
Comment. Math. Helv. 97 (2022), 255–304
DOI 10.4171/CMH/531

Commentarii Mathematici Helvetici
© 2022 Swiss Mathematical Society

This work is licensed under a CC BY 4.0 license

Local-global principle for classical groups
over function fields of p-adic curves

Raman Parimala and Venapally Suresh

Abstract. LetK be a local field with residue field � and F the function field of a curve overK.
Let G be a connected linear algebraic group over F of classical type. Suppose char.�/ is a
good prime for G. Then we prove that projective homogeneous spaces under G over F satisfy
a local-global principle for rational points with respect to discrete valuations of F . If G is a
semisimple simply connected group over F , then we also prove that principal homogeneous
spaces underG over F satisfy a local-global principle for rational points with respect to discrete
valuations of F .
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Introduction

Let k be a number field andG a semisimple simply connected linear algebraic group
over k. Classical Hasse principle asserts that a principal homogeneous space underG
over k has a rational point if it has rational points over all completions of k. This
is a theorem due to Kneser (classical groups), Harder (for exceptional groups other
than E8) and Chernousov (for E8). Harder also proves a Hasse principle for rational
points on projective homogeneous spaces under connected linear algebraic groups
over k.

Questions related to Hasse principle have been extensively studied over ‘semi-
global fields’, namely function fields of curves over complete discretely valued fields
with respect to their discrete valuations. Considerable progress has been made
possible due to the patching techniques of Harbater, Hartmann, and Krashen. One
could look for analogous Hasse principles for simply connected groups in this context.
However, Hasse principle fails for simply connected groups in this generality [10].
If K is a p-adic field and G is a semisimple simply connected quasi split linear
algebraic group over the function field of a curve over K with p ¤ 2; 3; 5, it was
proved in [11] that Hasse principle holds for G. This led to the following two
conjectures [11].

https://creativecommons.org/licenses/by/4.0/
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Let F be the function field of a p-adic curve and �F the set of all discrete valu-
ations of F . For � 2 F , let F� be the completion of F at �.
Conjecture 1. Let Y be a projective homogeneous space under a connected linear
algebraic group G over F . Then Y satisfies Hasse principle with respect to �F .
Conjecture 2. Let G be a semisimple simply connected linear algebraic group
over F and Y a principal homogeneous space under G over F . Then Y satisfies
Hasse principle with respect to �F .

There has been considerable progress towards these conjectures for classical
groups in the ‘good characteristic case’. Let G be a semisimple simply connected
linear algebraic group of classical type overF . We say that the primep is good forG,
if p ¤ 2 for G of type Bn, Cn, Dn (D4 nontrialitarian) and p does not divide nC 1
for G of type 1An and p does not divide 2.nC 1/ for G of type 2An. Let G be any
connected linear algebraic group over F . We say that G is of classical type if every
factor of the simply connected cover zG of the semi-simplification of G=Rad.G/ is
of classical type. We say that p is good for G if p is good for every factor of zG.

Suppose p ¤ 2. It was proved in [11] that a quadratic form q over F of rank at
least 3 is isotropic over F if and only if q is isotropic over F� for all � 2 �F . A
local-global principle for generalized Severi–Brauer varieties, under an assumption
on the roots of unity in F , is due to Reddy and Suresh [30]. LetA be a central simple
algebra over F with an involution � of either kind. If � is of the second kind, then
assume that ind.A/ � 2. Let h be a hermitian form over .A; �/. Then Wu [33] proved
the validity of Conjecture 1 for the unitary groups of .A; �/. Hence, Conjecture 1
holds for all groups of type Bn, Cn,Dn and for special groups of type 1An and 2An in
the good characteristic case ([33, Corollary 1.4]).

Conjecture 2 for groups of type Bn, Cn, Dn is due to Hu and Preeti independ-
ently [17, 29]. Conjecture 2 for G D SL1.A/ with index of A square-free is a
consequence of the injectivity of the Rost invariant due to Merkurjev–Suslin [25] and
a result of Kato [18] on the injectivity of

H 3.F;Q=Z.2//!
Y
�2�F

H 3.F� ;Q=Z.2//:

The case 2An, namely the unitary groups of algebras of index at most 2 with unitary
involution is due to Hu and Preeti [17, 29].

The two main open cases concerning Conjectures 1 and 2 for classical groups
were types 1An and 2An. The Conjecture 2 for 1An, namely a local-global principle
for reduced norms in the good characteristic case was settled by the authors and
Preeti [27].

The aim of this paper is to settle Conjecture 1 and Conjecture 2 in the affirmative
in the good characteristic case for all groups of types 1An and 2An, thereby completing
the proof for all classical groups in the good characteristic case. In fact we prove the
following more general theorems.
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Theorem 0.1 (cf. Theorem 10.1). Let K be a local field with residue field � and F
the function field of a smooth projective curve over K. Let A be a central simple
algebra over F of index coprime to char.�/. Then Conjecture 1 holds for PGL.A/.

Theorem 0.2 (cf. Theorem 11.5). LetK be a local field with residue field � andF0 the
function field of a smooth projective curve overK. LetF=F0 be a quadratic extension
and A be central simple algebra over F of index n with an F=F0- involution � .
Suppose that 2n is coprime to char.�/. Let h be a hermitian form over .A; �/.
If A D F , then assume that the rank of h is at least 2. Then Conjecture 1 holds
for U.A; �; h/.

Theorem 0.3 (cf. Theorem 13.1). LetK be a local field with residue field � andF0 the
function field of a smooth projective curve overK. LetF=F0 be a quadratic extension
andA a central simple algebra overF of indexnwith anF=F0- involution� . Suppose
that 2n is coprime to char.�/. Then Conjecture 2 holds for SU.A; �/.

As a consequence we have the following.

Theorem 0.4 (cf. Theorem 14.1). Let K be a local field with residue field � and F
the function field of a smooth projective curve over K. Let G be a connected linear
algebraic group over F of classical type (D4 nontrialitarian) with char.�/ good
for G. Then Conjecture 1 holds for G.

Theorem 0.5 (cf. Theorem 14.2). Let K be a local field with residue field � and F
the function field of a smooth projective curve overK. Let G be a semisimple simply
connected linear algebraic group over F with char.�/ good forG. IfG is of classical
type (D4 nontrialitarian), then Conjecture 2 holds for G.

Here is an outline of the structure of the paper. The plan is to reduce the questions
on local-global principle with respect to discrete valuations to one for the patching
fields in the setting of Harbater, Hartmann and Krashen [13] and then to deal with
the question in the patching setting. The reduction to the patching setting requires
an understanding of the structure of central simple algebras with involutions of the
second kind over the branch fields [13], which are 2-local fields. This leads to the study
of cyclic extensions over quadratic extensions of local fields with zero corestriction.
LetF0 be a field,F=F0 be a quadratic extension andL=F a cyclic extension of degree
coprime to char.F0/. It was proved in [12, Proposition 24] that the corestriction of
L=F fromF toF0 is zero if and only ifL=F0 is a dihedral extension. In Section 3 we
reprove this statement for the sake of completeness and deduce some consequences for
dihedral extensions. In Section 2 we study dihedral extensions over an arbitrary fields.
In Section 4 we describe all dihedral extensions over local fields. In Section 6 and
Section 8 we describe the structure of central simple algebras with unitary involutions
over 2-local fields and 2-dimensional complete fields with finite residue fields. These
fields surface in the patching setting. In Section 10, we prove a local-global principle
for generalized Severi–Brauer varieties without any assumption on the existence of
roots of unity, completing the proof of Conjecture 1 for groups of type 1An. In
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Section 11, we prove a local-global principle for isotropy of hermitian forms over
division algebras with unitary involutions. The idea is to construct good maximal
orders invariant under involution over 2-dimensional complete regular local rings.
This is possible due to the complete understanding of the structure of the algebras
with unitary involutions studied in Section 6. This settles Conjecture 1 for groups
of type 2An in the good characteristic case. In Section 12, we prove the local-global
principle for principal homogeneous spaces under simply connected unitary groups
in the patching setting. Finally, in Section 13 we prove the local-global principle
for special unitary groups with respect to discrete valuations, thereby completing the
validity of Conjecture 2 for groups of type 2An. More generally (cf. Section 14), we
prove Conjectures 1 and 2 for groups of classical type over function fields of curves
over local fields.

Throughout this paper, a projective homogeneous space Z under a connected
linear algebraic group G is a projective variety Z with transitive G-action over the
separable closure such that the stabilizer is a parabolic subgroup.

1. Preliminaries

Lemma 1.1. Let Fq be the finite field with q elements and Fq2 the degree two extension
of Fq . Suppose q is odd and

p
�1 62 Fq . Then Fq2 D Fq.

p
�1/. Let d be the

maximum integer such that Fq2 contains a primitive 2d -th root of unity �. Then

NF
q2
=Fq .�/ D �1:

Proof. Since
p
�1 62 Fq and q is odd, we have F�q =F

�2
q D f1;�1g. Since there is a

unique extension of degree 2 of Fq , we have

Fq2 D Fq.
p
�1/:

Let d be the maximum integer such that Fq2 contains a primitive 2d -th root of unity �.
Since there is no 2dC1-th primitive root of unity in Fq2 , � 62 F�2

q2
. Hence,

F�
q2
=F�2
q2
D f1; �g:

SinceNF
q2
=Fq WF

�

q2
! F�q is surjective,NF

q2
=Fq WF

�

q2
=F�2
q2
! F�q =F

�2
q is surjective.

Hence,
NF

q2
=Fq .�/ D ��

2

for some � 2 F�2q . Since NF
q2
=Fq .�/

2d D 1 and
p
�1 62 F�q , it follows that � D 1

and NF
q2
=Fq .�/ D �1.
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Corollary 1.2. LetK0 be a local field andK=K0 the quadratic unramified extension.
Suppose that the characteristic of the residue field ofK0 is odd and

p
�1 62 K0. Then

K D K0.
p
�1/:

Let d be the maximum integer such thatK contains a primitive 2d -th root of unity �.
Then NK=K0.�/ D �1.
Lemma 1.3. Let Fq be the finite field with q elements and Fq2 the degree two extension
of Fq . Let m � 1. Suppose q is odd and

p
�1 62 Fq . If Fq2 contains a primitive

2mC1-th root of unity, then F�q � F�2
m

q2
.

Proof. Since
p
�1 62 F�q , the only 2m-th roots of unity in Fq are ˙1. Hence, we

have an exact sequence of groups

1! f˙1g ! F�q ! F�2
m

q ! 1;

where the last map is given by x ! x2
m . Thus, the order of F�q =F

�2m

q is 2. Since
�1 62 F�2q ,

�1 62 F�2
m

q and F�q D F�2
m

q [ .�1/F�2
m

q :

Since F�
q2

contains a primitive 2mC1-th root of unity, �12F�2
m

q2
. Thus, F�q �F�2

m

q2
.

Corollary 1.4. LetK0 be a local field andK=K0 the quadratic unramified extension.
Suppose that the characteristic of the residue field of K0 is odd and

p
�1 62 K0.

Let m � 1. If K contains a primitive 2mC1-th root of unity, then every unit in the
valuation ring of K0 is in K�2m .
Lemma 1.5. Let Fq be the finite field with q elements. Let m � 1 be coprime to q.
Suppose that Fq does not contain any nontrivialm-th root of unity. Then F�q D F�mq .

Proof. Since F�q does not contain nontrivial m-th roots of unity, the only m-th root
of unity in Fq is 1. Hence, the homomorphism

F�q ! F�
m

q ; x 7! x
m

is an isomorphism. Thus, F�q D F�
m

q .

Corollary 1.6. Let K0 be a local field. Let m � 1 be coprime to the characteristic
of the residue field ofK0. Suppose thatK0 does not contain any nontrivialm-th root
of unity. Then every unit in the valuation ring of K0 is in Km0 .

Let F be a discretely valued field with valuation ring R and residue field K. We
say that an element a 2 F is a unit in F if a 2 R is a unit. Let n � 1 be an integer
coprime to char.K/. Then we have the residue map

@WHd .F; �˝in /! Hd�1.K;�˝.i�1/n /:
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Let Hd
nr.F; �

˝i
n / be the kernel of @. An element ˛ 2 Hd

nr.F; �
˝i
n / is called an

unramified element. If F is complete, then we have an isomorphism

Hd .K;�˝in / ' H
d
nr.F; �

˝i
n /:

We end this section with the following result on reduced norms.
Proposition 1.7. Let K be a global field with no real places and F a complete
discretely valued field with residue fieldK. Let A be a central simple algebra over F
of index n coprime to char.K/. Let .L; �/ 2 H 1.K;Z=nZ/ be the residue of A. Let
� 2 F � be a unit. If the image of � 2 K� is a norm from the extension L=K, then �
is a reduced norm from A.

Proof. Let E=F be the unramified extension with residue field L and z� a generator
of Gal.E=F / lifting � . Let R be the valuation ring of F and � 2 R be a parameter.
Then A D A0C .E; z�; �/ for some central simple algebra A0 over F representing a
class in H 2

nr.F; �n/ (cf. [27, Lemma 4.1]). Since F is complete and the image of �
in K is a norm from L=K, � is a norm from E=F . Hence,

.E; z�; �/ � .�/ D 0 2 H 3.F; �˝2n /:

Since A0 is unramified on R and � is a unit, A0 � .�/ 2 H 3
nr.F; �

˝2
n /. Since K is a

global field with no real places, cd.K/ D 2 and H 3.K;�˝2n / D 0. Hence,

H 3
nr.F; �

˝2
n / D 0 and A0 � .�/ D 0:

In particular, A � .�/ D 0 2 H 3.F; �˝2n / and, by [27, Theorem 4.12], � is a reduced
norm from A.

2. Dihedral extensions

Let G be a dihedral group of order 2m � 4. Let � and � be the generators of G with
�m D 1, �2 D 1, and ��� D ��1. The subgroup generated by � is the rotation
subgroup of G and for 0 � i � m � 1, � i� are the reflections.

Let F0 be a field and E=F0 a field extension. We say that E=F0 is a dihedral
extension if E=F0 is Galois with Galois group isomorphic to a dihedral group. In
this section we prove some basic facts about dihedral extensions.
Lemma 2.1. Let F0 be a field and E=F0 a dihedral extension. Let F be the fixed
field of the rotation subgroup of Gal.E=F0/. IfM=F is a subextension of E=F with
M ¤ F , then M=F0 is a dihedral extension.

Proof. Let Gal.E=F0/ be generated by � and � with �mD1, �2D1, and ���D��1.
Then E=F is cyclic with Gal.E=F / generated by � . Let M=F be a subextension
of E=F . The extension M=F is cyclic with Gal.M=F / generated by the restriction
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of � to M . Since M D E�
i for some i and �� i� D ��i , the extension M=F0 is

Galois with the Gal.M=F0/ generated by the restriction of � and � to M . Since
M ¤ F , the restriction of � to M is nontrivial. Since F � M , the restriction of �
to M is nontrivial. Hence, M=F0 is dihedral.

