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Periodic delay orbits and the polyfold implicit function theorem
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Abstract. We consider differential delay equations of the form @tx.t/ D Xt .x.t � �// in Rn,
where .Xt /t2S1 is a time-dependent family of smooth vector fields on Rn and � is a delay
parameter. If there is a (suitably non-degenerate) periodic solution x0 of this equation for � D 0,
that is without delay, there are good reasons to expect existence of a family of periodic solutions
for all sufficiently small delays, smoothly parametrized by � . However, it seems difficult to prove
this using the classical implicit function theorem, since the equation above, considered as an
operator, is not smooth in the delay parameter. In this paper, we show how to use the M-polyfold
implicit function theorem by Hofer–Wysocki–Zehnder (2009, 2021) to overcome this problem
in a natural setup.
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1. Introduction

It is folklore knowledge that, under a non-degeneracy assumption, a periodic orbit of
a vector field persists under smooth perturbations. The reason is that periodic orbits
correspond to zeroes of a suitable Fredholm section in a Banach space bundle, which
is transverse to the zero section by non-degeneracy. Therefore, the implicit function
theorem provides a smooth family of periodic orbits similar to the one in Theorem 1.1.
In this article, instead of perturbing the vector field, we look for solutions of the delay
equation (1.1), considering the delay the perturbation parameter.

Let us be a bit more precise and suppose that we are given a smooth time-dependent
vector field

X WS1 �Rn ! Rn;

where S1 D R=Z. A 1-periodic orbit ofX is a map xWS1 ! Rn such that @tx.t/ D
Xt .x.t// for all t 2 S1. We denote the derivative of x by @tx to avoid misleading
notation later.

The corresponding delay equation with constant delay � 2 R is

@tx.t/ D Xt .x.t 9 �// for all t 2 S1: (1.1)

https://creativecommons.org/licenses/by/4.0/
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Delay equations are much harder to deal with than usual differential equations.
For instance, the initial value problem is non-local. Thus, there could be different
solutions of (1.1) passing through the same point at t D 0. In particular, the
dynamical behavior of equation (1.1) cannot be captured by a flow on Rn. Rather,
one may consider a semi-flow on an appropriate state spaces consisting of functions

xW Œ�T; 0�! Rn; T � �;

called initial histories and describing the “past” of a trajectory, see for instance [3] and
some of the literature given in Section 2. Such an initial history, together with (1.1),
determines the “future” of the trajectory.

In this paper, we consider the delay as a perturbation instead. However, the
corresponding Banach section is merely of class C1, see the discussion below.
Therefore, the classical implicit function theorem does not provide a smooth family
of periodic delay orbits. Instead, we use the implicit function theorem for M-polyfold
bundles ([13], stated here as Theorem 7.1), which was developed in the context of
symplectic field theory [4], see below for details.

Recall that a 1-periodic orbit of a vector field is called non-degenerate if its
linearized time-1-map does not have 1 as an eigenvalue, see also Definition 6.1. We
prove the following:
Theorem 1.1. If x0 is a non-degenerate 1-periodic orbit of X , then there is �0 > 0

such that for every delay � with j� j � �0 there exists a (locally unique) smooth
1-periodic solution x� of the delay equation (1.1). Moreover, the parametrization
� 7! x� is smooth.

The proof of Theorem 1.1 is given at the end of Section 7. Moreover, we note that
if we replace Rn by a manifold M , then (1.1) does not make sense as stated, since
the two sides of the equation typically belong to different tangent spaces. However,
one can think of other useful and interesting delay equations on general manifolds.
Some of them stem from a variational formulation (i.e., they are the critical points
of an action functional) and may be called Hamiltonian (see [1] and [6]). The idea
behind the proof of Theorem 1.1 can be used to cover delay equations on manifolds
as well. This is demonstrated for one possible equation in Section 8.

In this article we focus on 1-periodic solutions instead of general T -periodic
solutions, only for ease of presentation. Moreover, we note that we do not consider
delay in the time-dependence of the vector field, e.g., equations of the form @tx.t/ D

Xt�� .x.t//, since this is merely a deformation of the vector fieldXt and can therefore
be treated by the classical implicit function theorem. Finally, we mention that there is
a rich literature on related problems. We present some results related to Theorem 1.1
in Section 2.

We now formulate the functional analytic set-up. We denote by

'WR � L2.S1;Rn/! L2.S1;Rn/;

.�; x/ 7! x.� 9 �/
(1.2)
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the shift map, and define a map

sWR �W 1;2.S1;Rn/! L2.S1;Rn/;

.�; x/ 7! @tx �X.'.�; x//:
(1.3)

Then the set of solutions of (1.1) corresponds to the zero set of s and, in particular,
every solution x0 of @tx.t/ D Xt .x.t// satisfies s.0; x0/ D 0. Thus, it seems
plausible to use an implicit function theorem to show that, under a suitable non-
degeneracy assumption on x0, the zero set of s carries the structure of a smooth
submanifold of R � W 1;2.S1;Rn/ having dimension equal to the Fredholm index
of s. This Fredholm index is expected to be 1, because

@t WW
1;2.S1;Rn/! L2.S1;Rn/

has index 0. So the implicit function theorem would prove existence of solutions
of (1.1) and also give a parametrization. However, the map s as defined in (1.3) is
in general not smooth; we will see that it is, in general, only C1. The reason is that
the shift map ' is not smooth in � , as will be explained in more detail in Section 3.
The lack of regularity of s implies that also the parametrization which we get from a
classical implicit function theorem can only be of regularity C1.

