ¥(a; x*) > (b). Since ¥(a;x*)=7(a;) +i and ¥ (a;), we have that 7(b)

is divisible by n, and it follows that v(a;) > V(b) for all 0 <i < n — 1. Hence,

% € R[y] and z € R[y]+ R[y]x +---+ R[y]x""".

Hence, A = R[y] + R[y]x + --- + R[y]x"~! is a maximal R-order of D. O

We end this section with the following proposition.

Proposition 6.8. Let Fy be a field and F/Fy a quadratic extension. Let m > 2
with 2m coprime to char(Fy). Suppose that F contains a primitive m-th root of
unity p. Let a,b € F§. Suppose that [F("/a) : F] = m. Let A = (a,b)m be the
cyclic algebra generated by x and y with relations x™ = a, y™ = b and yx = px}y.
Then there exists an F/ Fy-involution o on A with 6(x) = x and o(y) = y if and
only if Nr/p,(p) = 1.

Proof. Let o be the nontrivial automorphism of F/Fy. Then N, r,(p) = to(p)p.
Suppose there exists an F/ Fy-involution o on A with 6(x) = x and o(y) = y.
Since yx = pxy, we have

xy =o0(yx) = o(pxy) = t0(p)yx = to(p)pxy.

Hence, Nr/F,(p) = to(p)p = 1.
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Suppose N/, (p) = 1. Let ¢ € F§ with F = Fy(4/c) and E = F(x). Then
A=E®Ey® ---® Ey™ L.

Since {x'y/, /cx'y/ | 0 <i, j <m—1}isan Fy-basis of A, we have an Fy-vector
space isomorphism 0: A — A given by

o(x'y’) =y/x' and o(Vextyl) = —Jey/xi.
Then 0(z) = 79(z) forall z € F. Since a, b € Fy, we have
oc(x™)=0(@)=a=x"=0ox)".

Similarly, o(y™) = b = o(y)™. Since p = ¢1 + c2+/c for some ¢; € Fy and
10(s/¢) = —+/c, we have

o(pxy) = o(c1xy + c24/cxy) = c1yx —c2/cyx
= (c1— czﬁ)yx = 1o(p)yx.

Since yx = pxy, we have

o(yx) =o(pxy) = to(p)yx = 10(p)pxy = xy = o(x)o(y).

Hence, o is an F'/ Fy-involution. O

7. Reduced norms of central simple algebras over two dimensional complete
fields

Let R be a complete regular local ring of dimension 2 with residue field « and field
of fractions F. For a prime 6 € R, let Fy be the completion of F at the discrete
valuation given by the prime ideal () of R and «(0) the residue field at 6. Let A be
a central simple algebra over F of index coprime to char(k). Let m = (i, §) be the
maximal ideal of R. Suppose that A is unramified on R except possibly at v and §.
Let A = v®8? € F* for some unitv € R and r, s € Z. In this section we show that
if k is a finite field and A € Nrd(4 ® Fy), then A € Nrd(A).

Remark 7.1. Let o € F and n > 1 coprime to char(x). Then y = un” for some
u € F; which is a unit at 77. Let u be the image of u in k (;r). Since « () is the field
of fractions of R/(;r) and R is complete, x(77) is a complete discrete valued field
with residue field k and § € R/(r) is a parameter. Hence, & = v8* for some v € R
a unit. Then p(vzr”8%)~! is a unit at 7 and maps to 1 in « (7). Since n is coprime
to n, we have u = vr”8°c” for some ¢ € F).

We begin by extracting the following from [27].
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Proposition 7.2. Let R be a complete regular local ring of dimension 2 with residue
field k and field of fractions F. Let A be a central simple algebra over F of index n
coprime to char(k) and a € H?(F, ) be the class of A. Let m = (m,§) be the
maximal ideal of R. Suppose that k is a finite field and A is unramified on R except
possibly at w and §. Let A = vr®§' € F* for some unit v € R and s,t € Z.
Ifoa-(A) =0¢€ H3(F, u®?), then A € Nrd(A).

Proof. Asin[27, Theorem 4.12], we assume that ind(A4) = 29 with £ a prime and F
contains a primitive £-th root of unity. Since ind(A) is coprime to char(k), we have
£ # char(k). We prove the result by induction on d. If d = 0, then A is a matrix
algebra, and hence every element is a reduced norm from A. Suppose that d > 1.

Suppose « - (A) = 0 € H3(F, n®?). Suppose s is coprime to £. Then, by [27,
Lemma 6.1], A = (E, 0, (—1)%A) for some cyclic extension £/ F with o a generator
of Gal(E/ F). In particular,

(—D¥T(=1)*A € Nrd(A).

Suppose £ is odd, then —1 € Nrd(A), and hence A € Nrd(A4). Suppose £ = 2.
Since s is odd, we have

A= (=) (=1) A e Nrd(A).

Similarly, if # is coprime to £, then A € Nrd(A).
Suppose that s and ¢ are divisible by £. Then, by [27, Lemma 4.10], there exists
an unramified cyclic field extension L,/ F, of degree £ and w, € L, such that

Ni /pe () =4, ind(@® Ly) <ind(A® Fr), a-(itz) =0€ H>(Lx, 7).

Since L,/ F; is an unramified cyclic extension of degree £ and F contains a
primitive ¢-th root of unity, we have L, = F,({/a) for some a € F, which is a
unit at 7. Since char(x) # £ and the residue field x () of F, is the field of fractions
of R/(m), we have

a=wé e Fr/F}*

for some unit w € R and 0 < ¢ < £ — 1 (cf. Remark 7.1). Suppose ¢ > 1. Let
1 <¢ < —1withe¢’ =1 modulo £. Since

Fr(Vw8) = Fr(Vuwe's),
replacing w by w®’, we assume that
Ly = Fr(Nwé®)

with0 < & < 1. Let L = F(~/wé?). Then L/F is a cyclic extension of degree ¢ and
L® F, ~ L. LetS be the integral closure of R in L. Then S is a regular local ring
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with maximal ideal (77, 81 ), where §; = § or ~/w8 depending on whether ¢ = 0 or 1
(see [28, Lemmas 3.1 and 3.2]). Sinceind(¢® L) < ind(«), by [27, Proposition 5.8],
we have

ind(e ® L) < ind().

Since S is a regular local ring with maximal ideal (77, 61) and L the field of
fractions of S, there exists ¥ € S a unit such that
Pr = uniS{;Lde

for some i, j € Z and u; € L, (cf. Remark 7.1). Let u' = un’ﬁ{ € L and let
A= Np/p(u'). Then A = V787" for some unit v’ € R. Since

d—+1 d+1
A= Np,r(Un) = Np e (Wit ) = MNLyr, (),

we have M1~ 1 e F,fdﬂ. Hence, by [27, Corollary 5.5], A = A0 forsome O e F.
Let u = ,u,’@ed € L. Then Ny () = A. Since

d _pd+1 d
po=p0" = pepy™ 0 and o (r) = 0 € H (L. ).
we have o - (1) =0 € H3(Ly, /Lglz). Hence, by [27, Corollary 5.5], we have
@ (@) =0e HL,uh).

Since ind(o¢ ® L) < ind(«), we have u € Nrd(A ® L) by induction. Finally. since
Np/r(n) = A, we have A € Nrd(A). O

Corollary 7.3. Assuming the notation and hypothesis of Proposition 7.2, if we have
A € Nrd(A ® Fr), then A € Nrd(A).