Lemma 2.2. Let E=F0 be a dihedral extension and F the fixed field of the rotation
subgroup of Gal.E=F0/. Let F0 � L � E with F 6� L. If L=F0 is Galois, then

ŒL W F0� � 2:

Proof. Suppose thatF 6�L andL=F0 is Galois. LetM DFL. Suppose thatL ¤ F0.
Then M ¤ F , and hence M=F0 is dihedral (Lemma 2.1). Since F 6� L, we have

ŒM W F � D ŒL W F0�:

Since L=F0 and F=F0 are Galois extensions, M=F0 is Galois with Gal.M=F0/
isomorphic to Gal.L=F0/ � Gal.F=F0/. Since the only dihedral group which is
isomorphic to a direct product of two nontrivial subgroups is Z=2 � Z=2, we have

ŒL W F0� D 2:

Lemma 2.3. Let F0 be a field and E=F0 a dihedral extension of degree 2m. Let F
be the fixed field of the rotation subgroup of Gal.E=F0/. Then there exist exactly m
subfields E 0 of E containing F0 with

ŒE 0 W F0� D ŒE W F � and E 0F D E:

Further, if E 0 is any such subfield of E and `1; `2; � � � ; `r is any sequence of prime
numbers with ŒE W F � D `1 � � � `r , then there exist subfields

F0 D L0 � L1 � � � � � Lr D E
0

with ŒLi W Li�1� D `i .

Proof. Let � be a generator of the rotation subgroup of Gal.E=F0/ and � a reflection.
For 0 � i � m � 1, let Ei D E��

i be the subfield of E fixed by �� i . Then

ŒE W Ei � D 2; ŒEi W F0� D m; and EiF D E:

Since the only elements of order 2 in Gal.E=F0/ which are not the identity on F
are the reflections �� i , 0 � i � m � 1, any E 0 with the given properties coincides
with Ei for some i .

Let E 0 D Ei for some i . Suppose m D `1 � � � `r with `j ’s primes. Since E=F is
a cyclic extension, there exist subfields

F DM0 �M1 � � � � �Mr D E

such that ŒMj W Mj�1� D `i for all i . Then Lj D E 0 \ Mj have the required
property.
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Lemma 2.4. Let F0 be a field and F=F0 a quadratic Galois extension. Let m � 2
be coprime to char.F0/. Suppose that F contains a primitive m-th root of unity �.
Let a 2 F �0 . Suppose that

ŒF . m
p
a/ W F � D m:

Then F. m
p
a/=F0 is dihedral if and only if NF=F0.�/ D 1.

Proof. Let E D F. m
p
a/ and E 0 D F0.

m
p
a/. Since a 2 F �0 , we have E D E 0F .

Since ŒE W F0� D 2m, we have

ŒE W E 0� D 2:

Let � be the automorphism of F. m
p
a/=F given by �. m

p
a/ D � m

p
a and � the

nontrivial automorphism of E=E 0. Since � is nontrivial on F , it follows that � ¤ � i
for any i . Hence, E=F0 is Galois and Gal.E=F0/ is generated by � and � . Since the
order of � is m and �2 D 1, Gal.E=F0/ is dihedral if and only if ��� D ��1.

We have

���. m
p
a/ D ��. m

p
a/ D �.� m

p
a/ D �.�/ m

p
a

D �.�/���1 m
p
a D �.�/���1. m

p
a/:

Hence, ��� D ��1 if and only if NF=F0.�/ D �.�/� D 1.

We end this section with the following lemma.
Lemma 2.5. Let F0 be a field and n � 2 an integer with 2n coprime to char.F0/.
LetE=F0 be a dihedral extension of degree 2n and � and � generators on Gal.E=F0/
with � a rotation and � a reflection. Let F D E� and Ei D E�

i � for 1 � i � n.
Let M=F0 be a field extension. Suppose F ˝F0 M is a field and E ˝F0 M is
isomorphic to

Qn
1.F ˝F0 M/. Then there exists i such that

Ei ˝F0 M 'M �E
0
i

for some M -algebra E 0i .

Proof. The proof is by induction on n. Suppose that n D 2. Then

F D F0.
p
a/; E1 D F0.

p
b/; E2 D F0.

p
ab/; E D F.

p
b/:

Suppose that M.
p
a/ D F ˝F0 M is a field and E ˝F0 M is not a field. Then a is

not a square in M and E ˝F0 M ' M.
p
a/ �M.

p
a/. Then either b is a square

in M or ab is a square in M . Thus, either

E1 ˝F0 M 'M �M or E2 ˝F0 M 'M �M:

Suppose n � 3. Suppose that M.
p
a/ D F ˝F0 M is a field and

E ˝F0 M '

nY
1

M.
p
a/:
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Suppose n is odd. Since Ei ˝F0 F ' E and F=F0 is of degree 2, it follows that

Ei ˝F0 M '

rY
1

M �

sY
1

M.
p
a/:

Since ŒEi W F0� D n is odd, r � 1.
Suppose that n is even. Then, by Lemma 2.3, there exists a quadratic extension

F1=F0 contained inE andF1 ¤ F . LetF 0 D FF1. ThenF 0=F0 is a biquadratic ext-
ension. Hence, there is a quadratic extension F2=F0 contained in F 0 with F ¤F2
and F1¤F2. Further, every quadratic extension of F0 contained in E is either F ,
F1, or F2. Since every Ei contains a quadratic extension of F0 (Lemma 2.3)
and F 6� Ei , half ofEi contain F1 and the remaining half ofEi contain F2. Further,
E=F1 and E=F2 are dihedral extensions of degree n.

Since E ˝F0 M '
Qn
1M.
p
a/, we have

F 0 ˝F0 M 'M.
p
a/ �M.

p
a/:

Thus, by the case n D 2, either F1 ˝F0 M ' M �M or F2 ˝F0 M ' M �M .
Without loss of generality, assume thatF1˝F0M 'M �M . ThenF1 is isomorphic
to a subfield of M , and hence M=F1 is an extension of fields.

Since F 0 D F1.
p
a/ and a is not a square inM , then F 0˝F1M is a field. Since

E ˝F0 M ' E ˝F1 F1 ˝F0 M

' E ˝F1 .M �M/ ' E ˝F1 M �E ˝F1 M

and

E ˝F0 M '

nY
1

M.
p
a/;

it follows that

E ˝F1 M '

n=2Y
1

M.
p
a/:

Since E=F1 is dihedral and ŒE W F1� < ŒE W F0�, by induction there exists an i such
that Ei ˝F1 M 'M �E 00i for some M -algebra E 00i . We have

Ei ˝F0 M ' Ei ˝F1 F1 ˝F0 M ' Ei ˝F1 .M �M/

' Ei ˝F1 M �Ei ˝F1 M 'M �E
00
i �Ei ˝F1 M:

Hence, Ei ˝F0 M 'M �E 0i for some E 0i .
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3. Corestriction of cyclic extensions over quadratic extensions

In this section we realize cyclic extensions over quadratic extensions with corestriction
zero as dihedral extensions.

Let K be a field and A a Galois module over K. For n � 0, let Hn.K;A/

denote the n-th Galois cohomology group with values in A (cf. [26, Ch. VI]). For an
extension of fields M=K, let

res D resM=K WHn.K;A/! Hn.M;A/

be the restriction homomorphism and for a finite extension L=K, and let

cores D coresL=K WHn.L;A/! Hn.K;A/

be the corestriction homomorphism (cf. [26, p. 47]).
LetF0 be a field andF=F0 a Galois extension of degree 2. Let �0 be the nontrivial

automorphism of F=F0. Let xF be an algebraic closure of F . Let z� 2 Gal. xF=F0/ be
such that z� restricted to F is �0. Since z� 62 Gal. xF=F / and ŒF W F0� D 2, we have

Gal. xF=F0/ D Gal. xF=F / [ Gal. xF=F /z� and z�2 2 Gal. xF=F /:

Let Homc.Gal. xF=F /;Z=mZ/ be the group of continuous homomorphisms from
Gal. xF=F / to Z=mZ with profinite topology on Gal. xF=F / and discrete topology
on Z=mZ. Since the action of Gal. xF=F / on Z=mZ is trivial, we have

H 1.F;Z=mZ/ ' Homc.Gal. xF=F /;Z=mZ/:

The group Homc.Gal. xF=F /;Z=mZ/ also classifies isomorphism classes of pairs
.E; �/ with E=F a cyclic extension of degree dividing m and � a generator of
Gal.E=F /.
Lemma 3.1. Let � 2 Homc.Gal. xF=F /;Z=mZ/. Then

cores.�/WGal. xF=F0/!Z=mZ

is the homomorphism given by
cores.�/.�/ D �.�/C �.z��z��1/

for all � 2 Gal. xF=F / and cores.�/.z�/ D �.z�2/.

Proof. See [26, p. 53].

Proposition 3.2 (cf. [12, Proposition 24]). Let F0 be a field and F=F0 a quadratic
Galois field extension. Let E=F be a cyclic extension of degreem and � a generator
of Gal.E=F /. Then coresF=F0.E; �/ is zero if and only if E=F0 is a dihedral
extension.
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Proof. Since E=F is a cyclic extension with generator � , we have an isomorphism

�0WGal.E=F /! Z=mZ

given by �0.� i /! i 2 Z=mZ. Let �WGal. xF=F /! Z=mZ be the composition

Gal. xF=F /! Gal.E=F /
�0
! Z=mZ:

The pair .E; �/ corresponds to the element � in Homc.Gal. xF=F /;Z=mZ/. Then

cores.�/WGal. xF=F0/! Z=mZ

is the homomorphism given by cores.�/.�/D�.�/C�.z��z��1/ for all � 2Gal. xF=F /
and cores.�/.z�/ D �.z�2/ (cf. Lemma 3.1).

Suppose coresF=F0.E; �/ is the zero homomorphism. Then

cores.�/WGal. xF=F0/! Z=mZ

is the zero homomorphism. Let � 2 Gal. xF=F /. Then

0 D cores.�/.�/ D �.�/C �.z��z��1/;

and hence �.z��z��1/ D ��.�/.
Suppose � 2 Gal. xF=E/ � Gal. xF=F /. Since Gal. xF=E/ is the kernel of �, we

have
�.z��z��1/ D ��.�/ D 0;

and hence z��z��1 2 Gal. xF=E/. Since Gal. xF=F0/ is generated by Gal. xF=F / and z� ,
Gal. xF=E/ is a normal subgroup of Gal. xF=F0/. Hence, E=F0 is a Galois extension.

Let us denote the restriction of z� to E by � . Since ����1 is the identity on F
and E=F is Galois, ����1 2 Gal.E=F /. Let z� 2 Gal. xF=F / with restriction to E
equal to � . Since

�.z�z�z��1/ D ��.z�/ D �.z��1/;

it follows that �0.����1/ D �0.�
�1/. Since �0 is an isomorphism, ����1D ��1.

Since
�.z�2/Dcores.�/.z�/D0;

it follows that �0.�2/ D 0. Since �0 is an isomorphism, �2 is the identity on E.
Since Gal.E=F0/ is generated by � and � , with �mD1, �2D1, and ����1D��1,
Gal.E=F0/ is a dihedral group of order 2m.

Conversely, suppose Gal.E=F0/ is a dihedral extension. Since the subgroup of
Gal.E=F0/ generated by � is of index 2, Gal.E=F0/ is generated by � and � with
�2D1 and ����1D��1. Since �¤� i for all i , � is not an identity on F . Let z� be
an extension of � to xF . Then we have

cores.�/.�/ D �.�/C �.z��z��1/
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for all � 2 Gal. xF=F / and cores.�/.z�/ D �.z�2/ (Lemma 3.1). Let � 2 Gal. xF=F /.
Since Gal.E=F / is cyclic and generated by � , � restricted to E is � i for some i .
Since �� i��1 D ��i , we have �z��z��1 2 Gal. xF=E/. Since the kernel of � is
Gal. xF=E/, we have

cores.�/.�/ D �.�/C �.z��z��1/ D �.�z��z��1/ D 0

for all � 2 Gal. xF=F /. Since �2 is identity on E, we have z�2 2 Gal. xF=E/, and
hence

cores.�/.z�/ D �.z�2/ D 0:

Since Gal. xF=F0/ is generated by Gal. xF=F / and z� , cores.�/ D 0.

Corollary 3.3. Let F0 be a field and F=F0 a quadratic Galois extension. Letm � 2
be coprime to char.F0/. Suppose that F contains a primitive m-th root of unity �.
Let a 2 F �0 . Suppose that ŒF . m

p
a/ W F � D m. Let � be the automorphism of

F. m
p
a/ given by �. m

p
a/ D � m

p
a. Then cores.F. m

p
a/; �/ is zero if and only

if NF=F0.�/ D 1.

Proof. The lemma follows from Proposition 3.2 and Lemma 2.4.

Lemma 3.4. LetF0 be a field of characteristic not 2 andF=F0 a quadratic extension.
Let n � 1. Let � be a 2n-th root of unity in F . Suppose that

p
�1 62 F0. Then

NF=F0.�/ D ˙1.

Proof. If n D 1, then � D �1, and hence

NF=F0.�1/ D .�1/
2
D 1:

Suppose n � 2. Let �0 be the nontrivial automorphism of F=F0. Since � is a 2n-th
root of unity, �.�/ is also 2n-th root of unity, and hence ��.�/ is a 2n-th root of unity
in F0. Since˙1 are the only 2n-th roots of unity in F0, we have

NF=F0.�/ D ��.�/ D ˙1:

Corollary 3.5. Let F0 be a field of characteristic not 2 and F=F0 a quadratic
extension. Let n � 2. Suppose that F contains a primitive 2n-th root of unity � and
p
�1 62 F0. Let a 2 F �0 . Let 1 � d � n. Suppose that

ŒF . 2
dp
a/ W F � D 2d :

Let �d be the automorphism of F. 2d
p
a/ given by

�d .
2d
p
a/ D �2

n�d 2d
p
a:

If d < n, then coresF=F0.F. 2
dp
a/; �d / is zero. Further, NF=F0.�/ D 1 if and only

if cores.F. 2n
p
a/; �n/ is zero.
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Proof. Suppose d < n. Then

NF=F0.�
2n�d / D NF=F0.�

2n�d�1/2 D 1

(see Lemma 3.4), and hence cores.F. 2d
p
a/; �d / is zero (Corollary 3.3).

Suppose n D d . Then, by Corollary 3.3, cores.F. 2n
p
a/; �n/ is zero if and only

if NF=F0.�/ D 1.

Lemma 3.6. LetF0 be a field of characteristic not 2 andF=F0 a quadratic extension.
Let ` be a prime not equal to char.F0/. Letn � 1. Suppose thatF contains a primitive
`n-th root of unity � and F0 does not contain any nontrivial `-th root of unity. Let
a 2 F �0 . Suppose that

ŒF . `
np
a/ W F � D `n:

Let � be the automorphism of F. `n
p
a/ given by

�. `
np
a/ D � `

np
a:

Then coresF=F0.F. `
np
a/; �/ is zero.

Proof. Since �`n D 1, we have NF=F0.�/`
n
D 1. Since F0 has no nontrivial `-th

root of unity, NF=F0.�/ D 1 and, by Corollary 3.3, cores.E; �/ D 0.

4. Dihedral extensions over local fields

Let F0 be a complete discrete valued field with residue field �0. Let E=F0 be a
dihedral extension of degree 2m with 2m coprime to char.�0/. Let F � E be the
fixed field of the rotation subgroup of Gal.E=F0/. In this section we first determine
the degree ofE=F0 if F=F0 is ramified and then we go on to describe all the dihedral
extensions of local fields.

We begin with the following lemma.
Lemma 4.1. LetF0 be a complete discrete valued field with residue field �0. LetE=F0
be a dihedral extension of degree 2m with 2m coprime to char.�0/. Suppose the
subfield F of E fixed by the rotation subgroup of Gal.E=F0/ is ramified over F0.
Let L=F0 be an extension contained in E. If F 6� L and L=F0 is either unramified
or totally ramified, then ŒL W F0� � 2.