Analyzing the properties of this shift map in detail, we see that it is very natural to
pass from classical to sc-calculus. Sc-calculus provides a new notion of smoothness
for maps between Banach spaces equipped with a scale structure. It was defined as
part of the bigger framework of polyfold theory (see the book [13]). Hofer, Wysocki
and Zehnder developed polyfold theory mainly for the study of moduli spaces of
J-holomorphic curves, in particular for symplectic field theory [4]. In that context,
non-smoothness of reparametrization actions is one of the main problems, and sc-
calculus was made to deal with this. Indeed, Frauenfelder and Weber [7] showed
that the shift map ' defined above in (1.2) is sc-smooth between appropriate sc-
spaces. Moreover, there is an implicit function theorem in the sc-world (though only
for sc-Fredholm maps, and the sc-Fredholm property is more complicated than the
usual Fredholm property). Lastly, in finite dimensions sc-smoothness is equivalent to
classical smoothness, and so the finite-dimensional zero sets of sc-Fredholm sections
are, after all, classically smooth. Thus sc-calculus provides a natural way to deal
with the problem described above as follows. Using the definition of the sc-Fredholm
property in [22], we show that the map s is an sc-smooth sc-Fredholm section in an
sc-Hilbert space bundle. Sc-Hilbert space bundles are the easiest examples of tame
strong M-polyfold bundles defined in [13]. Thus, to prove Theorem 1.1, we can apply
the implicit function theorem from sc-calculus [11,13] (stated here as Theorem 7.1).
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Frauenfelder and Felix Schlenk for discussions on this project and delay equations in
general.
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2. Related results and literature

There is, of course, a lot of literature on differential delay equations and their solutions.
As a good source for an overview on achievements and difficulties we recommend
the book [3]. We mention below work on two different aspects of differential delay
equations closer to the topic of this article. The first aspect is the existence of periodic
solutions. The second aspects concerns the regularity of the dependence on the delay
of (not necessarily periodic) solutions. These results are all very interesting and in
some way related to our work, but to the best of our knowledge none of them implies
Theorem 1.1. We point out that we can only give a very limited (and biased) glimpse
into the existing literature on differential delay equations. However, the use of the
polyfold setting and, in particular, the polyfold implicit function theorem is certainly
new in the context of differential delay equations.

2.1. Existence of periodic solutions. One class of results concerns differential delay
equations with fixed delay and asks for existence of periodic solutions with arbitrary
period. Here, Mallet-Paret [16] and Nussbaum [18] used global methods to find
periodic solutions for some classes of differential delay equations. Kaplan and
Yorke [14] showed the existence (and some properties) of periodic solutions of a
differential delay equation with symmetries and fixed delay by converting it to an
ordinary differential equation in twice the dimension. The uniqueness counterpart
in the Kaplan–Yorke setting was recently solved by López Nieto [15]. Existence
results for periodic orbits with small delay were proved by Arino–Hbid [2] and Hbid–
Qesmi [10] locally near a stable equilibrium of the delay equation by bifurcation
arguments. In these results the period is allowed to vary with the delay, and there
is no statement about the regularity with respect to the delay. Sieber [19] shows
how to locally find families of periodic orbits even for state-dependent delay, but he
does not consider varying the delay. He uses the concept of “extendable continuous
differentiability” (mentioned before in [9]) which seems to have a certain similarity
with the scale differentiability by Hofer–Wysocki–Zehnder [13].

2.2. Smooth dependence on initial history and delay. In the context of solving
differential delay equations with the help of a semi-flow acting on a function space,
it is natural to ask whether solutions depend smoothly on the initial history and on
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the delay. This means analyzing the regularity of the solution map

.�; �/ 7! x (2.1)

sending an initial history �W Œ�T; 0� ! Rn and a delay � � T to the appropriate
maximal solution xW Œ�T; T�;� � ! Rn of the considered delay equation. It turns
out that the differentiability of this map depends a lot on the choice of the space of
initial histories. Hale–Ladeira [8] showed that in case of W 1;1 as history space, the
dependence is of class C1. Recently, Nishiguchi [17] showed the same for history
spaces of general Sobolev type. Walther [21] discusses different kinds of C1-diff-
erentiability in Fréchet spaces. None of these articles touch upon the question of
regularity beyond C1.

However, dependence of solutions on delay in the sense of the map (2.1) above is
different from dependence of solutions on delay in the sense of the map

� 7! x� (2.2)

that appears in Theorem 1.1. On one hand, we do not consider dependence on
initial histories at the same time, which circumvents the question of what history
space to use. This is why, in our case, C1-dependence is immediate from classical
methods, see the discussion in Section 3 (especially Remark 3.6). On the other hand,
the parametrization map (2.2) is not just the restriction of the solution map (2.1)
to a fixed initial history. Indeed, there is no reason why the periodic orbits from
Theorem 1.1 should all agree on an interval of length � . Therefore, we do not see any
direct connection between our theorem and the articles [8, 17, 21] mentioned above.

3. Classical differentiability

From now on, for an integer m � 0 we denote by

Hm WD W
m;2
WD W m;2.S1;Rn/ (3.1)

the Hilbert space of periodic maps of Sobolev class .m; 2/ with values in Rn. In
particular, H0 D L2 D L2.S1;Rn/. Consider the following shift map:

'WR �Hm ! Hm;

.�; x/ 7! x.� 9 �/:

It is easy to see that ' is continuous after evaluation, but it is not continuous in
the operator topology. This can be remedied by choosing a higher regularity level of
the domain while keeping the one on the target. In this section we collect these facts.
Proofs following Frauenfelder–Weber [7] can be found in the appendix. We use the
notation L.�; �/ for spaces of linear maps.
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Lemma 3.1 ([7, Lemma 2.1]). For every m 2 N0, the map

R! L.Hm;Hm/;

� 7! '.�; � /

is continuous with respect to the compact-open topology on L.Hm;Hm/.

Lemma 3.2 ([7, Lemma 2.2]). The shift map ' is not continuous as a map

'WR! L.H0;H0/;

where the target space carries the operator norm topology.

Proof. For every small � construct a function x� 2 H0 of norm 1 such that

k'.�; x� / � '.0; x� /kH0 D c > 0:

This implies k'.�; �/�'.0; �/kL � c. Note that by Lemma 3.1, such a family .x� /�>0
cannot converge inH0 D L2. An easy construction of x� with c D

p
2 is contained

in [7].

