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Picard modular forms and the cohomology of
local systems on a Picard modular surface
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Abstract. We formulate a detailed conjectural Eichler–Shimura type formula for the cohomology
of local systems on a Picard modular surface associated to the group of unitary similitudes
GU.2; 1;Q.

p
�3//. The formula is based on counting points over finite fields on curves of

genus three which are cyclic triple covers of the projective line. Assuming the conjecture we
are able to calculate traces of Hecke operators on spaces of Picard modular forms. We provide
ample evidence for the conjectural formula.

Along the way we prove new results on characteristic polynomials of Frobenius acting on
the first cohomology group of cyclic triple covers of any genus, dimension formulas for spaces of
Picard modular forms and formulas for the numerical Euler characteristics of the local systems.
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1. Introduction

In his 1963 paper [46], Shimura listed a number of arithmetic ball quotients that are
rational and that parametrize Jacobians of finite covers of the projective line. This
paper deals with one of these cases and tries to use the link with the moduli of curves
to study the modular forms on one of these ball quotients. The case at hand is the
2-dimensional ball quotient studied by Picard in the 1880s ([39–41]) associated to the
unitary group in three variablesU.2; 1/ over the field F D Q.

p
�3/. It parametrizes

curves of genus 3 that are cyclic covers of degree 3 of the projective line. Around
1979, Shintani considered vector-valued Picard modular forms on such unitary groups
in three variables and gave a criterion for such modular forms to be Hecke eigenforms,
see [48]. The volume [33] (see also [43]) is devoted to showing that the L-function
of a Picard modular surface is the product of automorphic L-functions. But though
the literature on automorphic forms on unitary groups is extensive explicit examples
are rare. Holzapfel and Feustel studied the rings of scalar-valued modular forms on
the group in question, [17, 26], and Finis gave in [18] a list of Hecke eigenforms of
weight � 12 and gave a few Hecke eigenvalues.

https://creativecommons.org/licenses/by/4.0/
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We decided to use the interpretation of this ball quotient as a Hurwitz space of
cyclic triple covers to investigate the traces of Hecke operators using the cohomology
of local systems on this moduli space. By counting points on the curves in our
family over finite fields we are able to calculate the traces of Frobenius acting on the
local systems associated to the cohomology of these curves. We follow the approach
initiated in the papers [6, 15] dealing with Siegel modular forms of degree 2 and 3.
From the traces of Frobenius on the étale cohomology of our local systems we try
to calculate the traces of the Hecke operators on the spaces of vector-valued Picard
modular cusp forms.

In the case of modular forms on SL.2;Z/ the basic formula, essentially due to
Deligne, expresses the compactly supported cohomology of a local system Vk on the
moduli A1 of elliptic curves in terms of the motive SŒk C 2� of modular forms of
weight k C 2 by an Eichler–Shimura type formula

ec.A1;Vk/ D �SŒk C 2� � 1:

The main goal of this paper is to provide a detailed conjectural analogue of this
formula for Picard modular forms for F ; this formula takes the form

ec
�
X�Œ

p
�3�;W�

�
D MSŒn.�/�C eextr.�/;

where W� is a local system, the term MSŒn.�/� is the contribution of genuine Picard
modular forms (that have 3-dimensional Galois representations) of weight n.�/
and eextr.�/ is a correction term and the analogue of 1 in the earlier formula, but
rather complicated due to lifts from smaller groups.

To determine the correction term eextr.�/ we need to subtract the contribution
of the boundary, the so-called Eisenstein cohomology, essentially determined by
Harder [21]. Since we are interested in the genuine Picard modular eigenforms,
the forms that are not lifts from smaller groups and come with 3-dimensional
Galois representations, we also need to subtract the so-called endoscopic terms.
In the case at hand there is a multitude of endoscopic terms and by analyzing the
traces that we computed we were able to make a detailed conjectural description
of all the endoscopic contributions. Subtracting the Eisenstein contribution and the
conjectured endoscopic terms we find heuristically the traces of the Hecke operators
on the spaces of genuine Picard modular forms. These are Picard modular forms on
the congruence subgroup of level

p
�3 and thus there is a symmetry group, equal to

the symmetric group S4, acting. More precisely, we get traces of Hecke operators T�
on spaces of Picard modular forms of a given weight for primes � in the ring of
integers OF with normN.�/ �3 1 (that is, N.�/ � 1.mod 3/) in a equivariant way,
that is, taking into account the S4-isotypic parts.

The many terms appearing in the correction term eextr.�/ point to the difficulty of
getting such detailed results on Picard modular forms using trace formulas, cf. [30].

In order to do this we need to be able to calculate the characteristic polynomial of
Frobenius on the étale cohomologyH 1.Cf ; xQ`/ of a curve Cf given by y3 D f .x/
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over a finite field in an efficient way. More precisely, we need the characteristic
polynomial of Frobenius on the part of the cohomology where the cyclic Galois
automorphism ˛ of order 3 of Cf acts by a given third root of one. The formula that
we give for the characteristic polynomial for arbitrary genus generalizes a theorem of
Gauss dealing with the case of genus 1.

The conjectures in this article are based upon counts of curves together with
their characteristic polynomials of Frobenius for prime powers q �3 1 with q � 67.
Using this data we can compute traces of Frobenius Fq for any local systems W�

(or it is at least computationally very inexpensive). We settled for those of Deligne
weight at most 40. In turn this (assuming our conjectures) gave the traces of T .�/
for N.�/ � 67 on the corresponding spaces of Picard cusp forms.

To make such a computation over a finite field of q elements, we need roughly q
operations for each curve (to compute the characteristic polynomial) and there are
roughly q2 points, i.e., curves, in our moduli space (since it is a surface). This tells
us that it should be possible to make these computations for significantly larger q.

The evidence that we have for the validity of our conjectures is manifold. In this
paper we calculate the dimensions of the spaces of modular forms and we calculate
the numerical Euler characteristics of the cohomology of our local systems. To
begin with, our procedure for calculating the traces of Hecke operators always yields
zero when the dimension of cusp forms is zero. Moreover, since we started this
project about ten years ago Fabien Cléry and one of us guided by these heuristic data
have constructed explicitly vector-valued modular forms and the results thus obtained
in [9] agree with the conjectures. Another striking piece of evidence is provided by
congruences of Harder type. Harder predicts congruences modulo primes appearing
in the critical values of L-series of Hecke characters and we find quite a number of
examples of such congruences.

We now sketch the contents of this paper. After recalling the modular surfaces
and modular forms and Hecke operators and local systems, we treat the BGG complex
for our Shimura variety and use it to describe the Hodge structure on the cohomology
of our local systems. We use it to describe the Eisenstein cohomology. After that
we calculate the dimensions of spaces of cusp forms on our groups using Riemann–
Roch and the holomorphic Lefschetz formula. We then discuss the moduli of abelian
threefolds with multiplication by OF and the moduli of curves of genus three with a
cyclic Galois automorphism of order three, including degenerations of such curves.
We give a theorem describing the characteristic polynomial of Frobenius on the étale
cohomology on cyclic triple covers of the projective line. We introduce the Euler
characteristics of our local systems and explain how we carried out the counts on
our curves over finite fields. We then state the conjectures on the endoscopic terms.
We conclude with many examples of our heuristic results on Picard modular forms
and explain the evidence for the correctness of these results. In particular we list a
number of congruences of Harder type.

We intend to make our results available on a website in the style of [5].
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2. Picard modular surfaces and Picard modular forms

We will first introduce the complex fibres of our spaces using their interpretation as
quotients of a complex 2-ball by an arithmetic group, together with the associated
modular forms.

2.1. Picard modular groups and surfaces for the Eisenstein integers. Let F be
the number field Q.

p
�3/ D Q.�/ with � a third root of unity, and with ring of

integers OF D ZŒ��. Consider the vector space V D F 3 with non-degenerate
hermitian form

h.z1; z2; z3/ D z1z
0
2 C z

0
1z2 C z3z

0
3;

where the prime refers to the Galois automorphism of F . LetG be the corresponding
algebraic group defined over Q of similitudes of h

G.Q/ D fg 2 GL.3; F / W 8z 2 V; h.gz/ D �.g/h.z/ with �.g/ 2 Qg:

We have that �3.g/ D NF=Q.det.g// (with NF=Q the norm) and � defines a hom-
omorphism G ! Gm called the multiplier or similitude norm. This group is also
denoted by GU.2; 1; F / and it is called the group of unitary similitudes of signat-
ure .2; 1/. The group G0 D ker.�/, also denoted U.2; 1; F /, is the ordinary unitary
group andG0\ ker det, also denoted SU.2; 1; F /, is the special unitary group. If we
do a base change to F our group G becomes isomorphic to GL.3; F / �Gm, where
the last factor corresponds to the multiplier �.

We identify the Picard modular group G0.Z/ with

fg 2 GL.3;OF / W h.gz/ D h.z/g

and we use the notation

� WD G0.Z/ and �1 WD G
0.Z/ \ ker det :

The following congruence subgroups play a central role in this paper:

�Œ
p
�3� WD fg 2 � W g � 1 .mod

p
�3/g;

�1Œ
p
�3� WD fg 2 �1 W g � 1 .mod

p
�3/g:
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Note that the center of �1, �1Œ
p
�3� and �Œ

p
�3� equals �3, while the center of �

is �6. There are isomorphisms (see also below)

�=�1Œ
p
�3� Š S4 � �6; �1=�1Œ

p
�3� Š S4;

where the symmetric group S4 occurs as the special orthogonal group of the F3-
vector space O3

F � V modulo .
p
�3/.

Choose an embedding � WF ! C and identify F ˝Q R with C. With this iden-
tification we get a 3-dimensional complex vector space Z D VR D V ˝Q R, which
is a hermitian space of signature .2; 1/. We let G.R/ act on VR as the standard
representation. The set of complex lines in Z on which h is negative definite

B WD fU � Z W dim.U / D 1; hjU < 0g

gives us a complex 2-ball inside P .Z/ D P2. If we set u D z3=z2 and v D z1=z2
we find an explicit description of this ball,

B D f.u; v/ 2 C2
W v C xv C uxu < 0g:

Any element g D .gij / in GC.R/ WD fg 2 G.R/ W �.g/ > 0g now acts on B by

g � .u; v/ WD
�g31v C g32 C g33u
g21v C g22 C g23u

;
g11v C g12 C g13u

g21v C g22 C g23u

�
:

All finite index subgroups �� of � act properly discontinuously on B and the
complex quotient surface ��nB , denoted byX�� , is called a Picard modular surface.
Such a quotient is not compact, but can be compactified by adding finitely many
points, called cusps, which are the orbits of the group action on the set @B \ P2.F /
of rational points. This is called the Baily–Borel compactification and it will be
denoted by X��� .

In the specific cases that we consider, these Picard modular surfaces have been
studied in detail by Holzapfel and Feustel and most of the statements in this section
can be found in [26, 27] (see also [17]).

The action of � on @B \ P2.F / has only one orbit since the class number
of F is 1, see [50]. The group �1Œ

p
�3� has four cusps and the isomorphism

�=�1Œ
p
�3� Š S4 � �6 above is given by g 7! .�.g/; det.g//, where �.g/ is the

permutation of the four cusps.
The action on B of �1Œ

p
�3� modulo its center is not free, but has three orbits of

isolated fixed points. These three points become quotient singularities of the form
C2=A with A D hdiag.�; �2/i � GL.2;C/ on the surface X�1Œ

p
�3�. They can be

resolved by a configuration of two non-singular rational curves with self-intersection
number �2 intersecting transversally in one point.

The cusps of X�
�1Œ
p
�3�

are singular points and each cusp singularity can be
resolved by an elliptic curve E D C=

p
�3OF . All these elliptic curves have self-

intersection number �3. We number the cusps by i D 1; 2; 3; 4 and the resolution
curves accordingly by Ei .
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The smooth surface resulting from resolving the quotient and cusp singularities
of X�

�1Œ
p
�3�

is denoted by Y�1Œ
p
�3�. Both these spaces admit an action of S4 � �6.

We can define a modular curve on Y�1Œ
p
�3� by considering the embedding of the

complex upper half-plane H inB by � 7! .0;
p
�3�/with corresponding embedding

of algebraic groups GL2 ! G given by

�
a b

c d

�
7!

0@ a
p
�3b 0

c=
p
�3 d 0

0 0 ad � bc

1A :
This defines an algebraic curve on X�1Œ

p
�3� isomorphic to �0.3/nH. Its closure in

X�
�1Œ
p
�3�

passes through two cusps. Applying the action of S4 we get a curve Dij
on X�

�1Œ
p
�3�

passing through the cusps i and j for each 1 � i < j � 4.
After blow-up, we get the following configuration of curves on Y�1Œ

p
�3�.

(i) Four elliptic curves Ei 1 � i � 4 with E2i D �3.

(ii) Six rational curves Dij intersecting Ei and Ej transversally.

(iii) Three pairs of rational curves Rij ; Rkl with fi; j; k; lg D f1; 2; 3; 4g resolving
the quotient singularities, withDijRij D 1 andDijRk;l D 0 if fk; lg ¤ fi; j g.

The surface X�
�1Œ
p
�3�

can be identified with the 3-fold cover of the hyperplane
x1 C x2 C x3 C x4 D 0 in P3 given by

�3 D
Y

1�i<j�4

.xi � xj /; (2.1)

with the action of .�;˙�/ 2 S4 � �6 Š �=�1Œ
p
�3� by xi 7! sgn.�/x�.i/ and

� 7! ��. The four cusps correspond to the points with � D 0 and

.x1; x2; x3; x4/ D .1 W 1 W 1 W �3/; .1 W 1 W �3 W 1/; .1 W �3 W 1 W 1/; .�3 W 1 W 1 W 1/;

and the remaining three singularities to points with � D 0 and

.x1; x2; x3; x4/ D .1 W 1 W �1 W �1/; .1 W �1 W 1 W �1/; .1 W 1 W 1 W �1/:

The curves xi D xj give the images of the curves Dij .
Taking the quotient by

�Œ
p
�3�=�1Œ

p
�3� Š �3

gives an identification ofX�
�Œ
p
�3�

with P2 as the hyperplane above in P3 with action
by

�=�Œ
p
�3� Š S4 � �2:
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2.2. Picard modular forms. Fix a point x0 2B and let K be the stabilizer of x0
under the action of G.R/. Recall that a factor of automorphy is a mapping

J WG.R/ � B ! GL.W /;

withW a complex finite-dimensional vector space, fulfilling a cocycle condition and
where J restricted to K � x0 is a representation.

The action of the group GC.R/ on B determines two factors of automorphy for
g D .gij / 2 G

C.R/ and .u; v/ 2 B given by

j1.g; u; v/ WD g21v C g22 C g23u;

j2.g; u; v/ WD det.g/�1
�
G32uCG33 G32v CG31
G12uCG13 G12v CG11

�
;

with Gij the minor of gij , see [47]. Note that

det.j2.g; u; v// D j1.g; u; v/ � .det.g//�1

and that the transpose of the Jacobian of the action of GC.R/ on B is given by

j1.g; u; v/
�1j2.g; u; v/

�1:

Let .j; k/ be a pair of integers with j � 0. Define a slash operator on functions
f WB ! Symj .C2/ for g 2 GC.R/ via

.fjj;kg/.u; v/ WD j1.g; u; v/
�k Symj .j2.g; u; v/

�1/f .g � .u; v//:

For any finite index subgroup �� in � and character � of finite order on ��, we
define the vector space of modular forms of weight .j; k/ and character � on �� by

Mj;k.��; �/ WD
˚
f WB ! Symj .C2/ W f holomorphic, and

8g 2 �� fjj;kg D �.g/f
	
:

The space of cusp forms of weight .j; k/ and character � on �� is the subspace
of modular forms in Mj;k.��; �/ vanishing in the cusps and will be denoted by
Sj;k.��; �/. Only the characters that are a power of det.g/ will be considered in this
paper. We will just write Mj;k.��/, or Sj;k.��/, when � is trivial. For more details
we refer to [9] and the references therein.

Alternatively, we could define another factor of automorphy

j3.g; u; v/ WD det.g/

and a new slash operator

.fjj;k;lg/.u; v/ WD j1.g; u; v/
�k Symj .j2.g; u; v/

�1/j3.g; u; v/
�lf .g � .u; v//;
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with corresponding spaces of modular formsMj;k;l.��/ DMj;k.��; detl/ and cusp
forms Sj;k;l.��/ D Sj;k.��; detl/.

The group
�Œ
p
�3�=�1Œ

p
�3� Š �3

(generated by diag.1; 1; �/) acts on Mj;k.�1Œ
p
�3�/. This action is reflected in

a decomposition of Mj;k.�1Œ
p
�3�/ as a sum of spaces of modular forms with

character

Mj;k

�
�Œ
p
�3�

�
˚Mj;k

�
�Œ
p
�3�; det

�
˚Mj;k

�
�Œ
p
�3�; det2

�
:

Remark 2.1. Note that Mj;k.�1Œ
p
�3�/ D f0g if j 6�3 k. Moreover, we have

Mj;k

�
�Œ
p
�3�; det`

�
D Sj;k

�
�Œ
p
�3�; det`

�
if ` 6�3 j , see [9, Prop. 5.1].

The rings of scalar-valued modular forms on �Œ
p
�3� and �1Œ

p
�3� were deter-

mined by Holzapfel and Feustel ([17, 26]).
Proposition 2.2. We have

˚
1
kD0M0;3k

�
�Œ
p
�3�

�
D CŒx1; x2; x3; x4�=.x1 C x2 C x3 C x4/;

where x1; x2; x3; x4 are modular forms of weight 3, and the group S4 acts on these
modular forms by � W xi 7! sgn.�/x�.i/. The ring˚1

kD0
M0;3k.�1Œ

p
�3�/ is the ring

extension of˚1
kD0

M0;3k.�Œ
p
�3�/ by the element

� 2M0;6

�
�Œ
p
�3�; det

�
satisfying the equation (2.1) and where S4 acts on � by the sign representation.

Since
X�
�Œ
p
�3�
Š Proj

�
˚
1
kD0M0;3k

�
�Œ
p
�3�

��
we retrieve the identification of X�

�Œ
p
�3�

with P2 given at the end of Section 2.1,
see [26]. We point out that the xi have F -integral Fourier–Jacobi expansions,
see [9, 18].
Proposition 2.3. If k < 0 and j � 0 then dimMj;k.�1Œ

p
�3�/ D 0.

Proof. If one develops a vector-valued modular form f 2Mj;k.�1Œ
p
�3�/ along the

modular curve given in Section 2.1 then the first component of the vector f .0;
p
�3�/

is a modular form on �1.3/ � SL2.Z/ of weight k, see [9, Prop. 8.4], and hence it is
zero. The same thing happens for other modular curves. The image of a parametriz-
ation

H! B; � 7! .a;
p
�3�/
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with a 2 F yields a modular curve. Restricting modular forms Mj;k.�1Œ
p
�3�/

leads to modular forms of negative weight on congruence subgroups of SL.2;Z/
which are zero. Since these curves lie dense, we see that the first component of
f .u;

p
�3�/ is zero for all u; � . Applying the invariance of modular forms under the

unipotent radical of a parabolic subgroup (see [9, eq. (4)]) we find that all components
vanish.

Remark 2.4. The proof can be easily adapted to show that the proposition holds for
any finite index subgroup �� of � .

2.3. Hecke Operators. The Hecke rings for the arithmetic group �1 and �1Œ
p
�3�

were studied by Shintani [48] and Finis [18]. Outside the prime 3 these Hecke rings
are the same and they are generated by elements T .�/, T .�; �/ for elements � 2 OF
with normN.�/ D p for primes p �3 1, and elements T .p/ and T .p; p/ for primes
p �3 2. For �1 we also have elements T .

p
�3/ and T .

p
�3;
p
�3/. In fact, T .�/

(respectively, T .�; �/) corresponds to the double coset of diag.1; p; �/ (respectively,
diag.�; �; �/), while forp �3 2 the operatorT .p/ (respectively, T .p; p/ corresponds
to the double coset of diag.1; p2;�p/ (respectively, diag.�p;�p;�p/). We refer
to Finis’ paper and to [9] for a description of the Hecke rings and the action on
modular forms. Note that for a Hecke eigenform with eigenvalues �� for T .�/ we
have �x� D x�� .

We define for �2OF with norm a prime p �3 1 and given weight .j; k/ the poly-
nomial

Qj;k
� .X; �/ D 1 � �X C �jC1x�k�2x�X2 � �2jCkx�jC2k�3X3

and for a prime p �3 2 we define Qj;k
�p.X; �/ by�

1 �
�
� � .p � 1/.�p/jCk�3

�
X C p2jC2k�2X2

��
1 � .�p/jCk�1X

�
:

The local factor of the L-function of a Picard modular form f of weight .j; k/ that
is an eigenform for the Hecke algebra with eigenvalue ��.f / for T .�/ with

N.�/ D p �3 1

equals the inverse ofQj;k
� .N.�/�s; ��.f //, while for a prime p �3 2 the local factor

is the inverse of Qj;k
�p.N.p/

�s; ��p.f // with ��p the eigenvalue for T .p/.

2.4. Modular forms as sections of automorphic vector bundles. In this section we
will realize our modular forms as sections of some vector bundles. We will use the
interpretation of B as the Grassmann variety of negative lines in Z D VR. This
interpretation providesB with two vector bundlesT andS fitting in an exact sequence

0! T ! B �Z ! S ! 0;
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where T is the tautological line bundle that associates to a point of B the negative
line it represents, and S is the tautological quotient bundle of rank 2. The tangent
bundle to B is given by

Hom.T; S/ D S ˝ T �1;
so the cotangent bundle �1B equals S_ ˝ T .

Let � 0 be a freely acting finite index subgroup of � . Put X D X�0 D � 0nB . Let
X� D X��0 denote the Baily–Borel compactification ofX�0 and Y D Y�0 its minimal
resolution. The cotangent bundle �1X is then equal to the quotient � 0n.S_ ˝ T /.
Let D denote the resolution divisor on Y of the cusps of X�. Mumford’s canonical
extension of �1X extends to �1Y .logD/ on Y , see [38, Prop. 3.4]. The bundle on X
defined by � 0nS_ will be denoted by U and the bundle � 0nT by L. With abuse of
notation their canonical extensions to Y will be denoted with the same letters.