Proof. Let L=F0 be an extension contained in E with F 6� L. We show that L=F0
is cyclic.

Suppose that L=F0 is unramified. Let � be the residue field of F and �0 the
residue field of L. Then

� D �0 and Œ�0 W �0� D ŒL W F0�:
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Since F=F0 is totally ramified, LF=F is an extension of degree ŒL W F0� and the
residue field of LF is also �0. Since LF � E and E=F is cyclic, LF=F is cyclic.
In particular, �0=�0 is cyclic. Since L=F0 is unramified and F0 is complete, L=F0 is
cyclic and by Lemma 2.2, ŒL W F0� � 2.

Suppose thatL=F0 is totally ramified of degree d . Since d is coprime to char.�0/,
L D F0.

d
p
�/ for some parameter � 2 F0 (cf. [27, Lemma 2.4]). Since F 6� L, we

have
ŒLF W F � D ŒL W F0�:

Since E=F is cyclic, LF=F is cyclic. Since

LF D F. d
p
�/ and ŒLF W F � D ŒL W F0� D d;

then F contains a primitive d -th root of unity. Since F=F0 is totally ramified,
F0 contains a primitive d -th root of unity. In particular, L=F0 is cyclic and by
Lemma 2.2, ŒL W F0� � 2.

Proposition 4.2. Let F0 be a complete discrete valued field with residue field �0.
Let E=F0 be a dihedral extension of degree 2m with 2m coprime to char.�0/. If
the subfield of E fixed by the rotation subgroup of Gal.E=F0/ is ramified over F0,
then ŒE W F0� � 4.

Proof. Let F be the subfield of E fixed the rotation subgroup of Gal.E=F0/. Then

ŒF W F0� D 2:

Suppose that F=F0 is ramified. Then F=F0 is totally ramified.
Suppose that ŒE W F0� D 2m � 5. Suppose there is an odd prime ` dividing m.

Then there exists an extension L=F0 of degree ` such that L � E and F 6� L

(Lemma 2.3). Since ` is a prime, L=F0 is either unramified or totally ramified.
Then, by Lemma 4.1, we have

ŒL W F0� D ` � 2;

leading to a contradiction.
Suppose there is no odd prime dividing m. Then 4 divides m. Thus, there exists

an extension L=F0 of degree 4 such that L � E and F 6� L (Lemma 2.3). Since
ŒL W F0� D 4, by Lemma 4.1, L=F0 is neither totally ramified nor unramified. Also
since ŒL W F0� D 4, we have

L D F0.
p
u/.
p
�/

for some u 2 F0 a unit and � a parameter in F0.
p
u/. Since F=F0 is ramified,

F D F0.
p
�1/
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for some parameter �1 in F0. Since F0.
p
u/=F0 is unramified, �1 is a parameter

inF0.
p
u/, and hence � D v�1 for some unit v 2 F0.

p
u/. LetL0 D F0.

p
u/.
p
v/.

Since ŒLF W F0� D 8 and LF D F0.
p
u/.
p
v;
p
�1/, we have

ŒL0 W F0� D 4:

Since L0=F0 is unramified, by Lemma 4.1, we have

ŒL0 W F0� � 2;

leading to a contradiction.

Corollary 4.3. Let F0 be a complete discrete valued field with residue field �0 of
characteristic not 2. Let F=F0 be a ramified quadratic field extension. Let E=F be
a cyclic extension of degree coprime to char.�0/ and � a generator of Gal.E=F /.
If coresF=F0.E; �/ is zero, then ŒE W F � � 2.

Proof. Suppose coresF=F0.E; �/ is zero. Then E=F0 is Galois with Gal.E=F0/
dihedral (Proposition 3.2). Since F=F0 is ramified, by Proposition 4.2, ŒE W F � � 2.

Proposition 4.4. Let K0 be a local field and L=K0 be a dihedral extension of
degree 2m. LetK be the subfield of L fixed by the rotation subgroup of Gal.L=K0/.
If K=K0 is unramified, then L=K is totally ramified.

Proof. Let Lnr be the maximal unramified subextension of L=K0. Suppose K=K0
is unramified. Then K � Lnr . Suppose that K ¤ Lnr . Then, by Lemma 2.1,
Lnr=K0 is dihedral. Since K0 is a local field and Lnr=K0 is unramified, Lnr=K0 is
cyclic. Since a dihedral group can not be cyclic, Lnr D K.

Remark 4.5. Let K0 be a local field with characteristic of the residue field not 2.
Let � 2 K0 be a parameter and u 2 K0 a unit which is not a square. Since
K�0 =K

�2
0 D f1; �; u; u�g (cf. [32, Theorem 4.1, p. 217]), L D K0.

p
u;
p
�/ is the

unique degree four extension with Galois group Z=2Z�Z=2Z. Since Z=2Z�Z=2Z
is the dihedral group of order 4, L=K0 is the unique dihedral extension of degree 4.

Theorem 4.6. Let K0 be a local field with characteristic of the residue field not 2
and � 2 K0 be a parameter. Let d be the maximum integer such that K0.

p
�1/

contains a primitive 2d -th root of unity. Then there exists a dihedral extension ofK0
of degree 2nC1 with n � 2 if and only if

p
�1 62 K0 and n < d . In this case,

K0.
p
�1; 2

np
�/ is the unique dihedral extension of degree 2nC1.

Proof. Suppose that
p
�1 62 K0 and 2 � n < d . Let � 2 K0 be a parameter and

Ln D K0.
p
�1; 2

np
�/:
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Let � 2 K0.
p
�1/ be a primitive 2d -th root of unity. Then �0 D �2d�n is a primitive

2n-th root of unity and

NK0.
p
�1/=K0

.�0/ D .�1/2
d�n

D 1

(cf. Corollary 1.2). Hence, by Lemma 2.4, Ln=K0 is a dihedral extension.
Suppose, conversely, there exists a dihedral extension L=K0 of degree 2nC1 with

n � 2. Let K be the subfield of L fixed by the rotation subgroup of Gal.L=K0/.
Since n � 2, by Proposition 4.2, K=K0 is unramified. By Proposition 4.4, L=K is
totally ramified. By Proposition 2.3, there exists a subfield L0 of L with ŒL0 W K0� D
ŒL W K� and L0K D L . Since K=K0 is unramified and L=K is totally ramified,
L0=K0 is totally ramified. Since the characteristic of the residue field of K0 is not 2
and ŒL0 W K0� D ŒL W K� D 2n, we have that

L0 D K0.
2n
p
�0/

for some parameter �0 2 K0. Hence, L D K. 2np�0/.
Suppose that

p
�1 2 K0. Let L1 D K0. 4

p
�0/ � L

0. Then L1=K0 is cyclic of
degree 4, leading to a contradiction (Lemma 2.2). Hence,

p
�1 62 K0.

Since L D K. 2
np
�0/ is a cyclic extension of K of degree 2n, K contains a

primitive 2n-th root of unity �. Since n � 2, we have
p
�1 2 K, and hence

K D K0.
p
�1/:

Thus, by the maximality of d , n � d . Suppose n D d . Since K0 is a local field,
by Corollary 1.2, we have

NK=K0.�/ D �1:

Hence, by Lemma 2.4,L=K0 is not dihedral, a contradiction. Therefore, n<d . LetR
be the valuation ring of K0. Since

p
�1 62 K�0 , we have

R� D R�2 [ .�R�2/;

and hence R� D R�2
n
[ .�R�2

n
/. Since �1 is a 2n-th power in K, R� � K�2n .

Since � D u�0 for some u 2 R�, we have L ' Ln, proving the uniqueness of
dihedral extensions of degree 2nC1 over K0.

Theorem 4.7. Let K0 be a local field with characteristic of the residue field not 2
and � 2 K0 be a parameter. Let ` be an odd prime not equal to the characteristic of
the residue field ofK0. Let � be a primitive `-th root of unity and d be the maximum
integer such that K0.�/ contains a primitive `d -th root of unity. Then there exists a
dihedral extension of K0 of degree 2`n with n � 1 if and only if ŒK0.�/ W K0� D 2

and 1 � n � d . In this case K0.�; `
np
�/ is the unique dihedral extension of

degree 2`n.
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Proof. Suppose ŒK0.�/ W K0� D 2 and 1 � n � d . Let � 2 K0 be a parameter.
Let Ln D K0.�;

`n
p
�/. Let �n 2 K0.�/ be a primitive `n-th root of unity. Since

NK0.�/=K0.�n/ is an `n-th root of unity in K0 and the only `n root of unity in K0
is 1, we have

NK0.�/=K0.�n/ D 1:

By Lemma 2.4, Ln=K0 is a dihedral extension.
Suppose, conversely there exists a dihedral extensionL=K0 of degree 2`n. LetK

be the subfield of L fixed by the rotation subgroup of Gal.L=K0/. Since ŒL W K� D
`n � 3, by Proposition 4.2, K=K0 is unramified. Then, by Proposition 4.4, L=K is
totally ramified. Let L0 be a subfield of L with ŒL0 W K0� D ŒL W K� and L0K D L

(Proposition 2.3). Since K=K0 is unramified and L=K is totally ramified, L0=K0
is totally ramified. Since the characteristic of the residue field of K0 is not ` and
ŒL W K0� D ŒL W K� D `

n, we have

L0 D K0.
`n
p
�0/

for some parameter �0 2 K0. Hence, L D K. `
np
�0/. Since L=K is cyclic, K

contains a primitive `n-th root of unity. Thus, n � d . Since n � 1, � 2 K�.
Suppose ŒK0.�/ W K0�¤2. Since K0.�/�K and ŒK W K0�D2, we have �2K0.

Let L1 D K0. `
p
�0/, then L1=K0 is cyclic. Since K 6� L1, by Lemma 2.2, we have

ŒL1 W K0� D ` � 2;

leading to a contradiction. Hence,

ŒK0.�/ W K0� D 2:

Since � 2 K and ŒK W K0� D 2, we have K D K0.�/. Since � 62 K0 (as in the
proof of Theorem 4.6), every unit in the valuation ring ofK0 is an `n-th power inK.
In particular, L ' Ln, proving the uniqueness of dihedral extensions of degree 2`n
over K0.

Corollary 4.8. Let K0 be a local field with the residue field �0 and m � 3 with 2m
coprime to char.�0/. Let L=K0 be an extension of degree 2m and � 2 K0 be a
parameter. Then L=K0 is a dihedral extension if and only if there exists a primitive
m-th root of unity � 2 L with ŒK0.�/ W K0� D 2, NK0.�/=K0.�/ D 1, and L D
K0.�;

m
p
�/.

Proof. SupposeL=K0 is a dihedral extension of degree 2m. Supposem D 2n. Let d
be the maximum integer such thatK0.

p
�1/ contains a primitive 2d -th root of unity.

Then, by Theorem 4.6, we have
p
�1 62 K0, n < d , and L D K0.

p
�1; 2

np
�/. Let

� 2 K0.
p
�1/ be a primitive 2n-th root of unity. Since K0.�/=K0 is unramified

and K0.
p
�1/ is the maximal unramified extension of L=K0, we have

K0.
p
�1/ D K0.�/:
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In particular,
ŒK0.�/ W K0� D 2 and L D K0.�;

2n
p
�/:

Since L=K0 is dihedral, by Lemma 2.4, we have

NK0.
p
�1/=K0

.�/ D 1:

Assume that there is an odd prime dividing m. Let m D `
n0
0 `

n1
1 � � � `

nr
r with

`0 D 2, for i � 1, `i are distinct odd primes, n0 � 0 and ni � 1 for all i � 1. Let �
be a generator of the rotation subgroup of Gal.L=K0/. For 0 � i � r , let

Mi D L
�
`
ni
i
;

then ŒMi W K0� D 2`
ni
i .

Let 1� i�r . ThenMi=K0 is a dihedral extension of degree 2`nii with `i odd. By
Theorem 4.7, there exists a primitive `nii -th root of unity �i 2Mi , ŒK0.�i / W K0�D2
and

Mi D K0.�i ;
`
ni
i

p
�/:

Let m0 D `
n1
1 � � � `

nr
r . Since `i are distinct primes and Mi � L, m0

p
� 2 L and

�0 D �1 � � � �r 2 L is a primitive m0-th root of unity. If n0 D 0, then m0 D m.
Since �i 62 K0 for all i � 1 and `i ’s are distinct primes, it follows that �0 62 K0.
Since K0.�0/=K0 is an unramified extension and K0. m

p
�/=K0 is a totally ramified

extension of degree m, it follows that

ŒK0.�
0/ W K0� D 2 and L D K0.�

0; m
p
�/:

By Lemma 2.4, NK0.�0/=K0.�0/ D 1.
Suppose n0 D 1. Then M0=K0 is the unique bi-quadratic extension, and hence

M0 D K0.
p
u;
p
�/

(cf. Remark 4.5). Suppose n0 � 2. Then, as in the first case,M0 contains a primitive
2n0-th root of unity �0,

ŒK.�0/ W K0� D 2 and M0 D K0.�0;
2n0
p
�/:

Hence, in either case, the maximal unramified extension of M0=K0 is of degree 2
over K0.

Since M0 � L, we have 2n0
p
� 2 L. Since m D 2n0m0, we have m

p
� 2 L.

Since K0. m
p
�/=K0 is a totally ramified extension of degree m, the degree of the

maximal unramified extension of L=K0 is 2. Since L contains a primitive 2n0-th
root of unity and m0-th root of unit, L contains a primitive m-th root of unity �.
Since m � 3, either n0 � 2 or m0 � 2. Hence,

ŒK0.�/ W K0� D 2 and L D K0.�;
m
p
�/:

By Lemma 2.4, NK0.�/=K0.�/ D 1.
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Conversely, suppose there exists a primitive m-th root of unity � 2 L, with

ŒK0.�/ W K0� D 2; NK=K0.�/ D 1; and L D K0.�;
m
p
�/:

Then, by Lemma 2.4, L=K0 is a dihedral extension.

We conclude this section with the following result on norms from dihedral
extensions over local fields.