Now let us consider the shift map ' as a map from R �H1 to H0.
Lemma 3.3. The shift map

'WR �H1 ! H0;

.�; x/ 7! x.� 9 �/

is differentiable with derivative at a point .�; x/ given by

d'.�; x/WR �H1 ! H0;

.T; yx/ 7! '.�; yx/ � T � '.�; @tx/:
(3.2)

The statement of this Lemma 3.3 follows from [7, Theorem 6.1] together with [13,
Proposition 1.2.3] (stated below as Proposition 4.5). For convenience of the reader,
we include a direct proof in the appendix.
Remark 3.4. In fact, one can even show that the derivative is continuous as a map

d'WR �H1 ! L.R �H1;H0/;

that is, 'WR �H1 ! H0 is C1.
In the same way, for each m 2 N we can consider ' as a map

'WR �HmC1 ! Hm;

.�; x/ 7! x.� 9 �/
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and see that it is C1. This is easiest to prove if one works with the norm

kxkm WD kxkL2 C k@
m
t xkL2 ;

which is equivalent to the usual Sobolev norm k � kHm D k � kWm;2 . In a different
vain, one might consider ' as a map 'WR � Hm ! H0 to gain regularity. This
indeed works.
Lemma 3.5. For m 2 N the map

'WR �Hm ! H0;

.�; x/ 7! x.� 9 �/

is of class Cm.
Remark 3.6. We recall from the introduction, see (1.3), the map sWR �Hm ! H0
defined by

sWR �Hm ! H0;

.�; x/ 7! @tx �X.'.�; x//;
(3.3)

whereX WS1�Rn ! Rn is some time-dependent smooth vector field. Since s is C1,
the classical implicit function theorem implies (s is indeed Fredholm) the existence of
zeroes of s (i.e., solutions of (1.1) for small � 2 R) under a suitable non-degeneracy
assumption. The implicit function theorem will guarantee the parametrization of
these solutions to be C1 in � . A priori this parametrization will not be of higher
regularity, though. In order to gain better regularity one might be tempted to pass to
the C 2-map sWR�H2 ! H0. However, since sWR�H2 ! H0 factors through the
compact embedding H1 ,! H0 it fails to be Fredholm. In addition, its linearization
is never surjective.

One aim of this article is to employ the natural framework of scale calculus and the
corresponding scale implicit function theorem in order to directly prove the existence
of a C1-family of solutions to (1.1) leading to Theorem 1.1.

4. Sc-smoothness

Sc-calculus (where “sc-” stands for “scale”) is part of polyfold theory, an extensive
framework that was developed by Hofer, Wysocki and Zehnder to study moduli spaces
of J-holomorphic curves. All definitions and details can be found in the book [13].
The implicit function theorem in sc-calculus that we will use (see Theorem 7.1
below) is stated in the context of M-polyfold bundles. All M-polyfolds and bundles
considered in this article are in fact sc-Hilbert spaces (respectively, sc-Hilbert
manifolds in Section 8). This leads to significant technical simplifications. For
instance, neither retraction maps nor boundaries need to be considered and the
existence of sc-smooth bump functions is automatic.
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Here we state the relevant definitions from sc-calculus, along the way introducing
the corresponding objects in the context of this article. We also mention some
interesting and important results concerning sc-differentiability. In the end of this
section, we show that the map s (which was defined in equation (1.3) and cuts out
the solution space) is sc-smooth.
Definition 4.1 ([13, Definition 1.1.1]). An sc-Hilbert space E is a Hilbert space E0
together with a filtration

� � � � EmC1 � Em � � � � � E0

by subspaces Em,m 2 N0, all of which are Hilbert spaces in their own right, in such
a way that all inclusions EmC1 ,! Em are compact and dense.

The norm on the Hilbert spaceEm will be denoted by k�kEm . We use the notation

E1 D
�
.E1/m D EmC1

�
m2N0

to denote the subspace E1 with the induced filtration. Elements of the intersection
E1 WD \m2N0Em are called smooth points. We observe that every finite dimensional
Hilbert space E is an sc-Hilbert space E with the constant filtration Em D E. In
the infinite dimensional case, it follows from compactness of the inclusions that
EmC1 ¤ Em for all m 2 N0. Note that products and sums of sc-Hilbert spaces are
sc-Hilbert spaces again.

In this article we use the sc-Hilbert space

H WD
�
Hm D W

m;2.S1;Rn/
�
m2N0

;

that is the Hilbert space H0 D L2.S1;Rn/ with filtration given by the numbers of
weak derivatives. Moreover, consider H1 with the induced filtration and R with the
constant filtration Rm � R. Then the shift map ' and the map s from equation (1.3)
in Section 1 are maps between these sc-spaces, that is

'WR � H ! H;
.�; x/ 7! x.� 9 �/;

sWR � H1 ! H;
.�; x/ 7! @tx �X.'.�; x//;

(4.1)

where X WS1 �Rn ! Rn is a time-dependent smooth vector field on Rn.
We now state the definitions of sc-continuity, sc-differentiability and sc-smooth-

ness for maps between sc-Hilbert spaces. In the book [13], these notions are defined
more generally for maps between open subsets of quadrants of sc-Banach spaces.
Definition 4.2 ([13, Definition 1.1.13]). A map f WE! F between sc-Hilbert spaces
E and F is sc-continuous (sc0) if it satisfies f .Em/ � Fm for all m 2 N0 and the
induced maps f WEm ! Fm are continuous.
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Definition 4.3 ([13, Definition 1.1.15]). Let f WE! F be a map between sc-Hilbert
spaces. It is called sc-differentiable (sc1) if the following hold:
(1) f is sc-continuous.
(2) For every x 2 E1, there exists a bounded linear operator df .x/WE0 ! F0 such

that
lim

h2E1;khkE1!0

kf .x C h/ � f .x/ � df .x/hkF0
khkE1

D 0:

(3) The tangent map Tf given by

Tf WE1 ˚ E! F1 ˚ F;
.x; h/ 7! df .x/h

is sc-continuous.
Note that this definition does not require the map E1 ! L.E0; F0/, x 7! df .x/

to be continuous with respect to the operator norm. Indeed, in general this will not
be the case. In finite dimensions, since the sc-structure is constant, sc1-maps are
differentiable in the usual sense, and by Proposition 4.5 below they are exactly the
C1-maps. Lots of examples of sc1-maps in infinite dimensions can be found in [12].

Having the notion of sc-differentiability, we can proceed inductively to define
sc-smoothness:
Definition 4.4 ([13, below Remark 1.1.16]). Let k � 2. A map f WE! F between
sc-Hilbert spaces E and F is sck if it is sck�1 and its tangent map is sck�1. It is
sc-smooth (sc1) if it is sck for every k 2 N.