Proof. Leta € H?(F, iu,) be the class of A. Since A € Nrd(4 ® Fy), we have

- (1) =0 € H(Fr. u).
Since « is unramified on R except possibly at 77, §, and A = ¢ 8, we have thata- (1)
is unramified on R except possibly at 7 and §. Since o - (1) = 0 € H3(Fy, u®?),
by [27, Corollary 5.5], we have

a-(A) =0e H*F,u2?).

Hence, by Proposition 7.2, A € Nrd(A). O
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8. Central simple algebras with involutions of second kind over two dimensional
complete fields

Let Ry be a complete regular local ring of dimension two with residue field k¢ a finite
field of characteristic not 2 and Fy the field of fractions of Rg. Let m = (7, §) be the
maximal ideal of Ry. Let F/ Fy be a quadratic field extension with F = Fo(+/um?)
for some u € Ry a unit and ¢ = {0, 1}. Let R be the integral closure of Ry in F.
Then R is a regular local ring with maximal ideal (7ry,8), where 7; = 7w ife =0
and m; = /um if ¢ = 1 (see [28, Lemmas 3.1 and 3.2]). Let « be the residue field
of R. Then [« : ko] < 2.

Let A be a central division algebra over F' which is unramified on R except
possibly at r; and 6. Suppose that n = ind(A4) is coprime to char(kg). In this
section we show that if there is an involution 7 on A of second kind and A4 is division,
then there exists a maximal R-order in A invariant under t with some additional
structure. We then prove a local-global principle for certain classes of hermitian
forms over (A4, 7).

We begin with the following lemma.

Lemma 8.1. Let v € R be a unit and p = vr|8* € F* for some r,s € Z. Suppose

0. € Fy;, is such that 0, € Nrd(A ® f Fr,). Then there exists 0 € Fy such that
w6 € Nrd(A) and 0,07 € FlL.

Proof. Since Fy is the field of fractions of Ry and (7, §) is the maximal ideal of Ry,
we have
0, = wr'1§5te"

for some w € Rg aunit, ¢ € Fy, (cf. Remark 7.1). Let
0 =wr"8" € Fy.

Since ind(A4) = n, we have ¢” € Nrd(A ® r Fy,), and hence 6 € Nrd(A ® Fy,).
Since A is unramified on R except possibly at 7r; and § and the support of ©6 is at
most 771 and &, by Corollary 7.3, u6 € Nrd(A). O

Proposition 8.2. Let o € H?(F, ) be the class of A. Suppose ind(a) = n > 3. If
coresg/f, (o) = 0, then F/Fy is unramified on Ry, F contains a primitive n-th root
of unity p, Nr/r,(p) = 1 and o = (8, 7).

Proof. Since F = Fy(~/un?), we have that R is complete and char(x) # 2, and it
follows that F ® Fo, = Fy, is a field. Since « is unramified on R except possibly
at 71 and §, we have

ind(or) = ind(o ® Fy,)

(see [27, Proposition 5.8]).
The residue field of Fy, is a local field with residue field k. Suppose that
cores /() =0. We then have, coresp, /F,, (@) =0. Since ind(« ® Fr,)=n=>3,
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by Proposition 6.6, Fy, /For is unramified, F, contains a primitive n-th root of
unity p, Nr, /Fo. (p) =1land 0 ® Fr, = (8, m),. Since the residue field « ()
of Fy, is a complete discretely valued field with residue field «, ¥ contains a primitive
n-th root of unity. Hence, F contains a primitive n-th root of unity. By [27,
Corollary 5.5], we have « = (8, ),,. Since F/ Fy is unramified except possibly at
and Fy, / For is unramified, we then have that F'/ Fy is unramified on Ry. Since

NF,, /For (0) = 1,

we have Nr/g,(p) = 1. O

Let @ € H?(F, [t,) be the class of A. We suppose that ind(«) = n > 3 and
coresr, f,(a) = 0. Since (7, §) is a maximal ideal of R, (8, ), is a division algebra.
Let D = (7, 38),. Then, by Proposition 8.2, « is the class of D. Thus, there exist
X,y € D such that

x"=68, y"=m and yx = pxy.
Since D ® F; and D ® Fy are division algebras (see [27, Proposition 5.8]), the
valuation v, and vg given by 7 and § on F extend to valuations w, and wg on D ® F,
and D ® Fj, respectively (see [31, Theorem 12.6]). We have

er = [wy;(D*) 1 v (F"]=n and es:= [ws(D*):vs(F*)] =n.

Let S = R[%/8] = R[x]. Then S is the integral closure of R in F(~/§) and S is a
regular local ring of dimension 2 with maximal ideal ( s, ) (see [28, Lemma 3.2]).
Since D ~ (8, m), and Ng/Fr,(p) = 1, by Proposition 6.8, there exists an F/Fo-
involution 0 on D with o(x) = x and o(y) = y.

Lemma 8.3 (cf. [33, Lemma 3.7]). Let A =S + Sy +---+ Sy" ' C D. Then A
is a maximal R-order in D.

Proof. Since S is a free R-module, A is a free R-module. Let P C R be a height
one prime ideal. Suppose P # () and P # (§). Since 7 and § are units at P,
Ap = A ® Rp is an Azumaya algebra, and hence a maximal Rp-order in D.
Suppose P = (m) or (§). Then, by Proposition 6.7 and [31, Theorem 11.5], Ap
is a maximal Rp-order in D. Since R is noetherian, integrally closed and A is a
reflexive R-module, by [5, Theorem 1.5], A is a maximal R-order of D. ]

Lemma 8.4 (cf. [33, Lemma 3.1]). Let o and A be as above. Leta € A witho (a) =a.
If Nrd(a) = un"6° for some unitu € Ry andr,s € Z, then there exist a unit 0 € A,
r'.s’ € {0,1Y with r = r' and s = s’ modulo 2 such that {a) ~ (0x" y*') as
hermitian forms over (D, o).
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Proof. Letr =2ry +r'ands = 251 + 5" withr’,s" € {0, 1}. Letz = x*1y"1 € A.
Then
Nrd(z) = Nrd(o(z)) = §°1n"L.

Let 8 = o(z) taz=1(x*"y"")~1. Then
a=0o(z)0x"y"z,

and hence (a) ~ (Ax* y"'). Since Nrd(f) = u € Ry is a unit, it follows that § € A
and is a unit in A, as in the proof of [33, Lemma 3.1]. J

Corollary 8.5 (cf. [33, Corollary 3.2]). Let 0 and A be as in Lemma 8.3. Let h =
(ai,...,ar) be a hermitian form over (A,o) with a; € A, o(a;) = a; and Nrd(a;)
is a product of a unit in R, a power of w and a power of 5. Then

h>~up, .o umg) L (i, v )X L(wi, oo, wpy)y L (01,0, Ong)xy

for some u;, v;, w;, 0; € A units.
We have the following (cf. [33, Corollary 3.3]).

Corollary 8.6. Let 0 and A as above. Let a; € A be as in Corollary 8.5 and h =
(ay,...,ar). If h ® For is isotropic, then h is isotropic over Fy.