Proposition 4.9. Let K0 be a local field and m � 2 with 2m coprime to the
characteristic the residue field of K0. Let L=K0 be a dihedral extension of
degree 2m. LetK be the subfield of L fixed by the rotation subgroup of Gal.L=K0/.
Let L0; : : : ; Lm�1 be the subfields of L with LiK D L and ŒL W Li � D 2 (see
Proposition 2.3). Let �0 2 K�0 . Then for every 0 � i � m� 1, there exists �i 2 Li ,
such that

m�1Y
iD0

NLi=K0.�i / D �0:

Proof. Suppose m D 2. Then L=K0 is a biquadratic extension, L0 and L1 are non
isomorphic quadratic extensions of K0. Then, by local class field theory (cf. [8,
Proposition 3, p. 142]), NL0=K0.L�0/ and NL1=K0.L�1/ are two distinct subgroups
of K�0 of index 2. Let b 2 NL0=K0.L�0/, which is not in NL1=K0.L�1/. Let a 2 K�0 .
Suppose a 62 NL1=K0.L�1/, then a 2 bNL1=K0.L�1/. Hence,

a D bc

for some c 2 NL1=K0.L�1/. In particular, a 2 NL0=K0.L�0/NL1=K0.L�1/.
Supposem � 3. Let � be a primitivem-th root of unity. Then, for any parameter

� 2 K0, by Corollary 4.8,
L D K0.�;

m
p
�/:

Let� 2K0 be a parameter. SinceLDK0.�; m
p
�/ŒL WK0.

m
p
�/�D2 andKDK0.�/,

we have
K0.

m
p
�/ D Lr

for some r . In particular, .�1/m�1� is a norm from the extension Lr=K0. Let
u 2 K0 be a unit. Since u� is a parameter in K0, we have

m
p
u� 2 L and K0.

m
p
u�/ D Ls

for some s. Hence, .�1/m�1u� is a norm from the extension Ls=K0. In particular,
u is a product of norms from the extensionsLr=K0 andLs=K0. Since every element
inK0 is u�r for some u 2 K0 a unit, it follows that every element inK0 is a product
of norms from the extensions Li=K0.
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5. Approximation of norms from dihedral extensions over global fields

Proposition 5.1. Let K0 be a global field and n � 2 an integer with 2n coprime
to char.K0/. Let E=K0 be a dihedral extension of degree 2n and � and � generators
of Gal.E=K0/ with � a rotation and � a reflection. Let K D E� and Ei D E�

i �

for 1 � i � n. Let � be a place ofK0 and �� 2 K0� . Suppose that the characteristic
of the residue field at � is coprime to 2n. If �� is a norm from the extension

E ˝K0 K0�=K ˝K0 K0� ;

then �� is a product of norms from the extensions

Ei ˝K0�=K0� :

Proof. Suppose �� is a norm from the extension E ˝K0 K0�=K ˝K0 K0� .
Suppose that K ˝K0 K0� is not a field. Then

K ˝K0 K0� ' K0� �K0� :

Since KEi D E, we have

E ˝K0 K0� ' Ei ˝K0 K ˝K0 K0� ' Ei ˝K0 K0� �Ei ˝K0 K0� :

Since �� is a norm from the extension E ˝K0 K0�=K˝K0 K0� , it follows that �� is
a norm from Ei ˝K0 K0�=K0� .

Suppose K ˝K0 K0� is a field. Suppose E ˝K0 K0� '
Qn
1 K ˝K0 K0� . Then,

by Lemma 2.5, there exists an i such that

Ei ˝K0 K0� ' K0� �E
0
i�

for some K0�-algebra E 0i� . In particular, �� is norm from Ei ˝K0 K0�=K0� .
SupposeE˝K0K0� is not isomorphic to

Qn
1 K˝K0K0� . SinceE=K0 is Galois,

we have
E ˝K0 K0� '

Y
E�

for some field extension E�=K0� andK˝K0 K0� is a proper subfield of E� . Hence,
E�=K0� is a dihedral extension. Since the characteristic of the residue field at � is
coprime to 2n, by Proposition 4.9, �� is a product of norms from Ei ˝K0 K0�=K0� .

Corollary 5.2. Let K0, E and K be as in Proposition 5.1. Let S be a finite set of
places ofK0 with 2n coprime to the characteristic of the residue field at places in S .
For � 2 S , let �� 2 K0� be a norm from the extension

E ˝K0 K0�=K ˝K0 K0� :
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Then there exists � 2 K0 such that � is a norm from the extension E=K and

���1� 2 .K ˝K0 K0�/
�n

for all � 2 S .

Proof. Let�; � 2 Gal.E=K0/ be as in Proposition 5.1. LetEi D E�
i � for 1 � i � n.

Let � 2 S . Then, by Proposition 5.1, for 1 � i � n, there exists zi� 2 Ei ˝K0 K0�
such that

�� D
Y

NEi˝K0K0�=K0�
.zi�/:

For 1 � i � n, let zi 2 Ei be close to zi� for all � 2 S . Let � D
Q
NEi=K0.zi /.

Since zi is close to zi� for all � 2 S , � is close to �� for all � 2 S . In particular,

���1� 2 .K ˝K0 K0�/
�n:

Since KEi D E, � is a norm from the extension E=K.

6. Central simple algebras with involutions of second kind over 2-local fields

In this section we give a description of central simples algebras having involutions
of second kind over complete discretely valued fields with residue fields local fields
(such fields are called 2-local fields).

We begin with the following lemma.
Lemma 6.1. Let F be a complete discretely valued field and � 2 F a parameter.
LetE=F be a cyclic unramified extension and � a generator of Gal.E=F /. Then the
cyclic algebra .E; �; �/ is unramified if and only if E D F .

Proof. Let m D ŒE W F �. Since E=F is unramified, the order of the class of �
in F �=NE=F .E�/ is m, and hence D D .E; �; �/ is a division algebra of degree m
(see [3, Theorem 6, p. 95]). Let � be the discrete valuation on F and z� be the
extension of � to D (see [31, Theorem 12.10, p. 138]). Let e be the ramification
index of D. Since there exists y 2 D with ym D � , we have z�.�/ � m, and hence
e D m (see [31, Theorem 13.7, p. 142]). SupposeD is unramified. Then e D 1, and
hence m D 1. In particular, E D F .

Lemma 6.2. Let F0 be a complete discrete valued field with residue field of
characteristic not 2. Let � 2 F0 be a parameter and F D F0.

p
�/. Let E=F be an

unramified cyclic extension and � a generator of Gal.E=F /. If coresF=F0.E; �;
p
�/

is unramified, then .E; �;
p
�/ is zero.

Proof. LetE0 be the maximal unramified extension ofE=F0. SinceE=F is unrami-
fied and F=F0 is ramified extension of degree 2,E=E0 is of degree 2 andE D E0F .
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Since F=F0 is ramified, E0=F0 is unramified. Since E=F is cyclic, E0=F0 is cyclic
(cf. proof of Lemma 4.1). Let �0 be the restriction of � to E0. Then

.E0; �0/˝ F D .E; �/:

Hence,

coresF=F0.E; �;
p
�/ D .E0; �0; NF=F0.

p
�// D .E0; �0;��/

(see [26, Proposition 1.5.3]).
Suppose that coresF=F0.E; �;

p
�/ D .E0; �0;��/ is unramified. Since � is a

parameter in F0 and E0=F0 is unramified, by Lemma 6.1, E0 D F0. In particular,
E D F and .E; �;

p
�/ is zero.

Lemma 6.3. Let F0 be a complete discrete valued field with residue field K0
and F=F0 a ramified quadratic field extension. Let m � 1 with 2m coprime to
char.K0/ and ˛ 2 H 2.F; �m/. If coresF=F0.˛/ is zero, then ˛ D ˛0 ˝ F for some
˛0 2 H

2
nr.F0; �m/. In particular, per.˛/ � 2.

Proof. SinceF=F0 is a ramified quadratic extension and char.K0/¤2, F DF0.
p
�/

for some � 2 F0 a parameter. Since m is coprime to char.K0/, we have

˛ D ˛0 C .E; �;
p
�/

for some˛02H 2
nr.F; �m/ andE=F an unramified cyclic field extension of F (cf. [27,

Lemma 4.1]). Since coresF=F0.˛/ D 0, we have

coresF=F0.�˛
0/ D coresF=F0.E; �;

p
�/:

Since ˛0 is unramified, coresF=F0.�˛0/ is also unramified (cf. [9, p. 48]), and hence
coresF=F0.E; �;

p
�/ is unramified. Thus, by Lemma 6.2, .E; �;

p
�/ is zero, and

hence ˛ D ˛0. Since the residue field of F and F0 are equal and both F and F0 are
complete, it follows that ˛ D ˛0 D ˛0 ˝ F for some ˛0 2 H 2

nr.F0; �m/.

Lemma 6.4. Let F0 be a complete discrete valued field and F=F0 an unramified
quadratic extension. Let � 2 F0 be a parameter andm � 1. Suppose 2m is coprime
to the characteristic of the residue field of F0. Let

˛ D ˛0 C .E; �; �/ 2 H 2.F; �m/

for some ˛0 2 H 2
nr.F; �m/ and let E=F be an unramified cyclic field extension.

If coresF=F0.˛/ is zero, then coresF=F0.˛0/ and coresF=F0.E; �; �/ are zero.

Proof. Since F=F0 is unramified extension, � is a parameter in F . Since � 2 F0,
we have

coresF=F0.E; �; �/ D coresF=F0.E; �/ � .�/:
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Since coresF=F0.˛/ D coresF=F0.˛0/C coresF=F0.E; �; �/ is zero, we have

coresF=F0.E; �/ � .�/ D � coresF=F0.˛
0/:

Since ˛0 is unramified, then coresF=F0.˛0/ is unramified. Since E=F is unramified,
then coresF=F0.E; �/ is unramified, and hence

@.E; �/ � .�/ D . xE; x�/;

where xE is the residue homomorphism and x� is the induced automorphism. Since
coresF=F0.E; �/ � .�/ is unramified and F0 is complete, coresF=F0.E; �/ is zero
(Lemma 6.1). Hence,

coresF=F0.E; �; �/ D coresF=F0.E; �/ � .�/

is zero and, in particular, coresF=F0.˛0/ is zero.

Lemma 6.5. Let F0 be a complete discrete valued field with residue fieldK0 a local
field, F=F0 a quadratic field extension and � 2 F0 a parameter. Let m�1 with 2m
coprime to char.K0/. Let ˛2H 2.F; �m/ with coresF=F0.˛/D0. If ind.˛/ � 3, then
F=F0 is unramified and ˛ D .E; �; �/ for some unramified cyclic extension E=F .

Proof. Suppose coresF=F0.˛/ D 0 and ind.˛/ � 3. Suppose also that F=F0 is
ramified. Then, by Lemma 6.3, ˛ is unramified and per.˛/ � 2. LetK be the residue
field of F and ˇ 2 H 2.K;�m/ be the image of ˛. Since per.˛/ � 2, we have that
per.ˇ/ � 2. Since K is a local field, we have

ind.ˇ/ D per.ˇ/:

Since F is complete, we have

ind.˛/ D ind.ˇ/

(cf. [6, Proof of Corollary 6.2]). Hence,

ind.˛/ � 2;

leading to a contradiction. Hence, F=F0 is unramified and � is a parameter in F .
Since m is coprime to char.K0/, we have

˛ D ˛0 C .E; �; �/

for some ˛0 2 H 2
nr.F; �m/ and E=F is an unramified cyclic extension (cf. [27,

Lemma 4.1]). Then, by Lemma 6.4, coresF=F0.˛0/ and coresF=F0.E; �; �/ are zero.
Let ˇ0 2 H 2.K;�m/ be the image of ˛0. Since coresF=F0.˛0/ D 0, we have

coresK=K0.ˇ
0/ D 0:

SinceK=K0 is a quadratic field extension of local fields, ˇ0 D 0 (cf. [21, Theorem 10,
p. 237]). Since F is complete, ˛0 D 0 , and hence ˛ D .E; �; �/.
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Let F be a field and m � 1 coprime to char.F /. Suppose F contains a primitive
m-th root of unity �. For a; b 2 F �, let .a; b/m be the cyclic algebra generated by x
and y with relations xm D a, ym D b, and yx D �xy.
Proposition 6.6. Let F0 be a complete discrete valued field with residue field K0
a local field. Let m � 3 with 2m coprime to the characteristic of the residue field
of K0. Let � 2 F0 be a parameter and ı 2 F0 a unit such that the image of ı in K0
is a parameter. Let F=F0 be a quadratic field extension and ˛ 2 H 2.F; �m/. If

coresF=F0.˛/ D 0 and ind.˛/ D m;

then F=F0 is unramified, F contains a primitivem-th root of unity �, NF=F0.�/ D 1
and ˛ D .ı; �/m.

Proof. Suppose coresF=F0.˛/ D 0 and ind.˛/ D m. Since m � 3, by Lemma 6.5,
F=F0 is unramified and ˛ D .E; �; �/ for someE=F an unramified cyclic extension.

LetK be the residue field ofF andL the residue field ofE. SinceF=F0 andE=F
are unramified, K=K0 is an extension of degree 2 and L=K is a cyclic extension
of degree ŒE W F �. We denote the image of � in K by � again. Let �0 denote the
automorphism of L=K induced by � . Since coresF=F0.E; �/ D 0, we have

coresK=K0.L; �0/ D 0:

Hence, by Proposition 3.2, L=K0 is a dihedral extension. Let xı 2 K0 be the image
of ı. Then, by the assumption, xı is a parameter in K0. Since K0 is a local field and
ŒL W K� D m � 3, by Corollary 4.8, then K D K0.�/ for a primitive m-th root of
unity,

NK=K0.�/ D 1 and L D K0.�;
m
p
xı /:

Since F0 is complete, F D F0.�/ and E D F. m
p
ı/. Since NK=K0.�/ D 1, we have

NF=F0.�/ D 1. Since F contains a primitive m-th root of unity, we have

˛ D .E; �; �/ D .ı; �/m:

Proposition 6.7. Let F be a complete discrete valued field with residue field K,
valuation ring R, � 2 R a parameter and u 2 R a unit. Let n � 2 which is coprime
to char.K/. Suppose that F contains a primitive n-th root of unity and the cyclic
algebra D D .�; u/n is a division algebra. Let x; y 2 D be with xn D � , yn D u,
and xy D �yx. Then

RŒx�CRŒx�y C � � � CRŒx�yn�1 D RŒy�CRŒy�x C � � � CRŒy�xn�1 � D

is the maximal order of D.

Proof. Since D is a division algebra and F is complete, z�WD� ! Z given by
z�.z/ D �.Nrd.z// is a discrete valuation on D and ƒ D fz 2 D� j z�.z/ � 0g [ f0g
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is the unique maximal order of D (see [31, Theorem 12.8]). Since every element
in RŒy�xi has reduced norm in R, we have

RŒy�CRŒy�x C � � � CRŒy�xn�1 � ƒ:

Since Nrd.x/ D .�1/n�1� , we have z�.x/ D 1. Since yn D u is a unit inR and n
is coprime to the characteristic of K, the extension F.y/=F is unramified and RŒy�
is the integral closure of R in F.y/. Since deg.D/ D n, we have ŒF .y/ W F � D n.
Hence, for any a 2 RŒy�, we have

Nrd.a/ D NF.y/=F .a/:

Since F.y/=F is unramified, z�.a/ is divisible by n for all a 2 RŒy�. Let z 2 ƒ.
Then

z D
1

b
.a0 C a1x C � � � C an�1x

n�1/

for some b 2 R, b ¤ 0 and ai 2 RŒy�. Since z�ai is divisible by n and z�.x/ D 1, we
have that

z�.a0 C a1x C � � � C an�1x
n�1/

is equal to the minimum of z�.aixi / for 0 � i � n � 1. Since z�.z/ � 0, we have

z�.a0 C a1x C � � � C an�1x
n�1/ � z�.b/:

In particular, z�.aixi /�z�.b/. Since z�.aixi /Dz�.ai /C i and z�.ai /, we have that z�.b/
is divisible by n, and it follows that z�.ai / � z�.b/ for all 0 � i � n � 1. Hence,

ai

b
2 RŒy� and z 2 RŒy�CRŒy�x C � � � CRŒy�xn�1:

Hence, ƒ D RŒy�CRŒy�x C � � � CRŒy�xn�1 is a maximal R-order of D.

We end this section with the following proposition.
Proposition 6.8. Let F0 be a field and F=F0 a quadratic extension. Let m � 2

with 2m coprime to char.F0/. Suppose that F contains a primitive m-th root of
unity �. Let a; b 2 F �0 . Suppose that ŒF . m

p
a/ W F � D m. Let A D .a; b/m be the

cyclic algebra generated by x and y with relations xm D a, ym D b and yx D �xy.
Then there exists an F=F0-involution � on A with �.x/ D x and �.y/ D y if and
only if NF=F0.�/ D 1.