If we choose a base point x0 D .u0; v0/ 2 B , then B can be identified with
G0.R/=K0, where the maximal compact subgroupK0 Š U.2/�U.1/ is the stabilizer
of x0. Choosing instead a line in Z for which h is negative definite, then if K is
the stabilizer in G of the line spanned by x0 we find that K Š C� � K0 and that
B Š G.R/=K.

For each finite-dimensional complex representation �WK ! GL.W / we get an
automorphic vector bundle W� by G.R/ �K W ! B , where .g; w/ is identified
with .gk; �.k/w/ for all g 2 G.R/, w 2 W and k 2 K. The group G.R/ acts
naturally on the left by g0:.g; w/ D .g0g; v/. After taking the quotient by � 0 we get
an automorphic vector bundle W� on X . These vector bundles extend canonically
to Y , and will be denoted with the same letters.

Recall from Section 2.2 that a factor of automorphy J , when restricted toK �x0,
is a representation �, and so J determines a trivialization of W� by

ˆJ WG.R/ �K W ! B �W

with .g; w/ 7! .gx0; J.g; x0/w/. The global sections of the bundle W� on Y can
be identified with the modular forms transforming with the factor of automorphy J .
It follows directly from our definitions that the bundle L comes with a trivialization
given by the factor of automorphy j1. As mentioned in Section 2.1, the Jacobian
of the action of G.R/ of B is by j�11 j�12 . Taking the dual and tensoring with L�1
gives that U has a trivialization given by j2. Finally, we find that the bundle
R WD det.U /�1 ˝ L corresponds to the factor of automorphy j3. In summary, the
relations between vector bundles and factors of automorphy are as follows

L$ j1; U $ j2; R$ j3;

and moreover
det.U / D L˝R�1; U_ Š U ˝ L�1 ˝R:

Definition 2.5. For integers j; k; l with j � 0, we put

Wj;k;l WD Symj .U /˝ Lk ˝Rl :
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We then get the following interpretation of modular forms.
Proposition 2.6. For integers j; k; l with j � 0, we have that

Mj;k;l.�
0/ D H 0.Y�0 ;Wj;k;l/; (2.2)

and
Sj;k;l.�

0/ D H 0.Y�0 ;Wj;k;l ˝O.�D//: (2.3)
Furthermore, we have that �1X .logD/ Š U ˝ L. The canonical extension of

the canonical bundle �2X equals on the one hand �2Y .D/ and on the other hand, by
a local calculation or since the canonical extension commutes with exterior products
(see [16, p. 225]), it equals det.�1X .logD//. We thus find

�1Y .logD/ Š U ˝ L; �2Y .D/ Š L
3
˝R�1: (2.4)

The subgroups of � that we are mainly considering do not act freely on B . An
automorphic vector bundle W� on B will become a vector bundle on X precisely if
the stabilizer of any point x 2 B acts trivially on the fibre .W�/x . Let us consider
the group �1Œ

p
�3�. The center of �1Œ

p
�3� is generated by � � 13, and since

j1.� � 13; u; v/ D �; j2.� � 13; u; v/ D �
2
� 12; j3.� � 13; u; v/ D 1;

a necessary condition for Wj;k;l to be vector bundle on X�1Œ
p
�3� is that j �3 k.

The stabilizer of one the three singular points x inB is generated by a matrix gx with
eigenvalues 1; �; �2 such that

j1.gx; x/ D �; j2.gx; x/ D diag.�; 1/; j3.gx; x/ D 1;

so W� is only a vector bundle on X�1Œ
p
�3� if j D 0 and k �3 0.

To treat the cases of non-freely acting groups we can replace the group by a
freely acting finite index normal subgroup and then take invariants. By the Koecher
principle, these forms extend to holomorphic sections of Symj .U /˝Lk ˝Rl over
the cusp resolutions. Also the quotient singularities pose no problem. Therefore, the
identities of (2.2), (2.3) still hold on �Œ

p
�3� and �1Œ

p
�3�.

Remark 2.7. Proposition 2.3 together with (2.3) shows that

H 0
�
Y�Œ
p
�3�;Wj;k;l ˝O.�D/

�
D 0

for any j; l � 0 and k < 0. This argument is easily generalizable to other Picard
modular surfaces and other arithmetic subgroups. Compare with the vanishing results
of [36, 37].

3. Cohomology of complex local systems

In this section we introduce the local systems of interest to us and we use the BGG-
complex to find information about the cohomology of these local systems.
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3.1. Local systems and roots. A vector bundle W�, as defined in the previous sec-
tion, is a local system, i.e., locally constant, if the representation � is a restriction of
a representation of G.R/.

We have the local system W on X�� coming from the dual of the standard
representation of G.R/ acting on VR, as in the beginning of Section 2.4. In terms
of a factor of automorphy J , the local systems are the ones for which J.g; x/ are
independent of x. The bundleR is thus a local system and we find that it is isomorphic
to ^3W . It is constant for any �� that is a subgroup of �1 and since �=�1 Š �6 we
see that .^3W /6 Š R6 is constant for subgroups of � .

The representation theory of G and K over the complex numbers in terms of
roots and highest weights will be important for the construction of the BGG-complex
which we will use in Section 3.2.

Note first that the base change ofG to C is isomorphic to GL.3;C/�Gm, where
the last factor corresponds to the multiplier �.

LetQ be a maximal parabolic subgroup andQ DM Ë U a Levi decomposition
with U the unipotent radical of Q. The complexification of K, namely GL.2;C/ �
GL.1;C/, is conjugate to that of M .

Let T be the maximal torus of G of diagonal matrices g D diag.a1; a2; a3/ with
ai 2 F

� satisfying

a1a
0
2 D a

0
1a2 D a3a

0
3 D �.g/ 2 Q�:

We have the characters Li Wg 7! ai . The roots are

˙.L1 � L2/; ˙.L1 � L3/; ˙.L2 � L3/:

We can view ˛ D L1 � L2 and ˇ D L2 � L3 as two simple roots and a system of
fundamental weights is 
1 D L1, 
2 D L1 C L2 and 
3 D L1 C L2 C L3.

Then ˆCG D f˛; ˇ; ˛ C ˇg is a system of positive roots, occurring in the adjoint
action on the unipotent radical U and we can take ˆCM D f˛g.

The Weyl group WG of G is generated by the reflections s˛ and sˇ which act on
the fundamental weights by

s˛W

8̂<̂
:

1 7! 
2 � 
1;


2 7! 
2;


3 7! 
3;

sˇ W

8̂<̂
:

1 7! 
1;


2 7! 
1 � 
2 C 
3;


3 7! 
3:

Then put � D s˛sˇ s˛ D sˇ s˛sˇ with �.˛/ D �ˇ and �.ˇ/ D �˛, and

�.n1
1 C n2
2 C n3
3/ D �n2
1 � n1
2 C .n1 C n2 C n3/
3:

The Weyl group WM equals hs˛i. Define

WM
WD fw 2 WG W ˆ

C

M � w.ˆ
C

G/g:
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We find that WM D f1; sˇ ; sˇ s˛g. Put ı WD ˛ C ˇ D 
1 C 
2 � 
3, which is half
the sum of the positive roots. We have an involution on WM given by w 7! s˛w�

with s˛ and � the elements of longest length in WM and WG .
For an element w in the Weyl group and a weight � we define an action by

w � � WD w.�C ı/ � ı:

For each weight� D n1
1Cn2
2Cn3
3, we get an irreducible finite-dimensional
complex representation of G with highest weight �. The corresponding local system
on X�� will be denoted by W� DWn1;n2;n3 and it can be found inside

Symn1.W /˝ Symn2.^2W /˝ Symn3.^3W /:

For the same weight � we get an irreducible finite-dimensional complex representa-
tion of K. To identify this representation we consider the factors of automorphy for
a diagonal matrix g, and we then find that j1 corresponds to 
1, j3 corresponds to 
3
and j2 to 
2 � 
3. The vector bundle corresponding to � is thus Wn2;n1;n2Cn3 in the
notation of Section 2.4. Note that the cotangent bundle U ˝ L has highest weight
ı D ˛ C ˇ. A weight � will be called regular if n1 > 0 and n2 > 0.

We will return to these local systems and vector bundles in terms of the moduli
interpretation of our Picard modular surfaces in Section 7.

3.2. The BGG-complex. We will here apply the methods of Faltings and Chai [16,
Ch. VI] to our situation, especially the theory exposed on pages 228 to 237. For a
given local system one obtains a complex of vector bundles, called the dual BGG
complex, with differentials that are differential operators between vector bundles. It
is obtained as a direct summand of the de Rham complex of the local system.

Let �� be a finite index subgroup of � , and let � 0 be a normal finite index
subgroup of �� that acts freely on B . As above, consider the surface Y�0 that is the
minimal resolution of the cusp singularities of the Baily–Borel compactification of
X�0 D �

0nB with resolution divisor D. Let the inclusion of X�0 in Y�0 be denoted
by j .

The BGG-complex that the methods of [16] give for a local system W� on X�0
is K�

�
with

K
q

�
D ˚w2WM ; `.w/DqW

_
w��:

The vector bundles W� extend canonically over the cusp resolutions and the
differential operators do as well. We denote the resulting complex on Y�0 by xK�

�
.

Proposition 3.1. Let � D n1
1 C n2
2 C n3
3. The dual BGG-complex

Symn1.U /˝ L�n1�n2 ˝Rn1Cn2Cn3! Symn1Cn2C1.U /˝ L�n1C1 ˝Rn1Cn2Cn3

! Symn2.U /˝ Ln1C3 ˝Rn2Cn3�1 ! 0

is quasi-isomorphic to Rj�W�. Similarly, RjŠW� is quasi-isomorphic to the dual
BGG-complex tensored with O.�D/.
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Proof. This follows as in [16, Prop. 5.4]. Taking the dual corresponds to applying��
to � and thenWM changes toWM 0 D hsˇ i. We thus consider the triples representing
w � .��.�// for w 2 WM 0 . These are

.n2; n1;�n1 � n2 � n3/; .�n2 � 2; n1 C n2 C 1;�n1 � n2 � n3/;

.n1 � n2 � 3; n2;�n2 � n3 C 1/:

Taking the duals of the resulting W� gives the result.

For the case n1 D n2 D n3 D 0 we get the usual logarithmic de Rham complex
��.logD/.
Remark 3.2. The dual of W� with � D n1
1 C n2
2 C n3
3 corresponds to

��.�/ D n2
1 C n1
2 C .�n1 � n2 � n3/
3:

The Serre dual of W� D Syma.U /˝ Lb ˝Rc is

Syma.U /˝ L�a�bC3 ˝Ra�c�1 ˝O.�D/:

The Serre duals of the terms occurring in the BGG complex for j�W� occur in
reverse order in the BGG complex of jŠW��.�/.

Put j�j WD n1 C 2n2 C 3n3. From [16, Thm. 5.5] it follows that H i .X�0 ;W�/

has a Hodge structure of weight � i C j�j and the compactly supported cohomology
H i
c .X�0 ;W�/ has a Hodge structure of weight � i C j�j. We also get the following.

Proposition 3.3. For � D n1
1 C n2
2 C n3
3, we have a Hodge filtration on
H i
c .X�0 ;W�/ equal to

F n1Cn2Cn3C2 � F n2Cn3C1 � F n3

and the graded pieces can be identified with

H i�2.Y�0 ;Symn2.U /˝ Ln1 ˝Rn2Cn3 ˝�2Y /;

H i�1.Y�0 ;Symn1Cn2.U /˝ L�n1 ˝Rn1Cn2Cn3 ˝�1Y /;

H i .Y�0 ;Symn1.U /˝ L�n1�n2 ˝Rn1Cn2Cn3 ˝O.�D//:

For i D 2 we see that the first step of the Hodge filtration is isomorphic to the
space of cusp forms

Sn2;n1C3;n2Cn3�1.�
0/:

But note that we want this space of cusp forms to have Hodge weight n1Cn2C2 and
the discrepancy is due to a “twisting” that will be described further in Section 7.3.1.

We define the inner cohomology H i
Š
.X�0 ;W�/ as the image under the natural

map of H i
c .X�0 ;W�/ in H i .X�0 ;W�/. It follows that the inner cohomology will

have a pure Hodge structure of weight j�j C i . By results of Ragunathan, Li–
Schwermer and Saper [35, 42, 44] for regular � (that is, n1 > 0, n2 > 0) we know
that H i

Š
.X�0 ;W�/ ¤ 0 implies i D 2.

Note that by taking invariants under ��=� 0, all results in this section hold also
for � 0 replaced by ��. In particular they hold for �� equal to �Œ

p
�3� or �1Œ

p
�3�.
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3.3. The neighborhood of a cusp. For a freely acting finite index normal subgroup � 0
of �1Œ

p
�3�, each cusp of X��0 is resolved by an elliptic curve and the quotient

group �=� 0 acts transitively on the set of cusps. Therefore it suffices to look at the
cusp at infinity represented by .1 W 0 W 0/ 2 B . The isotropy group �1 of this cusp
in � consists of elements in � of the form0@t1 t2

t3

1A0@1 x �y0

0 1 0

0 y 1

1A (3.1)

satisfying the conditions t1t 02 D t3t
0
3 and x C x0 D �yy0. For the groups � and �1

we have x 2
p
�3OF and for � (respectively, �1) we have y 2 OF (respectively,

y 2
p
�3OF . Hence, ti 2 �6 and it follows that t1 D t2 D t3 and the diagonal

matrix lies in the center.
Calculating the factors of automorphy for an element of �1 as in (3.1) gives

j1 D t2; j2 D

�
1=t3 y0=t3
0 1=t1

�
; j3 D t1t2t3:

In particular, for an element of � 01 as in (3.1) we find j1 D 1, j2 D .1; y0I 0; 1/ and
j3 D 1. In this case the restriction of L and R to an elliptic curve E is trivial and U
restricted to E is a unipotent bundle of rank 2, cf. [3]. This result also follows from
the next proposition for which Thomas Peternell kindly provided us with a proof. We
identify a neighborhood of E with the total space of the normal bundle of E in Y�0 .
Proposition 3.4. If E is an elliptic curve and N is a line bundle on E with total
space X then the rank 2 bundle V D �1X .logE/ restricted to E is an extension
of OE by OE and it is non-trivial if and only if degN is non-trivial.
Corollary 3.5. For � 0 as above the restriction of Symn.U / to the elliptic curve E is
isomorphic to FnC1, the unique indecomposable vector bundle of rank nC 1 with a
1-dimensional space of sections.

3.4. Eisenstein cohomology. The Eisenstein cohomology is the contribution to the
cohomology coming from the boundary. The study of Eisenstein cohomology was
initiated by Harder (see [21, 22]), who used the Borel–Serre compactification and
topological methods to determine the Eisenstein cohomology in a closely related
case. Here we use, as in [49], coherent cohomology to determine the Eisenstein co-
homology.

Let � 0 � �1Œ
p
�3� be a normal finite index subgroup that acts freely on B .

Let W� be a local system on X�0 . The full Eisenstein cohomology eEis;f.X�0 ;W�/

is defined as
ec.X�0 ;W�/ � e.X�0 ;W�/;

where ec.X�0 ;W�/, respectively, e.X�0 ;W�/, stands for the Euler characteristicsX
i

.�1/i ŒH i
c .X�0 ;W�/�; respectively,

X
i

.�1/i ŒH i .X�0 ;W�/�;
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where the square brackets refer to classes in the Grothendieck group of mixed Hodge
structures. The compactly supported Eisenstein cohomology eEis.X�0 ;W�/ is defined
as X

.�1/i
�
ker
�
H i
c .X�0 ;W�/! H i .X�0 ;W�/

��
:

Note that there is a map eEis.X�0 ;W�/! eEis;f.X�0 ;W�/.
Lemma 3.6. Put Fi , for i D 0; 1; 2, equal to

Wn1;�n1�n2;n1Cn2Cn3 ; Wn1Cn2C1;�n1C1;n1Cn2Cn3 ; Wn2;n1C3;n2Cn3�1:

(i) For any � D n1
1 C n2
2 C n3
3, we have

eEis;f.X�0 ;Wn1;n2;n3/ D

2X
iD0

.�1/i
�
ŒH 0.D;Fi jD/� � ŒH

1.D;Fi jD/�
�
:

(ii) For any � D n1
1 C n2
2 C n3
3 such that n1 C n2 > 1, we have

eEis.X�0 ;Wn1;n2;n3/ D �ŒH
0.D;F0jD/�C ŒH

1.D;F0jD/�C ŒH
0.D;F1jD/�:

Proof. Put Y D Y�0 . From [16, Thm. 5.5] it follows (compare the description of the
BGG-complexes for j�W� and jŠW� in Section 3.2) that

eEis;f.X�0 ;Wn1;n2;n3/ D

2X
iD0

2X
jD0

.�1/iCj
�
ŒH i .Y;Fj .�D//� � ŒH

i .Y;Fj /�
�
:

For any locally free sheaf F on Y�0 we have an exact sequence

0! F .�D/! F ! FjD ! 0:

Taking the long exact sequence deduced from this sequence for the three cases Fr ,
with r D 0; 1; 2, statement (i) follows.

For (ii) we again use the BGG-complexes of Section 3.2 to conclude that

eEis.X�0 ;Wn1;n2;n3/ D

2X
iD0

2X
jD0

.�1/iCj
�
ker
�
H i .Y;Fj .�D//! H i .Y;Fj /

��
:

We now consider the three cases r D 0; 1; 2 individually. For the case r D 0 the
vanishing of H 0.Y;Wj;k;l/ for negative k implies that the sequence reduces to

0! H 0.D;F0jD/! H 1.Y;F0.�D//! H 1.Y;F0/

! H 1.D;F0jD/! H 2.Y;F0.�D//! H 2.Y;F0/! 0:

We can identify the last three terms in the sequence with the Serre duals of

Mn1;n2C3;�n2�n3�1.�
0/ Sn1;n2C3;�n2�n3�1.�

0/ 0:
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It follows from Corollary 3.5 that h0.D;F0/ equals the number c of cusps of X��0 .
Possibly replacing� 0 by a finite index subgroup (and in the end taking invariants) there
is, since n1 C n2 > 1, an Eisenstein series for each cusp, see [9, Prop. 12.1]. Since
bothU andL have degree 0when restricted to an elliptic curve inD, Riemann–Roch
tells us that h1.D;F0/ D h0.D;F0/. Finally, since

dimMn1;n2C3;�n2�n3�1.�
0/ D c C dimSn1;n2C3;�n2�n3�1.�

0/

it follows that
H 1.D;F0jD/! H 2.Y;F0.�D//

is injective.
For F1, we find that the sequence reduces to

0! H 0.D;F1jD/! H 1.Y;F1.�D//! H 1.Y;F1/! H 1.D;F1jD/! 0;

again by the vanishing of Mj;k;l.�
0/ for k < 0. Similarly to the case r D 0, we can

identify H 0.D;F2/ with a space of Eisenstein series, and hence with the cokernel
of the second arrow in the exact sequence

0! H 0.Y;F2.�D//! H 0.Y;F2/! H 0.D;F2/

!H 1.Y;F2.�D//! H 1.Y;F2/! H 1.D;F2/! 0:

This finishes the proof of (ii).

Corollary 3.7. For any regular � D n1
1 C n2
2 C n3
3, we have

H 1.Y�0 ;F0/ D 0:

Proof. As noted at the end of Section 3.2, since � is regular, H 1
Š
.X;W�/ D 0. The

result now follows directly from Remark 3.2 together with Proposition 3.3.

Definition 3.8. We write s� for the irreducible representation of S4 indexed in the
usual way by � a partition of 4. We then define the S4-representations,


i D

8̂<̂
:

s4 C s3;1 i �6 0;

s14 C s2;12 i �6 3;

0 else:

In the following proposition Li;j will denote the motive corresponding to a Hecke
character, see further in Section 7.1; it is 1-dimensional and has Hodge degree .i; j /.
Proposition 3.9. For regular�Dn1
1Cn2
2Cn3
3withn1�3n2 andn1�2n3, put
i D n2 C n3. Then eEis.X�Œ

p
�3�;W�/ consists of the following three contributions:�

�
i L0;0 C 
i�n2�1L
n2C1;0 C 
iCn1C1L

0;n1C1
�
Ln3;n3Ci :
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As another approach to this Eisenstein cohomology is already in the literature [21,
22] we will only provide a sketch of a proof. We will normalize the weights, which
corresponds to removing the factor Ln3;n3Ci in Proposition 3.9, see also further in
Section 7.3.1.

For each elliptic curve E occurring in the divisor D each of the contributions
in Lemma 3.6 are either zero or 1-dimensional, see Corollary 3.5. We observe that
the Hodge weights of the three contributions are 0, 0 and n2 C 1. Interchanging n1
and n2 amounts to changing the complex structure by its complex conjugate. Hence
this limits the Hodge types to .0; 0/, .n2 C 1; 0/, .0; n1 C 1/ and .n2 C 1; n1 C 1/.
But the last one can occur only in the dual of eEis. So we find the Hodge types

.0; 0/; .n2 C 1; 0/; .0; n1 C 1/

for the three contributions.
We now specialize to the situation� 0 D �1Œ

p
�3�, where�=�1Œ

p
�3� D S4��6

acts on Y�1Œ
p
�3� by permuting the cusps and the group S4��3 acts effectively. The

group h�13i sits in the center of �Œ
p
�3� making the Fi orbifold bundles. We thus

get contributions to the Eisenstein cohomology only if n1 �3 n2.
Since for each elliptic curve occurring in the divisorD on Y�1Œ

p
�3� the cohomol-

ogy group H i .E;Fj / is at most 1-dimensional and the stabilizer of such an elliptic
curve is S3 � �3 it contributes either zero or a S4-representation of the form

IndS4S3
s3 D s4 C s3;1 or IndS4S3

s13 D s2;12 C s14 :

Furthermore, the element 
 D diag.1; 1; �/ acts by multiplication by � on each res-
olution elliptic curve E. The Eisenstein cohomology for �Œ

p
�3� corresponds to the

invariant part under the action of 
 .