Proof. Since o(xy) = yx = pxy and po(p) = Np/p,(p) = 1, it follows that
Int(xy) o o is an involution on D. Following the proof of [33, Corollary 3.3], it
follows that if 4 is isotropic over Fy,, then / is isotropic over Fy. O

9. An application of refinement of patching to local-global principle

Let T be a complete discrete valuation ring and X its field of fractions. We recall a
few basic definitions from [15, 16]. Let F' be a function field of a curve over K. Let
Y — Spec(T') be a proper normal model of F' and Y the special fibre. For a point x
of Y, let F be the field of fractions of the completion ﬁx of the local ring at x.
Let U be a nonempty proper subset of an irreducible component of Y not containing
the singular points of Y. Let Ry be the subset of F' containing all those elements
of F which are regular at every closed point of U. Let¢ € T be a parameter, Ry be
the (¢)-adic completion of Ry and Fy the field of fractions of ﬁU. Let P €Y bea
closed point. A height one prime ideal p of Rp containing 7 is called a branch at P.
For a branch p, let F}, be the completion of Fp at the discrete valuation given by p.
Let P be a finite set of closed points of Y containing all singular points of Y
and at least one point from each irreducible component of Y. Let U be the set of
irreducible components of Y \ P and B the set of branches at points in P. Let G be
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a linear algebraic group over F'. We say that factorization holds for G with respect
to (P, W) if given (gp) € [[,en G(Fy), there exists

(¢0) € [[ G(Fo) and (gv) € [] G(Fv)

Qe?P UelUu

such that if p is a branch at P along U, then g, = gpgu. If the factorization holds
for G with respect to all possible pairs (P, U), then we say that factorization holds
for G over F with respect to Y. Let Z be a variety over F' with a G-action. We
say that G acts transitively on points of Z if G(E) acts transitively on Z(E) for all
extensions E/F with Z(E) # @.

Let X — Y be a sequence of blow ups and X the special fibre of X. Let P € Y be
a closed point and V the fibre over P. Suppose that dim(V) = 1. Let P’ be a finite
set of closed points of V' containing all the singular points of V' and at least one point
from each irreducible component of V. Let U’ be the set of connected components
of V'\ P'. Let B’ be the set of branches at the points of P’. We say that factorization
holds for G with respect to (P, W) if given (gy) € [[,en' G(Fp), there exists

(g0) € [] G(Fo) and (gv) e [] G(Fv)

QeP’ Uelw

such that if p is a branch at P along U, then g, = gpgu.

Let Px be a finite set of closed points of X containing 7', all singular points of X
and at least one closed point from each irreducible component of X. Let Uy be the
set of irreducible components of X \ P and By the set of branches at points in P.

The following results are immediate consequences of results of Harbater,
Hartmann and Krashen [16].

Theorem9.1. Let F, P, Px, P, Ux and W be as above. Let G be a connected linear
algebraic group over F. If the factorization holds for G with respect to (Px,Ux),
then the kernel of natural map

H'(Fp.G)— [] H'(Fu.G)x [] H'(Fo.G)
vew Qe
is trivial.
Proof. Suppose the factorization holds for G with respect to (P, U). Then, by [16,

Proposition 3.14], factorization holds for G with respect to (?’,U’). By [16, Prop-
osition 3.10], patching holds for the injective diamond

Fp, = (Fp < ]_[ Fo, ]_[ Fyr < ]_[ Fb/).

QeP’ Uew b’'eB’
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Hence, by [16, Theorem 2.13], the map

H'(Fp.G)— [] H'(Fu.G)x [] H'(Fo.G)
vew Qe

is injective. O

Corollary 9.2. Let F, Y, P and X be as above. Let G be a connected linear algebraic
group over F. If the factorization holds for G over F with respect to Y, then the
kernel of natural map

H'(Fp.G) — [[ H'(Fx.G)

xeV

is trivial.

Proof. Let & be in the kernel of the map H'(Fp, G) — [[,cy H'(Fx, G). Then, as
in [15, Corollary 5.9], there exists a finite set P’ of closed points of V' containing all
the singular points of V' and at least one closed point from each irreducible component
of V such that if U’ is the set of irreducible components of V' \ P’, then £ is in the
kernel of
H'(Fp.G)— [] H'(Fu.G)x [] H'(Fo.G).
U’eUu Qe

Hence, by Theorem 9.1, £ is trivial. O

Theorem 9.3. Let F, P, P, P, U, W, Fp and Fy be as above. Let G be a connected
linear algebraic group over F. Suppose the factorization holds for G with respect
to (P, W). Let Z be a F -variety with G acting transitively on points Z. If Z(Fy') # 0
and Z(Fg) # @ forallU' € W and Q € P, then Z(Fp) # 0.

Proof. The result follows from Theorem 9.1 and [15, Corollary 2.8]. 0

Corollary 9.4 (cf. [15, Theorem 9.1]). Let F, Y, P, X and V be as above. Let G be
a connected linear algebraic group over F. Suppose the factorization holds for G
over F. Let Z be a F -variety with G acting transitively on points of Z. If Z(Fy) # 0
forall x € V, then Z(Fp) # 0.

Proof. Suppose Z(Fy) # @ forall x € V. Let X; be an irreducible component of V'
and n; € V the generic point of X;. Since Z(F;,) # 9, by [15, Proposition 5.8],
there exists a nonempty affine open subset U; of X; such that Z(Fy,) # 0. Let P’
be the complement of the union of U;’sin V. Let Q € P’. Then, by the assumption
on Z, we have Z(Fg) # @. Hence, by Theorem 9.3, Z(Fp) # 9. O
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10. Local-global principle for projective homogeneous spaces under general
linear groups

Let K be a complete discretely valued field with residue field ¥ and F the function
field of a smooth projective curve over K. Let A be a central simple algebra over F of
index n coprime to char(k) and G = PGL(A). Let Z be a projective homogeneous
space under G over F. If F contains a primitive n-th root of unity, then from the
results in [30], it follows that Z(F) # @ if and only if Z(F,) # @ for all divisorial
discrete valuations of F'. In this section, we dispense with the condition on the roots
of unity if K is a local field.

Let X be a normal proper model of F over the valuation ring of K. Let P
be a closed point of X. A discrete valuation v of F (respectively, Fp) is called a
divisorial discrete valuation if it is given by a codimension one point of a model of F
(respectively, with center P).

Let M be a field and A a central simple algebra over M of degree n. For a
sequence of integers 0 < ny <np <.+ <ng <mn,let

X(ny,....ng) ={y,....Ix) | [ C I, C--- C I C A,sequence of right ideals
of Awithdimp(I;) =n-n;,j =1,...,k}.

Theorem 10.1. Let K be a local field with residue field k and F the function field of
a smooth projective curve over K. Let A be a central simple algebra over F of index
coprime to char(x). Let X be a normal proper model of F over the valuation ring
of K and P € X be a closed point. Let L be the field F or Fp. Let Z be a projective
homogeneous space under PGL(A) over L. If Z(L,) # @ for all divisorial discrete
valuation v of L, then Z(L) # 0.

Proof. Let f:X' — X be a sequence of blow ups such that X’ is regular, the
ramification locus of A on X’ and the special fibre of X’ is a union of regular curves
with normal crossings. By blowing up P, we assume that the dimension of the fibre
over P is 1. Let V be either the special fibre of X’ or the fibre of f over P, depending
onlL =ForL = Fp.

Let n = deg(A). Then Z is isomorphic to X(n1,...,n,) for some sequence of
integers 0 < ny < --- < n, < n and PGL(A) acts transitively on points of Z (cf. [23,
Section 5]). Let d be the Icm of ny,...,n,,n. Then, for any field extension M/ F,
Z(M) # @ if and only if ind(A ® p M) divides d (cf. [23, p. 561, 5.3]).