Proof. Let �0 be the nontrivial automorphism of F=F0. Then NF=F0.�/ D �0.�/�.
Suppose there exists an F=F0-involution � on A with �.x/ D x and �.y/ D y.

Since yx D �xy, we have

xy D �.yx/ D �.�xy/ D �0.�/yx D �0.�/�xy:

Hence, NF=F0.�/ D �0.�/� D 1.



280 R. Parimala and V. Suresh CMH

Suppose NF=F0.�/ D 1. Let c 2 F �0 with F D F0.
p
c/ and E D F.x/. Then

A D E ˚Ey ˚ � � � ˚Eym�1:

Since fxiyj ;
p
cxiyj j 0 � i; j � m�1g is an F0-basis ofA, we have anF0-vector

space isomorphism � WA! A given by

�.xiyj / D yjxi and �.
p
cxiyj / D �

p
cyjxi :

Then �.z/ D �0.z/ for all z 2 F . Since a; b 2 F0, we have

�.xm/ D �.a/ D a D xm D �.x/m:

Similarly, �.ym/ D b D �.y/m. Since � D c1 C c2
p
c for some ci 2 F0 and

�0.
p
c/ D �

p
c, we have

�.�xy/ D �.c1xy C c2
p
cxy/ D c1yx � c2

p
cyx

D .c1 � c2
p
c/yx D �0.�/yx:

Since yx D �xy, we have

�.yx/ D �.�xy/ D �0.�/yx D �0.�/�xy D xy D �.x/�.y/:

Hence, � is an F=F0-involution.

7. Reduced norms of central simple algebras over two dimensional complete
fields

Let R be a complete regular local ring of dimension 2 with residue field � and field
of fractions F . For a prime � 2 R, let F� be the completion of F at the discrete
valuation given by the prime ideal .�/ of R and �.�/ the residue field at � . Let A be
a central simple algebra over F of index coprime to char.�/. Let m D .�; ı/ be the
maximal ideal of R. Suppose that A is unramified on R except possibly at � and ı.
Let � D v�sıt 2 F � for some unit v 2 R and r; s 2 Z. In this section we show that
if � is a finite field and � 2 Nrd.A˝ F�/, then � 2 Nrd.A/.

Remark 7.1. Let � 2 F �� and n � 1 coprime to char.�/. Then � D u�r for some
u 2 F� which is a unit at � . Let xu be the image of u in �.�/. Since �.�/ is the field
of fractions of R=.�/ and R is complete, �.�/ is a complete discrete valued field
with residue field � and xı 2 R=.�/ is a parameter. Hence, xu D xvıs for some v 2 R
a unit. Then �.v�rıs/�1 is a unit at � and maps to 1 in �.�/. Since n is coprime
to n, we have � D v�rıscn for some c 2 F �� .

We begin by extracting the following from [27].
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Proposition 7.2. Let R be a complete regular local ring of dimension 2 with residue
field � and field of fractions F . Let A be a central simple algebra over F of index n
coprime to char.�/ and ˛ 2 H 2.F; �n/ be the class of A. Let m D .�; ı/ be the
maximal ideal of R. Suppose that � is a finite field and A is unramified on R except
possibly at � and ı. Let � D v�sıt 2 F � for some unit v 2 R and s; t 2 Z.
If ˛ � .�/ D 0 2 H 3.F; �˝2n /, then � 2 Nrd.A/.

Proof. As in [27, Theorem 4.12], we assume that ind.A/ D `d with ` a prime and F
contains a primitive `-th root of unity. Since ind.A/ is coprime to char.�/, we have
` ¤ char.�/. We prove the result by induction on d . If d D 0, then A is a matrix
algebra, and hence every element is a reduced norm from A. Suppose that d � 1.

Suppose ˛ � .�/ D 0 2 H 3.F; �˝2n /. Suppose s is coprime to `. Then, by [27,
Lemma 6.1], A D .E; �; .�1/s�/ for some cyclic extension E=F with � a generator
of Gal.E=F /. In particular,

.�1/`
dC1.�1/s� 2 Nrd.A/:

Suppose ` is odd, then �1 2 Nrd.A/, and hence � 2 Nrd.A/. Suppose ` D 2.
Since s is odd, we have

� D .�1/`
dC1.�1/s� 2 Nrd.A/:

Similarly, if t is coprime to `, then � 2 Nrd.A/.
Suppose that s and t are divisible by `. Then, by [27, Lemma 4.10], there exists

an unramified cyclic field extension L�=F� of degree ` and �� 2 L� such that

NL�=F� .�/ D �; ind.˛˝L�/ < ind.A˝F�/; ˛ � .��/ D 0 2 H
3.L� ; �

˝2

`d
/:

Since L�=F� is an unramified cyclic extension of degree ` and F contains a
primitive `-th root of unity, we have L� D F�.

p̀
a/ for some a 2 F� , which is a

unit at � . Since char.�/ ¤ ` and the residue field �.�/ of F� is the field of fractions
of R=.�/, we have

a D wı" 2 F �� =F
�`
�

for some unit w 2 R and 0 � " � ` � 1 (cf. Remark 7.1). Suppose " � 1. Let
1 � "0 � ` � 1 with ""0 D 1 modulo `. Since

F�.
p̀
wı" / D F�.

p̀
w"
0
ı /;

replacing w by w"0 , we assume that

L� D F�.
p̀
wı"/

with 0 � " � 1. LetL D F.
p̀
wı"/. ThenL=F is a cyclic extension of degree ` and

L˝F� ' L� . Let S be the integral closure ofR inL. Then S is a regular local ring
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with maximal ideal .�; ı1/, where ı1 D ı or
p̀
wı depending on whether " D 0 or 1

(see [28, Lemmas 3.1 and 3.2]). Since ind.˛˝L�/ < ind.˛/, by [27, Proposition 5.8],
we have

ind.˛ ˝ L/ < ind.˛/:

Since S is a regular local ring with maximal ideal .�; ı1/ and L the field of
fractions of S , there exists u 2 S a unit such that

�� D u�
iı
j
1�

`dC1

1

for some i; j 2 Z and �1 2 L� (cf. Remark 7.1). Let �0 D u� iı
j
1 2 L and let

�0 D NL=F .�
0/. Then �0 D v0�`iıj 0 for some unit v0 2 R. Since

� D NL�=F� .��/ D NL�=F� .�
0�`

dC1

1 / D �0NL�=F� .�1/
`dC1 ;

we have �0��12F `dC1� . Hence, by [27, Corollary 5.5], � D �0�`dC1 for some � 2F .
Let � D �0�`d 2 L. Then NL=F .�/ D �. Since

� D �0�`
d

D ���
�`dC1

1 �`
d and ˛ � .��/ D 0 2 H

3.L� ; �
˝2

`d
/;

we have ˛ � .�/ D 0 2 H 3.L� ; �
˝2

`d
/. Hence, by [27, Corollary 5.5], we have

˛ � .�/ D 0 2 H 3.L; �˝2
`d
/:

Since ind.˛ ˝ L/ < ind.˛/, we have � 2 Nrd.A˝ L/ by induction. Finally. since
NL=F .�/ D �, we have � 2 Nrd.A/.

Corollary 7.3. Assuming the notation and hypothesis of Proposition 7.2, if we have
� 2 Nrd.A˝ F�/, then � 2 Nrd.A/.

Proof. Let ˛ 2 H 2.F; �n/ be the class of A. Since � 2 Nrd.A˝ F�/, we have

˛ � .�/ D 0 2 H 3.F� ; �
˝2
n /:

Since ˛ is unramified onR except possibly at� , ı, and� D c�sıt , we have that ˛ �.�/
is unramified on R except possibly at � and ı. Since ˛ � .�/ D 0 2 H 3.F� ; �

˝2
n /,

by [27, Corollary 5.5], we have

˛ � .�/ D 0 2 H 3.F; �˝2n /:

Hence, by Proposition 7.2, � 2 Nrd.A/.
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8. Central simple algebras with involutions of second kind over two dimensional
complete fields

LetR0 be a complete regular local ring of dimension two with residue field �0 a finite
field of characteristic not 2 and F0 the field of fractions ofR0. Letm D .�; ı/ be the
maximal ideal of R0. Let F=F0 be a quadratic field extension with F D F0.

p
u�"/

for some u 2 R0 a unit and " D f0; 1g. Let R be the integral closure of R0 in F .
Then R is a regular local ring with maximal ideal .�1; ı/, where �1 D � if " D 0

and �1 D
p
u� if " D 1 (see [28, Lemmas 3.1 and 3.2]). Let � be the residue field

of R. Then Œ� W �0� � 2.
Let A be a central division algebra over F which is unramified on R except

possibly at �1 and ı. Suppose that n D ind.A/ is coprime to char.�0/. In this
section we show that if there is an involution � onA of second kind andA is division,
then there exists a maximal R-order in A invariant under � with some additional
structure. We then prove a local-global principle for certain classes of hermitian
forms over .A; �/.

We begin with the following lemma.
Lemma 8.1. Let v 2 R be a unit and � D v�r1ıs 2 F � for some r; s 2 Z. Suppose
�� 2 F

�
0� is such that ��� 2 Nrd.A˝F F�1/. Then there exists � 2 F0 such that

�� 2 Nrd.A/ and ����1 2 F n0� .

Proof. Since F0 is the field of fractions of R0 and .�; ı/ is the maximal ideal of R0,
we have

�� D w�
r1ıs1cn

for some w 2 R0 a unit, c 2 F0� (cf. Remark 7.1). Let

� D w�r1ıs1 2 F �0 :

Since ind.A/ D n, we have cn 2 Nrd.A˝F F�1/, and hence �� 2 Nrd.A˝F F�1/.
Since A is unramified on R except possibly at �1 and ı and the support of �� is at
most �1 and ı, by Corollary 7.3, �� 2 Nrd.A/.

Proposition 8.2. Let ˛ 2 H 2.F; �n/ be the class of A. Suppose ind.˛/ D n � 3. If
coresF=F0.˛/ D 0, then F=F0 is unramified on R0, F contains a primitive n-th root
of unity �, NF=F0.�/ D 1 and ˛ D .ı; �/n.

Proof. Since F D F0.
p
u�"/, we have that R0 is complete and char.�/ ¤ 2, and it

follows that F ˝ F0� D F�1 is a field. Since ˛ is unramified on R except possibly
at �1 and ı, we have

ind.˛/ D ind.˛ ˝ F�1/

(see [27, Proposition 5.8]).
The residue field of F0� is a local field with residue field �0. Suppose that

coresF=F0.˛/D0. We then have, coresF�1=F0� .˛/D0. Since ind.˛ ˝ F�1/Dn�3,
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by Proposition 6.6, F�1=F0� is unramified, F�1 contains a primitive n-th root of
unity �, NF�1=F0� .�/ D 1 and ˛ ˝ F�1 D .ı; �/n. Since the residue field �.�1/
ofF�1 is a complete discretely valued field with residue field �, � contains a primitive
n-th root of unity. Hence, F contains a primitive n-th root of unity. By [27,
Corollary 5.5], we have ˛ D .ı; �/n. Since F=F0 is unramified except possibly at �
and F�1=F0� is unramified, we then have that F=F0 is unramified on R0. Since

NF�1=F0� .�/ D 1;

we have NF=F0.�/ D 1.

Let ˛ 2 H 2.F; �n/ be the class of A. We suppose that ind.˛/ D n � 3 and
coresF=F0.˛/ D 0. Since .�; ı/ is a maximal ideal ofR, .ı; �/n is a division algebra.
Let D D .�; ı/n. Then, by Proposition 8.2, ˛ is the class of D. Thus, there exist
x; y 2 D such that

xn D ı; yn D � and yx D �xy:

Since D ˝ F� and D ˝ Fı are division algebras (see [27, Proposition 5.8]), the
valuation �� and �ı given by� and ı onF extend to valuationsw� andwı onD˝F�
and D ˝ Fı , respectively (see [31, Theorem 12.6]). We have

e� WD Œw�.D
�/ W ��.F

�/� D n and eı WD Œwı.D
�/ W �ı.F

�/� D n:

Let S D RŒ
n
p
ı� D RŒx�. Then S is the integral closure of R in F. n

p
ı/ and S is a

regular local ring of dimension 2 with maximal ideal . n
p
ı; �/ (see [28, Lemma 3.2]).

Since D ' .ı; �/n and NF=F0.�/ D 1, by Proposition 6.8, there exists an F=F0-
involution � on D with �.x/ D x and �.y/ D y.

Lemma 8.3 (cf. [33, Lemma 3.7]). Let ƒ D S C Sy C � � � C Syn�1 � D. Then ƒ
is a maximal R-order in D.

Proof. Since S is a free R-module, ƒ is a free R-module. Let P � R be a height
one prime ideal. Suppose P ¤ .�/ and P ¤ .ı/. Since � and ı are units at P ,
ƒP D ƒ ˝ RP is an Azumaya algebra, and hence a maximal RP -order in D.
Suppose P D .�/ or .ı/. Then, by Proposition 6.7 and [31, Theorem 11.5], ƒP
is a maximal RP -order in D. Since R is noetherian, integrally closed and ƒ is a
reflexive R-module, by [5, Theorem 1.5], ƒ is a maximal R-order of D.

Lemma 8.4 (cf. [33, Lemma 3.1]). Let � andƒ be as above. Let a2ƒwith �.a/Da.
If Nrd.a/ D u�rıs for some unit u 2 R0 and r; s 2 Z, then there exist a unit � 2 ƒ,
r 0; s0 2 f0; 1g with r � r 0 and s � s0 modulo 2 such that hai ' h�xr 0ys0i as
hermitian forms over .D; �/.
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Proof. Let r D 2r1C r 0 and s D 2s1C s0 with r 0; s0 2 f0; 1g. Let z D xs1yr1 2 ƒ.
Then

Nrd.z/ D Nrd.�.z// D ıs1�r1 :

Let � D �.z/�1az�1.xs0yr 0/�1. Then

a D �.z/�xs
0

yr
0

z;

and hence hai ' h�xs0yr 0i. Since Nrd.�/ D u 2 R0 is a unit, it follows that � 2 ƒ
and is a unit in ƒ, as in the proof of [33, Lemma 3.1].

Corollary 8.5 (cf. [33, Corollary 3.2]). Let � and ƒ be as in Lemma 8.3. Let h D
ha1; : : : ; ari be a hermitian form over .A; �/ with ai 2 ƒ, �.ai / D ai and Nrd.ai /
is a product of a unit in R, a power of � and a power of ı. Then

h ' hu1; : : : ; um0i ? hv1; : : : ; vn1ix ? hw1; : : : ; wn2iy ? h�1; : : : ; �n3ixy

for some ui ; vi ; wi ; �i 2 ƒ units.

We have the following (cf. [33, Corollary 3.3]).

Corollary 8.6. Let � and ƒ as above. Let ai 2 ƒ be as in Corollary 8.5 and h D
ha1; : : : ; ari. If h˝ F0� is isotropic, then h is isotropic over F0.

Proof. Since �.xy/ D yx D �xy and ��.�/ D NF=F0.�/ D 1, it follows that
Int.xy/ ı � is an involution on D. Following the proof of [33, Corollary 3.3], it
follows that if h is isotropic over F0� , then h is isotropic over F0.