4. The dimension of spaces of Picard modular forms

In this section we are interested in the dimensions of spaces of modular forms and
cusp forms on our groups�1Œ

p
�3� and�Œ

p
�3�. We dwell upon this since it provides

important checks on the conjectures on the cohomology of local systems.
Recall that the space Mj;k.�1Œ

p
�3�/ splits as

Mj;k

�
�1Œ
p
�3�

�
DMj;k

�
�Œ
p
�3�

�
˚Mj;k

�
�Œ
p
�3�; det

�
˚Mj;k

�
�Œ
p
�3�; det2

�
;

and similarly for the spaces of cusp forms Sj;k.�1Œ
p
�3�/. Recall furthermore that

the graded ring˚1
kD0

M0;3k.�1Œ
p
�3�/ is a degree 3 extension of

˚
1
kD0M0;3k

�
�Œ
p
�3�

�
D CŒx1; x2; x3; x4�=.x1 C x2 C x3 C x4/
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generated by � 2 S6.�Œ
p
�3�; det/ satisfying the relation (2.1). Moreover, S4 acts

by � W xi 7! sgn.�/x�.i/ and by the sign on �. We find (see [9, Sections 7 and 12] for
more details) that

dimM0;3k

�
�1Œ
p
�3�

�
D .3=2/k.k � 1/C 4

for k � 2 and dimM0;3 D 3; moreover, for k � 2,

dimS0;3k
�
�Œ
p
�3�; det`

�
D

8̂<̂
:
.k2 C 3k � 6/=2 ` D 0;

.k2 � k/=2 ` D 1;

.k2 � 5k C 6/=2 ` D 2:

We now deduce a formula for the space of cusp forms on a freely acting finite index
subgroup � 0 of �1Œ

p
�3�. The surface � 0nB is smoothly compactified by adding a

divisor D consisting of disjoint elliptic curves.

Theorem 4.1. For j � 0 and k > 0 we have

dimSj;3Ck.� 0/ D
1

6
.j C 1/.k C 1/.j C k C 2/ vol.� 0nB/C

1

12
.j C 1/D2

with vol.� 0nB/ D c2.� 0nB/ D 3 c1.L/2.

Remark 4.2. Note that the formula is symmetric in j and k up to the factor j D2=12.
For a group � 0 acting on the ball with a compact quotient � 0nB one would get a
formula symmetric in j and k.

Before we give the proof we state a simple lemma.

Lemma 4.3. With 
 D c1.L/, the Chern character satisfies

ch.Wa;b/ D .aC 1/
�
1C .a=2C b/
 C .b2=2C ab=2 � a=4/
2

�
:

Proof. Since � 0 acts freely we have that Wa;b D Syma.U /˝ Lb and we know that
det.U / D L. Let ˛1 and ˛2 be the Chern roots of U . Then ˛1 C ˛2 D 
 , and by
Hirzebruch–Mumford proportionality ([38]), we have

c1.�
1.logD//2 D 3c2.�1.logD//;

hence .3
/2 D 3.˛1˛2 C 2

2/, so ˛1 C ˛2 D 
 and c2.U / D ˛1˛2 D 
2. This

implies c1.Syma.U // D .1=2/a.aC 1/
 and

ch2.Syma.U // D

aX
iD0

..a � i/˛1 C i.˛2//
2=2 D �a.aC 1/
2=4:

The result easily follows from this.
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Proof. We work on Y D Y�0 . We denote the resolution divisor of the cusps by D.
The canonical line bundle KY is L˝3 ˝ O.�D/. In view of the vanishing of h1
and h2 (by Corollary 3.7 and Proposition 2.3) of Wj;k ˝�

2, we have that

dimSj;kC3.� 0/ D h0.Y;Wj;k ˝�
2
Y / D �.Y;Wj;k ˝�

2
Y /

with � denoting the Euler characteristic. By Serre duality we have

�.Y;Wj;k ˝�
2
Y / D �.Y;Wj;�j�k/:

We apply the Hirzebruch–Riemann–Roch formula

�.Y;Wa;b/ D .ch.Wa;b/ � td/ŒY �

with td the Todd class 1� 3
=2CD=2C .c21 C c2/ŒY �=12 and c1.Y / D �3
 CD,
where again we write 
 D c1.L/ for the first Chern class of L.

Using �.Y;OY / D .c21 C c2/ŒY �=12 D 
2 CD2=12, we now find

�.Y;Wa;b/ D .aC 1/
�
.b2 C ab � 2a � 3b/
2=2C �.Y;OY /

�
D .aC 1/

�
.b2 C ab � 2a � 3b C 2/
2=2CD2=12

�
:

Substituting a D j and b D �j � k gives

.j 2k C k2j C j 2 C 4jk C k2 C 3j C 3k C 2/
2=2C .j C 1/D2=12;

which completes the proof.

Remark 4.4. For our group�1Œ
p
�3�we have vol.�1Œ

p
�3�nB/ D 1 and for�Œ

p
�3�

we have vol.�Œ
p
�3�nB/ D 1=3.

For our group �1Œ
p
�3� we have the following dimension formula.

Proposition 4.5. For j �0 and k>0with j �3k, the dimension ofSj;kC3.�1Œ
p
�3�/

is given by

1

6
.j C 1/.k C 1/.j C k C 2/ � .j C 1/C

8̂<̂
:
2=3 j �3 0;

�2=3 j �3 1;

0 j �3 2:

Remark 4.6. We conjecture that the formulas above also hold for k D 0 in all cases
except when j �6 0 for which the dimension is .j 2� 3j C 6/=6. This is based upon
computations of the numerical Euler characteristic in Section 9 and Conjecture 12.12.

Proof. The subgroup �1Œ3� of �1Œ
p
�3� acts freely and the formula of Theorem 4.1

holds with vol.�1Œ3�/ D 81 and D consisting of 4 � 27 elliptic curves with self-
intersection number �9. The quotient group G0 D �1Œ

p
�3�=�1Œ3� is of order 35,

but its center h� idi D �3 acts trivially. We will apply the holomorphic Lefschetz
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formula to the action of the group G D G0=�3 on Y�1Œ3� and the vector bundle
Wj;k ˝�

2
Y�1Œ3�

. The group G is isomorphic to .Z=3Z/4. The action of G on Y�Œ3�
has 3 � 27 fixed points lying over the quotient singularities of X�1Œ

p
�3� and no other

fixed points. We know that the quotient singularities are of order 3 and type .1; 2/.
The holomorphic Lefschetz formula now says that for the action ofG on the manifold
Y D Y�1Œ3� and vector bundle V , we haveX

i

.�1/i dimH i .Y; V /G D .1=#G/
X
g2G

�.Y; V; g/

with
�.Y; V; g/ D ch.Y; V; g/ td.Y; g/ŒY g �;

with td.Y; g/ the Todd class associated to Y g . At a fixed point of a non-trivial element
of G the Todd class is 1=.1 � �2/.1 � �/ D 1=3. The action on the fibre of L3 over
a fixed point is trivial, while on the fibre of �1 it acts by .�; �2/. Hence, on the
fibre of Wj;k it acts by eigenvalues �r�2.j�r/ for r D 0; : : : ; j . So one non-trivial
element of G yields for one fixed point a contribution

c.j / D .1=3/

jX
rD0

�2j�r D

8̂<̂
:
1=3 j �3 0;

�1=3 j �3 1;

0 j �3 2:

In total the 81 fixed points are each fixed by 2 non-trivial elements, hence we get a
contribution .1=81/ � 81 � 2 � c.j /. The identity element contributes

.j C 1/.k C 1/.j C k C 2/=6 � .j C 1/:

Together this proves the formula.

Next we want a formula for the dimension sj;kC3;l of the space of modular forms
Sj;kC3.�Œ

p
�3�; detl/. Since we have a formula for

2X
lD0

sj;kC3;l D dimSj;kC3
�
�1Œ
p
�3�

�
;

it suffices to calculate the trace of a generator 
 D diag.1; 1; �/ of the group

�Œ
p
�3�=�1Œ

p
�3� Š Z=3Z

on Sj;kC3.�1Œ
p
�3�/. Indeed, for an operator 
 of order 3 acting on a complex

vector space of dimension n with eigenspaces of dimension m1, m� and m�2 for the
eigenvalues 1; � and �2 (with n D m1 C m� C m�2) and with trace.
/ D a C b�

with a; b 2 Z, we have

m1 D .nC 2a � b/=3; m� D .n � aC 2b/=3; m�2 D .n � a � b/=3:
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Theorem 4.7. If j 6�3 k, then dimSj;kC3;l.�Œ
p
�3�/ D 0. If j �3 k and k > 0,

we have

dimSj;kC3;l
�
�Œ
p
�3�

�
D

1

18
.j C 1/.k C 1/.j C k C 2/C Aj;k;l ;

with Aj;k;l depending on the residue class of .j; l/ in .Z=3Z/2 as follows:

l �3 0 l �3 1 l �3 2

j �3 0 2k=3 � 10=9 �j=3 � 1=9 �2j=3 � 2k=3C 8=9

j �3 1 �j=3 � 5=9 2k=3 � 14=9 �2j=3 � 2k=3C 4=9

j �3 2 0 0 �j � 1

Remark 4.8. We conjecture that the formulas above also hold for k D 0 in all cases
except when l D 0 and j �6 0, and then Aj;0;0 D �1=9. This is based upon the
same evidence as in Remark 4.6.

Proof. We apply the holomorphic Lefschetz formula to the action of a representative

 D diag.1; 1; �/ of �Œ

p
�3�=�1Œ

p
�3� Š Z=3Z on the surface Y D Y�1Œ

p
�3�

and the orbifold vector bundle �2Y ˝ Wj;k . We assume that j �3 k, otherwise
Mj;k.�1Œ

p
�3�/ is zero. We can write

�2Y ˝Wj;k D �
2
Y ˝ Symj .U ˝ L/˝ Lk�j ;

where the center �3 acts on all three factors trivially. The fixed point locus of 

on the surface Y�1Œ

p
�3� consists of the six curves Dij (see Section 2) and the three

intersection points of the two resolution curves of the three quotient singularities
on X�1Œ

p
�3�. Each of the Dij is a smooth rational curve which is an exceptional

curve, the restriction of�1Y toDij is O.2/˚O.�1/, with the first factor the cotangent
bundle toDij and the second the conormal bundle. And since the resolution divisorD
of the cusps intersects Dij transversally at two points, we find

�1.logD/jDij D O ˚O.1/:

The action of 
 preserves the two factors. It acts trivially on the cotangent bundle
ofDij and by �2 on the conormal bundle since oneDij is given by u D 0 and 
 acts
by .u; v/ 7! .�u; v/. Since �1.logD/ Š U ˝ L, we get

U ˝ LjDij D O ˚O.1/

with 
 acting by 1 on the first factor and by �2 on the second one.
We need the Todd class along Dij ; if we write the first Chern class of ODij .1/

as P , the class of a point, then we find

td.Dij ; 
/ D
2P

1 � e�2P
1

1 � �2eP
;
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where the first factor comes from the tangent bundle and the second from the normal
bundle resulting in

td.Dij ; 
/ D
2C �

3
�
1C �

3
P:

We have L3
jDij
D O.1/ with 
 acting trivially. We need ch.�2Y ˝Wj;kjDij / in the

cohomology of Dij tensored with the representation ring of �3 D h
i. We thus
write

ch
�
Symj .U ˝ L/jDij

�
D r.j /C d.j /P;

where P denotes the cohomology class of a point on Dij and we interpret r.j /
and d.j / as elements of ZŒ��. Furthermore, ch.�2Y jDij / D �2.1 � P /. From the
description just given, we obtain

ch.�2 ˝Wj;kjDij / D .rj C djP /.�
2
� �2 P /

�
1C

�
k � j

3

�
P

�
:

We have rj D
Pj
aD0 �

2a and dj D
Pj
aD0 �

2aa, and we thus find

r.j /C d.j /P D

8̂<̂
:
1C j

3
.2C �/P j �3 0;

��C
�
jC2
3
.�1 � 2�/C �

�
P j �3 1;

0C jC1
3
.� � 1/P j �3 2:

The contribution of the six Dij is the coefficient of P in

6 �2.r.j /C d.j /P /

�
1C

�
k � j � 3

3

�
P

��
2C �

3
�
1C �

3
P

�
and this is 8̂<̂

:
.�2k C 2j C 6/=3C .�4k � 2j C 6/�=3 j �3 0;

.�4k � 2j C 6/=3C .�2k C 2j C 6/�=3 j �3 1;

2.j C 1/.1C �/ j �3 2:

By adding to these three cases �.j C 1/ (respectively, �.j C 1/� and .j C 1/�2) as
the contribution of the three isolated fixed points of 
 one finds for the trace

.2k C j � 3/.�1 � 2�/=3; .2k C j � 3/.�2 � �/=3; �.j C 1/�2:

This gives the desired traces.

We end this section with a definition.
Definition 4.9. The space Sj;k;l.�Œ

p
�3�/ is a representation of S4 and we denote

by Sj;k;l.�Œ
p
�3�/� the isotypic component corresponding to the irreducible repre-

sentation indexed by �, a partition of 4. We then put

dimS4 Sj;k;l
�
�Œ
p
�3�

�
WD

X
�`4

dimSj;k;l.�Œ
p
�3�/�

dim s�
s�:
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In Section 10, we define a (conjectural) subset

S
gen
j;k;l

�
�Œ
p
�3�

�
� Sj;k;l

�
�Œ
p
�3�

�
of so-called genuine forms and we define dimS4 S

gen
j;k;l

.�Œ
p
�3�/ analogously to the

above.

5. Moduli spaces of abelian threefolds with �-action

In this part of the article we will study our spaces using their interpretation as moduli
spaces of abelian threefolds with an action by �. This will give us a Deligne–Mumford
stack defined over ZŒ�; 1=3�, which enables us to find cohomological information
through its finite fibres. Our goal is the `-adic Euler characteristics of the local
systems on our moduli spaces as motives, or more specifically as representations of
the absolute Galois group Gal. xF=F /.

5.1. Picard modular stacks. For any scheme S defined over OF Œ1=3� consider the
groupoid whose objects are tuples .A; �; �/, where A is an abelian scheme of relative
dimension 3 over S ,

�WA! A_

is a principal polarization of A, and

�WOF ! EndS .A/

is a homomorphism such that the Rosati involution associated to � acts by complex
conjugation on �.OF / and that gives �1

A=S
a structure of OS ˝Z OF -module of

signature .2; 1/. Isomorphisms between .A; �; �/ and .A0; �0; �0/ are given by isomor-
phisms f WA! A0 such that

� D f _ ı �0 ı f and f ı �.a/ D �0.a/ ı f

for all a 2 OF . This moduli problem is represented by a Deligne–Mumford stack X0�
of relative dimension 2 that is separated, smooth, connected and of finite type over
OF Œ1=3�, see [32, Cor. 1.4.1.12] and [34]. The Picard modular surface X� is equal
to the complex fibre X0�.C/.
Notation 5.1. Put ˛ WD �.�/.

To our moduli problem we now add the principal level-structure with respect to
the endomorphism 1 � ˛. Consider tuples .A; �; �; �/, where

� W .O3
F =.1 � ˛/O

3
F /S ! AŒ1 � ˛�

is an OF -equivariant isomorphism, see [32, Def. 1.3.6.1]. This is represented by a
Deligne–Mumford stack X0

�Œ
p
�3�

with the same properties as above and withX�Œp�3�
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as complex fibre. Note that X0
�Œ
p
�3�

comes with an action of the finite group
�Œ
p
�3�=� .

More generally, for any open compact subgroup of G.yZ/ we get a level-structure
that we can add to our moduli problem and get a stack with the same properties as
above, see [32]. The open compact subgroup

K� WD fg 2 G.yZ/ W g �O
3
F ˝Z yZ D O3

F ˝Z yZg;

corresponds to X0� and if we replaceG byG0\ ker det in the definition we get X0�1 .
From the subgroup

K�Œ
p
�3� WD fg 2 G.

yZ/ W .g � 1/ �O3
F ˝Z yZ �

p
�3 �O3

F ˝Z yZg;

we get X0
�Œ
p
�3�

, and replacing G by G0 \ ker det we get X0
�1Œ
p
�3�

, with the
corresponding Picard modular surfaces as complex fibres.

5.2. Shimura varieties and complex tori. We briefly revisit our Picard modular
surfaces as Shimura varieties and as moduli spaces of complex tori. For any compact
open subgroup K in G.Af / put

SK.G;B/ WD G.Q/nB �G.Af /=K:

This is a Shimura variety defined over C. TakingK equal to any of the compact open
subgroups of the previous section we get a connected Shimura variety isomorphic to
the corresponding Picard modular surface, see [20].

An abelian variety A in X0�.C/ is a complex torus V=�� with �� an OF -module
of rank 3. Since the class number is 1, the lattice �� is isomorphic to O3

F . The
polarization of A gives rise to an alternating form E on the underlying real vector
space of V , which satisfies E.Jx; Jy/ D E.x; y/ with J the complex structure
on V . This gives that E.˛x; y/ D E.x; ˛0y/ for all ˛ 2 OF , and where z 7! z0

denotes the Galois automorphism of F=Q. The corresponding hermitian form hmay
be normalized (see [46]) so that

h.z1; z2; z3/ D z1z
0
2 C z

0
1z2 C z3z

0
3:

5.3. Moduli spaces of curves. The Torelli map that sends a smooth curve of genus g
to its Jacobian, induces an embedding of coarse moduli spaces. For the corresponding
stacks this does not hold in general due to the fact that if G is the automorphism
group of a non-hyperelliptic curve C , then the automorphism group of its Jacobian
equals G � f�1g.

An abelian threefold is either geometrically indecomposable, or a product of the
Jacobian of a smooth genus two curve and an elliptic curve, or an unordered product of
three elliptic curves. We cut up our spaces X0�� , for all �� among the four groups � ,
�1, �Œ

p
�3� and �1Œ

p
�3�, into three pieces X01;�� , X02;�� and X03;�� according to

this distinction.
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We will now shift focus to the corresponding moduli spaces of curves X�� , defined
over ZŒ�; 1=3�. The stratification on the moduli of abelian varieties induces via Torelli
a stratification on the moduli of curves, denoted by X1;�� , X2;�� and X3;�� .

The space X� will then be the moduli space of curves of compact type together
with an automorphism of order three, with action of type .2; 1/, that induces an
admissible tricyclic cover of the projective line (compare the definitions in [1] or
see the next section). The level structure for �Œ

p
�3� will be described in terms

of markings of points on the curves. We will not attempt an analogous description
for �1Œ

p
�3�.

Define also, in a completely analogous way, the moduli space X
.2/
��

of abelian
surfaces with signature .1; 1/ and the moduli space X

.1/
��

of elliptic curves with
signature .1; 0/.

The two spaces X�� and X0�� only differ for the open strata of geometrically
indecomposable abelian threefolds, due to the difference in automorphism group
mentioned above. This is intimately connected to the fact that a geometrically
indecomposable abelian threefold is either the Jacobian of a smooth curve of genus
three, or the .�1/-twist of the Jacobian of a (non-hyperelliptic) smooth curve of genus
three.

Our main interest is the cohomology of local systems of these spaces, and in
Remark 7.5 we will relate the cohomology of these two types of spaces. This relation
shows that there are no new motives appearing in the cohomology of local systems
on X�� other than the ones appearing for X0�� . This is in sharp contrast to the
situation when comparing the cohomology of local systems on the moduli space of
curves M3 and the moduli space of principally polarized abelian varieties A3, see [8].
Notation 5.2. Let K denote a field, which is not of characteristic 3, containing a
primitive third root of unity z� that we fix.

5.4. Smooth curves of genus 3. Let C=K be a smooth curve of genus 3 and let ˛
be an automorphism of C of order 3 of type .2; 1/, which means that it will have
eigenvalues .z�; z�; z�2/ when acting on the 3-dimensional vector space H 0.C;�1C /.

Since there are no invariant differentials of ˛ we see that ˛ induces a cyclic triple
cover of P1 Š C=˛. The Riemann–Hurwitz formula tells us that there are five
ramification points, which is the same as fixed points of ˛. Let cz� i be the number
of ramification points x such that the action of ˛ on�1C;x is by multiplication by z� i .
We then have that cz�2 D 5 � cz�. The Woods–Hole formula or the holomorphic
Lefschetz fixed point formula, together with the isomorphism between H 1.C;OC /

and the dual of H 0.C;�1C /, tells us that

1X
iD0

.�1/i Tr
�
˛;H i .C;OC /

�
D 1 � .z�C 2z�2/ D

cz�

1 � z�
C

cz�2

1 � z�2

giving cz� D 4.
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Elementary Galois theory tells us that a cyclic triple cover of P1, with coord-
inate x, can be given by an equation y3 D f .x/ with cover given by .x; y/ 7! x,
together with the automorphism ˛W .x; y/ 7! .x; z�y/, and where f .x/ does not
contain any irreducible factor to the power larger than two. The space H 0.C;�1C /

of regular differentials of C is generated by

fdx=y; dx=y2; xdx=y2g

and the eigenvalues of ˛ are thus of the right form, .z�2; z�; z�/ on the given basis. The
ramification point for which the action of ˛ is by z�2 is necessarily defined overK and
using a projective transformation we put it at infinity. The polynomial f .x/ should
then have four distinct roots over xK and since the action on the ramification is by z�
the polynomial should be square-free.
Remark 5.3. Doing the above in more generality, we begin with a coveringy3Df1f 22 ,
with square-free polynomials f1; f2. If the field is not too small we use a projective
transformation to make sure that the point over infinity is not ramified, i.e., that 3
divides deg.f / D 2.g C 2/ � deg.f1/. As above, we then find that the action of ˛
on H 0.C;�1C / is of type�

.g � 1C d/=3; .2g C 1 � d/=3
�
:

Let Pd .K/ � KŒx� be the subset consisting of polynomials of degree d

with non-zero discriminant. To each f 2 P4.K/ we associate the cyclic triple
cover .Cf ; ˛/ given by the equation y3Df .x/. The isomorphisms between pairs of
the form .Cf ; ˛/ are given by

.x; y/ 7! .ax C b; cy/

with a; c 2 K� and b 2 K. The groupoid of pairs .Cf ; ˛/ with f 2 P4.K/ is
equivalent to the groupoid X1;�.K/.