Suppose that Z(L,) # @ for all divisorial discrete valuations v of L. Since
PGL(A) is rational, factorization holds for PGL(A) over F ([13, Theorem 3.6.]).
Thus, by [15, Theorem 5.10 and Theorem 9.1] for the case L = F and Corollary 9.4
for the case L = Fp, it is enough to show that Z(Fy) # @ forall x € V.

Let x € V. Suppose x is a generic point of V. Then x defines a divisorial discrete
valuation vy of L and L, = L, .. Hence, Z(Ly) # 0.
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Suppose x = Q is a closed point of V. Then, by the choice of X', the local
ring Rp at Q on X’ is generated by (7, §) such that 4 is unramified on R except
possibly at (;r) and ().

Let v, be the discrete valuation given by w on L and L, the completion of L
at v,;. Since v, is a divisorial discrete valuation of L, we have Z (L, ) # @. Hence,
ind(A®F L,,) dividesd. Since L,,, € Lg », we have ind(A ®r L ) divides d.
Since, by [27, Corollary 5.6],

ind(A®F Lg) =ind(A ®F Lg,x),
ind(A ® r L) divides d. Hence, Z(Lg) # 9. O
Corollary 10.2. Let L be the field F or Fp, and A as in Theorem 10.1. Then
ind(A ®fr L) =lcm{ind(4A ® L) | v a divisorial discrete valuation of L}.

Proof. Letd = lcm{ind(4A ® r L,) | v a divisorial discrete valuation of L}. Then
clearly d divides ind(A ® p L). Thus, it is enough to show that ind(4 ®F L)
divides d.

Let Z = X(d). Since for every divisorial discrete valuation v of L, ind(AQ r L)
divides d, Z(F,) # @ (cf. [23, p. 561 5.3]). Hence, by Theorem 10.1, Z(L) # @.
Thus, ind(A ® g L) divides d (cf. [23, p. 561 5.3]). O

Corollary 10.3. Let L be the field F or Fp and A as in Theorem 10.1. Let G =
GL(A) and Z be a projective homogeneous space under G over L. If Z(L,) # 0
Sor all divisorial discrete valuation of L, then Z(L) # 0.

Proof. Since the projective homogeneous spaces under GL(A4) are in bijection with
the projective homogeneous spaces under PGL(A) [7, Theorem 2.20 (i)], the corollary
follows from Theorem 10.1. O

11. Local-global principle for homogeneous spaces under unitary groups

Let K be alocal field with residue field x of characteristic not 2 and Fj the function
field of a smooth projective curve over K. Let F/Fy be a quadratic field extension.
Let A be a central simple algebra over F' with an involution ¢ of second kind and
F° = Fy. Let (V,h) be a hermitian form over (A,0) and G = U(A,0,h). If
ind(A) = 1, then the validity of Conjecture 1 for G is a consequence of results
proved in [11]. If ind(A) = 2, Wu [33] proved the validity of Conjecture 1 for G.
In this section we dispense with the condition ind(A) < 2 for the good characteristic
case.

We begin by recalling the structure of projective homogeneous spaces under a
unitary group over any field. Let Fy be a field and F/Fy a separable quadratic
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extension. Let A be a central simple algebra over F' of degree n with an involution o
of second kind and F° = Fy. Let (V, h) be a hermitian form over (4,0) and G =
U(A,o,h).

Let W be a finitely generated module over A. The reduced dimension rdim 4 (W)
of W over A is defined as dimg (W) /n [19, Definition 1.9]. For a sequence of integers
0 <ny; <---<n, <n/2and for any field extension L/ F, let

Xy, ....ony)={W, ..., W) |{0} € W C --- C W,, W; atotally isotropic
subspace of V with rdimg W; = n;}.

We recall the following from [23,24], cf. [33, Section 2].

Theorem 11.1. Let Fy be a field and F/ Fy a separable quadratic extension. Let A
be a central simple algebra over F of degree n with an involution o of second kind
and F° = Fy. Let (V,h) be a hermitian form over (A,c) and G = U(A,0,h).
Then

(i) A projective variety X over Fy is a projective homogeneous space under G
over Fy if and only if X ~ X(n1,...,n,) for some increasing sequence of
integers 0 <ny <---<n, <n/2.

(ii) For any field extension L/ Fy, we have X(ny,...,n,;)(L) # @ if and only if
X(n,)(L) # @ and ind(Ar) divides n; for all i.

(iii) If A = M, (D) for some central simple algebra over F and Gy = U(D, 0y) for
some unitary involution oy on D, then there is a bijection assigning projective
homogeneous spaces X under G and to projective homogeneous spaces X
under Gg. Further, for any field extension L/ Fy, we have X (L) # @ if and only

if Xo(L) # 0.
The proof of the following theorem is parallel to Abhyankar’s proof in the case
of algebraic surfaces [1].

Theorem 11.2. Let Xy be a normal integral excellent two dimensional scheme with
function field Fy and F/ Fy a quadratic field extension. Suppose that 2 is invertible
on Xo. Let D be a divisor on Xo. Then there exists a sequence of blowups X' — Xg
with X' regular such that the integral closure X of X' in F is regular and support of
the pull back of D on X is a union of regular curves with normal crossings.

Proof. Letd € F§ besuchthat F = Fo(+/d). Since X is excellent and dimension
two, there exists a sequence of blowups X’ — X such that the union E of supp(d)
and the support of the pullback of D on X’ is a union of regular curves with normal
crossings [20].

Then for any closed point P of X', the maximal ideal at P is generated by
(mp.8p) such that d = upmp’ 83" for some unit up at P and np,mp € Z.
Further, replacing X’ by a sequence of blowups, we assume that for each closed
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point P of X', either n p is even or m p is even (see, for instance, [33]). We now show
that X’ has the required properties.

Let P € X' be a closed point. Then, by the choice of X', we have d = u pd12
orupmwpd? or up8pd? for some unit up at P and dy € F§. Thus, the integral
closure X of X’ in F is regular (see, for instance, [28, Lemma 3.3]).

Let D be the pull back of D to X. Let Q € X be a closed point which is on the
support of D. Let P € X’ be the image of Q. Let Ap be the local ring at P and Bp
be the integral closure of Ap in F'. Then Bp is a regular local ring.

Suppose d is not a square in the field of fractions of the completion of Ap.
Then Q is the only point in X which maps to P. Let C be an irreducible curve which
is in the support of D. Then C is regular at P on X', and hence there is a unique
irreducible curve in the support of D mapping to C. Since the support of D is a
union of regular curves with normal crossings, it follows that the support of D at (0]
is a union of regular curves with normal crossings.

Suppose d is a square in the field of fractions of the completion of Ap. Then by
the choice of X', we have that d = updl2 for some unit up € Ap and d; € Fy.
Thus, F' = Fo(,/up), and hence Bp/Ap is étale. Since the support of D is a union
of regular curves with normal crossings, it follows that the support of D at Qisa
union of regular curves with normal crossings. L

Corollary 11.3. Let Xy be a normal integral excellent two dimensional scheme with
function field Fy and F/ Fy a quadratic field extension. Suppose that 2 is invertible
on Xo. Let D' be a divisor on the integral closure X, of Xo in F. Then there exists a
sequence of blowups X' — Xo with X' regular such that the integral closure X of X’
in F is regular and support of the pull back of D' on X' is a union of regular curves
with normal crossings.