9. An application of refinement of patching to local-global principle

Let T be a complete discrete valuation ring and K its field of fractions. We recall a
few basic definitions from [15, 16]. Let F be a function field of a curve over K. Let
Y! Spec.T / be a proper normal model of F and Y the special fibre. For a point x
of Y , let Fx be the field of fractions of the completion yRx of the local ring at x.
Let U be a nonempty proper subset of an irreducible component of Y not containing
the singular points of Y . Let RU be the subset of F containing all those elements
of F which are regular at every closed point of U . Let t 2 T be a parameter, yRU be
the .t/-adic completion of RU and FU the field of fractions of yRU . Let P 2 Y be a
closed point. A height one prime ideal p of yRP containing t is called a branch at P .
For a branch p, let Fp be the completion of FP at the discrete valuation given by p.

Let P be a finite set of closed points of Y containing all singular points of Y
and at least one point from each irreducible component of Y . Let U be the set of
irreducible components of Y n P and B the set of branches at points in P. Let G be
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a linear algebraic group over F . We say that factorization holds for G with respect
to .P;U/ if given .gp/ 2

Q
p2BG.Fp/, there exists

.gQ/ 2
Y
Q2P

G.FQ/ and .gU / 2
Y
U2U

G.FU /

such that if p is a branch at P along U , then gp D gQgU . If the factorization holds
for G with respect to all possible pairs .P;U/, then we say that factorization holds
for G over F with respect to Y. Let Z be a variety over F with a G-action. We
say that G acts transitively on points of Z if G.E/ acts transitively on Z.E/ for all
extensions E=F with Z.E/ ¤ ;.

Let X! Y be a sequence of blow ups andX the special fibre of X. Let P 2 Y be
a closed point and V the fibre over P . Suppose that dim.V / D 1. Let P0 be a finite
set of closed points of V containing all the singular points of V and at least one point
from each irreducible component of V . Let U0 be the set of connected components
of V nP0. Let B0 be the set of branches at the points of P0. We say that factorization
holds for G with respect to .P0;U0/ if given .gp/ 2

Q
p2B0 G.Fp/, there exists

.gQ/ 2
Y
Q2P0

G.FQ/ and .gU / 2
Y
U2U0

G.FU /

such that if p is a branch at P along U , then gp D gQgU .
Let PX be a finite set of closed points ofX containing P0, all singular points ofX

and at least one closed point from each irreducible component of X . Let UX be the
set of irreducible components of X n P and BX the set of branches at points in P.

The following results are immediate consequences of results of Harbater,
Hartmann and Krashen [16].

Theorem 9.1. LetF ,P ,PX ,P0,UX andU0 be as above. LetG be a connected linear
algebraic group over F . If the factorization holds for G with respect to .PX ;UX /,
then the kernel of natural map

H 1.FP ; G/!
Y
U 02U0

H 1.FU 0 ; G/ �
Y
Q2P0

H 1.FQ; G/

is trivial.

Proof. Suppose the factorization holds for G with respect to .P;U/. Then, by [16,
Proposition 3.14], factorization holds for G with respect to .P0;U0/. By [16, Prop-
osition 3.10], patching holds for the injective diamond

FP� D

�
FP �

Y
Q2P0

FQ;
Y
U 02U0

FU 0 �
Y
b02B0

Fb0

�
:
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Hence, by [16, Theorem 2.13], the map

H 1.FP ; G/!
Y
U 02U0

H 1.FU 0 ; G/ �
Y
Q2P0

H 1.FQ; G/

is injective.

Corollary 9.2. LetF , Y,P andX be as above. LetG be a connected linear algebraic
group over F . If the factorization holds for G over F with respect to Y, then the
kernel of natural map

H 1.FP ; G/!
Y
x2V

H 1.Fx; G/

is trivial.

Proof. Let � be in the kernel of the mapH 1.FP ; G/!
Q
x2V H

1.Fx; G/. Then, as
in [15, Corollary 5.9], there exists a finite set P0 of closed points of V containing all
the singular points ofV and at least one closed point from each irreducible component
of V such that if U0 is the set of irreducible components of V n P0, then � is in the
kernel of

H 1.FP ; G/!
Y
U 02U

H 1.FU ; G/ �
Y
Q2P0

H 1.FQ; G/:

Hence, by Theorem 9.1, � is trivial.

Theorem 9.3. Let F , P , P, P0, U, U0, FP and FU be as above. LetG be a connected
linear algebraic group over F . Suppose the factorization holds for G with respect
to .P;U/. LetZ be aF -variety withG acting transitively on pointsZ. IfZ.FU 0/ ¤ ;
and Z.FQ/ ¤ ; for all U 0 2 U0 and Q 2 P0, then Z.FP / ¤ ;.

Proof. The result follows from Theorem 9.1 and [15, Corollary 2.8].

Corollary 9.4 (cf. [15, Theorem 9.1]). Let F , Y, P , X and V be as above. Let G be
a connected linear algebraic group over F . Suppose the factorization holds for G
overF . LetZ be aF -variety withG acting transitively on points ofZ. If Z.Fx/ ¤ ;
for all x 2 V , then Z.FP / ¤ ;.

Proof. SupposeZ.Fx/ ¤ ; for all x 2 V . LetXi be an irreducible component of V
and �i 2 V the generic point of Xi . Since Z.F�i / ¤ ;, by [15, Proposition 5.8],
there exists a nonempty affine open subset Ui of Xi such that Z.FUi / ¤ ;. Let P0
be the complement of the union of Ui ’s in V . Let Q 2 P0. Then, by the assumption
on Z, we have Z.FQ/ ¤ ;. Hence, by Theorem 9.3, Z.FP / ¤ ;.
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10. Local-global principle for projective homogeneous spaces under general
linear groups

Let K be a complete discretely valued field with residue field � and F the function
field of a smooth projective curve overK. LetA be a central simple algebra overF of
index n coprime to char.k/ and G D PGL.A/. Let Z be a projective homogeneous
space under G over F . If F contains a primitive n-th root of unity, then from the
results in [30], it follows that Z.F / ¤ ; if and only if Z.F�/ ¤ ; for all divisorial
discrete valuations of F . In this section, we dispense with the condition on the roots
of unity if K is a local field.

Let X be a normal proper model of F over the valuation ring of K. Let P
be a closed point of X. A discrete valuation � of F (respectively, FP ) is called a
divisorial discrete valuation if it is given by a codimension one point of a model of F
(respectively, with center P ).

Let M be a field and A a central simple algebra over M of degree n. For a
sequence of integers 0 < n1 < n2 < � � � < nk < n, let

X.n1; : : : ; nk/ D f.I1; : : : ; Ik/ j I1 � I2 � � � � � Ik � A; sequence of right ideals
of A with dimF .Ij / D n � nj ; j D 1; : : : ; kg:

Theorem 10.1. LetK be a local field with residue field � and F the function field of
a smooth projective curve overK. Let A be a central simple algebra over F of index
coprime to char.�/. Let X be a normal proper model of F over the valuation ring
ofK and P 2 X be a closed point. Let L be the field F or FP . LetZ be a projective
homogeneous space under PGL.A/ over L. If Z.L�/ ¤ ; for all divisorial discrete
valuation � of L, then Z.L/ ¤ ;.

Proof. Let f WX0 ! X be a sequence of blow ups such that X0 is regular, the
ramification locus of A on X0 and the special fibre of X0 is a union of regular curves
with normal crossings. By blowing up P , we assume that the dimension of the fibre
overP is 1. Let V be either the special fibre of X0 or the fibre of f overP , depending
on L D F or L D FP .

Let n D deg.A/. Then Z is isomorphic to X.n1; : : : ; nr/ for some sequence of
integers 0 < n1 < � � � < nr < n and PGL.A/ acts transitively on points ofZ (cf. [23,
Section 5]). Let d be the lcm of n1; : : : ; nr ; n. Then, for any field extension M=F ,
Z.M/ ¤ ; if and only if ind.A˝F M/ divides d (cf. [23, p. 561, 5.3]).

Suppose that Z.L�/ ¤ ; for all divisorial discrete valuations � of L. Since
PGL.A/ is rational, factorization holds for PGL.A/ over F ([13, Theorem 3.6.]).
Thus, by [15, Theorem 5.10 and Theorem 9.1] for the case L D F and Corollary 9.4
for the case L D FP , it is enough to show that Z.Fx/ ¤ ; for all x 2 V .

Let x 2 V . Suppose x is a generic point of V . Then x defines a divisorial discrete
valuation �x of L and Lx D L�x . Hence, Z.Lx/ ¤ ;.
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Suppose x D Q is a closed point of V . Then, by the choice of X0, the local
ring RQ at Q on X0 is generated by .�; ı/ such that A is unramified on RQ except
possibly at .�/ and .ı/.

Let �� be the discrete valuation given by � on L and L�� the completion of L
at �� . Since �� is a divisorial discrete valuation of L, we have Z.L�� / ¤ ;. Hence,
ind.A˝F L�� / divides d . Since L�� � LQ;� , we have ind.A˝F LQ;�/ divides d .
Since, by [27, Corollary 5.6],

ind.A˝F LQ/ D ind.A˝F LQ;�/;

ind.A˝F LQ/ divides d . Hence, Z.LQ/ ¤ ;.

Corollary 10.2. Let L be the field F or FP , and A as in Theorem 10.1. Then

ind.A˝F L/ D lcmfind.A˝F L�/ j � a divisorial discrete valuation of Lg:

Proof. Let d D lcmfind.A˝F L�/ j � a divisorial discrete valuation of Lg. Then
clearly d divides ind.A ˝F L/. Thus, it is enough to show that ind.A ˝F L/

divides d .
LetZ D X.d/. Since for every divisorial discrete valuation � ofL, ind.A˝F L�/

divides d , Z.F�/ ¤ ; (cf. [23, p. 561 5.3]). Hence, by Theorem 10.1, Z.L/ ¤ ;.
Thus, ind.A˝F L/ divides d (cf. [23, p. 561 5.3]).

Corollary 10.3. Let L be the field F or FP and A as in Theorem 10.1. Let G D
GL.A/ and Z be a projective homogeneous space under G over L. If Z.L�/ ¤ ;
for all divisorial discrete valuation of L, then Z.L/ ¤ ;.

Proof. Since the projective homogeneous spaces under GL.A/ are in bĳection with
the projective homogeneous spaces under PGL.A/ [7, Theorem 2.20 (i)], the corollary
follows from Theorem 10.1.

11. Local-global principle for homogeneous spaces under unitary groups

Let K be a local field with residue field � of characteristic not 2 and F0 the function
field of a smooth projective curve over K. Let F=F0 be a quadratic field extension.
Let A be a central simple algebra over F with an involution � of second kind and
F � D F0. Let .V; h/ be a hermitian form over .A; �/ and G D U.A; �; h/. If
ind.A/ D 1, then the validity of Conjecture 1 for G is a consequence of results
proved in [11]. If ind.A/ D 2, Wu [33] proved the validity of Conjecture 1 for G.
In this section we dispense with the condition ind.A/ � 2 for the good characteristic
case.

We begin by recalling the structure of projective homogeneous spaces under a
unitary group over any field. Let F0 be a field and F=F0 a separable quadratic
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extension. Let A be a central simple algebra over F of degree n with an involution �
of second kind and F � D F0. Let .V; h/ be a hermitian form over .A; �/ and G D
U.A; �; h/.

LetW be a finitely generated module over A. The reduced dimension rdimA.W /

ofW overA is defined as dimF .W /=n [19, Definition 1.9]. For a sequence of integers
0 < n1 < � � � < nr � n=2 and for any field extension L=F , let

X.n1; : : : ; nr/ D f.W1; : : : ; Wr/ j f0g ¨ W1 ¨ � � � ¨ Wr ; Wi a totally isotropic
subspace of V with rdimF Wi D nig:

We recall the following from [23,24], cf. [33, Section 2].

Theorem 11.1. Let F0 be a field and F=F0 a separable quadratic extension. Let A
be a central simple algebra over F of degree n with an involution � of second kind
and F � D F0. Let .V; h/ be a hermitian form over .A; �/ and G D U.A; �; h/.
Then

(i) A projective variety X over F0 is a projective homogeneous space under G
over F0 if and only if X ' X.n1; : : : ; nr/ for some increasing sequence of
integers 0 < n1 < � � � < nr � n=2.

(ii) For any field extension L=F0, we have X.n1; : : : ; nr/.L/ ¤ ; if and only if
X.nr/.L/ ¤ ; and ind.AL/ divides ni for all i .

(iii) If A DMr.D/ for some central simple algebra over F and G0 D U.D; �0/ for
some unitary involution �0 on D, then there is a bĳection assigning projective
homogeneous spaces X under G and to projective homogeneous spaces X0
underG0. Further, for any field extensionL=F0, we haveX.L/ ¤ ; if and only
if X0.L/ ¤ ;.

The proof of the following theorem is parallel to Abhyankar’s proof in the case
of algebraic surfaces [1].

Theorem 11.2. Let X0 be a normal integral excellent two dimensional scheme with
function field F0 and F=F0 a quadratic field extension. Suppose that 2 is invertible
on X0. LetD be a divisor on X0. Then there exists a sequence of blowups X0 ! X0
with X0 regular such that the integral closure X of X0 in F is regular and support of
the pull back of D on X is a union of regular curves with normal crossings.

Proof. Let d 2 F �0 be such that F D F0.
p
d/. Since X0 is excellent and dimension

two, there exists a sequence of blowups X0 ! X0 such that the unionE of suppX0.d/
and the support of the pullback of D on X0 is a union of regular curves with normal
crossings [20].

Then for any closed point P of X0, the maximal ideal at P is generated by
.�P ; ıP / such that d D uP�

nP
P ı

mP
P for some unit uP at P and nP ; mP 2 Z.

Further, replacing X0 by a sequence of blowups, we assume that for each closed
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point P of X0, either nP is even ormP is even (see, for instance, [33]). We now show
that X0 has the required properties.

Let P 2 X0 be a closed point. Then, by the choice of X0, we have d D uPd
2
1

or uP�Pd21 or uP ıPd21 for some unit uP at P and d1 2 F �0 . Thus, the integral
closure X of X0 in F is regular (see, for instance, [28, Lemma 3.3]).

Let zD be the pull back of D to X. Let Q 2 X be a closed point which is on the
support of zD. Let P 2 X0 be the image ofQ. Let AP be the local ring at P and BP
be the integral closure of AP in F . Then BP is a regular local ring.

Suppose d is not a square in the field of fractions of the completion of AP .
ThenQ is the only point in X which maps to P . Let C be an irreducible curve which
is in the support of D. Then C is regular at P on X0, and hence there is a unique
irreducible curve in the support of zD mapping to C . Since the support of D is a
union of regular curves with normal crossings, it follows that the support of zD at Q
is a union of regular curves with normal crossings.

Suppose d is a square in the field of fractions of the completion of AP . Then by
the choice of X0, we have that d D uPd

2
1 for some unit uP 2 AP and d1 2 F �0 .

Thus, F D F0.
p
uP /, and hence BP =AP is étale. Since the support ofD is a union

of regular curves with normal crossings, it follows that the support of zD at Q is a
union of regular curves with normal crossings.

Corollary 11.3. Let X0 be a normal integral excellent two dimensional scheme with
function field F0 and F=F0 a quadratic field extension. Suppose that 2 is invertible
on X0. LetD0 be a divisor on the integral closure X00 of X0 in F . Then there exists a
sequence of blowups X0 ! X0 with X0 regular such that the integral closure X of X0
in F is regular and support of the pull back ofD0 on X0 is a union of regular curves
with normal crossings.