5.4.1. Ramification and .1� ˛/-torsion. The 3-torsion group of an abelian three-
fold A in X0

�Œ
p
�3�
.K/ is isomorphic to .Z=3Z/6 over xK. We have that

3 D .1 � ˛/.1 � ˛2/

and the .1�˛/-torsion group (which equals the .1�˛2/-torsion group) is isomorphic
to .Z=3Z/3 over xK. This is a totally isotropic subspace of the 3-torsion group with
respect to the Weil pairing and an isomorphism

AŒ1 � ˛� Š .Z=3Z/3

is acted upon by O.h;Z=3Z/, the group of orthogonal matrices with coefficients
in Z=3Z that respect the hermitian form h from Section 2.1. This group is isomorphic
to �=�Œ

p
�3� Š S4 � �2, cf. [18, p. 153].
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Take a pair .Cf ; ˛/ as in the previous section and let p1; p2; p3; p4 be the
ramification points (not necessarily defined over K) where ˛ acts by z� and let p0 be
the point where it acts by z�2. The degree 0 divisors ˇ1 D p1 � p0, ˇ2 D p2 � p0
and ˇ3 D p3 � p0 are points on the Jacobian of our curve which are fixed by ˛, that
is, they belong to J.Cf /Œ1 � ˛�.

The morphism
�W .Z=3Z/3 ! J.Cf /Œ1 � ˛�

defined by .c1; c2; c3/ 7! c1ˇ1 C c2ˇ2 C c3ˇ3 is an isomorphism. A non-trivial
element in the kernel of � can easily be rearranged using

div.y/ D
4X
iD1

.pi � p0/

and the relations 3pi � 3p0 for all i , to a relation of the form pi C pj � pk C pl
for some i; j; k; l . This relation implies that the curve is hyperelliptic which is not
possible, see Remark 5.4 below. If we order the points p1, p2, p3, p4 then we have an
action of S4 on J.Cf /Œ1 � ˛�. This action corresponds to the group SO.h;Z=3Z/.
And if we add the action ˇi 7! �ˇi we get the whole O.h;Z=3Z/.

The groupoid X1;�Œ
p
�3�.K/ is equivalent to the groupoid of pairs .Cf ; ˛/

together with an ordering of the four ramification points where ˛ acts by z�.
Remark 5.4. A smooth curve C of genus 3 which is a cyclic triple cover of P1

of degree 3 is not hyperelliptic. Indeed, if � denotes the hyperelliptic involution,
then � and ˛ commute, and ˛ permutes the eight fixed points of � , and vice versa.
In particular, since ˛ has an unique fixed point p0, where it acts by z�2, we see that �
also has to fix p0. Since 8 �3 2, the action of ˛ must have at least one more fixed
point among the fixed points of � , say p1. Then p0 �p1 defines a point in the kernel
of both the endomorphism 2 and .1 � ˛/.1 � ˛2/ D 3 of the Jacobian of C , hence
p0 � p1, a contradiction.

5.5. Smooth curves of genus 2. Arguing as in Section 5.4, a curve C of genus 2
together with an automorphism ˛ of order 3 inducing a cyclic cover of P1 can be
given in the form

y3 D f1.x/f2.x/
2

with f1 and f2 being relatively prime square-free polynomials for which

.degf1; degf2/ D .2; 2/; .2; 1/; or .1; 2/;

and where ˛W .x; y/ 7! .x; z�y/ has eigenvalues .z�; z�2/ on H 0.C;�1C /. Denote the
curve corresponding to f1 and f2 by Cf1;f2 . The isomorphisms between pairs of the
form .Cf1;f2 ; ˛/ are generated by PGL2.K/ acting on x together with y 7! ay for
any a 2 K�.
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Let p1, p2 be the points above the roots of f1 and q1, q2 be the points above the
roots of f2. They are related by p1 C p2 � q1 C q2. The divisors ˇ1 D p1 � p2
and ˇ2 D q1 � q2 give a basis of the .1 � ˛/-torsion of the Jacobian of Cf1;f2 .

The groupoid X
.2/

�Œ
p
�3�
.K/ is equivalent to the groupoid of pairs .Cf1;f2 ; ˛/

together with an ordering of the pair p1 and p2 and the pair q1 and q2 of ramification
points of ˛. The group .Z=2Z/2 acts on this moduli space by switching p1 and p2,
respectively, q1 and q2.

5.6. Elliptic curves. Let E be an elliptic curve with an automorphism ˛ of order 3
inducing a cyclic cover of P1 and let the origin be a fixed point of ˛. Arguing again
as in Section 5.4, such a curve can be given in the form

y3 D f .x/t

with t D 1 or 2, f a square-free polynomial of degree 2, and ˛W .x; y/ 7! .x; z�y/,
and where the origin is placed over infinity. The action of ˛ on H 0.C;�1C / has
eigenvalue z� t . For a fixed t , the isomorphisms between pairs of the form .Cf t ; ˛/

are generated by x 7! ax C b and y 7! cy for any a; c 2 K� and b 2 K.
If K is algebraically closed then the (coarse) moduli space X

.1/
� .K/, which

corresponds to t D 1, consists of one point. This point can be represented by

f .x/ D x2 C x:

Let r1, r2 be the points above the roots of f . The divisor r1 � r2 gives a basis for
the .1 � ˛/-torsion points. The groupoid X

.1/

�Œ
p
�3�
.K/ is equivalent to the groupoid

of pairs .Cf ; ˛/ together with an ordering of the pair r1 and r2. The group Z=2Z
acts on this moduli space by switching r1 and r2. This is also the effect of the
involution �1 on E, and so if K is an algebraically closed field then the (coarse)
moduli space X

.1/

�Œ
p
�3�
.K/ also consists of one point.

5.7. A smooth genus 2 curve joined with an elliptic curve. A curveC in X2;�.K/

consists of a curve Cf1;f2 in X
.2/
� .K/ and Cf in X

.1/
� .K/ joined at a ramification

point of each curves. The ramification point of Cf1;f2 should be above a root of f2
and the ramification point of Cf should be above infinity (isomorphisms are induced
by the ones of the individual curves that fixes these points). This leaves us, as we
want, with four fixed points of ˛ with eigenvalue z� acting on the tangent space, and
one with z�2. It is then straightforward to see that the groupoid X2;�Œ

p
�3�.K/ is

given by adding an ordering of the four fixed points.

5.8. Triples of elliptic curves. A curve in X3;�.K/ has three components, two
curves Cf1 , Cf2 in X

.1/
� .K/ together with a curve of the form Cf 2

3
corresponding to

a curve Cf3 in X
.1/
� .K/. The two curves Cf1 , Cf2 are joined to the curve Cf 2

3
at a

ramification point over infinity and at a ramification point over one of the roots of f3.
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This leaves us again with the wanted four fixed points of ˛ with eigenvalue z� acting
on the tangent space, and one with z�2, and the groupoid X3;�Œ

p
�3�.K/ is given by

adding an ordering of the four fixed points.

5.9. Stable admissible covers. Let us briefly discuss a compactification, of the
moduli space X�Œ

p
�3� using degenerations of cyclic covers.

Let zX�Œ
p
�3� be the moduli space defined over ZŒ�; 1=3� of stable marked ad-

missible Z=3-covers of (stable) curves of genus 0 with action of type .2; 1/. For
the definition of admissible covers, see [25] (and compare with [1]). An element of
zX�Œ
p
�3�.K/ is a nodal curve C over K of genus 3 with an action ˛ of an automor-

phism of order 3 with C=˛ isomorphic to a curve P of genus 0, stably marked by the
ramification points p0; p1; : : : ; p4 of the cover C ! P and such that ˛ acts by z� on
the tangent space of the points above p1; : : : ; p4 and by z�2 on the point above p0.

There is a morphism
zX�Œ
p
�3� !

xM0;1C4;

with xM0;1C4 the moduli space of .1C 4/-pointed genus 0 curves.
Note that xM0;1C4 has a stratification with five strata according to the topological

type of the genus 0 curve: a 2-dimensional open stratum M0;1C4, two 1-dimensional
strata corresponding to a join P1; P2 of two P1’s intersecting in a point with marked
points p0; p1; p2 on P1 and p3; p4 on P2, or p0; p1 on P1 and p2; p3; p4 on P2
and finally two strata each consisting of one point corresponding to a linear chain of
three P1’s, P1, P2, P3 with marked points p1; p2 on P1, p0 on P2 and p3; p4 on P3,
or p0; p1 on P1, p2 on P2 and p3; p4 on P3 (all described up to the action of S4).

This will induce a stratification of zX�Œ
p
�3�. The first three cases above correspond

to X1;�Œ
p
�3�, X2;�Œ

p
�3� and X3;�Œ

p
�3�, respectively.

The fourth strata is 1-dimensional and the curves it parametrizes consist of an
elliptic curve C1 with an order 3 automorphism ˛1 with action of type .1; 0/ and a
rational curve C0 D P1 with an automorphism ˛0 that acts by x 7! �x, joined by
identifying the three points of an ˛1-orbit of length 3 to the points 1; z�; z�2 on C0.
There are four components depending upon the choice of marking of the ramification
point on the rational curve.

The fifth strata is 0-dimensional and the curves it parametrizes consist of an union
of an elliptic curve C1 with an order 3 automorphism ˛1 with action of type .1; 0/
and two P1’s with automorphism x 7! 1=.1� x/, say C0 and C 00, that intersect each
other in 0, 1 and1 such that C1 and C 00 are disjoint, while C1 and C0 intersect in a
fixed point of ˛1. This strata consists of twelve points depending upon the choice of
marking of the ramification points on the two rational curves.

Let X�
�Œ
p
�3�

denote the Satake–Baily–Borel compactification of X0
�Œ
p
�3�

defined
over ZŒ�; 1=3�, and so

X�
�Œ
p
�3�
.C/ Š X�

�Œ
p
�3�
:
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Sending a curve to its (generalized) Jacobian gives a morphism

zX�Œ
p
�3� ! X�

�Œ
p
�3�
: (5.1)

The Jacobians over the fourth and fifth strata become extensions of an elliptic curve
with the multiplicative group Gm;F , and these strata will furthermore constitute a
P1-bundle over the four cusps of X�

�Œ
p
�3�

.

6. Characteristic polynomials of Frobenius

In this section we find properties of the characteristic polynomial of Frobenius acting
on �-eigenspaces of the first étale cohomology group of a cyclic triple cover of the
projective line.

6.1. Notation for primes, generators and finite fields. Let k D Fq always denote
a finite field with q D pr elements with q �3 1. For any n � 1, let kn D Fqn , a
degree n extension of k.

If p �3 1, choose a third root of unity z� in Fp . This gives us a third root z� in
any extension field k D Fq for q D pr . The choice of z� determines a generator
app C bpp� of an ideal pp of norm p, namely let app ; bpp be the unique pair of
integers such that

a2pp � appbpp C b
2
pp
D p; app �3 1; bpp �3 0;

and such that an (hence, any) isomorphism between ZŒ��=pp and k D Fp , sends �
to z�. Define the integers apq , bpq by the equation apq C bpq� D .app C bpp�/r and
define the ideal pq D .apq C bpq�/.

For any p �3 2, choose an arbitrary third root of unity z� in Fp2 . For any even
r � 1 choose an embedding of Fp2 in k D Fpr and let the chosen third root of unity
of Fpr be the one coming from Fp2 . Note that it is the presence of the automorphism
x 7! xp of Fp2 that ensures that these choices do not matter for the later results for
the moduli spaces, see Proposition 7.3. The ideal pp D .p/ is prime in ZŒ�� and
also here we also choose a generator app C bpp� such that app �3 1, bpp �3 0,
namely app D �p and bpp D 0. Define also apq D .�p/r , bpq D 0 and the ideal
pq D .apq C bpq�/.

6.2. The characteristic polynomial. Let � denote the third power residue symbol,
that is, if a 2 k� then �.a/ D �i where z� i D a.q�1/=3, and �.0/ D 0. Let C 0

f
be a

cyclic triple cover of the projective line given by an equation of the form y3 D f .x/,
where f is a cube-free polynomial with coefficients in k. With f .1/ we mean the
leading coefficient of f if deg f �3 0, and 0 otherwise. Let g be the genus of Cf .
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Put Cf WD C 0
f
˝k
xk and let Fq denote the geometric Frobenius morphism acting

on Cf . The number of points over k of Cf equals

jCf .k/j D jC
Fq
f
j D

X
a2P1.k/

�
1C �.f .a//C �.f .a//

�
:

Let H i
c denote compactly supported `-adic étale cohomology. The Lefschetz trace

formula (see [13, Th. 3.2]) tells us that

jC
Fq
f
j D

2X
iD0

.�1/i Tr
�
Fq;H

i
c .Cf ;

xQ`/
�
;

and so

a1.Cf / WD Tr
�
Fq;H

1
c .Cf ;

xQ`/
�
D �

X
a2P1.k/

�
�.f .a//C �.f .a//

�
:

Let ˛ be the automorphism of Cf given by .y; x/ 7! .z�y; x/, which commutes
with Frobenius. We find that

jC
Fqı˛

i

f
j D

X
a2P1.k/

�
1C �i �.f .a//C �i �.f .a//

�
:

The automorphism ˛ splits H j
c .Cf ; xQ`/ into �i -eigenspaces H j

c .Cf ; xQ`/
�i .

The projection formula gives

2X
jD0

.�1/j Tr
�
Fq;H

j
c .Cf ;

xQ`/
�i
�
D
1

3

2X
kD0

��ikjC
Fqı˛

k

f
j:

The 1-dimensional cohomology groups H 0
c and H 2

c are ˛-invariant. Since the
quotient by ˛ has genus 0, H 1

c has no ˛-invariant part. These two things can also
be deduced using the Lefschetz trace formula for ˛ together with the fact that ˛ has
g C 2 fixed points (using the Hurwitz formula). It follows that

a1;�i .Cf / WD Tr
�
Fq;H

1
c .Cf ;

xQ`/
�i
�
D �

X
a2P1.k/

�.f .a//i

for i D 1; 2.
Let ˛1.Cf /; : : : ; ˛g.Cf / be the eigenvalues of Frobenius acting on the g-dim-

ensional vector space H 1
c .Cf ;

xQ`/
� and denote the characteristic polynomial of

Frobenius by ch�.Cf /. Let ei denote the i th elementary symmetric polynomial in g
variables. Note then that

e1
�
˛1.Cf /; : : : ; ˛g.Cf /

�
D a1;�.Cf /;
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and that

ch�.Cf / D

gX
iD0

xg�i .�1/iei
�
˛1.Cf /; : : : ; ˛g.Cf /

�
:

Since ˛i .Cf /x̨i .Cf / D q for 1 � i � g, we immediately get that

eg�iq
i
D egxei for 1 � i � g. (6.1)

6.2.1. Characteristic polynomials of elliptic curves. We will first consider the ell-
iptic curves in some detail. Assume that p ¤ 2. If 
 is a generator of k�, then
y3 D x2 C 
 i for i D 0; : : : ; 5 are representatives of the six k-isomorphism classes
of curves in X

.1/
� .k/.

Let � denote the second power residue symbol. Using Jacobi sums (see, for in-
stance, [29, Chapter 8]), we have

a1;�.Cx2CD/ D �.�4D/�.�4D/.aC b�/ (6.2)

for any D 2 k�. Note that �4D is the discriminant of the polynomial x2 CD.
Say that � switches the two marked ramification points of a curve in X

.1/

�Œ
p
�3�
.xk/.

The fixed points of Frobenius composed with � acting on X
.1/
� .xk/ are the curves

y3 D x2 CD such that �.�4D/ D 1.
Assume now that p D 2. If 
 is a generator of k�, then the following are

representatives of the six k-isomorphism classes of curves in X
.1/
� .k/, x2 C 
 ix for

i D 0; 1; 2 and x2 C 
 ix C ıi for i D 0; 1; 2, where ıi is any element of k such that
the polynomial is irreducible.

For any a 2 k� and b 2 k, define �a.b/ to be 1 if the equation x2 C ax C b D 0
has two solutions in k, and�1 otherwise. Note first that t2C tC1 has two roots, say
˛ and ˇ, in k and that t2CatCa2 has roots a˛ and aˇ, so in particular �a.a2/ D 1.
Using that the Jacobi sum J.�; �/ equals �a � b� we get

a1;�.Cx2CaxCb/ D �
X
w

�.w2 C aw C b/ D �a.b/�.a
2/.aC b�/: (6.3)

Note that a2 is the discriminant of the polynomial x2 C ax C b. The fixed points
of Frobenius composed with � acting on X

.1/
� .xk/ as above are the curves y3 D

x2 C ax C b such that �a.b/ D 1.
Theorem 6.5 below is a generalization of the formulas (6.2) and (6.3), which go

back to Gauss.

6.2.2. The characteristic polynomial modulo 1��. Letp1; : : : ; pgC2 be the roots
of f D f1f

2
2 . The elements .v1; : : : ; vg/ with vi D pi � piC1 form a basis of the

g-dimensional Z=3Z-vector space J.Cf /Œ1 � ˛�. Using the Tate module of J.Cf /
we see that the action of Frobenius on H 1

c .Cf ;
xQ`/

� modulo .1 � �/ is equal to
the action of Frobenius on J.Cf /Œ1 � ˛�. Let ch�.Cf /�D1 2 .Z=3Z/Œx� denote
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the polynomial ch�.Cf / modulo .1 � �/. This polynomial is then equal to the
characteristic polynomial of Frobenius acting on J.Cf /Œ1 � ˛�.

Say that the Frobenius Fq induces a permutation � 2 SgC2, that has ci .�/ cycles
of length i , on the set of points fp1; : : : ; pgC2g. We will now describe the g � g-
matrix A� induced by Fq acting on the basis .v1; : : : ; vg/ with vi D pi � piC1. Put
d1 D degf1, d2 D degf2 and ch.A� / D det.xI � A/.

Let us first handle the cases for which c1.�/ � 1. In this case we can look at
any � without it having to correspond to an actual curve. By reordering, we can
assume that g C 2 is fixed by � . If � D .1; : : : ; g C 1/.g C 2/, then

Fq.vi / D viC1

for i � g � 1, and
Fq.vg/ D �v1 � v2 � � � � � vg :

We find that ch.A� / D .xgC1 � 1/=.x � 1/. Say now that we have computed A� for
some � with c1.�/ � 1. If � consists of a cycle .1; : : : ; h/ followed by � reordered
such that j is replaced by j C h, then

Fq.vi / D viC1

for i � h � 2, and

Fq.vh�1/ D �v1 � v2 � � � � � vh and Fq.vh/ D v1 C v2 C � � � C vhC1:

If we define B to be the h � h-matrix given by wi 7! wiC1 for i � h � 2, and

wh�1 7! �w1 � w2 � � � � � wh and vh 7! w1 C w2 C � � � C wh

on a basis .w1; : : : ; wh/, then ch.A� / D ch.A� /ch.B/ D ch.A� /.x
h � 1/. This

describes, by induction, the structure of A� for any � with c1.�/ � 1.
Example 6.1. For � D .1/.23/.4567/.8/, we have

A� D

0BBBBBB@
1 1 0 0 0 0

0 �1 0 0 0 0

0 1 1 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 �1 �1 �1

1CCCCCCA :
Let us now handle the cases for which c1.�/D0. Reorder the pointsp1; : : : ; pgC2

such that the roots of f1 come before the roots of f2 and put vgC1 D pgC1 � pgC2.
Note first that 3pi � 3pj for any i; j , and then that on the one hand

div0.y/ D
d1X
iD1

pi C

d1Cd2X
iD1Cd1

2pi ;
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and on the other
div1.y/ � .d1 C 2d2/pi

for any i . If d1 �3 0, then this can be used to give the relation

d1X
iD1

pi C

d1Cd2X
iD1Cd1

2pi �

d1=3X
iD1

3p3i�1 C

d2=3X
iD1Cd1=3

6p3i�1

from which it follows that

d1=3X
iD1

.v3i�2 � v3i�1/C

.d1Cd2/=3X
iD1Cd1=3

.�v3i�2 C v3i�1/ D 0:

Similarly, if d1 �3 1, then

.d1�1/=3X
iD1

.v3i�2 � v3i�1/C vd1 C

.d1Cd2�2/=3X
iD1C.d1�1/=3

.�v3i C v3iC1/ D 0;

and if d1 �3 2, then

.d1�2/=3X
iD1

.v3i�2� v3i�1/C vd1�1� vd1 � vd1C1C

.d1Cd2�1/=3X
iD2C.d1�2/=3

.�v3i�1C v3i / D 0:

We will now use the same reasoning as above. The difference is that if � contains
the cycle .s; : : : ; s C t � 1/.s C t; s C t C 1; : : : ; g C 2/, then

Fq.vg/ D vgC1 if s C t � g;
Fq.vg/ D vs C � � � C vgC1 if s C t D g C 1:

We can express vgC1 in terms of v1; : : : ; vg using the formulas above, but we find
that only the coefficients of vt�1; : : : ; vg will affect ch.A� /. Using that � necessarily
permutes the roots off1 andf2, respectively, we find that the contribution of the cycles
.s; : : : ; sCt�1/.t; tC1; : : : ; gC2/ to ch.A� / equals .xt�1/.xgC2�s�t�1/=.x�1/2.

Example 6.2. For �1 D .123/.456/ and �2 D .12/.34/.56/, we have

A�1 D

0BB@
0 1 0 0

�1 �1 0 0

1 1 1 1

1 �1 0 1

1CCA ; A�2 D

0BB@
�1 0 0 0

1 1 1 0

0 0 �1 0

1 �1 1 �1

1CCA :
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Summing up, we find the following.
Theorem 6.3. Let Cf be a tricyclic cover of genus g. If Frobenius induces a perm-
utation � on the set of g C 2 ramification points with ci .�/ cycles of length i , then
we have

ch�.Cf /�D1 D ch.A� / D
1

.x � 1/2

gC2Y
iD1

.xi � 1/ci .�/

as polynomials in .Z=3Z/Œx�.
Remark 6.4. Computing

an;�.Cf / WD �
X

a2P1.kn/

�.f .a// D

gX
iD1

˛i .Cf /
n
2 ZŒ��

modulo 1 � � is more straightforward since

�

X
a2P1.kn/

�.f .a// D �.qn C 1 � ri / D 1C rn mod .1 � �/;

where rn is the number of roots of f defined over kn.