Proof. Let D be a divisor on Xy containing the image of all irreducible curves in the
support of D’. Then applying Theorem 11.2 to D we get the required X'. O

Theorem 11.4. Let K be a local field with residue field k. Let Fy be the function
field of a curve over K. Let F/Fy be a quadratic extension and A be a central
simple algebra over F with an F | Fy- involution o. Suppose that 2ind(A) is coprime
to char(k). Let h be a hermitian form over (A,0) and G = U(A,0,h). If A = F,
then assume that rank of h is at least 2. Let Z be a projective homogeneous space
under G over F. Let Xy be a normal proper model of Fy and P € Xy be a closed
point with F @, Fop a field. If Z(Fo,) # 9 for all divisorial discrete valuations v
of Fo, then Z(Fop) # 0.

Proof. Letn be the degree of A. Since Z is a projective homogeneous space under G,
by Theorem 11.1,

Z >~ X(ny,...,ny)
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for some sequence of integers 0 < ny < --- < n, < n/2. Suppose that Z(Fy,) # 0
for all divisorial discrete valuations v of F. Then, by Theorem 11.1, ind(A ® r, Fo)
divides n; for all i. Since K is alocal field, ind(A) is the Icm of ind(A4 ® f,, Fov) as v
varies over all divisorial discrete valuations of F (cf. Corollary 10.2). Hence, ind(A)
divides n; for all i. By Theorem 11.1, X(n,)(Fp,) # @ for all divisorial discrete
valuations v of F. To prove the theorem, by Theorem 11.1, it suffices to show that

X(ny)(Fop) # 9.

Thus, we assume that Z = X(m) with m = n,.

Let T be the valuation ring of K. Then there exists a sequence of blow ups
Xy — Xo such that the normalization X of Xj, in F is regular and the ramification
locus of A on X and the special fibre of X is a union of regular curves with normal
crossings Corollary 11.3. If necessary, by blowing up P, we assume that the fibre V
over P is of dimension 1. Then, by Corollary 9.4, it is enough to show that

Z(Fox) # 9

forallx € V.

Let x € V be a generic point. Then x gives a divisorial discrete valuation vy
on Fy such that Fo, = F,,. Hence, Z(Fox) # 0.

Let O € V be a closed point. We show that Z(Fpp) # 9 by induction on
ind(4A ®r, Fop). Suppose

ind(4 ®F, Fog) = 1.

Then the hermitian form 4 corresponds to a quadratic form over g over Fypp such
that £ is isotropic over any field extension M of Fop if and only if gy is isotropic
over M (see [32, Theorem 1.1, p.348]). Since Z = X(m), for every divisorial
discrete valuation v of Fp, there is a totally isotropic subspace of V ® g, Fo, of
dimension m. Thus, to prove the theorem, it is enough to show that there is a totally
isotropic subspace of V' ®F, Fop of dimension m. By induction on dim(gp), it is
enough to show that gy, is isotropic over Fpg. By the assumption on the rank of 4,
rank of ¢, is at least 4. Since for every (divisorial) discrete valuation v of Fy centered
on @, gy is isotropic over Fyg,,, by [16, Corollary 4.7], g, is isotropic over Fyg.

Suppose ind(A @, Foo) > 2. Then by the choice of the model X, we have the
following:

(i) the local ring Rg at Q on Xj, is regular with (7, §) as the maximal ideal;
(ii) F ® Fop = Fop(~um®) for some unitu € Rg ande =0, 1;

(iii) A is unramified on the integral closure of Rp in Fog(+/um®), except possibly
at 771 and 8, where 7, = 7 or 4/um dependingon e = O or 1.
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Let D g be the central division algebra over F' ® r, oo which is Brauer equivalent
to A ® r, Fogo. Then there is a unitary involution og on D¢ and the hermitian form
(V, h) corresponds to a hermitian form (Vg, hp) over Dg. By Theorem 11.1,

ZF()Q = X(m)F()Q

corresponds to a projective homogeneous space Zo = X (m') under U(D g, 0¢) for
some suitable m’ which is divisible by ind(D ). Further, to show that

Z(Fog) # 9,

it is enough to show that Zg (Fog) # 9.

Since ind(4 ® F, Fop) > 2, we have deg(Dg) > 2. If deg(Dg) = 2, let A be
the maximal Rgp-order of D¢ as in [33, Lemma 3.7]. If deg(D o) > 3, let A be the
maximal Rg-order of D¢ asin Lemma 8.3. Since D is a division algebra, we have

ho ~{ay,...,an)

for some a; € A p. Once again there exists a sequence of blow ups X — X such
that support of Nrd(a;) for all i is a union of regular curves with normal crossings
(see [2,20], cf. [33, Section 4]). Further, by blowing up, we also assume that X
satisfies (i), (ii) and (iii). Let V" be the fibre over Q. Once again we assume that
dim(V") = 1. Thus, to show that

Zo(Foo) # 9,

by Corollary 9.4, it is enough to show that Z o (Fox) # @ forall x € V".

Let x’ € V" be a generic point then, as above, Z g (Fox’) # @.

Let Q' € V" be a closed point. Suppose that Dp ®F,0 Fog’ is division.
By Theorem 11.1, it is enough to show that there is a totally isotropic subspace
of Vo ® Foo of dimension m’. By induction on the reduced dimension of Vp, it is
enough to show that /¢ is isotropic over Fogr. Since X satisfies (i), (ii) and (iii),
the maximal ideal at Q' on X is generated by (1, 6), hp = (ai,...,a,) for some
a; € A p with Nrd(a;) is a supported along only 7, §, and hg ® Fog/y is isotropic.
Hence, by Corollary 8.6, ¢ is isotropic over Fog'.

Suppose that Do ® r,0 Fog’ is not division. Then

ind(A X Fo FOQ/) < ind(A ®F, F()Q).
Hence, by induction, Z g (Fog’) # 9. O

Theorem 11.5. Let K be a local field with residue field k. Let Fy be a function
field of a curve over K. Let F/Fy be a quadratic extension and A a central simple
algebra over F of index n with an F/ Fy- involution o. Suppose that 2n is coprime to
char(k). Let h be a hermitian form over (A,0). If A = F, then assume that the rank
of h is at least 2. Let Z be a projective homogeneous space under U(A, o, h) over F.
If Z(Foy) # @ for all (divisorial) discrete valuations v of Fy, then Z(Fy) # @.
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Proof. Suppose Z(Fy,) # 9 for all (divisorial) discrete valuations v of Fy. Let Xg
be a normal proper model of Fy over the valuation ring of K and X the special fibre.
Let x € Xy be a codimension 0 point in X and v, the discrete valuation of Fy given
by x. Then Fox = Fo,, and Z(Fox) # 0.

Let P € X be a closed point. We have

A®F, F ~ Ay x AY
for some central simple algebra A1/ F (see [19, Proposition 2.14]) and
U(A,o0,h) ® F ~ GL(A4,)
(see [19, p. 346]). Suppose F' ®F, Fop is not a field. Then F' C Fop and
A®F, For >~ A1 ® Fop x AT @ Fy.

Let X be the normal closure of X in F'. Since F' ®, Fop is not a field, there
exists a closed point Q of X such that Fp ~ Fyp. Hence, by Corollary 10.3,
Z(F ®F, Fop) # 0.