Proof. LetD be a divisor on X0 containing the image of all irreducible curves in the
support of D0. Then applying Theorem 11.2 to D we get the required X0.

Theorem 11.4. Let K be a local field with residue field �. Let F0 be the function
field of a curve over K. Let F=F0 be a quadratic extension and A be a central
simple algebra over F with an F=F0- involution � . Suppose that 2 ind.A/ is coprime
to char.�/. Let h be a hermitian form over .A; �/ and G D U.A; �; h/. If A D F ,
then assume that rank of h is at least 2. Let Z be a projective homogeneous space
under G over F . Let X0 be a normal proper model of F0 and P 2 X0 be a closed
point with F ˝F0 F0P a field. If Z.F0�/ ¤ ; for all divisorial discrete valuations �
of F0, then Z.F0P / ¤ ;.

Proof. Let n be the degree ofA. SinceZ is a projective homogeneous space underG,
by Theorem 11.1,

Z ' X.n1; : : : ; nr/
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for some sequence of integers 0 < n1 < � � � < nr � n=2. Suppose that Z.F0�/ ¤ ;
for all divisorial discrete valuations � ofF0. Then, by Theorem 11.1, ind.A˝F0F0�/
divides ni for all i . SinceK is a local field, ind.A/ is the lcm of ind.A˝F0 F0�/ as �
varies over all divisorial discrete valuations of F (cf. Corollary 10.2). Hence, ind.A/
divides ni for all i . By Theorem 11.1, X.nr/.F0�/ ¤ ; for all divisorial discrete
valuations � of F . To prove the theorem, by Theorem 11.1, it suffices to show that

X.nr/.F0P / ¤ ;:

Thus, we assume that Z D X.m/ with m D nr .
Let T be the valuation ring of K. Then there exists a sequence of blow ups

X00 ! X0 such that the normalization X of X00 in F is regular and the ramification
locus of A on X and the special fibre of X is a union of regular curves with normal
crossings Corollary 11.3. If necessary, by blowing up P , we assume that the fibre V
over P is of dimension 1. Then, by Corollary 9.4, it is enough to show that

Z.F0x/ ¤ ;

for all x 2 V .
Let x 2 V be a generic point. Then x gives a divisorial discrete valuation �x

on F0 such that F0x D F�x . Hence, Z.F0x/ ¤ ;.
Let Q 2 V be a closed point. We show that Z.F0Q/ ¤ ; by induction on

ind.A˝F0 F0Q/. Suppose

ind.A˝F0 F0Q/ D 1:

Then the hermitian form h corresponds to a quadratic form over qh over F0Q such
that h is isotropic over any field extension M of FQ if and only if qh is isotropic
over M (see [32, Theorem 1.1, p. 348]). Since Z D X.m/, for every divisorial
discrete valuation � of F0, there is a totally isotropic subspace of V ˝F0 F0� of
dimension m. Thus, to prove the theorem, it is enough to show that there is a totally
isotropic subspace of V ˝F0 F0Q of dimension m. By induction on dim.qh/, it is
enough to show that qh is isotropic over F0Q. By the assumption on the rank of h,
rank of qh is at least 4. Since for every (divisorial) discrete valuation � of F0 centered
on Q, qh is isotropic over F0Q� , by [16, Corollary 4.7], qh is isotropic over F0Q.

Suppose ind.A˝F0 F0Q/ � 2. Then by the choice of the model X00, we have the
following:

(i) the local ring RQ at Q on X00 is regular with .�; ı/ as the maximal ideal;

(ii) F ˝ F0Q D F0Q.
p
u�"/ for some unit u 2 RQ and " D 0; 1;

(iii) A is unramified on the integral closure of RQ in F0Q.
p
u�"/, except possibly

at �1 and ı, where �1 D � or
p
u� depending on " D 0 or 1.
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LetDQ be the central division algebra overF˝F0F0Q which is Brauer equivalent
to A˝F0 F0Q. Then there is a unitary involution �Q onDQ and the hermitian form
.V; h/ corresponds to a hermitian form .VQ; hQ/ over DQ. By Theorem 11.1,

ZF0Q D X.m/F0Q

corresponds to a projective homogeneous space ZQ D X.m0/ under U.DQ; �Q/ for
some suitable m0 which is divisible by ind.DQ/. Further, to show that

Z.F0Q/ ¤ ;;

it is enough to show that ZQ.F0Q/ ¤ ;.
Since ind.A˝F0 F0Q/ � 2, we have deg.DQ/ � 2. If deg.DQ/ D 2, let ƒ be

the maximal RQ-order of DQ as in [33, Lemma 3.7]. If deg.DQ/ � 3, let ƒ be the
maximalRQ-order ofDQ as in Lemma 8.3. SinceDQ is a division algebra, we have

hQ ' ha1; : : : ; ani

for some ai 2 ƒP . Once again there exists a sequence of blow ups X000 ! X00 such
that support of Nrd.ai / for all i is a union of regular curves with normal crossings
(see [2, 20], cf. [33, Section 4]). Further, by blowing up, we also assume that X000
satisfies (i), (ii) and (iii). Let V 00 be the fibre over Q. Once again we assume that
dim.V 00/ D 1. Thus, to show that

ZQ.F0Q/ ¤ ;;

by Corollary 9.4, it is enough to show that ZQ.F0x/ ¤ ; for all x 2 V 00.
Let x0 2 V 00 be a generic point then, as above, ZQ.F0x0/ ¤ ;.
Let Q0 2 V 00 be a closed point. Suppose that DQ ˝F0Q F0Q0 is division.

By Theorem 11.1, it is enough to show that there is a totally isotropic subspace
of VQ ˝ F0Q0 of dimension m0. By induction on the reduced dimension of VQ, it is
enough to show that hQ is isotropic over F0Q0 . Since X000 satisfies (i), (ii) and (iii),
the maximal ideal at Q0 on X000 is generated by .�; ı/, hQ D ha1; : : : ; ani for some
ai 2 ƒP with Nrd.ai / is a supported along only � , ı, and hQ ˝ F0Q0� is isotropic.
Hence, by Corollary 8.6, hQ is isotropic over F0Q0 .

Suppose that DQ ˝F0Q F0Q0 is not division. Then

ind.A˝F0 F0Q0/ < ind.A˝F0 F0Q/:

Hence, by induction, ZQ.F0Q0/ ¤ ;.

Theorem 11.5. Let K be a local field with residue field �. Let F0 be a function
field of a curve over K. Let F=F0 be a quadratic extension and A a central simple
algebra over F of index n with an F=F0- involution � . Suppose that 2n is coprime to
char.�/. Let h be a hermitian form over .A; �/. If A D F , then assume that the rank
of h is at least 2. LetZ be a projective homogeneous space under U.A; �; h/ over F .
If Z.F0�/ ¤ ; for all (divisorial) discrete valuations � of F0, then Z.F0/ ¤ ;.
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Proof. Suppose Z.F0�/ ¤ ; for all (divisorial) discrete valuations � of F0. Let X0
be a normal proper model of F0 over the valuation ring ofK andX0 the special fibre.
Let x 2 X0 be a codimension 0 point inX0 and �x the discrete valuation of F0 given
by x. Then F0x D F0�x and Z.F0x/ ¤ ;.

Let P 2 X0 be a closed point. We have

A˝F0 F ' A1 � A
op
1

for some central simple algebra A1=F (see [19, Proposition 2.14]) and

U.A; �; h/˝ F ' GL.A1/

(see [19, p. 346]). Suppose F ˝F0 F0P is not a field. Then F � F0P and

A˝F0 F0P ' A1 ˝ F0P � A
op
1 ˝ F0:

Let X be the normal closure of X0 in F . Since F ˝F0 F0P is not a field, there
exists a closed point Q of X such that FQ ' F0P . Hence, by Corollary 10.3,
Z.F ˝F0 F0P / ¤ ;.

Suppose F ˝F0 F0P is a field. Then, by Theorem 11.4, Z.F0P / ¤ ;. Since
U.A; �; h/ is rational and connected (see [22, Lemma 1, p. 195]), by [15, Corollary 6.5
and Theorem 9.1], Z.F0/ ¤ ;.

Theorem 11.6. Let K be a local field with residue field �. Let F0 be a function
field of a curve over K. Let F=F0 be a quadratic extension and A a central simple
algebra over F of index n with an F=F0- involution � . Suppose that 2n is coprime
to char.�/. Let h be a hermitian form over .A; �/. Then the canonical map

H 1.F0; U.A; �; h//!
Y

�2�F0

H 1.F0� ; U.A; �; h//

has trivial kernel.

Proof. Let � 2 H 1.F0; U.A; �; h//. Then � corresponds to a hermitian space h0 over
.A; �/ of reduced rank equal to the reduced rank of h. Let h0 D h ? �h0 and m the
reduced rank of h. Let G D U.A; �; h0/ and Z D X.m/. Then Z is a projective
homogeneous variety under G over F0. Suppose � maps to the trivial element in
H 1.F0� ; U.A; �; h// for all (divisorial) discrete valuations � of F0. Then

h0 ˝ F0� ' h˝ F0� ;

and hence h0 is hyperbolic. Thus,Z.F0�/¤; for all (divisorial) discrete valuations �
of F0. Hence, by Theorem 11.5, Z.F0/ ¤ ;. In particular, h0 is hyperbolic. Since
the reduced ranks of h and h0 are equal, h ' h0 and � is the trivial element in
H 1.F0; U.A; �; h//.
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12. Local-global principle for special unitary groups: Patching setup

Let K be a local field with residue field � and F0 the function field of a smooth
projective curve over K. Let F=F0 be a separable quadratic extension. Let A be a
central simple algebra over F of degree n with an involution � of second kind and
F � D F0. Suppose that 2n is coprime to char.�/. In this section we show that there
is a local-global principle for principal homogeneous spaces under SU.A; �/ over F0
in the patching setup (cf. Theorem 12.5).

Let � 2 F �. Let F D F0.
p
d/, d 2 F �0 . Let T be the valuation ring ofK. Then

there exists a regular proper model X0 ! Spec.T / of F0 with the normalization X

ofX0 inF regular and with the property that the special fibreX ofX, the ramification
locus of F=F0 on X, the ramification locus ofA on X and the support of � on X are a
union of regular curves with normal crossings [2,20]. Let X0 be the reduced special
fibre of X0 and f�1; : : : ; �mg be the generic points of X0.

Let P0 be a finite set of closed points of X0 containing all the singular points
of X0 and at least one closed point from each irreducible component of X0. Let U0
be the set of irreducible components of X0 n P0. We fix the data � 2 F �, X0;P0
and U0 for until Theorem 12.5. Let B0 be the set of branches at P0. Since X0 is a
union of regular curves with normal crossings, B0 is in bĳection with pairs .P; U /
with P 2 P0, U 2 U0 and P is in the closure of U .

Let � 2 X0 be a generic point and P 2 xf�g a closed point. Then � defines a
discrete valuation �� on F0P . Then the completion of F0 at the restriction of ��
to F0 is denoted by F0� and the completion of F0P at �� denoted by F0P;� . The
closed point P induces a discrete valuation �P on the residue field �.�/ of F0� such
that the completion �.�/P of �.�/ at �P is the residue field of F0P;� .

Let P 2 X0 be a closed point and AP the local ring at P on X0. Since the
normalization of X0 in F is regular, d D �u or d D u for some � 2 AP a regular
parameter and u 2 AP a unit. Hence, BP D AP Œ

p
d� is the integral closure of AP

in F . Let ı 2 AP be such thatmP D .�; ı/ is the maximal ideal of AP . If d D �u,
then BP is local and .

p
�u; ı/ is the maximal ideal of BP . Suppose d D u a unit

inAP . If u is not a square in the residue field �.P /, thenBP is local and the maximal
ideal of BP is generated by � and ı.

We begin with the following lemma.

Lemma 12.1. Let � be a generic point of X0 and S be a finite set of closed points
of xf�g. For every P 2 S , let ��;P 2 F �0P;� be a unit at � which is a reduced norm
from A˝F0P;� . Then there exists �� 2 F0� , which is a reduced norm from A˝F0�
such that ����1�;P 2 F

�n
0P;� for all P 2 S .

Proof. SupposeF�DF˝F0�=F0� is a ramified field extension. Then, by Lemma 6.3,
there exists an unramified algebra A0 over F0� such that

A˝F0 F0� ' A0 ˝F0� F�:
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ForP 2 S , let x��;P 2 �.�/�P be the image of ��;P 2 F �0P;� . We choose x�� 2 �.�/� be
close to x��;P for allP 2 S . SinceA0 is unramified overF0� , its specializationB0 is a
central simple algebra over �.�/. Since �.�/ is a global field of positive characteristic,
by the Hasse–Maass–Schilling theorem, x�� is a reduced norm fromB0. Let �� 2 F0�
be a lift of x�� . Since F0� is complete, �� is a reduced norm from A0 ˝F0 F0� , and
hence a reduced norm from A˝F F� . Since x�� is close to x��;P for all P 2 S and n
is coprime to char.�/, we have x�� x��1�;P 2 �.�/

�n
P for all P 2 S . Since F0P;� is

complete with residue field �.�/P , we have ����1�;P 2 F
�n
0P;� for all P 2 S .

Suppose that F�=F0� is an unramified field extension. Then the residue field z�.�/
of F� is a quadratic extension of �.�/. Let .L�; ��/ be the residue of A at �. Since
the residue commutes with the corestriction,

coresz�.�/=�.�/.L�; ��/ D 0:

Thus, by Proposition 3.2, L�=�.�/ is a dihedral extension. Since ��;P is a reduced
norm from A˝ F0P;� , we have

A � .��;P / D 0 2 H
3.F ˝ F0P;�; �

˝2
n /:

Let x��;P be the image of ��;P in the residue field �.�/P of FP;� . By taking the
residue of A � .��;P /, we get that .L�; ��; x��;P / D 0 (cf. [27, Proof of Lemma 4.7]).
Hence, x��;P is a norm from the extension

L� ˝�.�/ �.�/P =z�.�/˝�.�/ �.�/P :

Since �.�/ is a global field, by Corollary 5.2, there exists x�� 2 �.�/� with x�� a norm
from L�=z�.�/ and x�� x��1�;P 2 �.�/

�n
P .

Let �� 2 F0� be a lift of x�� 2 �.�/. Then ����1�;P 2 F
�n
0P;� . Since x�� is a norm

from L�=z�.�/, by Proposition 1.7, �� is a reduced norm from A˝ F0� .
Suppose F� D F ˝F0 F0� is not a field. Then

F� ' F0� � F0� and A˝F0 F0� ' A1 � A
op
1 ;

where Aop
1 is the opposite algebra. Since ��;P 2 F0P;� is a reduced norm from

A˝ F0P;� , we have ��;P is a reduced norm from A1 ˝ F0P;� . Then, as above, we
can find �� 2 F0� such that ����1�;P 2 F

�n
0P;� and �� is a reduced norm from A1.

Then �� is a reduced norm from A˝F0 F0� .

Lemma 12.2. Suppose that for every generic point � of X0 there exists c� 2 F �0�
such that �c� is a reduced norm from A ˝ F0;� . Then for every generic point �
of X0, there exists a� 2 F �0� such that �a� is a reduced norm from A˝F0� with the
following property: if �1 and �2 are two generic points of X0 and P 2 Sf�1g \ Sf�2g
with F ˝ F0P a field, then there exists aP 2 F �0P such that �aP is a reduced norm
from A˝ F0P and a�ia

�1
P 2 F

�n
0P;�i

forD 1; 2.
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Proof. Since the special fibre is a union of regular curves with normal crossings, for
a generic point � of X0, there exists �� 2 F0 a parameter at � such that for every
closed point P 2 Sf�1g \ Sf�2g for any two distinct generic points �1 and �2 of X0,
the maximal ideal at P is .��1 ; ��2/.