6.2.3. The determinant of Frobenius. Say that ˛ has s eigenvalues equal to z�when
acting on H 0.C;�1C /. It then follows from [19, Th. 1] that eg generates the ideal
psq � .xpq/

g�s , and hence

eg
�
˛1.Cf /; : : : ; ˛g.Cf /

�
D .�1/j1�j2.app C bpp�/

rs.app C bpp�
2/r.g�s/ (6.4)

for some integers j1 and j2.
Theorem 6.5. For any polynomial h, letD.h/ denote the discriminant of h, and ".h/
the number of irreducible factors (over k) of h. If we assume that f D f1f

2
2 and

3 j degf , then

eg.˛1.Cf /; : : : ; ˛g.Cf //

.app C bpp�/
rs.app C bpp�

2/r.g�s/
D .�1/gC".f1/C".f2/�.D.f1//�.D.f2//:

(6.5)
Remark 6.6. Note that if p ¤ 2, then by Stickelberger’s theorem (see [10, Thm. 1.3]
or [11])

.�1/gC".f1/C".f2/ D �.D.f1/D.f2// D �.D.f1//�.D.f2//;

where � denotes the second power residue symbol.

Proof. Since, eg.˛1.Cf /; : : : ; ˛g.Cf // D .�1/j1 modulo .1��/, Theorem 6.3 tells
us immediately that j1 D g C ".f1/C ".f2/.
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The action of Frobenius onH 1
c .Cf ;

xQ`/
� modulo 1� � is equal to the action on

J.Cf /Œ1� ˛�. To determine j2 it suffices to calculate the expression (6.4) modulo 3
since it equals .�1/j1.1 � �/j2 in OF =.3/ Š F3Œ� � with � D 1 � � .mod 3/. That
means that it suffices to calculate the determinant of Frobenius on the F3Œ� �-module
J.Cf /Œ3�. In view of the exact sequence

0! J.Cf /Œ1 � ˛�! J.Cf /Œ3�
1�˛
��! J.Cf /Œ1 � ˛�! 0

and the fact that J.Cf /Œ1 � ˛� is isotropic for the Weil pairing, as kernel of an
endomorphism, we see that the action of ˛ on Cf induces a cyclic �3-action on the
three possibilities for this determinant. (If we lift our abelian variety together with ˛
to C then this action corresponds to the action of diag.1; 1; �/ 2 �Œ

p
�3�.) The

determinant of Frobenius on J.Cf /Œ3� is determined up to a third root of 1 by the
level structure

J.Cf /Œ1 � ˛� � .OF =.1 � ˛//
3:

The moduli stack of triples .J; l; d/ with J a Jacobian of a cyclic triple cover
Cf ! P1 of signature .s; g � s/ with a level .1 � ˛/-structure l on J.Cf /Œ1 � ˛�
and the determinant d of the cohomology modulo 3, is a threefold étale cover of the
moduli stack of tuples .J; l/. It is étale since the ramification points of the cover
Cf ! P1 determine the level .1 � ˛/-structure and ˛ then induces the �3-action.
This degree three cover extends to the appropriate moduli stacks (Picard modular
stacks, see Section 5.1) of principally polarized abelian varieties with level structure.

In the case of g D 3 and the covers considered in Section 5.4 this étale cover is
given by the �3-cover

X�1Œ
p
�3� ! X�Œ

p
�3�;

which is étale outside the locus where the discriminant of f vanishes. Indeed,
we know that this cover X�1Œ

p
�3� ! X�Œ

p
�3� is the cover defined over OF by

equation (2.1), see also Proposition 2.2. Therefore, the action of Frobenius on
the fibres of X�1Œ

p
�3� ! X�Œ

p
�3� is determined by the cubic character of the

discriminant of f , hence j2 is. The normalization of the cubic character then follows
by checking that it satisfies the formula of the theorem in examples for the case of
genus 3 or by checking it for abelian threefolds that are a product of elliptic curves.

In the general case the threefold cover of stacks is ramified along the codimension 1
locus where the discriminant of f vanishes. Therefore, j2 is determined by the cubic
character of the discriminant of f . Then we can specialize to the case where the
Jacobian J.Cf / splits as a direct sum of Jacobians of curves of lower genus to check
the formula inductively starting from the cases of g � 3.

7. Euler characteristics of `-adic local systems

In this section we will introduce the motivic Euler characteristics of local systems on
our moduli spaces, stating basic results, showing how the Lefschetz trace formula can
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be used to find cohomological information and presenting a formula for the integer
valued Euler characteristic of any local system.

7.1. Hecke characters. Recall the notation of Section 6.1. Define the Hecke char-
acter  of conductor .3/ for any pp by putting

 .pp/ D ap C bp�:

This gives a 1-dimensional “motive” that we will denote L1;0, pure of weight 1 and
Hodge type .1; 0/ and as an `-adic Gal. xF=F /-representation, the trace of a Frobenius
element Fpp , corresponding to a prime ideal pp , is given by  .pp/.

Recall that
f .z/ D

X
˛

 .˛/qN.˛/ 2 ZŒq�;

where q D e2�iz and the sum is over all integral ideals ˛ prime to .3/ and N.˛/ is
the norm of ˛, is a cusp form of weight 2 and level �0.27/. Moreover, we have that

f .z/ D �.3z/
2�.9z/2 D q � 2q2 � q7 C 5q13 C 4q16 � 7q19 � 5q25 C � � � :

Similarly, we define L0;1 of Hodge type .0; 1/ by using the Hecke character

x .pp/ WD app C bpp�
2:

Finally, for any pair of integers n;m we define Ln;m by taking tensor products of
the “motives” above. Note that L1;1 becomes the usual Lefschetz motive, also
denoted L1.

7.2. Euler characteristics of `-adic local systems. For any of our moduli spaces X

(which are stacks) introduced in Section 5.1 and Section 5.3 we have a universal
family � WC ! X and we consider the `-adic local system V WD R1�� xQ`. This
local system has rank 6, where the fiber of a geometric point represented by an abelian
variety A equals the `-adic étale cohomology group H 1.A; xQ`/. It is provided with
a non-degenerate alternating pairing V � V ! xQ`.�1/.

The action of ˛ gives rise to a decomposition of the base change to F of V , as a
direct sum of two local systems of rank 3 over F ˝ xQ`:

V ˝ F DW ˚W 0

with W (respectively, W 0) the �-eigenspace (respectively, the �2-eigenspace) of ˛.
Note that we can also take X.C/ and define the (Betti) local system V WD R1��Q,

and then the�-eigenspace W is the same local system as the one defined in Section 3.1.
We define local systems W� using the representations of GL.3;C/ � Gm as in

Section 3.1. The multiplier defines the constant local system F.�1/.
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Let W _ denote the F -linear dual. Then note that

.Wn1;n2;n3/
_
ŠWn2;n1;�n1�n2�n3 :

The non-degenerate pairing implies that the conjugate takes the form

W 0
ŠW _

˝ F.�1/;

and so
W 0
n1;n2;n3

ŠWn2;n1;�n1�n2�n3 ˝ F.�n1 � 2n2 � 3n3/: (7.1)

Let H�c denote compactly supported `-adic étale cohomology. The action of the
symmetric groupS4 Š �Œ

p
�3�=� on X�Œ

p
�3� induces an action on its cohomology

groups. We define the Euler characteristic of the local system W� on X�Œ
p
�3� ˝

xF

inK0.GalS4F /, the Grothendieck group of `-adic Gal. xF=F /-representations equipped
with an action of S4 by

ec
�
X�Œ

p
�3�;W�

�
WD

4X
iD0

.�1/i
�
H i
c

�
X�Œ

p
�3� ˝

xF ;W�

��
:

Similarly, consider compactly supported Betti cohomology and define by (abuse of)
the same notation

ec
�
X�Œ

p
�3�;W�

�
WD

4X
iD0

.�1/i
�
H i
c

�
X�Œ

p
�3�.C/;W�

��
in the Grothendieck group of Hodge modules equipped with an action of S4. Let
ec;�.X�Œ

p
�3�;W�/ correspond to a�-isotypic component of the Euler characteristics

in the sense that

ec
�
X�Œ

p
�3�;W�

�
D

X
�`4

ec;�
�
X�Œ

p
�3�;W�

�
s�:

The statements in Section 12 will be called motivic, and by this we will mean that
these are statements about the Euler characteristic in both these Galois groups.

Proposition 7.1. For all � and all i we have the following:

(1) H i
c .X�Œ

p
�3�;W�/ D 0 if n1 6�3 n2;

(2) H i
c .X�Œ

p
�3�;W� ˝ F.�k// D H

i
c .X�Œ

p
�3�;W�/Lk .

Proof. We prove .1/, the proof of .2/ is standard. The automorphism ˛ acts on the
fibre .W�/A by �n1C2n2 for any closed point A of X�Œ

p
�3�. So if n1 6�3 n2, then

this action has no invariants and hence the cohomology has to vanish.
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7.3. Traces of Frobenius. Recall the notation of Section 6.1 and Section 6.2. Com-
pare the following section to the article [6] and the references therein. We define the
(geometric) Frobenius Fq 2 Gal.xk=k/ to be the inverse of x 7! xq . We choose a
Frobenius element Fpq 2 Gal. xF=F /, using an element of the Galois group of the
p-adic completion of F that is mapped to the Frobenius element Fq 2 Gal.xk=k/.
These Frobenii satisfy

Tr
�
Fpq ; ec;�

�
X�Œ

p
�3� ˝

xF ;W�

��
D Tr

�
Fq; ec;�

�
X�Œ

p
�3� ˝

xk;W�

��
; (7.2)

and these traces are elements of ZŒ��. The traces of Fpp for (almost) all unramified
primes pp will (using a Chebotarov density argument) determine

ec;�
�
X�Œ

p
�3� ˝

xF ;W�

�
as an element of K0.GalF /, cf. [12, Prop. 2.6]. For any element of V 2 K0.GalF /
we can define a virtual representation xV by the property Tr.Fpp ;

xV / D Tr.Fpp ; V /.
Proposition 7.2. For any � and � D n1
1 C n2
2 C n3
3, we have

ec;�
�
X�Œ

p
�3�;Wn1;n2;n3

�
D ec;�

�
X�Œ

p
�3�;Wn2;n1;�n1�n2�n3

�
L�n1�2n2�3n3 ;

as elements of K0.GalF /.

Proof. This follows directly from equation (7.1).

Proposition 7.3. For any p �3 2, even r � 1, � and �, we have

Tr
�
Fq; ec;�.X�Œ

p
�3� ˝

xk;W�// 2 Z:

Proof. If p �3 2, then the automorphism x 7! xp sends z� to z�2 in k D Fpr for any
even r � 1. This immediately shows that

Tr
�
Fq; ec;�

�
X�Œ

p
�3� ˝

xk;W�

��
D Tr

�
Fq; ec;�

�
X�Œ

p
�3� ˝

xk;W�

��
:

Let ei denote the i th elementary symmetric polynomial and pi the i th power sum
polynomial. The number of variables should in the future be clear from context.
Partitions � ` n will be written on the form � D .1�1 ; 2�2 ; : : : ; n�n/, where

n D

nX
iD1

i �i :

Now, for any partition � ` n, let s� denote the Schur polynomial associated to � and
put

e� WD

nY
iD1

e
�i
i and p� WD

nY
iD1

p
�i
i :
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Recall that s� is a polynomial with integer coefficients in the elementary symmetric
polynomials e1; e2; : : : ; en, and with rational coefficients in the power sum polynom-
ials and we define c�;� by

s� D
X
�`n

c�;�
p�

z�
; where z� WD

nY
iD1

�i Ši
�i :

In the representation ring ofSn (tensored with Q) we have the corresponding equality

s� D
X
�`n

c�;�
p�
z�
:

Recall the notation in Section 6.2. For any C 2 X�Œ
p
�3�.k/, using Poincaré

duality in étale cohomology between H 1.C; xQ`/ and H 1
c .C;

xQ`/, we have that

Tr
�
Fq; .W /C˝xk

�
D ˛1.C /C ˛2.C /C ˛3.C /;

and so for any partition �, we have

Tr
�
Fq; .W�/C˝xk

�
D s�

�
˛1.C /; ˛2.C /; ˛3.C /

�
:

For any partition � of 4, let X�.k/ inside X�Œ
p
�3�.k/ consist of the curves whose

ramification points, where ˛ acts by �, are defined over k�i but not over a subfield
of k�i for 1 � i � 4. From the Lefschetz trace formula (see [13, Th. 3.2]), it follows
that if �� 2 S4 has cycle type �, then

Tr
�
Fqı�� ; ec.X�Œ

p
�3�˝

xk;W�/
�
D

X
C2X�.k/=Šk

s�
�
˛1.C /; ˛2.C /; ˛3.C /

�
jAutk.C /j

: (7.3)

By the projection formula, we then have

Tr
�
Fq; ec;�

�
X�Œ

p
�3� ˝

xk;W�

��
D

X
�`4

c�;� Tr
�
Fq ı �� ; ec

�
X�Œ

p
�3� ˝

xk;W�

��
;

giving the equality

Tr
�
Fq; ec;�

�
X�Œ

p
�3�˝

xk;W�

��
s� D

X
�`4

c�;� Tr
�
Fqı�� ; ec

�
X�Œ

p
�3�˝

xk;W�

��p�
z�
:

Proposition 7.4. For any �, we have

ec
�
X�Œ

p
�3�;W� ˝ det.W /3

�
D ec

�
X�Œ

p
�3�;W�

�
L6;3s14 ;

as elements of KS4
0 .GalF /.
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Proof. Let C be an element of X�.k/. We see from Theorem 6.5 that

Tr
�
Fq;

�
W� ˝ .det W /3

�
C˝xk

�
D Tr

�
Fq; .W�/C˝xk

�
e3
�
˛1.C /; ˛2.C /; ˛3.C /

�3
D Tr

�
Fq; .W�/C˝xk

�
.�1/sign.�/.apq C bpq�/

6.apq C bpq�
2/3:

From this, the result follows.

Remark 7.5. If the weightn1C2n2C3n3 of the local system� D n1
1Cn2
2Cn3
3
is even then

ec
�
X0
�Œ
p
�3�
;W�

�
D ec

�
X�Œ

p
�3�;W�

�
;

but if the weight is odd then

ec
�
X0
�Œ
p
�3�
;W�

�
D 0

due to the presence of the automorphism �1 of the abelian varieties that X0
�Œ
p
�3�

parametrizes. But we see from Proposition 7.4 that there are no new motives
appearing for a local system W� on X�Œ

p
�3� of odd weight, since these motives

will, after being tensored with the “trivial factor” L6;3 ˝ s14 , appear in

ec
�
X0
�Œ
p
�3�
;W� ˝ det.W /3

�
:

7.3.1. Normalization of the Euler characteristic. In the proof of Proposition 7.4
we also see, for any � and �, that

ec;�
�
X�Œ

p
�3�;W� ˝ det.W /i

�
D L2i;iV�;�

for some element V�;� of K0.GalS4F /.

Definition 7.6. If � D n1
1 C n2
2 C n3
3 and �0 D n1
1 C n2
2, then W� D

W�0˝det.W /n3 , and by taking away the factor L2n3;n3 we define the normalized Euler
characteristic to be

enorm
c;�

�
X�Œ

p
�3�;W�

�
D V�0;�:

7.3.2. The appearance of Picard modular cusp forms. Using Propositions 7.1, 7.2
and 7.4, we can restrict ourselves to determining the Euler characteristics of local
systems

� D n1
1 C n2
2 C n3
3

for which n2 � n1, n1 �3 n2, n1 �2 n3 and 0 � n3 � 5.
Proposition 3.3 suggests that one finds a motive in the Euler characteristic

enorm
c .X�Œ

p
�3�;W�/ that will correspond to the space of Picard modular cusp forms

Sn2;n1C3;n2Cn3�1, see further in Section 10.
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8. Counts over finite fields

8.1. Information needed. In this section we will see what information is needed to
compute

Tr
�
Fq; ec;�.X�Œ

p
�3� ˝

xk;W�/
�
:

The results will be used in Section 10.1 and are the basis of our conjectures in
Sections 11 and 12.

First, define the contributions of the strata to the trace

Tri;�;�;q WD Tr
�
Fq ı �� ; ec

�
Xi;�Œ

p
�3� ˝

xk;W�

��
:

8.1.1. Counts of smooth curves of genus 3. Let P1;�.k/ denote the set of square-
free polynomials f with coefficients in k of degree four such that f has �i roots
defined over ki but not over any proper subfield of ki . From equation (7.3), together
with the results of Section 5.4, we find that

Tr1;�;q D
1

q.q � 1/2

X
f 2P1;�.k/

s�
�
˛1.C /; ˛2.C /; ˛3.C /

�
:

If we have computed

e1
�
˛1.Cf /; ˛2.Cf /; ˛3.Cf /

�
D a1;�.Cf / D �

X
a2P1.k/

�.f .a//;

then we can use equation (6.1) together with Theorem 6.5 to easily compute

ei
�
˛1.Cf /; ˛2.Cf /; ˛3.Cf /

�
for i D 2; 3. With this information we can compute

s�
�
˛1.Cf /; ˛2.Cf /; ˛3.Cf /

�
for any �.

One can then simplify the computation of Tr1;�;q by using the group of isomor-
phisms to find normal forms. Fix a generator 
 of k�. If p is odd and p ¤ 3, then a
curve of the form

y3 D a4x
4
C a3x

3
C a2x

2
C a1x C a0 (8.1)

with a2; a3 and a4 non-zero, is isomorphic (over k) to a curve of the form

y3 D 
 i .a04x
4
C x2 C x C a00/; (8.2)

for some a04, a00 and 0 � i � 2. The curves of the latter form are all non-isomorphic
and have an automorphism group of order 3 generated by y 7! z�y. IfD1 � P1;�.k/
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is the subset of polynomials of the form (8.1) and D2 � P1;�.k/ of the form (8.2)
then

1

q.q � 1/2

X
f 2D1

s�
�
˛1.C /; ˛2.C /; ˛3.C /

�
D
1

3

3X
iD1

X
fDa0

4
x4Cx2CxCa0

0
2D2

s�
�
z� i˛1.Cf /; z�

i˛2.Cf /; z�
i˛3.Cf /

�
:

In a similar way, one can construct other normal forms if a2 or a3 is zero.
If p D 2, then a curve of the form

y3 D a4x
4
C a3x

3
C a2x

2
C a1x C a0

with a1; a0 and a4 non-zero, will be isomorphic to a curve of the form

y3 D 
 i .x4 C x3 C a01x C a
0
0/

for some a01, a00 and 0 � i � 2.
In this manner, we can reduce the number of free parameters in the polynomials

in the sum Tr1;�;q from 5 to 2 (which is optimal since we are considering a surface).

8.1.2. Counts of smooth genus 2 curves joined with elliptic curves. We will den-
ote by P2;�.k/ the set of triples of polynomials .f1; f2; f / with coefficients in k, as
in Section 5.7, but where we assume that f2 is of degree 1 by putting the point q2 in
infinity using a linear transformation in x, and such that f and f1 together have �i
roots defined over ki but not over any subfield of ki . We find that

Tr2;�;q D
1

.q2.q � 1/4

X
.f1;f2;f /2P2;�.k/

s�
�
˛1.Cf1;f2/; ˛2.Cf1;f2/; ˛1.Cf /

�
:

If we have computed

e1
�
˛1.Cf1;f2/; ˛2.Cf1;f2/

�
D �

X
a2P1.k/

�.f1.a//�.f2.a//
2;

we can use Theorem 6.5 to compute e2.˛1.Cf1;f2/; ˛2.Cf1;f2//. Using the equations
in Section 6.2.1 we can compute e1.˛1.Cf //. From this we can determine

ei
�
˛1.Cf1;f2/; ˛2.Cf1;f2/; ˛1.Cf /

�
for i D 1; 2; 3.

As in Section 8.1.1, we can use the group of isomorphisms to find normal forms
which will simplify the computation of Tr2;�;q . Fix 
 , a generator of k�. If p is odd,
and

.b2x
2
C b1x C b0; c1x C c0; d2x

2
C d1x C d0/
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is in P2;�.k/ with c0 ¤ 0, then we can find an isomorphism to a curve given by
.f 01 ; f

0
2 ; f

0
3/ in P2;�.k/, where

f 03 D x
2
C 
 i ; f 02 D x C 1; f 01 D 


j .x2 C b1/

for some b1 2 k, 0 � i � 5 and 0 � j � 2. The curves of the latter form are all
non-isomorphic and have an automorphism group of order 3 generated by y 7! z�y.
Similar normal forms can be found if c0 D 0 and if p is even.

In this manner, we can reduce the free parameters in the polynomials in the sum
Tr2;�;q from 8 to 1 (which is optimal since we are here considering a curve).

8.1.3. Counts of triples of elliptic curves. Let P3;�.k/ denote the set of triples of
polynomials .f1; f2; f 23 /with coefficients in k, as in Section 5.8, such that f1 and f2
together have�i roots defined over ki but not over any subfield of ki . DefineP 03;�.k/
in the same way, but where f1; f2 are defined over k2 and where Frobenius sends f1
to f2. Note that we have more isomorphisms between the curves corresponding to
elements of these sets, namely by switching the two “wings” of these curves, that is
between Cf1;f2;f 23 and Cf2;f1;f 23 . We have that

Tr3;�;q D
1

2q3.q � 1/3

X
.f1;f2;f

2
3
/2P3;�.k/

s�
�
˛1.Cf1/; ˛1.Cf2/; ˛1.Cf 2

3
/
�

C
1

2q3.q � 1/.q2 � 1/

X
.f1;f2;f

2
3
/2P 0

3;�
.k/

s�
�
˛1.Cf1/; ˛2.Cf2/; ˛1.Cf 2

3
/
�
:

If .f1; f2; f 23 / are in P3;�.k/ then using the equations in Section 6.2.1, we can
compute e1.˛1.Cfi // for i D 1; 2; 3. For .f1; f2; f 23 / in P 03;�.k/, we can determine
e1.˛1.Cf 2

3
// in the same way. Moreover, e1.˛1.Cf1/; ˛2.Cf2// D 0 and

p2
�
˛1.Cf1/; ˛2.Cf2/

�
D �

X
a2P1.k2/

�.f1.a// �
X

a2P1.k2/

�.f2.a//;

where � is the third power residue symbol for k2. In both cases, this gives enough
information to determine ei .˛1.Cf1/; ˛1.Cf2/; ˛1.Cf 2

3
// for i D 1; 2; 3.