Suppose F' ®fr, Fop is a field. Then, by Theorem 11.4, Z(Fop) # @. Since
U(A, o, h) isrational and connected (see [22, Lemma 1, p. 195]), by [15, Corollary 6.5
and Theorem 9.1], Z(Fy) # 0. O

Theorem 11.6. Let K be a local field with residue field k. Let Fy be a function
field of a curve over K. Let F/Fy be a quadratic extension and A a central simple
algebra over F of index n with an F/ Fy- involution o. Suppose that 2n is coprime
to char(k). Let h be a hermitian form over (A, o). Then the canonical map

H'(Fo.U(A.0.h)) > [] H'(Fov.U(A.0.h))

veQ Fo
has trivial kernel.

Proof. Let§ € HY(Fy,U(A,0,h)). Then & corresponds to a hermitian space A’ over
(A, o) of reduced rank equal to the reduced rank of s. Let hg = h L —h’ and m the
reduced rank of h. Let G = U(A,0,hp) and Z = X(m). Then Z is a projective
homogeneous variety under G over Fy. Suppose & maps to the trivial element in
H'(Fy,,U(A,o,h)) for all (divisorial) discrete valuations v of Fy. Then

h/®FOv:h®FOV7

and hence hg is hyperbolic. Thus, Z(Fy,) # @ for all (divisorial) discrete valuations v
of Fy. Hence, by Theorem 11.5, Z(Fy) # 0. In particular, hg is hyperbolic. Since
the reduced ranks of & and 4’ are equal, h ~ h’ and & is the trivial element in
H'(Fy,U(A,0,h)). O
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12. Local-global principle for special unitary groups: Patching setup

Let K be a local field with residue field x and F, the function field of a smooth
projective curve over K. Let F/Fy be a separable quadratic extension. Let A be a
central simple algebra over F' of degree n with an involution o of second kind and
F°% = Fy. Suppose that 27 is coprime to char(k). In this section we show that there
is a local-global principle for principal homogeneous spaces under SU(A, o) over Fy
in the patching setup (cf. Theorem 12.5).

Letp € F*. Let F = Fo(v/d),d € Fy. Let T be the valuation ring of K. Then
there exists a regular proper model Xy — Spec(T") of Fy with the normalization X
of X in F regular and with the property that the special fibre X of X, the ramification
locus of F/ Fy on X, the ramification locus of A on X and the support of p on X are a
union of regular curves with normal crossings [2,20]. Let X¢ be the reduced special
fibre of Xo and {71, ..., 7, } be the generic points of Xj.

Let Py be a finite set of closed points of Xy containing all the singular points
of X¢ and at least one closed point from each irreducible component of Xy. Let Uy
be the set of irreducible components of Xo \ Po. We fix the data u € F*, Xo, Py
and Uy for until Theorem 12.5. Let By be the set of branches at Pg. Since Xy is a
union of regular curves with normal crossings, By is in bijection with pairs (P, U)
with P € Py, U € Up and P is in the closure of U.

Let n € Xo be a generic point and P € {5} a closed point. Then 7 defines a
discrete valuation v, on Fop. Then the completion of Fjy at the restriction of vy
to Fy is denoted by Fy; and the completion of Fyp at v, denoted by Fop ;. The
closed point P induces a discrete valuation vp on the residue field « (1) of Fy; such
that the completion k(1) p of k(1) at vp is the residue field of Fop 5.

Let P € Xy be a closed point and Ap the local ring at P on Xy. Since the
normalization of X in F is regular, d = wu or d = u for some w € Ap aregular
parameter and u € Ap a unit. Hence, Bp = Ap[+/d] is the integral closure of Ap
in F. Let§ € Ap be such that mp = (7, §) is the maximal ideal of Ap. If d = 7u,
then Bp is local and (y/7u, §) is the maximal ideal of Bp. Suppose d = u a unit
in Ap. If u is not a square in the residue field « (P), then Bp is local and the maximal
ideal of Bp is generated by 7 and 8.

We begin with the following lemma.

Lemma 12.1. Let n be a generic point of Xo and S be a finite set of closed points
of {n}. For every P € S, let 0, p € FO*P,W be a unit at n which is a reduced norm
from A® Fop,y. Then there exists 0, € Foy, which is a reduced norm from A ® Foy,
such that 9,797;}, € Fopyforall P €S.

Proof. Suppose Iy = F ® Fy,/ Fo, is aramified field extension. Then, by Lemma 6.3,
there exists an unramified algebra Ao over Fy; such that

A ®F, FOn >~ Ag & Fon F’?'
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For P € §,let gn,p € k(n)p betheimage of 0, p € FO*P,H. We choose 5,, € k(n)* be
closeto 8, p forall P € S. Since Ay is unramified over Fj;, its specialization By is a
central simple algebra over x (7). Since k() is a global field of positive characteristic,
by the Hasse—Maass—Schilling theorem, 5,, is areduced norm from By. Let 6, € Fy,
be a lift of 5,7. Since Foy is complete, 0, is a reduced norm from A¢ ® r, Foy, and
hence a reduced norm from A ®  F;. Since 5 is close to 5 pforall P € Sandn
is coprime to char(x), we have 6, 97) p € K(n) for all P € §. Since Fopy is
complete with residue field «(n) p, we have 6, 9 P € Fy P, p forall P € S.

Suppose that F;, / Fo, is an unramified ﬁeld extenswn Then the residue field k' (1)
of F; is a quadratic extension of k(7). Let (L, 0,) be the residue of A4 at . Since
the residue commutes with the corestriction,

coresg(y)/i(n) (Ly. o) = 0.

Thus, by Proposition 3.2, L, /k(n) is a dihedral extension. Since 6, p is a reduced
norm from A ® Fyp,,, we have

A-(0y,p) =0 € H>(F ® Fopy, 113%).

Let 5,,, p be the image of 6, p in the residue field «(n)p of Fp,. By taking the
residue of A4 - (6, p), we get that (L, oy, 0y, p) = 0 (cf. [27, Proof of Lemma 4.7]).
Hence, 0;, p is a norm from the extension

Ln Ru(n) k(n)p/K(n) Qu(n) k(np.

Since k(n) is a global field, by Corollary 5.2, there exists 5,, € k(n)* with 5,, anorm
from L, /k(n) and 9,,9;},, ek(my

Let 0, € Fo, be alift of 6, € «(n). Then 9,,9;}, € Fgp,- Since 6, is a norm
from L, /k(n), by Proposition 1.7, 6, is a reduced norm from A ® Fyy,.

Suppose F; = F ®F, Foy is not a field. Then

Fy >~ Foy x Fo, and A ®F, Fo, >~ A1 x A

where A" is the opposite algebra. Since 6, p € Fop,y is a reduced norm from
A ® Fop,y, we have 0, p is a reduced norm from Ay ® Fop . Then, as above, we
can find 0, € Fop such that 6,0, L e Fyp , and 6y is a reduced norm from Aj.
Then 6, is a reduced norm from A ® g, Foy. O

Lemma 12.2. Suppose that for every generic point n of Xo there exists ¢, € Fo*n
such that ey is a reduced norm from A ® Fo . Then for every generic point 1
of Xo, there exists ay € Fy, y such that jLay is a reduced norm from A ® Foy with the
following property: if nq and N2 are two generic points of Xo and P € {11} N {nz}
with F ® Fyp a field, then there exists ap € F op Such that pap is a reduced norm
from A® Fop and an,ap' € Fjp ; Jor =
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Proof. Since the special fibre is a union of regular curves with normal crossings, for
a generic point 1 of Xy, there exists 7, € Fo a parameter at n such that for every
closed point P € {n;} N {n,} for any two distinct generic points 1; and 7, of Xy,
the maximal ideal at P is (1), , 7y, ).