The following alternative characterization of sc-differentiability is helpful in
recognizing sc1-maps. In particular, comparing the properties of the shift map '
that we collected in Section 3 with the conditions in Proposition 4.5 suggests that
sc-calculus indeed is a good framework for the problem at hand.
Proposition 4.5 ([13, Proposition 1.2.1]). Let f WE ! F be an sc-continuous map
between sc-Hilbert spaces. Then f is sc1 if and only if the following conditions are
satisfied:
(1) For everym � 1, the induced map f WEm ! Fm�1 is C1; in particular, the map

df WEm ! L.Em; Fm�1/;

x 7! df .x/

is continuous with respect to the operator norm.
(2) For everym � 1 and x 2 Em, the bounded linear operator df .x/WEm ! Fm�1

extends to a bounded linear operator df .x/WEm�1 ! Fm�1, and the map

Em ˚Em�1 7! Fm�1;

.x; h/ 7! df .x/h

is continuous.
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In practice, when working with differentiability, one usually relies on a chain
rule. From the definition of sc-differentiability it is not obvious that there should be
a chain rule in sc-calculus: After all, in the definition of sc-differentiability there is
a shift in levels, and we might expect these shifts to add up when we concatenate
maps. However, Hofer–Wysocki–Zehnder showed that sc-differentiability satisfies a
true chain rule without any shift in levels:
Theorem 4.6 (chain rule, [13, Theorem 1.3.1]). Let f WE ! F and gWF ! G be
sc1-maps. Then g ı f WE! G is also sc1, and the tangent map satisfies

T .g ı f / D Tg ı Tf:

Let us go back to the map s that cuts out delay orbits. The implicit function
theorem in sc-calculus is formulated in the language of sections in strong M-polyfold
bundles (that admit sc-smooth bump functions). To translate s into this language we
define

S WR � H1 ! R � H1 � H;
.�; x/ 7! .�; x; s.�; x//:

(4.2)

Here, S is a section in the trivial sc-Hilbert space bundle R � H1 � H! R � H1.
Remark 4.7. As pointed out above, scale Hilbert spaces are trivially M-polyfolds.
In fact, they admit global charts and do not require retractions. Moreover, the
trivial bundle R � H1 � H ! R � H1 is a strong bundle in the sense of [13,
Definitions 2.6.1, 2.6.2, 2.6.4, 2.6.5]. The map s is the principal part of S , see [13,
Definition 2.6.3]. Finally, since we do not need to consider boundary nor retractions,
the tameness condition defined in [13, Definitions 2.5.2, 2.5.7] is trivially satisfied.
Thus, the bundle

R � H1 � H! R � H1

is a tame strong M-polyfold bundle. Since everything is modeled on sc-Hilbert
spaces, these M-polyfolds automatically admit sc-smooth bump functions.
Proposition 4.8. The section S is sc-smooth. Its vertical sc-differential at the point
.�; x/ 2 .R � H1/1 D R �H2 is

ds.�; x/WR �H1 ! H0; (4.3)
.T; yx/ 7! @t yx � dX.'.�; x// � '.�; yx/C T � dX.'.�; x// � '.�; @tx/:

In particular, at .0; x/ 2 .R � H1/1 this simplifies to

ds.0; x/.T; yx/ D @t yx � dX.x/ � yx C T � dX.x/ � @tx: (4.4)

Remark 4.9. Note that by dX.y/ we mean the map

dX.y/WS1 ! Rn;

t 7! dXt .y.t//:

Since S1 is compact and X is smooth, dX.y/ has the same Sobolev regularity as y.
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Proof of Proposition 4.8. First, we observe that the operator @t WH1 ! H is sc-
smooth. Indeed, for every m, the operator @t WHmC1!Hm is a bounded linear map,
in particular it is classically smooth. Thus, by [13, Proposition 1.2.4], @t is sc-smooth.

Next, we use [7, Theorem 6.1] asserting that the shift map 'WR � H ! H is
sc-smooth. This readily implies that ' is sc-smooth also as a map

'WR � H1 ! H1 ,! H

since the inclusion H1 ,! H is level-wise compact.
Since the vector field X is smooth, the map H 3 x 7! X.x/ 2 H is sc-smooth.

Now the chain rule from scale calculus implies that S is sc-smooth, and it also gives
the formula for the derivative. Here we may use the fact that ' is classically C1

and therefore sc1 and its sc-differential agrees with the classical differential given by
formula (3.2).

5. The sc-Fredholm property

While the definition of the nonlinear sc-Fredholm property is quite involved (see
below), linear sc-Fredholm operators are defined in a straightforward way:
Definition 5.1 ([13, Definition 1.1.9]). An sc-continuous linear operator T WE! F is
a sc-Fredholm operator if there are splittings E D K˚X and E D E˚Y respecting
the sc-structure such that the following hold:
� K is the kernel of T and finite dimensional.
� Y is the image of T and C is finite dimensional.
� T WX! Y is an sc-isomorphism.
The Fredholm index of T is the integer ind.T / WD dim K � dim C.

Another characterization of the linear sc-Fredholm property is the following.
Lemma 5.2 ([22, Lemma 3.6]). An sc-continuous linear operator T WE! F is an sc-
Fredholm operator if and only if it is regularizing (that is, if e 2 E0 and T .e/ 2 Fm,
then e 2 Em) and T WE0 ! F0 is a classical Fredholm operator.

The linear sc-Fredholm property is invariant under a class of perturbations called
scC-perturbations. Kernel and cokernel of sc-Fredholm operators consist of smooth
points.

In classical calculus, a map is defined to be Fredholm if its linearization at any
point is a Fredholm operator. This implies the existence of a contraction normal
form which can be used to prove the implicit function theorem for Fredholm maps
(see [22, Remark 4.2]). Hence, one might try to define sc-Fredholm maps as sc-
smooth maps with differentials that are linear sc-Fredholm operators. Again, this
implies the existence of a normal form. However, in sc-calculus this normal form
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does not necessarily involve a contraction on the whole space, rather a contraction
from one level to another (see [22, Remark 4.2]). In particular, there is no implicit
function theorem for this class of maps. Counterexamples and a detailed discussion
of these problems can be found in [5]. To obtain an implicit function theorem, one
has to restrict to sc-smooth maps satisfying some extra condition. This nonlinear sc-
Fredholm property was defined by Hofer–Wysocki–Zehnder in terms of a special form
(basic germ, [13, Definition 3.1.7]) that the map needs to take after scC-perturbation
and an sc-smooth coordinate change (see [13, Definitions 3.1.11, 3.1.16]). The proof
of the M-polyfold implicit function theorem (see Theorem 7.1 for the statement
and [13] for the proof) and the counterexamples and discussion in [5] suggest that
this sc-Fredholm property is exactly what is needed to make an implicit function
theorem possible. However, in applications the right sc-smooth coordinate change
may be hard to find. Katrin Wehrheim suggested the following alternative definition
of an sc-Fredholm property (at a point) with respect to a splitting:
Definition 5.3 ([22, Definition 4.3]). Let f WE! F be a sc-smooth map. Then f is
sc-Fredholm at 0 with respect to the splitting E D Rd ˚ E0 if the following hold:
(i) f is regularizing as germ, that is, for everym 2 N0 there exists "m > 0 such that
f .e/ 2 FmC1 and kekEm � "m implies e 2 EmC1.