In Section 6.2.1, a representative of each k-isomorphism class of X
.1/
� .k/ is

given. With this information Tr3;�;q is easily computed for any � and q.

8.2. Counts with constant coefficients. Let us consider the Euler characteristic
when W� D

xQ`.
We will repeatedly use the trick below that summing over all elements defined

over k, of one of the groupoids at hand, and then dividing by the number of k-iso-
morphisms between these elements is the same as summing elements weighted by
the reciprocal of their number of k-automorphisms, compare for instance [4, Sec. 5].
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The elements of X1;�.k/ together with their isomorphisms are described in
Section 5.4. For �Œ

p
�3� we divide into the different choices of four branch points

on P1 giving

Tr
�
Fq; ec.X1;�Œ

p
�3� ˝

xk; xQ`/
�
D

�
q.q � 1/.q � 2/.q � 3/

p41
24

C .q2 � q/q.q � 1/
p21p2
4
C .q3 � q/q

p1p3
3
C .q2 � q/.q2 � q � 2/

p22
8

C .q4 � q2/
p4
4

�
=
�
q.q � 1/

�
D q2s4 C .1 � q/s3;1 � qs2;2 C s2;1;1:

Similarly for X2;�Œ
p
�3� we use Sections 5.5, 5.6 and 5.7, and we find that

Tr
�
Fq; ec.X2;�Œ

p
�3� ˝

xk; xQ`/
�

D

��p21
2
C

p2
2

��
q.q � 1/.q � 2/

p21
2
C q.q2 � q/

p2p2
2

��
=
�
q.q � 1/

�
D .q � 1/s4 C .q � 2/s3;1 C .q � 1/s2;2 � s2;1;1:

For X3;�Œ
p
�3�, we use Sections 5.6 and 5.8, and we recall the plethysm ı to deal

with the symmetry of the two elliptic curves that form the “wings”. We find that

Tr
�
Fq; ec

�
X3;�Œ

p
�3� ˝

xk; xQ`

��
D

�p21
2
C

p2
2

�
ı

�p21
2
C

p2
2

�
D
1

2

�p21
2
C

p2
2

�2
C
1

2

�p22
2
C

p4
2

�
D s4 C s2;2:

The trace of Frobenius on ec.X3;�Œ
p
�3� ˝

xk/ for all q �3 1 determines

ec
�
X�Œ

p
�3� ˝

xk; xQ`

�
as an element in K0.GalS4F /, see Section 7.3. Summing the three cases above we
then get the following.
Proposition 8.1. We have an equality of elements in K0.GalS4F /:

ec
�
X�Œ

p
�3� ˝

xk; xQ`

�
D .L2 C L/s4 � s3;1:

We continue with case (iv) of Section 5.9. On the elliptic curve C1, there is a
choice of a point not equal to any of the ramification points. This gives a contribution
q C 1 � a1.C1/ � r1.C1/, where r1.C1/ is the number of ramification points of C1
defined over k. A computation similar to the one in Section 6.2.1 shows, due to the
symmetry, that the contribution from a1.C1/ vanishes. The genus 0 curve contributes
a p1, and so the trace of Frobenius on the Euler characteristic of the strata for case (iv)
equals

p1

�
.q C 1 � 3/

p31
6
C .q C 1 � 1/

p1p2
2
C .q C 1/

p3
3

�
D qs4 C .q � 1/s3;1 � s2;2 � s2;1;1:
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Case (v) is straightforward and the trace of Frobenius on its Euler characteristic
equals

p21
�p21
2
C

p2
2

�
D s4 C 2s3;1 C s2;2 C s2;1;1:

Summing cases (i) to (v) and using the purity of a smooth and proper (Deligne–
Mumford) stack we find the following.
Proposition 8.2. We have an equality of elements in GalS4F :

H i
c

�
zX�Œ
p
�3� ˝

xk; xQ`

�
D

8̂̂̂̂
<̂
ˆ̂̂:

L2s4 if i D 4;
L.2s4 C s3;1/ if i D 2;
L0s4 if i D 0;
0 if i odd:

Together, cases (iv) and (v) contribute .q C 1/.s4 C s3;1/ and they form a P1-
bundle under the morphism (5.1). Hence, their image (the four cusps) contribute
s4 C s3;1 and we get a trace of Frobenius equal to

Tr
�
Fq; ec

�
X�
�Œ
p
�3�
˝ xk; xQ`

��
D .q2 C q C 1/s4;

which echoes the fact that X�
�Œ
p
�3�
Š P2.

8.2.1. The genus 2 case. There are two strata in X
.2/

�Œ
p
�3�

, one consisting of smooth
genus 2 curves and one consisting of pairs of genus one curves, one with action of
type .1; 0/ and one of type .0; 1/, joined at a ramification point on each curve. There
is an action of S2 �S2 on the two pairs of ramification points, one pair where the
action of ˛ is by � and one by �2. Let us use the notation pi and zpi , and s� and zs�,
for the basis of representations of the two components of S2 �S2. A consideration
analogous to the ones above shows that

Tr
�
Fq; ec

�
X
.2/

�Œ
p
�3�
˝ xk; xQ`

��
D

�
.q C 1/q.q � 1/.q � 2/

p21zp21
4

C .q2 � q/.q C 1/q
p2zp21 C p21zp2

4

C .q2 � q/.q2 � q � 2/
p2zp2
4

�
=
�
.q C 1/q.q � 1/

�
C

p21zp21
4
C

p21zp2
4
C

p2zp21
4
C

p2zp2
4
D qs2zs2 � s1;1zs1;1;

and we can conclude the following.
Proposition 8.3. We have an equality of elements in K0.GalS4F /:

ec
�
X
.2/

�Œ
p
�3�
˝ xk; xQ`

�
D Ls2zs2 � s1;1zs1;1:
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8.3. Euler characteristics of local systems for elliptic curves. Using the results
of Section 6.2.1 and Section 7.3, we find that

Tr
�
Fq; e

0
c

�
X
.1/

�Œ
p
�3�
˝ xk;Wk

��
D

2X
iD0

�ki .apq C bpq�
2/k
�
p21 C .�1/kp2

�
for all q such that q �3 1. This equality, together with the fact that an element in
K0.GalF / is determined by all traces of Frobenius, shows the following.
Proposition 8.4. For any k � 0, we have the equality in KS4

0 .GalF /:

ec
�
X
.1/

�Œ
p
�3�
;Wk

�
D

8̂<̂
:

L0;ks2 if k �6 0;
Lk;0s12 if k �6 3;
0 if k 6�3 0:

9. Numeric Euler characteristics of local systems

In this section the ground field will be C, we will consider the compactly supported
Betti cohomology, and we will find a formula for the integer-valued Euler character-
istic,

Ec;�
�
X�Œ
p
�3�;W�

�
WD

4X
iD0

.�1/i dimC H
i
c;�

�
X�Œ
p
�3�;W�

�
2 Z

for any � and �, whereH i
c;� is the �-isotypic component ofH i

c . Examples of comp-
utations using this formula will be found in Section 13.2.

Similarly to the above, we will write

Ec
�
X�Œ
p
�3�;W�

�
WD

X
�`4

Ec;�
�
X�Œ
p
�3�;W�

�
dim s�

s� 2 ZŒS4�:

The reader should compare this section to the article [7] and the references therein.
Note that by comparison theorems this numerical Euler characteristic will be the
same if Betti cohomology is replaced by `-adic étale cohomology as described in
Section 7. So, Ec.X�Œp�3�;W�/ equals dim ec.X�Œ

p
�3�;W�/ for any � of even

weight.
We stratify our moduli spaceX� , first intoX1;� ,X2;� andX3;� as in Section 5.3.

We then stratify further into strata †i .G/ for i D 1; 2; 3 and G a finite group,
consisting of the curves corresponding to points of Xi;� whose automorphism group
equals G. As usual, let H 1.C;C/� denote the �-eigenspace of H 1.C;C/ when
acting by ˛. Say that g 2 G has eigenvalues �1.g/, �2.g/ and �3.g/ when acting on
H 1.C;C/� of a curve C 2 †.G/. Say furthermore that the induced action of g 2 G
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on the four ramification points of C 2 †i .G/ where ˛ acts by � has �i cycles of
length i . Note that this data will be constant on the strata, i.e., independent of the
choice of C 2 †i .G/. If ec

�
†i .G/

�
denotes the usual compactly supported Euler

characteristic of †i .G/, then

Ec
�
X�Œ
p
�3�;W�

�
D

3X
iD1

X
G

Ec
�
†i .G/

�
jGj

X
g2G

s�
�
�1.g/; �2.g/; �3.g/

�
p� : (9.1)

In the sections below, we will find the necessary information to compute this formula
for any given �.

In all cases below, the automorphism groups that appear are cyclic, so it is enough
to give the three eigenvalues of a generator, which we will denote by �, together with
its cycle type as a permutation of the four ramification points.

9.1. Numerical Euler characteristics for smooth curves of genus 3. One easily
finds that there are four different cyclic automorphism groups in this case, namely
the generic case C3 and then C6, C9 and C12. The strata for C9 and C12 consist of a
single point. For C6, the stratum is 1-dimensional. Each isomorphism class can be
represented by a curve of the form

f D x4 C ax2 C 1

with a 2 C. To make this a smooth curve we need a2 ¤ 0; 1. Moreover, two curves
of this form are isomorphic precisely if their coefficients a differ by a sign. This shows
that the Euler characteristic of this stratum equals �1. The whole moduli spaceX1;�
is described in the end of Section 2 and we find that it has Euler characteristic 1
(compare with the point count in Section 8.2). From this it follows that the Euler
characteristic of the generic (open dense) stratum must be 0.

We have an isomorphism

H 1.C;C/ Š H 0.C;�/˚H 0.C;�/

and the subspace H 1.C;C/� has a basis consisting of dx=y2, xdx=y2 and the dual
of dx=y. The eigenvalues of the action of � onH 1.C;C/� can thus be found through
its action on this basis.

We exemplify such a computation in the case of C9. The other cases are
completely analogous. We have that � applied to dx=y2, xdx=y2, dx=y equals

�dx=."2y2/ D "dx=y2; �2dx=."2y2/ D �"dx=y2; �dx=."y/ D "2dx=y;

respectively. The action should be on the dual of �dx=y and hence this eigenvalue
becomes "�2 D �2". We see that the action of � cyclically permutes three of the
ramification points and fixes the fourth.

The data to compute the contribution from the strata X1;�Œp�3� to equation (9.1),
is found in Table 1.
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G f †1.G/ �.x; y/ �1.�/; �2.�/; �3.�/ p�

C3 0 .x; �y/ �; �; � p41
C6 x4 C ax2 C 1 �1 .�x; �y/ �;��;�� p22
C9 x.x3 � 1/ 1 .�x; "y/ "; �"; �2" p1p3
C12 x4 � 1 1 .ix; �y/ ��; i�;�i� p4

Table 1.

9.2. Numerical Euler characteristics for smooth genus 2 curves joined with ellip-
tic curves. Let us first consider smooth genus 2 curvesCf1;f2 together with a marked
root of f2, which we place in infinity, see Section 5.7. Note that the hyperelliptic
involution does not fix the marked point. There are two strata. The generic strata,
with automorphism group C3, has a representative

f1 D x
2
C ax C 1; f2 D x

for each a ¤ 0 2 C. This gives an Euler characteristic equal to �1. The strata
with automorphism group C6 consists of a point, given by a D 0. In this case, the
involution switches the two ramification points where ˛ acts by �. In both cases, the
subspace H 1.Cf1;f2 ;C/

� has a basis consisting of xdx=y2 and the dual of dx=y.
Computations as in the previous section give Table 2.

G f1f
2
2 †1.G/ �.x; y/ �1.�/; �2.�/; �3.�/ p�

C3 .x2 C ax C 1/x2 �1 .x; �y/ �; � p21
C6 .x2 C 1/x2 1 .�x; �y/ �;�� p2

Table 2.

The elliptic curves come with a marked ramification point at infinity and there is
only one stratum consisting of the curve with equationy3 D x2C1 and automorphism
group Z=6Z generated by the element �W .x; y/ 7! .�x; �y/. The single eigenvalue
of � acting on H 1

c .C;C/
� is ��. Furthermore �i permutes the ramification points

if i is odd and fixes them if i is even.
The possible automorphism groups of curvesCf1;f2;f3 2 X2;�Œp�3� are just prod-

ucts of the automorphism groups for Cf1;f2 and Cf3 . Moreover, we have that

H 1.Cf1;f2;f3 ;C/
�
Š H 1.Cf1;f2 ;C/

�
˚H 1.Cf3 ;C/

�:

So, piecing together the information above enables us to compute the contribution
from X2;�Œ

p
�3� to equation (9.1).

9.3. Numerical Euler characteristics for triples of elliptic curves. Triples of ell-
iptic curves Cf1;f2;f 23 are described in Section 5.8. The “backbone”, corresponding
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to f 23 , will only have an automorphism group generated by ˛, because two of
its ramification points are fixed. Then there is an additional automorphism �

by switching the two “wings” corresponding to f1 and f2. This gives rise to an
automorphism group of the form G D C3 � .C6 oS2/, where o denotes the wreath
product. Say that ˛i is an automorphism of Cfi for i D 1; : : : ; 3 with eigenvalues �i
acting onH 1.Cfi ;C/

�, then these will also be the eigenvalues of the induced action
on

H 1.Cf1;f2;f 23
;C/� Š H 1.Cf1 ;C/

�
˚H 1.Cf2 ;C/

�
˚H 1.Cf 2

3
;C/�:

If the previous automorphism is composed with the involution in S2, the eigenvalues
will be .�1�2/1=2, �.�1�2/1=2, �3. From this information one can compute the con-
tribution from X3;�Œ

p
�3� to equation (9.1).

10. Our approach

Here we will explain the approach that led us to the conjectures on Picard modular
forms in Section 11 and 12.

10.1. Computer counts over finite fields. Using the results of Section 8 we com-
puted

Tr
�
Fq; e

norm
c;�

�
X�Œ

p
�3� ˝

xk;W�

��
for all prime powers q �3 1 such that q � 67, and all partitions � such that
n1 C n2 C 2 � 40. These traces always turned out to be in ZŒ�� as they should be,
see Section 7.3.

The conjectures of this section are based upon these computer counts (using the
equality (7.2)).

10.2. Preview. We are interested in calculating the trace of Hecke operators on the
S4-isotypic components of the space Sj;k;l.�Œ

p
�3�/ of cusp forms of given weight.

In the analogous case of the space Sk of cusp forms of weight k on SL.2;Z/ one can
use for even k > 0 the formula

Tr
�
T .p/; SkC2

�
D Tr

�
Fp; SŒk C 2�

�
with SŒkC 2� the Chow motive of dimension 2 dimSkC2 associated by Scholl ([45])
to the space SkC2 andFp denotes Frobenius. By Deligne’s result the motive SŒkC2�
can be found inside the cohomology of a local system Vk on the moduli space A1 of
elliptic curves

ec.A1;Vk/ D �SŒk C 2� � 1; (10.1)

and we thus can use counts of points over finite fields to calculate the trace of
Frobenius on this cohomology and thus the traces of the Hecke operators. Note that
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the �1 in the last formula comes from the Eisenstein cohomology. By replacing ec
by the inner cohomology eŠ we get rid of it. We remark that equation (10.1) still
holds for k D 0 if we put SŒ2� D �L � 1.

We want the analogue of this for our Picard modular case. Ideally, in our case one
would hope for the existence of a motiveSŒj; k; l� of dimension 3 dimSj;k;l.�Œ

p
�3�/

defined over F such that

Tr
�
T .�/; Sj;k;l

�
�Œ
p
�3�

��
D Tr

�
F� ; SŒj; k; l�

�
with T .�/ the Hecke operator for any � 2 ZŒ�� such that � �3 1 and �x� D p a
prime and F� is the Frobenius as in Section 7.3 (see also Section 6.1). We refer to
the paper by Blasius and Rogawski [33, p. 421] and Harder’s book [22]. Moreover,
SŒj; k; l� should appear S4-equivariantly in the second inner cohomology group of
the corresponding local system on our moduli space, see Proposition 3.3.

However, one must expect deviations from this due to the fact that there will be
liftings from U.1/ and GL.2/. In Section 11 we make precise conjectures on all
such lifts. To any of these lifts f that is a Hecke eigenform we can (conjecturally)
associate a reducible 3-dimensional Galois representation Mf defined over F such
that

Tr.T .�/; f / D Tr.F� ;Mf /:

But for most of these we only see a contribution from a 1-dimensional or 2-
dimensional part of Mf in the étale cohomology of our local systems. After
removing these cusp forms we are left with a (conjectural) Hecke-invariant subspace
of what we call genuine Picard modular forms and that we denote by Sgen

j;k;l
.�Œ
p
�3�/.

So, to each Hecke eigenform in this space there should be a 3-dimensional Galois
representation appearing in the cohomology and its (normalized) Hodge degrees in
Betti cohomology should be .j C k � 1; 0/, .j C 1; k � 2/ and .0; j C k � 1/.

For any n1 �3 n2 and n1 �2 n3, our goal is to have a formula analogous to
equation (10.1), namely,

enorm
c

�
X�Œ

p
�3�;W�

�
D MSŒn.�/�C eextr.�/ (10.2)

equivariant for the action of S4 and with eextr.�/ coming from endoscopic groups
such that (except for the case n1 D n2 D n3 D 0)

Tr
�
T .�/; S

gen
n.�/

�
�Œ
p
�3�

��
D Tr

�
F� ; MSŒn.�/�

�
: (10.3)

for any � �3 1 with norm p a prime and with n.�/ D .n2; n1 C 3; n2 C n3 � 1/.
Ideally equation (10.2) should be an equality of motives, but we can also treat it as
an equality of bookkeeping devices for calculating traces as in equation (10.3). To
make equation (10.2) hold also in the case n1 D n2 D n3 D 0 we put

MSŒ0; 3; 2� D .L2 C LC 1/s4;

see Proposition 8.1.
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Analogously, for the numerical Euler characteristic we should have

dimS4 S
gen
n.�/

�
�Œ
p
�3�

�
D
1

3

�
Ec
�
X�Œ
p
�3�;W�

�
�Eextr.�/

�
:

This is formulated in Main conjecture 12.9 and Conjecture 12.12. All of the
conjectures of the following sections were found by analyzing the data described in
Section 10.1 together with all of the knowledge acquired in the previous sections.

10.3. Notation for local systems and Hecke operators. In the following sections
we will use a slightly different notation for our local systems � D n1
1Cn2
2Cn3
3
writing

� D .aC i; i;�b C i/

with n1 D a, n2 D b, n3 D �b C i . This reflects that instead of taking W , ^2W
and det.W / as building blocks we take W , W 0 and det.W /, see Section 7.2. The
reason for this switch of notation is that it makes the formulas of Section 12.1 less
cumbersome.

Assume from now on that a �3 b and put

n.�/ D .b; aC 3; i C 2/:

This is the corresponding weight of the modular forms appearing for �. So, if
i �2 aC b then we expect a Galois representation (of dimension 1, 2 or 3 times the
dimension of an irreducible representation of S4) corresponding to each eigenform
in Sn.�/.�Œ

p
�3�/ appearing (with positive coefficient) in ec.X�Œ

p
�3�;W�/. If i 6�2

aCb we expect the same contribution but with theS4-action twisted by s14 , compare
Proposition 7.4.

By � we will always mean an element of ZŒ�� such that � �3 1 and �x� D p

with p a prime. To such an element there is a corresponding Hecke operator acting
on Sn.�/.�Œ

p
�3�/ that we denote by T .�/, see Section 2.3.

Finally, � will denote a partition of 4.

11. Conjectured lifts

By analyzing the data described in Section 10.1 we see Galois representations in
the cohomology of our local systems that seem to be associated to lifts of modular
forms from U.1/ or GL.2/. The conjectures of this section are based upon these
examples. The authors have not been able to connect these with the liftings described
in Rogawski’s book [43], but a reader that is more well-acquainted with representation
theory might be more successful.

Each such lifted eigenform then contributes a piece of dimension 1, 2 or 3 to the
cohomology. It is important for us to identify the 1-dimensional and 2-dimensional
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pieces in order to be left with the “genuine” Picard modular forms with associated
irreducible 3-dimensional Galois representations.

We will use the notation from Section 10.3.

11.1. Notation for elliptic modular forms. We write�0.N / and�1.N / for the usu-
al subgroups of SL.2;Z/ and we write Sk.�0.N // for the space of cusp forms of
weight k on �0.N / and Snew

k
.�0.N // for the subspace of new forms. The dimensions

of these spaces will be denoted by sk.�0.N // and snew
k
.�0.N //. In our case we will

have level N D 3 or N D 9.
We note for level 3 and even k > 2 the dimension formula

snew
k .�0.3// D

8̂<̂
:
�
k
6

˘
C 1 if k �12 ˙2;�

k
6

˘
� 1 if k �12 0;�

k
6

˘
else.

For odd k, we split the space Sk.�1.3// as

Sk.�1.3// D S
�
k .�1.3//˚ S

C

k
.�1.3//

into the ˙-eigenspace for the Fricke operator W3. For odd k � 3 the dimension of
S˙
k
.�1.3// is given by

s�k .�1.3// D
jk � 3

6

k
; sC

k
.�1.3// D

(�
k�3
6

˘
C 1 if k �6 1;�

k�3
6

˘
else.