Suppose that for every generic point 1 of Xy there exists ¢;, € Foy such that ey, is
areduced norm from A ® Fy 5. For every generic point 1 of X, let Iy =V (c,,) For
every closed point P €{n}N{n,} with F ® Fyp is a field, d, letap = JT,“ Ty € FJp.

Let 7 be a generic point of Xo. Let P € {5} N {y'} for some generic point
n' # n. Suppose that F ® Fyp is a field. By the choice of Xy, F/ Fp is unramified
at P except possibly at 7, and m,. Since the maximal ideal at P is (my, myy),
by [27, Corollary 5.5], F ® Fop,y is a field. Since n is coprime to char(k(P)), we
have

cp = upyr,r,"ﬂ;,’) bp)"

for some sp € Z,aunitup € /Tp and bp € F*P,n (cf. Remark 7.1). Let
Opp = upl woe

Leta € H?(F, ji;) be the class of A. Since A admits an F/ Fy-involution, we have
coresg/F, () = 0.

Since Op.p € Fgp . We have

COICSF @ ) Fop.n/Fop.n (@ - (O, P)) = COteSF g 1 Fop ,/Fop.,(@) - (On,p) = 0.
Since F ® g, Fop,, is a field and K is a local field, we have
cores: H>(F, u®?) — H?(Fy, u2?)

is injective (see [27, Proposition 4.6]), and hence « - (6,,p) = 0. By [27, Theo-
rem 4.12], 6, p is a reduced norm from A.

Since 0;, p is a unit at 7, by Lemma 12.1, there exists 6, € Fo, which is a reduced
norm from A ® Fo, such that 6,6, Le Fop -

Let a, = cyb,. Since ucy and 0 are reduced norms from 4 ® Fon, nay is a
reduced norm from A ® Fy,. Let P € {n} N {n'} for some generic point ' # n with
F ® Fyp is afield. Then, by the choice of a;, we have

— In
a, = my, nn, modulo Fgp .
—1 *n
Hence, ayap’ € FOP" O

Lemma 12.3. Let 11 and ny be two distinct generic points of Xo. Suppose that
P € {n1} N {n2} is a closed point with F ® Fop not a field. Suppose ay, € F i
such that pa,, € Nrd(A ® Fop;). Then there exists ap € F{p such that pap is a
reduced norm from A ® Fop and ay, apl € Fyp n fori =1,2.
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Proof. Since F' ® Fop is not a field and coresg,r,(A) = 0, we have
F® Fop >~ Fop X Fop and A ® Fop >~ Ay XA(;p

for some central simple algebra A, over Fop. Write it = (@1, (t2). Since ay, i1 is a
reduced norm from A ® Fy,and ay,; € Fg, , we have ay, jt1 and i w; ! are reduced
norms from Ay ® Fop,y,. Since by the choice of Xy, the union of the support of
on X and the ramification locus of A on X is a union of regular curves with normal
crossings, by Corollary 7.3, /M/L;l is a reduced norm from A; ® Fyp.

The generic points 1, and 7, give discrete valuations vy and v, on Fop with
completions Foy,,p and Fo,, p. Letz; € A1 ® Fop,;, withreduced normay, pu;. Let
z€ A1 ® Fyp beclosetoz; fori = 1,2. Letap = Ml_l Nrd(z) € Fop. Then piap
is a reduced norm from A; ® Fop. Since z is close to z; and Nrd(z;) = an; ;t1, we
have Nrd(z) is close toap, 1. Hence, a p is close to ap, . Therefore, an,ap' € FJh e
Since Mle_l is a reduced norm and app; is a reduced norm, apu, is a reduced
norm. In particular, a p u is a reduced norm. O

Lemma 12.4. Let n be a generic point of Xo and P € {5} a closed point. Suppose
ap € Fy is such that pa, € Nrd(A ® Foy,). Then there exists ap € Fgp such
that pap is a reduced norm from A ® Fop and a,,al_,1 € F(;“ﬁ »

Proof. Suppose that F' ® Fyp is afield. Then, by the choice of Xy and by Lemma 8.1,
there exists ap € Fyp such that wap is a reduced norm from A ® Fop and a,,a;l €

Fl' b

oU,P
Suppose F ® Fyp is a not field. Then, we get the required a p as in the proof of
Lemma 12.3. O

We have an exact sequence of algebraic groups
1 = SU(4,0) = U(A4,0) = R /g, (Gm) — 1.
For any field extension L/ Fy, we have an induced exact sequence
U(A,0)(L) > (L ®F, F)*' > H'(L,SU(A,0)) > H'(L,U(4,0)). (%)

where (L ® f, F)*! = / Fo (Gm)(L) is the subgroup of (L ® r, F')* consisting of
norm one elements and the map U(A,0)(L) — (L ®F, F)*! is given by the reduced
norm. Further, the image of U(4,0)(L) — (L ®F, F)*! is equal to

{07'0(0) | 6 € Nrd(A ®F, L*)}

(see [19, p.202]).

Theorem 12.5. Let K be a local field with the residue field k and valuation ring T.
Let Fy be the function field of a smooth projective curve over K and F | Fy a separable
quadratic extension. Let A be a central simple algebra over F of degree n with an
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involution o of second kind and F° = Fy. Suppose that 2n is coprime to char(x).
Let Xo — Spec(T') be a proper normal model of Fy with special fibre Xo. Let Py be
a finite set of closed points of Xy containing all the singular points of Xo and Uy the
set of irreducible components of X¢o \ Po. Then the canonical map

H'(Fo.SU(4,0) > [] H'(Fou.SU(4,0) x [] H'(For.SU(4,0))
Uelg PePy

has trivial kernel.

Proof. Let§ € H'(Fy,SU(A, 0)). Suppose that £ maps to 0in H!(Fo,,SU(A,0))
for all x € Ug U Py. Since U(A, o) is rational and connected (see [22, Lemma 1,
p. 195]), by [13, Theorem 3.7], £ maps to 0 in H'(Fy, U(A,0)). Hence, from the
exact sequence (), there exists A € F*! such that A maps to £ in H'(Fy,SU(A,0).
Let u € F* be such that A = u~'o(u). Since £ maps to 0 in H'!(Foy,SU(4, 0)),
there exists cy € Foy such that cy p is a reduced norm from A ® g, Foy (cf. [19,
p-202]).

Then, there exists a sequence of blow-ups X — Xo such that Xj, is regular, the
integral closure X’ of X, in F' is regular and the union of the special fibre of X', the
ramification locus of A on X’ and the support of © on X’ is a union of regular curves
with normal crossings Corollary 11.3. Let P{ be a finite set of closed points of X,
containing all the singular points of the special fibre X, of X, and at least one closed
point lying over points of Py. Let U;, be the set of components of X \ P;. Then &
maps to 0 in H'(Fox/, SU(4, 0)) for all x’ € Py U Uy (see [15, Section 5]). Thus,
replacing Xy by X, we assume that the integral closure X of X¢ in F is regular and
the union of the special fibre of X, the ramification locus of A4 on X and the support
of ; on X is a union of regular curves with normal crossings.