(ii) E D Rd ˚ E0 is an sc-isomorphism and for every m 2 N0 there exists "m > 0

such that f .r; �/WBE
0
m

"m ! Fm is differentiable for all krkRd < "m. Moreover, for
fixed m 2 N0, the differential

dE0f .r0; e0/WE
0
m ! Fm

in direction of E0 has the following continuity properties:
(a) For r 2 BRd

"m
the differential operator

B
E 0
m

"m ! L.E 0m; Fm/;

e 7! dE0f .r; e/

is continuous, and the continuity is uniform in a neighborhood of .r; e/ D .0; 0/.

(b) For sequences Rd 3 r� ! 0 and e� 2 B
E 0
m

1 with

kdE0f .r� ; 0/e�kFm ! 0; � !1;

there exists a subsequence such that kdE0f .0; 0/e�kFm ! 0.

(iii) The differential dE0f .0; 0/WE0 ! F is an sc-Fredholm operator. Moreover,

dE0f .r; 0/WE 00 ! F0

is classically Fredholm for all krkRd < "0, with Fredholm index equal to that for
r D 0, and weakly regularizing, i.e., ker dE0f .r; 0/ � E 01.
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As in [22, Definition 4.3], above the sc-Fredholm property is defined only at the
origin .�; x/ D .0; 0/. At a smooth point

.��; x�/ 2 R � C1.S1;Rn/ D R �
\
m

Hm

the appropriate conditions are obtained by conjugation with the sc-smooth map
.�; x/ 7! .� � ��; x�x�/. This definition of the sc-Fredholm property (with respect
to a splitting) is not equivalent to the original one (see [13, Definitions 3.1.11,
3.1.16]). However, Wehrheim proved the following:

Theorem 5.4 ([22, Theorem 4.5]). Let f WE ! F be a sc-smooth map that is sc-
Fredholm at 0 with respect to a splitting E D Rd ˚ E0. Then f jE1 WE1 ! F1 is
sc-Fredholm at 0.

In the implicit function theorem, in the end one is interested only in the zero
set ff D 0g of a given sc-Fredholm map f , and this zero set is then automatically
contained in the set E1 of smooth points. Therefore the shift in scales occurring in
Theorem 5.4 is irrelevant for the conclusions of the implicit function theorem. This
means that, although the two definitions are not strictly equivalent, in practice one
can choose which one to work with.

Let us now recall the section S WR � H1 ! R � H1 � H, which was defined
in (4.1) and (4.2) via its principal part sWR � H1 ! H, s.�; x/ D @tx �X.'.�; x//.
We show here that S is sc-Fredholm in the sense of Definition 5.3, keeping in mind
that this implies that – at least after restricting S to a map R � H2 ! R � H2 � H1
– it is also sc-Fredholm in the sense of Hofer–Wysocki–Zehnder.

Theorem 5.5. The section S is an sc-Fredholm section.

Proof. We first show that S is sc-Fredholm at .�; x/ D .0; 0/ with respect to a
splitting by checking conditions (i), (ii), and (iii) of Definition 5.3. After this we
revisit the case of a general smooth point.

As a splitting, in the sense of Wehrheim, of the domain R � H1 we take the one
induced by the Cartesian product. In particular, we have d D 1.

(i) First we show that s is regularizing. Take .�; x/ 2 .R�H1/m D R�HmC1 with

s.�; x/ D @tx �X.'.�; x// 2 HmC1:

Since x 2 HmC1, we have '.�; x/ 2 HmC1, and thus X.'.�; x// 2 HmC1. This
means that @tx D s.�; x/CX.'.�; x// lies in HmC1 and so x 2 HmC2, thus

.�; x/ 2 .R � H1/mC1;

as desired.
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(ii) For fixed � 2 R and m 2 N, the map

s�;m WD s.�; �/WHmC1 ! Hm;

x 7! @tx �X.'.�; x//

is clearly classically smooth with differential

ds�;m.x/WHmC1 ! Hm;

yx 7! @t yx � dX.'.�; x// � '.�; yx/:
(5.1)

(a) For fixed m and small � ,

ds�;mWHmC1 ! L.HmC1;Hm/

needs to be uniformly continuous in x near x D 0 (note that non-uniform continuity
follows from classical smoothness).

In more detail, we need to show that for every " > 0 there exists some ı > 0

such that for all kxkHmC1
< ı, for all x0 2 HmC1 with kx � x0kHmC1

< ı, and for
all yx 2 HmC1, we have

kds�;m.x/yx � ds�;m.x0/yxkHm � " � kyxkHmC1

holds. Indeed, from equation (5.1) we get the following:

kds�;m.x/yx � ds�;m.x0/yxkHm
D k

�
dX.'.�; x0// � dX.'.�; x//

�
� '.�; yx/kHm

� kdX.'.�; x0// � dX.'.�; x//kWm;2.S1;L.Rn;Rn// � k'.�; yx/kHmC1„ ƒ‚ …
DkyxkHmC1

:

The last estimate follows from the operator norm inequality for fixed t 2 S1, � 2 R
and linear maps on Rn.

For ı small enough the first factor in this estimate is smaller than " since dX is
continuous and kx � x0kHmC1

< ı implies

k'.�; x/ � '.�; x0/kHmC1
< ı

(recall that ' is an isometry in its second argument).