Inside the space Snew
k
.�0.9//, for even k, we consider the eigenforms f for which

the twist f�, with � the non-trivial character modulo 3, is also an eigenform in
Snew
k
.�0.9//. These generate a subspace †k � Snew

k
.�0.9//, and twisting f 7! f�

defines an involution on this space. It may happen that f D f� and then f will have
Hecke eigenvalues a.p/ D 0 for p �3 2 and f has CM by Q.

p
�3/. This happens

for k �3 1, and thus k �6 4. We decompose †k for even k

†k D S
�
k .�0.9//˚ S

C

k
.�0.9//;

where S˙
k
.�0.9// is the ˙-eigenspace for the twisting f 7! f� on †k . We found

experimentally the dimension formulas for †˙
k
.�0.9//

s�k .�0.9// D

(�
kC4
12

˘
� 1 k �12 10;�

kC4
12

˘
else;

sC
k
.�0.9// D

(�
kC4
12

˘
C 1 k �12 4;�

kC4
12

˘
else.



Vol. 97 (2022) Picard modular forms 359

For odd k, and with � the quadratic character modulo 3, we consider the subspace
S
�

k
.�0.9// of Snew

k
.�0.9/; �/ generated by eigenforms such that both f and its

twist f� belong to Snew
k
.�0.9/; �/ and are distinct. This space has dimension

s
�

k
.�0.9// D

jk C 1
6

k
:

11.2. One-dimensional lifts. Here we present the conjectured lifts of modular forms
from U.1/. For each of these lifts we see a 1-dimensional piece in the cohomology of
the corresponding local system W� with trace of the Frobenius F� equal to �aCbC2,
compare Definition 12.4.

Case 1. For a �6 3 there is a theta series �aC3 2 S0;aC3;1.�Œ
p
�3�/ with S4-

representation s14 . This eigenform is constructed in [18, Prop. 2]. For a D 3 we find
the form �. The Hecke eigenvalue of T .�/ is given by

�aC2 C .p C 1/x�aC1;

see [18, Prop. 9].

Case 2. For .a; b/ �6 .5; 2/ we find an eigenform in Sb;aC3;2.�Œ
p
�3�/ with S4-

representation s4. It will have a Hecke eigenvalue of T .�/ given by

�aCbC2 C �bC1x�aC1 C x�aCbC2:

The first example is found in S2;8;2.�Œ
p
�3�/ and it is described in [9, Exam-

ple 16.7].

Case 3. We conjecture that there is a lift

S�bC2.�0.9//! Sb;aC3;1�a
�
�Œ
p
�3�

�
with representation s4, and the lift of an eigenform f will have Hecke eigenvalue
of T .�/ given by

ap.f /C �
aCbC2:

11.3. Two-dimensional lifts. The Hecke eigenvalue of T .p/ for an elliptic eigen-
form f will be denoted by ap.f /. For each lift of an elliptic eigenform f , i.e., a
lift from GL.2/, described in this section we see a 2-dimensional piece (times
the dimension of the accompanying S4-representation) in the cohomology of the
corresponding local system W� with trace of Frobenius Fp equal to ap.f /�bC1 in
all cases but the first, where we just see ap.f /, compare Definition 12.5.

Case 1. We conjecture that there is a lift

S�aCbC3.�0.9//! Sb;aC3;2
�
�Œ
p
�3�

�
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with S4-representation s4 and the lift of an eigenform f will have Hecke eigenvalue
of T .�/ given by

ap.f /C �
bC1
x�aC1:

An example is given by the lift from S�8 .�0.9// to S1;7;2.�Œ
p
�3�/; the generating

lift is ‰1 described in [9, p. 44]. Another example is the lift from S�12.�0.9// to
S0;12;2.�Œ

p
�3�/ D C�2, already considered by Finis in [18, p. 178].

In the following five cases we will have a lift of an elliptic eigenform f to
Sb;aC3;l.�Œ

p
�3�/ and it will have a Hecke eigenvalue of T .�/ given by

ap.f /�
bC1
C x�aCbC2:

Case 2a. We conjecture that there is a lift

SaC2.�0.1//! Sb;aC3;b
�
�Œ
p
�3�

�
with S4-representation s2;12 C s14 .

The first example is the lift of � 2 S12.�0.1// to a form in S1;13;1.�Œ
p
�3�/

given in the table on page 43 of [9]. Lifts of this type were constructed by Kudla
in [31, Thm. 5.3].

Case 2b. We conjecture that there is a lift

S�aC2.�1.3//! Sb;aC3;b
�
�Œ
p
�3�

�
with S4-representation s4 C s3;1.

The first example is the lift from S�9 .�1.3// to S1;10;1.�Œ
p
�3�/ which appears

in the table on page 43 of [9]. Lifts of this type were constructed by Kudla as in
Case 2a.
Case 3. We conjecture that there is a lift

Snew
aC2.�0.3//! Sb;aC3;b

�
�Œ
p
�3�

�
with S4-representation s2;12 .

The lift of .�.3�/�.�//6 2 S6.�0.3// to an element of S1;7;1.�Œ
p
�3�/ is an

example.

Case 4. We conjecture that there is lift

S�aC2.�0.9//! Sb;aC3;b
�
�Œ
p
�3�

�
with S4-representation s3;1.

An example is the form F9;2 of Finis [18, p. 151] found in S0;6;0.�Œ
p
�3�/.

Case 5. We conjecture that there is a lift

S
�
aC2.�0.9//! Sb;aC3;b

�
�Œ
p
�3�

�
with S4-representation s2;2.

The first example is the lift from S
�
5 .�0.9// to S3;6;0.�Œ

p
�3�/ described in [9,

p. 50].
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11.4. Genuine Picard modular forms. We conjecture that the spaceSn.�/.�Œ
p
�3�/

decomposes into a Hecke-invariant direct sum of a subspace generated by all the lifts
described in Sections 11.2 and 11.3 and a subspace Sgen

n.�/
.�Œ
p
�3�/ which we call

the space of genuine Picard modular forms.

11.5. Three-dimensional lifts. As above, the Hecke eigenvalue of T .p/ for an ell-
iptic eigenform f of weight k will be denoted by ap.f /. In the cohomology of
our local systems we see examples of 3-dimensional pieces of the form Sym2.Mf /,
with Mf the motive associated to the elliptic eigenform, and with Hecke eigenvalue
for T .�/ equal to ap.f /2 � pk�1.

We list these (conjectural) examples of lifts, which should be eigenforms in
S

gen
n.�/

.�Œ
p
�3�/, with n.�/ defined in Section 10.3, without formulating more gen-

eral conjectures.
� The eigenform f 2 S

�
5 .�0.9// lifts to an eigenform in S3;6;2.�Œ

p
�3�/ with

S4-representation s2;12 C s14 .
� The eigenform f 2 S6.�0.3// lifts to an eigenform in S4;7;2.�Œ

p
�3�/ with

S4-representation s3;1.
� The eigenform f 2 S

�
7 .�0.9// lifts to an eigenform in S5;8;2.�Œ

p
�3�/ with

S4-representation s14 .
� The eigenform f 2 S�8 .�0.9// lifts to an eigenform in S6;9;2.�Œ

p
�3�/ with

S4-representation s4.
� The eigenform f 2 S�9 .�1.3// lifts to an eigenform in S7;10;2.�Œ

p
�3�/ with

S4-representation s4.

12. Conjectures on the cohomology of local systems

Recall the notation from Section 10.3. We will consider the normalized motivic (in
the sense of Definition 7.6) Euler characteristic with compact support

ec.�/ WD e
norm
c

�
X�Œ

p
�3�;W�

�
and the inner variant of this eŠ.�/. Define also ec;�.�/ as in Section 7.2. Put also

Ec.�/ WD Ec
�
X�Œ
p
�3�;W�

�
;

see Section 9.
Put �0 D .b � i;�i;�a � i/, so .�0/0 D �, and note by Proposition 7.2 that we

have a duality
ec.�

0/ D ec.�/:

Note that � D �0 precisely when a D b and i D 0.
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12.1. The main conjecture. In this section we formulate the main conjectures of
the article. First we present a series of definitions of different contributions to the
cohomology.

The contributions making up the extraneous contribution eextr.�/, see Defini-
tion 12.8, will consist of Hecke characters Li;j , see Section 7.1, and motives from
elliptic modular forms. Namely, to all the spaces of elliptic modular forms

Sk.�0.1//; Snew
k .�0.3//; S˙k .�1.3//; S˙k .�0.9//; S

�

k
.�0.9//

introduced in Section 11.1, we have corresponding motives (of twice their dimension)

SŒ�0.1/; k�; SnewŒ�0.3/; k�; S˙k Œ�1.3/; k�; S˙Œ�0.9/; k�; S�Œ�0.9/; k�

with the property that for any prime p the trace of the Hecke operator T .p/ on
the space of modular forms equals the trace of Frobenius F� on the corresponding
motive.
Definition 12.1. We define the S4-representations

˛j D

8̂<̂
:

s4 j �6 0;

s14 j �6 3;

0 else;
ˇj D

8̂<̂
:

s3;1 j �6 0;

s2;12 j �6 3;

0 else;

and we define ıj to be 1 if j �6 0 and 0 else.
Proposition 3.9 gives a formula for the (normalized) Eisenstein cohomology

eEis.�/ D ec.�/� eŠ.�/ for all regular �. Proposition 3.9 is only formulated in Betti
cohomology, but Harder’s result is actually motivic in the sense of Section 7.2. We
generalize the formula in the following definition.
Definition 12.2. We define e0Eis.�/ as

� .˛i C ˇi /L
0;0
C .˛i�b�1 C ˇi�b�1/L

bC1;0
C .˛iCaC1 C ˇiCaC1/L0;aC1

�

(
˛i�1.LC 1/LbC1;0 if a D 0 and b �2 0;
˛iC1.LC 1/L0;aC1 if b D 0 and a �2 0:

All the following contributions should be found in eŠ.�/. Note that the Hodge
degrees of all these contributions, for a regular local system, are either .aCbC2; 0/,
.b C 1; aC 1/, or .0; aC b C 2/, as they need to be, see Section 3.2. Note also that
the sign is always positive, which it should be for regular local systems since in that
case only the second inner cohomology group can be non-zero, see Section 3.2.

Before we formulate the contributions from lifts we recall that expressions
sk.�0.N // denote dimensions of elliptic modular cusp forms and an expression
SŒk; �0.N /� denotes a motive corresponding to a space of elliptic modular cusp
forms.
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Definition 12.3. We define the central endoscopic term ece.�/ as

˛i
�
saCbC3.�0.1//C s

�
aCbC3.�1.3//

�
LbC1;aC1

Cˇi
�
saCbC3.�0.1//C s

new
aCbC3.�0.3//C s

C

aCbC3
.�1.3//

�
LbC1;aC1

CˇiC3 s
C

aCbC3
.�0.9//LbC1;aC1 C .ıi C ıiC3/ s22 s

�

aCbC3
.�0.9//L

bC1;aC1

C˛iL
bC1;aC1 if .a; b/ �6 .5; 5/:

The following two contributions are connected to the lifted (holomorphic) forms
in Sb;aC3;iC2.�Œ

p
�3�/ described in the conjectures of Section 11.

Definition 12.4 (Holomorphic 1-dimensional lifts). We define e1`.�/ as

˛iCaC4s
�
bC2.�0.9//LaCbC2;0 C

(
˛iC3LaCbC2;0 if .a; b/ �6 .5; 2/;
˛iC4LaC2;0 if a �6 3 and b D 0:

Definition 12.5 (Holomorphic 2-dimensional lifts). We define e2`.�/ as

˛iC3S
�Œ�0.9/; aC b C 3�

C˛i�b�1
�
SŒ�0.1/; aC 2�C S

�Œ�1.3/; aC 2�
�
LbC1;0

Cˇi�b�1
�
SŒ�0.1/; aC 2�C S

newŒ�0.3/; aC 2�C S
�Œ�1.3/; aC 2�

�
LbC1;0

Cˇi�bC2S
�Œ�0.9/; aC 2�L

bC1;0

C.ıi�b�1 C ıi�bC2/ s22 S�Œ�0.9/; aC 2�LbC1;0:

Let xSj;k;l.�Œ
p
�3�/ be isomorphic as a vector space to xSj;k;l.�Œ

p
�3�/ but such

that the Hecke operatorT .�/ acts on xSj;k;l.�Œ
p
�3�/ asT .x�/ acts onSj;k;l.�Œ

p
�3�/.

The following two contributions (i.e., Definitions 12.6 and 12.7) are connected to
the lifted anti-holomorphic forms. In other words, they areconnected to the lifted
(holomorphic) forms in xSa;bC3;�i�1.�Œ

p
�3�/ except for the contribution of the form

˛iC3S
�Œ�0.9/; aC b C 3�. Compare this with Proposition 7.2.

Definition 12.6 (Anti-holomorphic 1-dimensional lifts). We define e1`.�/ as

˛i�bC2s
�
aC2.�0.9//L

0;aCbC2
C

(
˛iC3L0;aCbC2 if .a; b/ �6 .2; 5/;
˛i�2L0;bC2 if a D 0 and b �6 3:

Definition 12.7 (Anti-holomorphic 2-dimensional lifts). We define e2`.�/ as

˛iCaC1
�
SŒ�0.1/; b C 2�C S

�Œ�1.3/; b C 2�
�
L0;aC1

CˇiCaC1
�
sŒ�0.1/; b C 2�C S

newŒ�0.3/; b C 2�C S
�Œ�1.3/; b C 2�

�
L0;aC1

CˇiCaC4S
�Œ�0.9/; b C 2�L

0;aC1

C.ıiCaC1 C ıiCaC4/ s22 S�Œ�1.9/; b C 2�L0;aC1:
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Definition 12.8. We put

eextr.�/ D e
0
Eis.�/C ece.�/C e1`.�/C e2`.�/C e1`.�/C e2`.�/

and we define eextr;�.�/ as in Section 7.2.

Main conjecture 12.9. We conjecture that for any � ¤ .0; 0; 0/, � and �, if i �2
aC b, then

Tr
�
T .�/; S

gen
n.�/

�
�Œ
p
�3�

���
D Tr

�
F� ; ec;�.�/ � eextr;�.�/

�
:

Assuming that the conjecture is true, this gives a possibility to compute the trace
of the Hecke operators T .�/ by counts of points over Fp as described in Section 8.

Remark 12.10. Note that eextr.�
0/ D eextr.�/.

The main conjecture then implies that there is a Hecke-invariant isomorphism
between Sgen

j;kC3;l
.�Œ
p
�3/� and xSgen

k;jC3;1�l
.�Œ
p
�3/�. Note that in general

dimSj;kC3;l
�
�Œ
p
�3�

�
¤ dimSk;jC3;1�l

�
�Œ
p
�3�

�
:

According to Theorem 4.7, the difference of dimensions is equal to

l �3 0 l �3 1 l �3 2

j �3 0 k � 1 1 � j 0

j �3 1 1 � j k � 1 0

j �3 2 0 0 k � j

which is a consequence of the presence lifts.

Definition 12.11. We define Eextr.�/ as eextr.�/ but replacing
� Li;j by 1 for any i; j ;
� SŒ�0.1/; k�, SnewŒ�0.3/; k�, S˙Œ�1.3/; k�, S˙Œ�0.9/; k�, S�Œ�0.9/; k� by

2 dimSk.�0.1//; 2 dimSnew
k .�0.3//; 2 dimS˙k .�1.3//;

2 dimS˙k .�0.9//; 2 dimS�
k
.�0.9//;

respectively, for any k,

in the formulas of Definitions 12.2–12.7. This gives an element in the Galois group
of representations of S4.

Conjecture 12.12. We conjecture that, for any �,

dimS4 S
gen
n.�/

�
�Œ
p
�3�

�
D
1

3

�
Ec.�/ �Eextr.�/

�
:
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12.2. A congruence modulo 9. Our experimental data lead us to conjecture a con-
gruence for the eigenvalues of Hecke operators.
Conjecture 12.13. For any j; k; l � 0, � and � ` 4, we conjecture that

Tr
�
T .�/; S

gen
j;kC3;l

�
�Œ
p
�3�

���
= dim s� �9 3 dimSgen

j;kC3;l

�
�Œ
p
�3�

��
= dim s�:

Remark 12.14. If one uses the evidence of the results in [9] one might also conjecture
that for a prime p �3 2 the trace on the space of genuine forms is divisible by 9.

For the lifted forms described in Section 11.5 this means that for a prime p �3 1
the congruence

ap.f /
2
� pk�1 �9 3

should hold, and similarly a congruence ap.f /2 � pk�1 �9 0 for primes p �3 2.

12.3. Evidence. The conjectures of this section and the previous were based upon
the computations described in Section 10.1. Here we list a series of regularities in
this data that lends credence to the conjectures.

The following holds for all � such that aC b C 2 � 40:
� The integer

Ec.�/ �Eextr.�/

is divisible by 3.
� We find, using Theorem 4.7, that dimSn.�/.�Œ

p
�3�/ equals

1

3

�
Ec.�/ �Eextr.�/

�
;

when replacing s� with dim s�, and adding the dimension of the lifts described in
Section 11.

� If
Ec.�/ �Eextr.�/ D 0;

then
Tr
�
Fq; ec.�/ � eextr.�/

�
D 0

for q � 67 and q �3 1.
� We have that (compare with Conjecture 12.13)

Tr
�
Fq; ec.�/ � eextr.�/

�
�9 Ec.�/ �Eextr.�/

for q � 67 and q �3 1.
� All traces computed (for j D 0) in [18] match with the ones computed using

Conjecture 12.9 for p � 67 and p �3 1.
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� The ring of scalar valued modular forms, i.e., when j D 0, is given in Proposi-
tion 2.2. This gives a formula for dimSgen

0;kC3;l
.�Œ
p
�3�/� for any k; l; �, which

matches the one given by Conjecture 12.12 (for a C b C 2 � 40). For instance,
we have that

S0;6kC3;2
�
�Œ
p
�3�

�
DM0;6k�9;0

�
�Œ
p
�3�

�
�2;

dimS4 S0;6kC3;2
�
�Œ
p
�3�

�
D Sym2k�3.s2;12/

for k � 2.

� All traces computed in [9] match with the ones computed using Conjecture 12.9
for p � 67 and p �3 1.

Note that the information

Tr
�
Fqr ; ec.�/ � eextr.�/

�
for r D 1; : : : ; .Ec.�/ � Eextr.�// gives a way to compute the characteristic poly-
nomial of Fq acting on ec.�/ � eextr.�/, assuming that it is effective of dimension
Ec.�/ �Eextr.�/.

For all � such that a C b C 2 � 40 and Ec.�/ � Eextr.�/ D 3 (see further in
Section 13.1) the characteristic polynomial for q D 4 and the partial information
for q D 7 has the expected structure (namely the one derived from the results of
Section 2.3).

See also Section 14 for evidence coming from congruences studied by Harder.

12.4. Modules of vector-valued forms. Define

Mj DM0
j ˚M1

j ˚M2
j

with

M`
j D ˚kMj;k;l

�
�Œ
p
�3�

�
:

Then Mj is a module over M0; for M0 see Proposition 2.2. Guided by the heuristics
of our conjectures the structure of some modules Mj was determined in [9], e.g., for
j D 1; 2; 3. For example, the module M0

1 is generated over M0
0 by three forms

ˆ0; ˆ1; ˆ2 2 S1;7;0.�Œ
p
�3�/ satisfying a relation

'0ˆ0 C '1ˆ1 C '2ˆ2 D 0

with '0; '1; '2 generators of the ring M0
0 . For a table of Hecke eigenvalues of theˆi ,

we refer to [9, Table 7].
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12.5. Conjecture for the moduli space of genus 2 curves. In this section we will
be brief and give a similar conjecture to the one above but in the case of genus 2.

Define the normalized compactly supported Euler characteristic enorm
c analogously

to Definition 7.6. Recall the notation from Section 8.2.1 and define the representation

˛k D

(
s2zs2 k �2 0;

s1;1zs2 k �2 1;
ˇk D

(
s1;1zs1;1 k �2 0;

s2zs1;1 k �2 1:x

Let W3 denote the Fricke operator and for any prime p let T .p/ be the Hecke
operator. For the proofs of the following properties of W3, see [2].

If k > 0 is even and f 2 SkC2.�1.3// is an eigenform with T .p/f D apf ,
then ap D xap for all primes p. Moreover, a3 D ˙3k=2 and

W3.f / D �sgn.a3/f:

The˙-spaces ofW3 are clearly Hecke invariant and we denote the˙-eigenspaces of
SkC2.�1.3// by S˙

kC2
.�1.3//. Define S˙Œ�1.3/; k C 2� analogously.

If k is odd, then
SkC2.�1.3// D SkC2.�0.3/; �/;

where � is the Dirichlet character of order 2. If f 2 SkC2.�0.3/; �/ is an eigenform
with T .p/f D apf , then xap D �.p/ap for all p − 3 and

W3.f / D c xf

for some c 2 C with jcj D 1, and

W 2
3 .f / D �f:

If f ¤ xf , then˙ixcf C xf is an eigenvector forW3 with eigenvalue�i . If p �3 1,
then both these are also eigenvectors of T .p/ with eigenvalue ap . For k �3 2, then
there is an eigenvector f 2 SkC2.�0.3/; �/ such that a3 D .�3/.kC1/=2,

W3.f / D .�1/
.kC1/=2if

and
ap.f / D Tr

�
Fp;L

kC1;0
C L0;kC1

�
:

We denote the ˙i -eigenspaces of SkC2.�1.3// by S˙
kC2

.�1.3//, and we define
S˙Œ�1.3/; k C 2� analogously.
Conjecture 12.15. For any k > 0; l � 0 such that k �6 l , we have

enorm
c

�
X
.2/

�Œ
p
�3�
;Wk;l

�
D �˛k �ˇk �S

CŒ�1.3/; kC 2�˛k �S
�Œ�1.3/; kC 2� ˇk

C ıkC1
�
LkC1;0˛k C L0;kC1ˇk

�
C ıkC7

�
L0;kC1˛k C LkC1;0ˇk

�
as elements of KS2�S2

0 .GalF /, and where ıi D 1 if i �12 0 and 0 otherwise.
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For k D 0, put

SCŒ�1.3/; 2� D �L � 1 and S�Œ�1.3/; 2� D 0

to make the formula correct, by Proposition 8.3. Looking at how S2 � S2 acts
on the two cusps of the Bailey–Borel compactification, we find that the Eisenstein
contribution to enorm

c .X
.2/

�Œ
p
�3�
;Wk;l/ for k �6 l is equal to�˛k�ˇk (compare with

the proof of Proposition 3.9).