Suppose that for every generic point � ofX0 there exists c� 2 F0� such that�c� is
a reduced norm fromA˝F0;� . For every generic point � ofX0, let r� D ��.c�/. For
every closed pointP 2 Sf�1g\ Sf�2gwith F ˝F0P is a field, let aP D�

r�1
�1 �

r�2
�2 2F

�
0P .

Let � be a generic point of X0. Let P 2 Sf�g \ Sf�0g for some generic point
�0 ¤ �. Suppose that F ˝ F0P is a field. By the choice of X0, F=F0 is unramified
at P except possibly at �� and ��0 . Since the maximal ideal at P is .��; ��0/,
by [27, Corollary 5.5], F ˝ F0P;� is a field. Since n is coprime to char.�.P //, we
have

c� D uP�
r�
� �

sP
�0 .bP /

n

for some sP 2 Z, a unit uP 2 yAP and bP 2 F �0P;� (cf. Remark 7.1). Let

��;P D u
�1
P �

r�0�sP

�0 :

Let ˛ 2 H 2.F; �m/ be the class of A. Since A admits an F=F0-involution, we have

coresF=F0.˛/ D 0:

Since ��;P 2 F �0P;� , we have

coresF˝F0F0P;�=F0P;�.˛ � .��;P // D coresF˝F0F0P;�=F0P;�.˛/ � .��;P / D 0:

Since F ˝F0 F0P;� is a field and K0 is a local field, we have

coresWH 3.F; �˝2n /! H 3.F0; �
˝2
n /

is injective (see [27, Proposition 4.6]), and hence ˛ � .��;P / D 0. By [27, Theo-
rem 4.12], ��;P is a reduced norm from A.

Since ��;P is a unit at �, by Lemma 12.1, there exists �� 2 F0� which is a reduced
norm from A˝ F0� such that ����1�;P 2 F

�n
0P;� .

Let a� D c��� . Since �c� and �� are reduced norms from A ˝ F0� , �a� is a
reduced norm from A˝F0� . Let P 2 Sf�g\ Sf�0g for some generic point �0 ¤ � with
F ˝ F0P is a field. Then, by the choice of a� , we have

a� D �
r�
� �

r�0

�0 modulo F �n0P;�:

Hence, a�a�1P 2 F
�n
0P;� .

Lemma 12.3. Let �1 and �2 be two distinct generic points of X0. Suppose that
P 2 Sf�1g \ Sf�2g is a closed point with F ˝ F0P not a field. Suppose a�i 2 F

�
�i

is
such that �a�i 2 Nrd.A˝ F0�i /. Then there exists aP 2 F �0P such that �aP is a
reduced norm from A˝ F0P and a�ia

�1
P 2 F

�n
0P;�i

for i D 1; 2.
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Proof. Since F ˝ F0P is not a field and coresF=F0.A/ D 0, we have

F ˝ F0P ' F0P � F0P and A˝ F0P ' A1 � A
op
1

for some central simple algebra A1 over F0P . Write � D .�1; �2/. Since a�i� is a
reduced norm from A˝ F�i and a�i 2 F �0�i , we have a�i�1 and �1��12 are reduced
norms from A1 ˝ F0P;�i . Since by the choice of X0, the union of the support of �
on X and the ramification locus of A on X is a union of regular curves with normal
crossings, by Corollary 7.3, �1��12 is a reduced norm from A1 ˝ F0P .

The generic points �1 and �2 give discrete valuations �1 and �2 on F0P with
completionsF0�1;P andF0�2;P . Let zi 2 A1˝F0P;�i with reduced norm a�i�1. Let
z 2 A1˝F0P be close to zi for i D 1; 2. Let aP D ��11 Nrd.z/ 2 F0P . Then�1aP
is a reduced norm from A1 ˝ F0P . Since z is close to zi and Nrd.zi / D a�i�1, we
have Nrd.z/ is close toa�i�1. Hence, aP is close toa�i . Therefore, a�ia�1P 2 F

�n
0P;�i

.
Since �1��12 is a reduced norm and aP�1 is a reduced norm, aP�2 is a reduced
norm. In particular, aP� is a reduced norm.

Lemma 12.4. Let � be a generic point of X0 and P 2 xf�g a closed point. Suppose
a� 2 F� is such that �a� 2 Nrd.A ˝ F0�/. Then there exists aP 2 F �0P such
that �aP is a reduced norm from A˝ F0P and a�a�1P 2 F

�n
0P;� .

Proof. Suppose thatF˝F0P is a field. Then, by the choice ofX0 and by Lemma 8.1,
there exists aP 2 F0P such that �aP is a reduced norm from A˝F0P and a�a�1P 2
F n0U;P .

Suppose F ˝ F0P is a not field. Then, we get the required aP as in the proof of
Lemma 12.3.

We have an exact sequence of algebraic groups

1! SU.A; �/! U.A; �/! R1F=F0.Gm/! 1:

For any field extension L=F0, we have an induced exact sequence

U.A; �/.L/! .L˝F0 F /
�1
! H 1.L;SU.A; �//! H 1.L; U.A; �//; (?)

where .L˝F0 F /�1 D R1F=F0.Gm/.L/ is the subgroup of .L˝F0 F /� consisting of
norm one elements and the mapU.A; �/.L/! .L˝F0 F /

�1 is given by the reduced
norm. Further, the image of U.A; �/.L/! .L˝F0 F /

�1 is equal to

f��1�.�/ j � 2 Nrd.A˝F0 L
�/g

(see [19, p. 202]).
Theorem 12.5. Let K be a local field with the residue field � and valuation ring T .
LetF0 be the function field of a smooth projective curve overK andF=F0 a separable
quadratic extension. Let A be a central simple algebra over F of degree n with an
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involution � of second kind and F � D F0. Suppose that 2n is coprime to char.�/.
Let X0 ! Spec.T / be a proper normal model of F0 with special fibre X0. Let P0 be
a finite set of closed points of X0 containing all the singular points of X0 and U0 the
set of irreducible components of X0 n P0. Then the canonical map

H 1.F0;SU.A; �/!
Y
U2U0

H 1.F0U ;SU.A; �// �
Y
P2P0

H 1.F0P ;SU.A; �//

has trivial kernel.

Proof. Let � 2 H 1.F0;SU.A; �//. Suppose that � maps to 0 inH 1.F0x;SU.A; �//
for all x 2 U0 [ P0. Since U.A; �/ is rational and connected (see [22, Lemma 1,
p. 195]), by [13, Theorem 3.7], � maps to 0 in H 1.F0; U.A; �//. Hence, from the
exact sequence (?), there exists � 2 F �1 such that � maps to � inH 1.F0;SU.A; �/.
Let � 2 F � be such that � D ��1�.�/. Since � maps to 0 in H 1.F0U ;SU.A; �//,
there exists cU 2 F0U such that cU� is a reduced norm from A˝F0 F0U (cf. [19,
p. 202]).

Then, there exists a sequence of blow-ups X00 ! X0 such that X00 is regular, the
integral closure X0 of X00 in F is regular and the union of the special fibre of X0, the
ramification locus of A on X0 and the support of � on X0 is a union of regular curves
with normal crossings Corollary 11.3. Let P00 be a finite set of closed points of X00
containing all the singular points of the special fibreX 00 of X00 and at least one closed
point lying over points of P0. Let U00 be the set of components of X 00 n P00. Then �
maps to 0 in H 1.F0x0 ;SU.A; �// for all x0 2 P00 [ U00 (see [15, Section 5]). Thus,
replacing X0 by X00, we assume that the integral closure X of X0 in F is regular and
the union of the special fibre of X, the ramification locus of A on X and the support
of � on X is a union of regular curves with normal crossings.

Let � be a generic point of X0. Then � 2 U� for some U� 2 U. Let c� D cU� .
SinceF0U� � F0� , we have c� 2 F �0� and c�� is a reduced norm fromA˝F0F0� . Let
a� 2 F0� be as in Lemma 12.2. Then, by Artin’s approximation [4, Theorem 1.10],
as in the proof of [27, Lemma 7.2], there exists a nonempty open subset V� ofU� such
that a� 2 F0V� (see [14, Lemma 3.2.1]) and a�� is a reduced norm fromA˝F0F0V� .
Let aV� D a� 2 F0V� . Let U0 be the set of these V�’s. Let P00 be the complement of
the union of V�’s in X0. Then U0 is the set of components of X0 n P00.

Let P 2 P00. Suppose that P 2 Sf�g \ Sf�0g for two distinct generic points � and �0
ofX0. Then P 2 P0. If F ˝F0P is a field, then let aP 2 F0P be as in Lemma 12.2.
If F ˝ F0P is not a field, let aP 2 F0P be as in Lemma 12.3. Suppose P 2 Sf�g for
some generic point � of X0 and P 62 Sf�0g for all generic points �0 of X0 not equal
to �. Let aP 2 F0P be as in Lemma 12.4.

Let .V; P / be a branch. Then P 2 xV . By the choice of aP and aV , we have

aV a
�1
P D b

n
V;P

for some bV;P 2 F �0V;P . By [15, Corollary 3.4], for every x 2 U00 [ P00, there exists
bx 2 F

�
0x such that bV;P D bV bP for all branches .V; P /.
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For V 2 U0, let a0V D aV b
�n
V and for P 2 P00, let a0P D aP b

n
P . Then, we have

a0V D a
0
P 2 F0V;P

for all branches .V; P /. Hence, there exists a0 2 F0 such that a0 D a0x 2 F0x for all
x 2 U00 [ P00 (see [15, Section 3]). Since �ax is a reduced norm from A˝ F0x for
all x 2 U00 [ P00 and n is the degree of A, �a0x is a reduced norm from A˝ F0x for
all x 2 U00 [ P00. In particular, by [15, Proposition 8.2], �a0 is a reduced norm from
A ˝F0 F0� for all discrete valuations � of F0. Thus, by [27, Corollary 11.2], �a0
is a reduced norm from A. Since � D .�a0/�1�.�a0/, we have � is in the image
of U.A; �/.F0/! F �1, and hence � is trivial.

The following is immediate from Theorem 12.5 and [15, Corollary 5.9].
Corollary 12.6. Let K be a local field with residue field �. Let F0 be a function
field of a curve over K. Let F=F0 be a quadratic extension and A a central simple
algebra over F of index n with an F=F0- involution � . Suppose that 2n is coprime
to char.�/. Then the canonical map

H 1.F0;SU.A; �//!
Y
x2X0

H 1.F0x;SU.A; �//

has trivial kernel.

13. Local-global principle for special unitary groups: Discrete valuations

Theorem 13.1. Let K be a local field with residue field �. Let F0 be a function
field of a curve over K. Let F=F0 be a quadratic extension and A a central simple
algebra over F of index n with an F=F0- involution � . Suppose that 2n is coprime
to char.�/. Then the canonical map

H 1.F0;SU.A; �//!
Y

�2�F0

H 1.F0� ;SU.A; �//

has trivial kernel.

Proof. Let � 2 H 1.F0;SU.A; �//. Suppose that � maps to 0 inH 1.F0� ;SU.A; �//
for all � 2 �F0 . By Theorem 11.6, the image of � in H 1.F0; U.A; �// is zero.
Hence, from the exact sequence (?) of Section 12, there exists � 2 F �1 such that �
maps to � in H 1.F0;SU.A; �//. Write � D ��1�.�/ for some � 2 F �.

Let d 2 F �0 be such that F D F0.
p
d/. There exists a regular proper model X0

of F0 such that the special fibre and the support of d is a union of regular curves with
normal crossings. Further, the integral closure X of X0 in F has the following
property: X is regular, the special fibre of X, the ramification locus of .A; �/,
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the support of d , � and � is a union of regular curves with normal crossings
Corollary 11.3. Let X0 be the special fibre of X0.

Let x 2 X0 be a codimension zero point. Then x gives a discrete valuation �x
on F0 and F0x D F0�x . Hence, � maps to zero in H 1.F0x;SU.A; �//.

Let P 2 X0 be a closed point. Let AP be the local ring at P and BP the integral
closure of AP in F . Since BP is regular, there is at most one irreducible curve of X
in the support of d which passes through P . Further, there are at most two curves
passing through P which are in the union of special fibre of X0, the support of � and
ramification locus of A. Let x be one such curve and �x the discrete valuation of F0
given by x. Then F0�x � F0P;�x , and hence � maps to 0 in H 1.F0P;�x ;SU.A; �//.

Since � maps to � , there exists �x 2 F0P;�x such that ��x 2 Nrd.A˝ F0P;�x /.
Hence, by Lemma 8.1, there exists �P 2 F0P such that ��P 2 Nrd.A˝ F0P /. In
particular, � ˝ F0P is trivial. Hence, by Corollary 12.6, � is trivial.

14. Conjectures 1 and 2 for classical groups

In this section, we prove the validity of Conjecture 1 and Conjecture 2 for all groups of
classical type in the good characteristic case. In fact we prove local-global principles
for function fields of curves over any local field.

Theorem 14.1. LetK be a local field with residue field � and F the function field of
a curve overK. LetG be a connected linear algebraic group over F of classical type
(D4 nontrialitarian) with char.�/ good for G. Let Z be a projective homogeneous
space underG over F . IfZ.F�/ ¤ ; for all divisorial discrete valuations of F , then
Z.F / ¤ ;. Thus, Conjecture 1 holds for G.

Proof. Let Gss be the semisimplification of G=rad.G/. Since G is of classical type,
there exists a central isogeny G1 � � � � � Gr ! Gss with each Gi an almost simple
simply connected group of the classical type (D4 nontrialitarian) with char.�/ good.
It is well known that using the results of [7, Theorem 2.20] and [24, Proposition 6.10],
one reduces to the case r D 1 (cf. proof of [33, Corollary 4.6]).

Let G be a connected linear algebraic group with an isogeny G0 ! Gss for some
almost simple simply connected groupG0 of classical type (D4 nontrialitarian). IfG0
is of type 1An, then the result follows from Theorem 10.1. If G0 is of type 2An, then
the result follows from Theorem 11.5. If G0 is of type Bn, Cn or Dn, then the result
follows from [33].

Theorem 14.2. LetK be a local field with residue field � andF the function field of a
curve overK. LetG be a semisimple simply connected linear algebraic group overF
with char.�/ is good for G. Suppose G is of the classical type (D4 nontrialitarian).
Let Z be a principal homogeneous space under G over F . If Z.F�/ ¤ ; for all
divisorial discrete valuations of F , thenZ.F / ¤ ;. Thus, Conjecture 2 holds forG.
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Proof. For G of type Bn, Cn orDn (D4 nontrialitarian), this result is proved in [17,
29].

Suppose G is of type 1An. Then G ' SL.A/ for some central simple algebra A
over F and the principal homogeneous spaces under G are classified by

H 1.F;G/ ' F �=Nrd.A/:

Since char.�/ is good forG, the degree of A is coprime to char.�/. Hence, the result
follows from [27, Corollary 11.2].

SupposeG is of type 2An. Then there exists a separable quadratic extensionF=F0
and central simple algebra overF with anF=F0-involution� such thatG'SU.A; �/.
Since char.�/ is good for G, 2(deg.A/) is coprime to char.�/. Hence, the result
follows from Theorem 13.1.
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