Let n be a generic point of Xo. Then n € U, for some U, € U. Let ¢, = cy,.
Since Fou,, C Foy, wehave ¢, € Fg, and cypis areduced norm from A® g, Foy. Let
ay € Fo, be as in Lemma 12.2. Then, by Artin’s approximation [4, Theorem 1.10],
as in the proof of [27, Lemma 7.2], there exists a nonempty open subset V; of U, such
thata, € Foy, (see [14, Lemma 3.2.1]) and a, u is areduced norm from A ® g, Fov,,.
Let ay, = a, € Foy,. Let U be the set of these V,’s. Let P;, be the complement of
the union of V,’s in Xo. Then U’ is the set of components of Xo \ P;.

Let P € P;,. Suppose that P € {n} N {n’} for two distinct generic points 7 and 7’
of Xo. Then P € Py. If F ® Fop is afield, thenletap € Fop be asin Lemma 12.2.
If F ® Fop isnotafield, letap € Fop be as in Lemma 12.3. Suppose P € {n} for
some generic point n of X and P ¢ {5’} for all generic points " of Xy not equal
ton. Letap € Fyp be as in Lemma 12.4.

Let (V, P) be a branch. Then P € V. By the choice of ap and ay, we have

—1 _ 1n

for some by p € FO*V, p- By [15, Corollary 3.4], for every x € Ug U Py, there exists
by € Fg, suchthat by p = by bp for all branches (V, P).
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For V' € U, leta}, = ayby,” and for P € P, leta’, = apb’,. Then, we have
a/V = a’P € F()V,p

for all branches (V, P). Hence, there exists a’ € Fy such that a’ = a’, € Fyy for all
x € Uy U Py (see [15, Section 3]). Since pay is a reduced norm from A ® Foy for
all x € Uy U Pj and n is the degree of A, pa’, is a reduced norm from A ® Foy for
all x € Ug U Py. In particular, by [15, Proposition 8.2], a’ is a reduced norm from
A ®F, Fov for all discrete valuations v of Fy. Thus, by [27, Corollary 11.2], na’
is a reduced norm from A. Since A = (pua’)"'o(na’), we have A is in the image
of U(A,0)(Fy) — F*!, and hence £ is trivial. O

The following is immediate from Theorem 12.5 and [15, Corollary 5.9].

Corollary 12.6. Let K be a local field with residue field k. Let Fy be a function
field of a curve over K. Let F/Fy be a quadratic extension and A a central simple
algebra over F of index n with an F/ Fy- involution o. Suppose that 2n is coprime
to char(k). Then the canonical map

H'(Fy,SU(A,0)) > [] H'(Fox.SU(4,0))

x€Xo

has trivial kernel.

13. Local-global principle for special unitary groups: Discrete valuations

Theorem 13.1. Let K be a local field with residue field k. Let Fy be a function
field of a curve over K. Let F/Fy be a quadratic extension and A a central simple
algebra over F of index n with an F/ Fy- involution o. Suppose that 2n is coprime
to char(k). Then the canonical map

H'(Fy.SU(A.0)) > [[ H'(Fou.SU(4.0))

veQ Fo
has trivial kernel.

Proof. Let§ € H'(Fy,SU(A,0)). Suppose that £ maps to 0in H'(Fy,,SU(4,0))
for all v € Qp,. By Theorem 11.6, the image of & in H!(Fy, U(4,0)) is zero.
Hence, from the exact sequence (x) of Section 12, there exists A € F *1 such that A
maps to £ in H1(Fy, SU(4,0)). Write A = o (u) for some pu € F*.

Letd € Fj be such that F = Fo(~/d). There exists a regular proper model X
of Fy such that the special fibre and the support of d is a union of regular curves with
normal crossings. Further, the integral closure X of Xy in F has the following
property: X is regular, the special fibre of X, the ramification locus of (4,0),
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the support of d, p and A is a union of regular curves with normal crossings
Corollary 11.3. Let X, be the special fibre of X.

Let x € X be a codimension zero point. Then x gives a discrete valuation v,
on Fy and Fo, = Fy,,. Hence, £ maps to zero in H!(Fox,SU(A4,0)).

Let P € Xy be a closed point. Let A p be the local ring at P and Bp the integral
closure of Ap in F. Since Bp is regular, there is at most one irreducible curve of X
in the support of d which passes through P. Further, there are at most two curves
passing through P which are in the union of special fibre of X', the support of x and
ramification locus of A. Let x be one such curve and v, the discrete valuation of Fy
given by x. Then Fy,, C Fop,y,,and hence € maps to 0in H!(Fop,,SU(4,0)).

Since A maps to &, there exists 8 € Fop,y, such that u6x € Nrd(A ® Fop,).
Hence, by Lemma 8.1, there exists 6p € Fop such that u6p € Nrd(4 ® Fop). In
particular, ¢ ® Fyp is trivial. Hence, by Corollary 12.6, £ is trivial. O

14. Conjectures 1 and 2 for classical groups

In this section, we prove the validity of Conjecture 1 and Conjecture 2 for all groups of
classical type in the good characteristic case. In fact we prove local-global principles
for function fields of curves over any local field.

Theorem 14.1. Let K be a local field with residue field k and F the function field of
a curve over K. Let G be a connected linear algebraic group over F of classical type
(D4 nontrialitarian) with char(k) good for G. Let Z be a projective homogeneous
space under G over F. If Z(F,) # @ for all divisorial discrete valuations of F, then
Z(F) # Q. Thus, Conjecture 1 holds for G.

Proof. Let G* be the semisimplification of G/rad(G). Since G is of classical type,
there exists a central isogeny G; X --- X G, — G* with each G; an almost simple
simply connected group of the classical type (D4 nontrialitarian) with char(x) good.
It is well known that using the results of [7, Theorem 2.20] and [24, Proposition 6.10],
one reduces to the case r = 1 (cf. proof of [33, Corollary 4.6]).

Let G be a connected linear algebraic group with an isogeny G’ — G*° for some
almost simple simply connected group G’ of classical type (D4 nontrialitarian). If G’
is of type '4,,, then the result follows from Theorem 10.1. If G is of type %4,,, then
the result follows from Theorem 11.5. If G’ is of type B,, Cy, or D, then the result
follows from [33]. O

Theorem 14.2. Let K be a local field with residue field k and F the function field of a
curve over K. Let G be a semisimple simply connected linear algebraic group over F
with char(x) is good for G. Suppose G is of the classical type ( D4 nontrialitarian).
Let Z be a principal homogeneous space under G over F. If Z(F,) # @ for all
divisorial discrete valuations of F, then Z(F) # . Thus, Conjecture 2 holds for G.
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Proof. For G of type By, C, or D, (D4 nontrialitarian), this result is proved in [17,
29].

Suppose G is of type '4,. Then G ~ SL(A) for some central simple algebra A
over F and the principal homogeneous spaces under G are classified by

HY(F,G) ~ F*/Nrd(A).

Since char(x) is good for G, the degree of A is coprime to char(x). Hence, the result
follows from [27, Corollary 11.2].

Suppose G is of type 24,,. Then there exists a separable quadratic extension F/ Fy
and central simple algebra over F’ with an F/ Fyp-involution o such that G >~ SU(A4, o).
Since char(k) is good for G, 2(deg(A)) is coprime to char(x). Hence, the result
follows from Theorem 13.1. O
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