13. Examples

We now illustrate our conjectures and calculations by examples. First, we recall the
dimensions

dim s4 D dim s14 D 1; dim s3;1 D dim s2;12 D 3; dim s22 D 2:

Furthermore, recall that for � D n1
1 C n2
2 C n3
3 we now write

� D .aC i; i;�bC i/ D .n1 C n2 C n3; n2 C n3; n3/; n.�/ D .b; aC 3; i C 2/:

13.1. One-dimensional spaces of genuine forms. The cases for which

dimSgen
j;k;l

�
�Œ
p
�3�

��
D dim s�

are of special importance to us since in these cases counts of points over finite fields
gives (using Conjecture 12.9) Hecke eigenvalues rather than just traces. Namely,
when this holds, there is a Hecke eigenformF inSgen

j;k;l
.�Œ
p
�3�/� such that the linear

span of its orbit under S4 equals the whole of Sgen
j;k;l

.�Œ
p
�3�/�. So, if ��.F / denote

its Hecke eigenvalue, then

Tr
�
T .�/; S

gen
j;k;l

�
�Œ
p
�3�

���
D ��.F / � dim s�:

For � D .4/ we found 78 such cases using Conjecture 12.12. We list all such
.j; k; l/ below, but because of Remark 12.10 we only list them up to duality:

.0; 15; 1/ .0; 21; 1/ .0; 24; 1/ .0; 27; 0/ .0; 30; 1/ .0; 30; 2/ .0; 33; 0/

.0; 36; 0/ .0; 36; 2/ .0; 39; 2/ .0; 42; 0/ .0; 45; 2/ .1; 16; 0/ .1; 19; 0/

.1; 19; 1/ .1; 19; 2/ .1; 22; 1/ .1; 25; 1/ .1; 28; 2/ .2; 11; 0/ .2; 11; 1/

.2; 14; 0/ .2; 14; 1/ .2; 20; 2/ .2; 23; 2/ .3; 9; 1/ .3; 12; 0/ .3; 12; 1/

.3; 15; 0/ .3; 18; 2/ .4; 7; 0/ .4; 10; 0/ .4; 10; 2/ .4; 13; 2/ .5; 8; 0/

.5; 11; 2/ .5; 14; 2/ .6; 9; 0/ .6; 9; 2/ .7; 10; 2/

For � D .3; 1/; .22/; .2; 12/; .14/ we found 35; 44; 35; 76 cases, respectively.
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13.2. Explicit examples. Let us study a series of local systems in some detail.

13.2.1. � D .10; 4; 4/. In the cohomology of this local system we expect to find
contributions from the forms in S0;9;0.�Œ

p
�3�/.

From the formula described in Section 7 we get the numerical Euler characteristic,

Ec
�
X�Œ
p
�3�;W�

�
D s4 C 2s3;1 C 3s2;12 C s14 :

Following Section 12.1, the only non-zero contributions we have to eextr.�/ are

e0Eis.�/ D L1;0.s2;12 C s14/; e1`.�/ D L0;8s4;
e2`.�/ D S

�Œ�0.9/; 8�L
1;0s3;1 C SnewŒ�0.3/; 8�L

1;0s2;12 :

In e2`.�/, the s3;1-term comes from the Kudla lift denotedF9;1 D '0'1.'0�'1/ and
the s2;12-term comes from the Kudla lift of weight 9 denotedF9;2 by Finis [18, Tables,
pp. 151, 177].

Removing the extraneous contributions should leave us with contributions from
the genuine Picard modular cusp forms. Starting with the numerical Euler character-
istic we get

Ec
�
X�Œ
p
�3�;W�

�
�Eextr

�
X�Œ
p
�3�;W�

�
D 0;

so there should be no genuine forms. And indeed we find that

Tr
�
F� ; ec.�/

�
� Tr

�
F� ; eextr.�/

�
;

which conjecturally equals

Tr
�
T .�/; S

gen
0;9;0

�
�Œ
p
�3�

��
is 0 for all p � 67.

This also fits (adding the lifts and recalling Definition 4.9) with the formula

dimS4 S0;9;0
�
�Œ
p
�3�

�
D s3;1 C s2;12

that we find by Proposition 2.2.

13.2.2. � D .16; 4; 4/. In the cohomology of this local system we expect to find
contributions from the forms in S0;15;0.�Œ

p
�3�/.

Again, from the formula in Section 7, we get

Ec
�
X�Œ
p
�3�;W�

�
D s4 C 5s3;1 C 3s22 C 7s2;12 C s14 :

Similarly to the previous case, following Section 12.1, we find that eextr.�/ consists
of

e0Eis.�/ D L1;0.s2;12 C s14/; e1`.�/ D L0;14s4;
e2`.�/ D S

�Œ�0.9/; 14�L
1;0s3;1 C SnewŒ�0.3/; 14�L

1;0s2;12 :
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p S
gen
0;15;0

�
�Œ
p
�3�

�.22/
S

gen
0;15;0

�
�Œ
p
�3�

�.3;1/
7 �388107� � 1608891 �524625 � 205857�

13 �60967989� � 9061701 �36504663C 20888505�

19 �578216997� � 665720736 �398615136 � 1035916731�

31 �690422256� � 8829510909 32032766937C 14052080592�

37 �111679368147� � 59483009571 30023590017 � 12661429743�

43 �98981609184�C 131622854187 298590045213C 634311769248�

Table 3.

Removing the extraneous contributions should leave us with contributions from
the genuine Picard modular cusp forms. Starting with the numerical Euler character-
istic we get

Ec
�
X�Œ
p
�3�;W�

�
�Eextr

�
X�Œ
p
�3�;W�

�
D 3s3;1 C 3 s22 :

Dividing this expression by 3 gives the conjectural result

dimS4 S
gen
0;15;0

�
�Œ
p
�3�

�
D s3;1 C s22 :

Together with the lifts, we get

dimS4 S0;15;0
�
�Œ
p
�3�

�
D 2s3;1 C s22 C 3s2;12 ;

which fits with the formula we find by Proposition 2.2.
We can then compute

Tr
�
F� ; ec.�/

�
� Tr

�
F� ; eextr.�/

�
;

which conjecturally equals

Tr
�
T .�/; S

gen
0;15;0

�
�Œ
p
�3�

��
:

For the two 1 � dim s�-dimensional isotypic components of the space of genuine
forms we then (conjecturally) get Hecke eigenvalues as described in Section 13.1,
and a few of them are given in Table 3. Note that the analogue of the Ramanujan
conjecture for this situation holds;N.��/ � 3N.�/aCbC2 for eigenvalues �� . Similar
observations can be made for the other tables appearing in this section.

13.2.3. �D.32; 2 ; 2/. In the cohomology of this local system we expect to find con-
tributions from the forms in S0;33;1.�Œ

p
�3�/.

Again, from the formula in Section 7, we get

Ec
�
X�Œ
p
�3�;W�

�
D 9s4 C 27s3;1 C 9s22 C 19s2;12 C 2s14 :
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p S
gen
0;33;1

�
�Œ
p
�3�

�.14/
7 �17187741337239� � 27371045932368

13 619757358250752891� � 73897512261622296

19 32397975717682438611�C 161109729684241303755

31 �450614269323285049766016�C 463109207345192219515905

37 4464950074069806168802623� � 679365937587169490840376

43 �62575475768038597846807512� � 83275045472246397000970011

Table 4.

Following Section 12.1, we find that eextr.�/ only consists of

e0Eis.�/ D L0;31s2;12 � L1;32s14 :

Removing this contribution from the Euler characteristic and dividing by 3, as in
the previous example, we get the following conjecture:

dimS4 S
gen
0;33;1

�
�Œ
p
�3�

�
D 3s4 C 9s3;1 C 3s22 C 6s2;12 C s14 :

Since there are no lifts, this is the same as the dimensions of all cusp forms and it
equals the formula s14Sym9.s2;12/, found using Proposition 2.2.

Some (conjectural) Hecke eigenvalues for the 1-dimensional isotypic component
of the space of genuine forms corresponding to s14 are given in Table 4.

13.2.4. �D.7; 1;�2/. In the cohomology of this local system we expect to find con-
tributions from the forms in S3;9;0.�Œ

p
�3�/. Note that the modular forms occurring

here are described in [9, Prop. 15.2].
From the formula described in Section 7, we get

Ec
�
X�Œ
p
�3�;W�

�
D s4 C 5s3;1 C 6s22 C 9s2;12 C 4s14 :

From Proposition 3.9 and Section 12.1, we get

e0Eis.�/ D eEis.�/ D L4;0.s2;12 C s14/:

The only other non-zero contributions we have to eextr.�/ are

e1`.�/ D L0;11s4;
e2`.�/ D S

�Œ�0.9/; 8�L
4;0s3;1 C SnewŒ�0.3/; 8�L

4;0s2;12 :

Again, removing the extraneous contributions from the Euler characteristic and
dividing by 3, we get the following conjecture:

dimS4 S
gen
3;9;0

�
�Œ
p
�3�

�
D s3;1 C 2 s22 C 2 s2;12 C s14 :



372 J. Bergström and G. van der Geer CMH

p S
gen
3;9;0

�
�Œ
p
�3�

�.3;1/
S

gen
3;9;0

�
�Œ
p
�3�

�.14/
7 �2661 � 3735� �39273 � 37755�

13 697611 � 853785� �616209 � 1939509�

19 �4019046 � 4493727� 2924922C 16469397�

31 236296587C 26549946� �13532361 � 40067046�

37 381974925 � 151949367� �294789795 � 270210663�

43 685398387C 28100862� 1093524015C 1099688094�

Table 5.

Together with the lifts we get the conjecture

dimS4 S3;9;0
�
�Œ
p
�3�

�
D 2s3;1 C 2 s22 C 3 s2;12 C s14 :

This conjectural expression fits with what Theorem 4.7 tells us, namely,

dimS3;9;0
�
�Œ
p
�3�

�
D 20:

For the two 1 � dim s�-dimensional isotypic components of the space of genuine
forms we then (conjecturally) get Hecke eigenvalues as described in Section 13.1,
and a few of them are given in Table 5.

13.2.5. � D .11; 5; 2/. In the cohomology of this local system we expect to find con-
tributions from the forms in S3;9;1.�Œ

p
�3�/.

Again, from the formula in Section 7, we get

Ec
�
X�Œ
p
�3�;W�

�
D 4s4 C 7s3;1 C 5s22 C 6s2;12 C 3s14 :

From Proposition 3.9 and Section 12.1, we get that the only non-zero contributions
we have to eextr.�/ are

e0Eis.�/ D eEis.�/ D L0;7.s4 C s3;1/;
e2`.�/ D L0;7S�Œ�0.9/; 5� s2;2:

Removing this contribution from the Euler characteristic and dividing by 3, as in
the previous example, we get the following conjecture:

dimS4 S
gen
3;9;1

�
�Œ
p
�3�

�
D s4 C 2s3;1 C s22 C 2s2;12 C s14 :

This is the same as the dimensions of all cusp forms since there are no lifts which fits
with the result

dimS3;9;1
�
�Œ
p
�3�

�
D 16;

following from Theorem 4.7.
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p S
gen
3;9;1

�
�Œ
p
�3�

�.22/
S

gen
3;9;1

�
�Œ
p
�3�

�.14/
7 �39753� � 15702 �3303� � 20562

13 �2259729� � 462012 39537� � 662244

19 �813897� � 7616175 �12094443� � 15482085

31 62423118�C 189603705 13979610� � 2791545

37 154008855� � 213937620 �132007005� � 420798660

43 �1091048814� � 311480763 �1442196450� � 484155105

Table 6.

Using the same method as above, we compute some (conjectural) Hecke eigen-
values as described in Section 13.1 for two of the 1 � dim s�-dimensional spaces in
Table 6. Note that the eigenform inSgen

3;9;1.�Œ
p
�3�/.1

4/ equals .E0CE2CE2�E3/�,
with Ei the Eisenstein series given in [9, Lemma 15.1].

13.2.6. � D .9; 3; 0/. In the cohomology of this local system we expect to find con-
tributions from the forms in S3;9;2.�Œ

p
�3�/.

Once again, using the formula in Section 7, we get

Ec
�
X�Œ
p
�3�;W�

�
D 2s4 C 7s3;1 C 3s22 C 4s2;12 :

From Proposition 3.9 and Section 12.1, we find the non-zero contributions
to eextr.�/:

e0Eis.�/ D eEis.�/ D �L0;0.s2;12 C s14/;
ece.�/ D L4;7.s3;1 C 2 s2;12 C s14/; e2`.�/ D S

�Œ�0.9/; 12�s4:

As in the previous examples, we use the numerical Euler characteristic to get the
following conjecture:

dimS4 S
gen
3;9;2

�
�Œ
p
�3�

�
D 2 s3;1 C s22 C s2;12 :

Together with the 1-dimensional space of lifts above, we get

dimS3;9;2
�
�Œ
p
�3�

�
D 12;

which fits with Theorem 4.7.
Some (conjectural) Hecke eigenvalues for the 1 � dim s�-dimensional spaces are

found in Table 7.

13.2.7. �D.5; 0;�5/. In the cohomology of this local system we expect to find con-
tributions from the forms in S5;8;2.�Œ

p
�3�/.
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p S
gen
3;9;2

�
�Œ
p
�3�

�.22/
S

gen
3;9;2

�
�Œ
p
�3�

�.2;12/
7 �522� � 771 �42405 � 73422�

13 64731 � 1053828� 2150805C 1144836�

19 9397530�C 10858953 1117083 � 2630970�

31 �199487250� � 223012887 17764311 � 9145350�

37 �283226796� � 170478933 144010695C 424906308�

43 456864210� � 855993435 �365663985 � 1035862434�

Table 7.

Note that in this case � D �0 and hence for any �, we have

Tr
�
Fq; ec;�.�/

�
2 Z

by Proposition 7.2. From Section 12.1, it also follows that

Tr
�
Fq; ec;�.�/ � eextr;�.�/

�
2 Z:

Using the formula in Section 7, we get

Ec
�
X�Œ
p
�3�;W�

�
D 3s4 C 9s3;1 C 6s22 C 9s2;12 C 3s14 :

From Proposition 3.9 and Section 12.1, we find the non-zero contributions to
eextr.�/:

e0Eis.�/ D eEis.�/ D .�L0;0 C L6;0 C L0;6/.s4 C s3;1/;
ece.�/ D 2L

6;6.s4 C s3;1 C s2;2/;
e2`.�/ D L0;6S�Œ�1.9/; 7�s22 ; e2`.�/ D L6;0S�Œ�1.9/; 7�s22 :

As in the previous examples, we use the numerical Euler characteristic to get the
following conjecture:

dimS4 S
gen
5;8;2

�
�Œ
p
�3�

�
D 2s3;1 C 3s2;12 C s14 :

Together with the 2-dimensional space of lifts above, we get

dimS5;8;2
�
�Œ
p
�3�

�
D 18;

which fits with Theorem 4.7.
Some (conjectural) Hecke eigenvalues for the 1-dimensional space of genuine

cusp forms are found in Table 8.
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p S
gen
5;8;2

�
�Œ
p
�3�

�.14/
7 156927

13 �4708473

19 �41663481

31 �775905585

37 �1985783685

43 1950903255

Table 8.

13.2.8. �D .11; 0;�5/. In the cohomology of this local system we expect to find
contributions from the forms in S5;14;2.�Œ

p
�3�/.

Using the formula in Section 7, we get

Ec.X�Œ
p
�3�;W�/ D 9s4 C 27s3;1 C 18s22 C 27s2;12 C 9s14 :

From Proposition 3.9 and Section 12.1, we find the non-zero contributions to
eextr.�/:

e0Eis.�/ D eEis.�/ D .�L0;0 C L6;0 C L0;12/.s4 C s3;1/;
ece.�/ D 3L

6;12.s4 C s3;1 C s2;2/; e2`.�/ D L0;12S�Œ�1.9/; 7�s22 ;
e2`.�/ D L6;0S�Œ�1.3/; 13�.s4 C s3;1/C L6;0S�Œ�1.9/; 13�s22 :

As in the previous examples, we use the numerical Euler characteristic to get the
following conjecture:

dimS4 S
gen
5;14;2

�
�Œ
p
�3�

�
D s4 C 7s3;1 C 3s22 C 9s2;12 C 3s14 :

Together with the 8-dimensional space of lifts above, we get

dimS5;14;2
�
�Œ
p
�3�

�
D 66;

which fits with Theorem 4.7.
Some (conjectural) Hecke eigenvalues for the 1-dimensional space of genuine

cusp forms are found in Table 9.

14. Congruences of Harder type

According to Harder a prime appearing in the denominator of a certain ratio of critical
values of an L-function sometimes leads to a congruence between modular forms,
see [23]. The shape of these congruences was discussed by Harder after we found
instances of congruences, see [24] and see also Dummigan’s discussion in [14].
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p S
gen
5;14;2

�
�Œ
p
�3�

�.4/
7 �38516760� � 13589673

13 �6017408280� � 7487727117

19 546522935760�C 368972351247

31 20336092789320�C 55796255768703

37 �147394045113480�C 55302806453187

43 134094712536720� � 23648747132697

Table 9.

In the case at hand we look at the standard L-function associated to an algebraic
Hecke character  m with the following Euler factors. For a prime p �3 1 with
p D �px�p and �p � x�p �3 1, we have

Lp. m; s/ D 1=.1 � �
m
p p
�s/.1 � x�mp p

�s/

and for a prime p �3 2, we have

Lp. m; s/ D 1=
�
1 � .�p/mp�2s

�
;

while for p D 3, we have L3. m; s/ D 1 unless m �6 0 and then

L3. m; s/ D 1=
�
1 � .
p
�3/m3�s

�
:

The completed L-function

ƒ. m; s/ D
�.s/

.2�/s

Y
Lp. m; s/

extends to a holomorphic function of s and satisfies a functional equation relating s
with mC 1� s. According to (an analogue of) a result of Hurwitz (see [28]) we get
rational quotients of critical values

Q.m; n/ WD
ƒ. m; n � 1/

ƒ. m; n/
2 Q for n D m;m � 1; : : : ;

jmC 1
2

k
:

Conjecture 14.1 (Harder’s conjecture). If a prime ` > m divides the denominator
of Q.m; n/, there exists a Picard modular cusp form of weight

.b; aC 3/ D .m � n; 2n �mC 1/;

which is an eigenform of the Hecke algebra, such that its Hecke eigenvalues ��p for
p �3 1 satisfy the congruence

��p �` x�
aCbC2
p C .paC1 C 1/�bC1p :
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j; k; l � .m; n/ ` Q.m; n/

2; 11; 2 .14/ .15; 13/ 53 24=3 � 53

1; 13; 1 .14/ .15; 14/ 19 53=2 � 5 � 19

1; 13; 1 .2; 12/ .15; 14/ 19 53=2 � 5 � 19

6; 9; 0 .14/ .21; 15/ 271 233=2 � 5 � 271

3; 12; 0 .4/ .18; 15/ 29 3 � 5=2 � 29

5; 11; 2 .14/ .21; 16/ 17 271=2 � 3 � 11 � 17

2; 20; 2 .4/ .24; 22/ 97 11 � 457=22 � 3 � 52 � 97

1; 22; 1 .4/ .24; 23/ 41 23 � 97=2 � 3 � 5 � 11 � 41

0; 27; 0 .14/ .27; 27/ 449 32 � 179 � 223=22 � 11 � 17 � 23 � 449

0; 33; 0 .14/ .33; 33/ 17093 19�84802789=22 �5�11�17�23�29�17093

Table 10.

p S
gen
2;11;2

�
�Œ
p
�3�

�.14/
S

gen
6;9;0

�
�Œ
p
�3�

�.14/
7 113760�C 180273 �742581� � 967245

13 6574680�C 4136763 �11444355�C 37295661

19 �3105720�C 22527309 �1411116471� � 1183781976

31 1128613680� � 206255175 2162847960�C 20439895125

37 �1059546600� � 631344705 113910723225�C 29288724825

43 �3998935080� � 6398875995 �55912815000� � 92116884255

Table 11.

We find the following cases where the data available to us are in accordance
with this conjecture (see Table 10). If the index of the local system W� is � D
.a C i; i;�b C i/, we list the weight .j; k; l/ D .b; a C 3; i C 2/ of the modular
forms, the representation of S4, the index .m; n/ D .a C 2b C 3; a C b C 3/, the
congruence prime ` and the value of Q.m; n/. These values were calculated by a
Mathematica program provided to us by Harder.

The Hecke eigenvalues in two of these cases are found in Table 11.
In fact, we searched for congruences in our heuristic data (for the cases where

the space Sgen
j;k;l

.�Œ
p
�3�/� has dimension dim s�) and then checked the value of the

corresponding quotient of critical L-values. In all cases except one the congruence
prime showed up in Q.m; n/. The one extra congruence not explained by the above
conjecture occurs for the local system W� with � D .16; 1; 1/ and � D .3; 1/. We
found a congruence modulo ` D 37. But the corresponding

Q.18; 18/ D 3 � 7 � 19=2 � 5 � 11 � 17
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p S0;18;0
�
�Œ
p
�3�

�.3;1/
7 �37133403 � 19436265�

13 �114953793 � 826184565�

19 82348187646C 48917648907�

31 2339550247917 � 489600934794�

37 6061060465185C 27008238932829�

43 �13426382809671 � 41363330321286�

Table 12.

does not show 37. Harder thinks that this congruence might be due to the second
factor c.�; 0/ in [21, p. 590]. Indeed, in the case at hand c.�; 0/ D �.�30/=�.�31/
and 37 divides (the numerator of) �.�31/. In Table 12, we list some eigenvalues for
the case � D .16; 1; 1/.
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