(b) Suppose we are given a sequence .�� ; yx�/� � .R � H1/m such that �� ! 0

and kyx�kHmC1
< 1 such that

kds�� .0/yx�kHm ! 0:

Then we need to find a subsequence of .yx�/� (still denoted by the same symbol) such
that

kds0.0/yx�kHm ! 0:
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We compute

kds0.0/yx�kHm D k@t yx� � dX.0/ � '.0; yx�/kHm

� k@t yx� � dX.0/ � '.�� ; yx�/kHm
C kdX.0/ �

�
'.�� ; yx�/ � '.0; yx�/

�
kHm :

The first summand converges to zero by assumption. For the second summand we
recall that dX.0/ is still t -dependent: For every t 2 S1 it denotes the linear map
dXt .0/WRn!Rn. Since kyx�kHmC1

<1 and the inclusion HmC1 ,!Hm is compact
there exists a subsequence (still denoted by .yx�/�) with .yx�/� ! yx in Hm. Taking
the corresponding subsequence of .��/� , we get by Lemma 3.1 that

'.�� ; yx�/ � '.0; yx�/! 0 in Hm:

Finally, since dX.0/ is continuous it follows that

kdX.0/ �
�
'.�� ; yx�/ � '.0; yx�/

�
kHm ! 0:

(iii) The third condition again consists of several parts.
(a) Since 0 2

T
m�0H

1
m, by condition (ii) we have maps ds0;m.0/WH 1

m ! Hm
for all m 2 N. Together they define a sc0-map

ds0.0/WH1 ! H:

We have to show that ds0.0/ is a linear sc-Fredholm operator (Definition 5.1,
Lemma 5.2), meaning that it is regularizing and classically linear Fredholm at the
0-level.

The regularizing property follows exactly as in (i). It remains to show that the
operator

W 1;2.S1;Rn/ D H1 ! H0 D L
2.S1;Rn/;

yx 7! @t yx � dX.0/ � yx
(5.2)

has closed image and finite dimensional kernel and cokernel. The operator @t is
Fredholm between these spaces. Indeed, its kernel is the space of constant maps
while its image consists of all periodic maps with mean zero. Thus, kernel and
cokernel are isomorphic to Rn. Since H1 ,! H0 is a compact embedding, the
second term in (5.2) represents a compact operator and thus does not change the
Fredholm property.

(b) The final condition is that for fixed � near 0, the operator on 0-level

ds� .0/W .H1/0 D H1 ! H0;

yx 7! @t yx � dX.0/ � '.�; yx/
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is classically linear Fredholm with the same index as ds0.0/, and that it is weakly
regularizing, meaning

ker ds� .0/ � .H1/1 D H2
(as opposed to just ker ds� .0/ � H1 which holds by definition).

To verify these properties, note that the first term of ds� .0/ is the same in ds0.0/
and the second one is still compact. In particular, ds� .0/ is Fredholm of the same
index as ds0.0/. Now take yx 2 ker ds� .0/ � H1, then

@t yx D dX.0/ � '.�; yx/:

Since the shift does not change regularity, the right hand side lies inH1, so @t yx 2 H1
and thus yx 2 H2.

This finishes the proof that S is sc-Fredholm at .�; x/ D .0; 0/. Now we review
conditions (i)-(iii) from above and see what needs to be changed for the sc-Fredholm
property at a general smooth point .�; x/ 2 R � C1.S1;Rn/. We recall that these
conditions are obtained from a conjugation, as mentioned above.
(i) The proof of the regularization property for .0; 0/ can be repeated verbatim at
any smooth point .�; x/ 2 R � C1.S1;Rn/.

(ii) The proof that s�;m is classically differentiable for every m did not use � D 0

and continues to hold at any .�; x/ 2 R � C1.S1;Rn/.
(a) In the proof of the uniform continuity of ds�;m near x D 0 we neither used

that � is small nor that kxkHmC1
is small. Again, the same proof continues to work.

(b) Here we need to consider more generally sequences .�� ; yx�/� � .R � H1/m
with .��/� ! � and kyx�kHmC1

� 1 such that

kds�� .x/yx�kHm ! 0

and we need to find a subsequence of .yx�/� (still denoted the same way) such that

kds� .x/yx�kHm ! 0:

The following is a small modification of our previous argument. Again by com-
pactness of the embedding HmC1 ,! Hm we pick a subsequence .yx�/� converging
inHm to some yx, and the corresponding subsequence .��/� . Again add zero and use
the triangle inequality as follows:

kds� .x/yx�kHm D k@t yx� � dX.'.�; x// � '.�; yx�/kHm

D k@t yx� � dX.'.�� ; x// � '.�� ; yx�/
C dX.'.�� ; x// � '.�� ; yx�/ � dX.'.�; x// � '.�; yx�/kHm

� k@t yx� � dX.'.�� ; x// � '.�� ; yx�/kHm„ ƒ‚ …
!0 by assumption

C kdX.'.�� ; x// � '.�� ; yx�/ � dX.'.�; x// � '.�; yx�/kHm :
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By Lemma 3.1 we have '.�� ; x/ ! '.�; x/ in HmC1 as well as '.�� ; yx�/ !
'.�; yx/ and '.�; yx�/! '.�; yx/ in Hm. By continuity of dX , it follows that

kdX.'.�� ; x// � '.�� ; yx�/ � dX.'.�; x// � '.�; yx�/kHm ! 0:

(iii) Sincex2C1 is a smooth point, by (ii) there are linear maps ds�;m.x/WHmC1!Hm
for all m � 0. We have to show that these define a linear sc-Fredholm map

ds� .x/WH1 ! H

with Fredholm index not changing under small changes of � .
We have

ds� .x/yx D @t yx � dX.'.�; x// � '.�; yx/;

and so we see that ds� .x/ is of class sc0 and regularizing. For the Fredholm property
at the 0-level and the index we use that the second term is still compact. That is, we
use that the dependence on � is only through compact operators.
This concludes the proof of Theorem 5.5.

We now compute the Fredholm index of ds at some point .� D 0; x/, where
x 2 H2. The Fredholm index in sc-calculus is by definition the same as the classical
Fredholm index at the 0-level. The following computation applies in particular to the
solution x0 from Theorem 1.1.
Proposition 5.6. The Fredholm index of ds.0; x/ is equal to 1.

Proof. The expression

ds.0; x/.T; yx/ D @t yx � dX.x/ � yx C T � dX.x/ � @tx

was derived in (4.4). The first term is the operator

.H1/0 D H1 ! H0;

yx 7! @t yx:

It is Fredholm of index 0, which was explained above in the proof of Theorem 5.5,
precisely condition (iii) part (a) below equation (5.2).

The second term of ds.0; x/, the operator H1 3 yx 7! �dX.x/ � yx 2 H0, is
compact (by compactness of H1 ,! H0) and thus does not change the Fredholm
index. It remains to see that adding the third term in ds.0; x/ does not change
the Fredholm property and raises the index by 1. This follows from Lemma 5.7
below.

We prove the following obvious statement here for completeness.
Lemma 5.7. Assume that f WU ! V is a linear Fredholm operator, and choose
some v 2 V . Then the operator F WR � U ! V , .t; u/ 7! f .u/C t � v is Fredholm
of index indF D indf C 1.
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Proof. We consider two cases. If v D f .u/ 2 imf , then imF D imf is still
closed of the same codimension and kerF D .f0g ˚ ker f /˚ .R � .�1; u//, thus

dim.kerF / D dim.ker f /C 1:

In the other case, v … imf , the kernel kerF D f0g ˚ ker f is isomorphic to ker f
and imF D imf ˚ hvi, therefore

dim.cokerF / D dim.coker f / � 1:

6. Transversality

In order to apply an implicit function theorem, we need transversality of the section S
to the zero-section at our given solution, that is surjectivity of the vertical differential
ds.0; x0/ of S at .0; x0/ with s.0; x0/ D 0. We now analyze what this condition
means for x0. For that, we recall the notion of non-degeneracy of a periodic orbit of
a vector field.
Definition 6.1. Denote the flow of X by ˆtX . A 1-periodic orbit xWS1 ! Rn of X
is called non-degenerate if the linearized time-1-map dˆ1X .x.0// does not have 1 as
an eigenvalue.
Remark 6.2. We do not assume that X is complete. The existence of a 1-periodic
orbit x implies that in an open neighborhood of x.S1/ in Rn the flow ˆtX is defined
for t 2 Œ0; 1�. In particular, the notion of non-degeneracy is well-defined.
Remark 6.3. If the vector fieldX is autonomous, i.e., Xt .�/ D X.�/ does not depend
on t 2 S1, then there are no non-constant, non-degenerate periodic orbits. Indeed,
if xWS1 ! Rn is a periodic orbit of X , then for every � 2 R and t 2 S1, we have

@tx.t � �/ D X.x.t � �//;

so every reparametrization '.�; x/ of x is also a periodic orbit of X . Using again
that X is autonomous, we compute

dˆ1X .x.0//.@tx.0// D
d
dt

ˇ̌̌
tD0
ˆ1X .x.t// D

d
dt

ˇ̌̌
tD0
x.t/ D @tx;

and conclude that @tx is an eigenvector of dˆ1X .x.0// with eigenvalue 1.
Our main goal in this section is to show the following:

Proposition 6.4. The linear map ds0.x0/ D ds.0; x0/.0; �/WH1 ! H0 is surjective
if and only if x0 is non-degenerate.

This has an immediate corollary:
Corollary 6.5. If x0 is non-degenerate, then ds.0; x0/WR �H1 ! H0 is surjective.
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The eigenvalues of dˆ1X .x.0// can be computed in terms of dX.x/. This gives
the following well-known alternative characterization of non-degeneracy.
Lemma 6.6. Let xWS1 ! Rn be a 1-periodic orbit of X . Set

A.t/ WD �dXt .x.t//T WRn ! Rn

for every t 2 S1 and let Y WR! Rn�n be the fundamental system forAWS1 ! Rn�n,
i.e., the solution of (

d
dt Y.t/ D A.t/ � Y.t/;

Y.0/ D 1:
(6.1)

Then
dˆ1X .x.0// D .Y.1/

T /�1

In particular, x is non-degenerate if and only if Y.1/ does not have 1 as an eigenvalue.

Proof. We use the flowˆtX ofX to defineZ.t/ WD dˆtX .x.0//. ThenZ.0/ D 1 and

d
dt
Z.t/ D

d
dt
�
dˆtX .x.0//

�
D d

� d
dt
ˆtX .x.0//

�
D d

�
Xt
�
ˆtX .x.0//

��
D dXt

�
ˆtX .x.0//„ ƒ‚ …
Dx.t/

�
� dˆtX .x.0// D �A.t/

T
�Z.t/:

That is, Z.t/ satisfies (
d
dtZ.t/ D �A.t/

T �Z.t/;

Z.0/ D 1;

meaning that Z is a fundamental system of the so-called adjoint system of A. One
can easily compute, using the two initial value problems, that

Z.t/T � Y.t/ D 1 8t 2 R:

Therefore, we have
Y.t/ D .Z.t/T /�1 8t 2 R:

In particular,
Y.1/ D .Z.1/T /�1 D

�
dˆ1X .x.0//

T
��1

:

This proves the lemma.

Remark 6.7. In case thatX D XH is a Hamiltonian vector field, i.e., dHt D !.Xt ; �/
holds for some time-dependent function Ht and a symplectic form !, Lemma 6.6
simplifies slightly due to the fact that the matrixA.t/DdXt .x.0// is skew-symmetric.
In particular, Y and Z solve the same initial value problem and are thus identical
and, in addition, symmetric matrices.
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Another simplification occurs in the case of a fixed point of an autonomous
vector field. For instance, assume that X is autonomous and X.0/ D 0. The
constant orbit x0.t/ WD 0 is then also a delay orbit of any delay, thus the existence of
smoothly parametrized delay orbits is immediate. However, Theorem 1.1 may still
be applied to show local uniqueness. We claim that in this situation non-degeneracy
of the 1-periodic orbit x0 is equivalent to dX.0/ being invertible. Indeed, using the
notation of Lemma 6.6, we see that

A.t/ D �dX.0/T

is constant. Therefore, the fundamental system is given by Y.t/ D exp.tA/. By
considering a vector v 2 Rn and the ODE that is satisfied by v.t/ WD exp.tA/v,
one easily sees that the matrix A has an eigenvalue a if and only if exp.tA/ has an
eigenvalue eta. In particular, Y.1/ D exp.A/ has an eigenvalue 1 if and only if A
has an eigenvalue 0. The latter is, of course, equivalent to dX.0/ having a non-trivial
kernel.

In preparation for the proof of Proposition 6.4, we recall the following theorem
from Floquet theory.
Theorem 6.8 ([20]). Let AWS1 ! Rn�n be a smooth 1-periodic matrix valued
function and let Y WR ! Rn�n be the fundamental system for A defined by (6.1).
Then @t�.t/ D A.t/�.t/ has a non-trivial 1-periodic solution if and only if 1 is an
eigenvalue of Y.1/. In this case, the solution is of the form �.t/ D Y.t/ � �.0/ for
all t and �.0/ being some eigenvector of Y.1/ for the eigenvalue 1.

Finally, we are ready to prove Proposition 6.4.

Proof of Proposition 6.4. In the proof of Theorem 5.5 we have shown that

ds0.x0/ D ds.0; x0/.0; �/WH1 ! H0;

yx 7! @t yx � dX.x0/ � yx

is classically Fredholm. In particular, ds0.x0/ has closed image. Thus,

im.ds0.x0// D H0

if and only if .im.ds0.x0///? D f0g in H0 D L2. Therefore, failure of surjectivity
of ds0.x0/ is equivalent to the existence of 0 ¤ � 2 H0 satisfying

hds0.x0/yx; �iH0 D 0 8yx 2 H1:

Using the explicit formula above, we see that this is equivalent to

h@t yx � dX.x0/yx; �iH0 D 0 8yx 2 H1:

This condition asserts that the weak derivative of � exists and equals

@t� D �dX.x0/T �: (6.2)
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In particular, bootstrapping shows that � 2 C1. If we set

A.t/ WD �dXt .x0.t//T WRn ! Rn; (6.3)

then (6.2) becomes
@t�.t/ D A.t/�.t/: (6.4)

Now Theorem 6.8 and Lemma 6.6 imply that such � exists if and only if dˆ1X .x0.0//
has an eigenvalue 1, that is, if x0 is a degenerate periodic orbit of X .

7. The M-polyfold implicit function theorem and the proof of Theorem 1.1

In the following we will use a special case of the M-polyfold implicit function theorem
proved by Hofer, Wysocki and Zehnder, see [11]. For completeness and convenience,
we provide here the full theorem as stated in textbook [13].
Theorem 7.1 (M-polyfold implicit function theorem [13, Theorem 3.6.8]). Let f be
an sc-Fredholm section of a tame strong M-polyfold bundle Y ! X. If f .x/ D 0,
and if the sc-Fredholm germ .f; x/ is in good position, then there exists an open
neighborhood V of x 2 X such that the solution set S D fy 2 V j f .y/ D 0g in V
has the following properties:
� At every point y 2 S , the sc-Fredholm germ .f; y/ is in good position.
� S is a sub-M-polyfold of X and the induced M-polyfold structure is equivalent to

a smooth manifold structure with boundary with corners.
In our situation we have X D R � H1 and Y D R � H1 � H, i.e., Y is the

trivial bundle and thus is a tame strong M-polyfold bundle, as mentioned before
in Remark 4.7. The sc-Fredholm section f is given by S , see formula (4.2) and
Theorem 5.5. The solution set S consists of pairs .�; x� / nearby .0; x0/, where x� is
a � -delay orbit of the vector field X , see equation (1.1), as in Theorem 1.1.
Remark 7.2. Before proving Theorem 1.1 we point out the following:
� The regularizing property of an sc-Fredholm section implies that the solution set S

is contained in X1 D
T
m2N Xm, the set of smooth points of X . In our setting

X1 D R � C1.S1;Rn/;

i.e., the delay orbits in S are smooth.
� If the M-polyfold X in Theorem 7.1 does not have boundary or corners, then the

solution space S is a smooth, finite-dimensional manifold without boundary or
corners.

� Being in good position consists of two conditions. The first one is surjectivity
of df at the point x 2 X . The second condition is concerned with the case thatX
has boundary or corners and is thus not relevant in our context.
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� As in the classical implicit function theorem, the tangent space of S at a point
y 2 S is given by

TyS D ker df .y/ � TyX

(see [13, Theorem 3.1.22]). In particular, the local dimension of the solution
space S equals the Fredholm index of the linearized section.

Proof of Theorem 1.1. By Proposition 4.8, S is sc-smooth and by Theorem 5.5 it
is sc-Fredholm. Moreover, according to Proposition 6.4 and Corollary 6.5, non-
degeneracy of x0 implies that

ds.0; x0/WR �H1 ! H0

is surjective. Since S is sc-Fredholm, its vertical differential ds.0; x0/WR�H1 ! H
at .0; x0/ is a linear sc-Fredholm operator. In particular, ds.0; x0/ is surjective on
all levels, cf. Definition 5.1, and thus the germ of S at .0; x0/ is in good position.
Therefore, we can apply the M-polyfold implicit function theorem, Theorem 7.1, and
conclude that the solution set

S D f.�; x/ 2 R � H1 j s.�; x/ D 0g

is, near .0; x0/, a finite-dimensional smooth manifold which we denote by Z. The
dimension of Z equals the Fredholm index, which is dimZ D 1 by Proposition 5.6.

We have seen in Proposition 6.4 that the non-degeneracy of x0 implies that

ds0.x0/ D ds.0; x0/
ˇ̌
f0g�H1

WH1 ! H0

is surjective. Moreover, ds0.x0/ is a Fredholm operator of index 0, thus an isomorph-
ism. In particular, ker ds.0; x0/ is not contained in f0g�H 1. Therefore, near .0; x0/
the manifold Z � R � H 1 is a graph over R, i.e., near .0; x0/, we can smoothly
parametrize Z as � 7! x� .

Remark 7.3. If it was possible to apply the M-polyfold implicit function theorem near
every pair .�; x/ 2 S in the solution set S , then all of S would carry the structure
of a 1-dimensional manifold. However, for � ¤ 0 the linearization ds.�; x� / is
significantly more complicated than ds.0; x0/. It is unclear to us how to formulate a
criterion for surjectivity of this map in terms of the vector field.

8. Generalization to manifolds

As noticed in the introduction, if we pass from Rn to a manifold M , equation (1.1)
does not make sense anymore. Still, of course there are interesting equations on
manifolds that involve a delay, for instance Lotka–Volterra equations with delay. For
this and further examples see [1, Section 3].
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In the following, we want to focus on 1-periodic solutions xWS1 ! M of equa-
tions of the form

@tx.t/ D ft .x.t 9 �// �Xt .x.t// for all t 2 S1; (8.1)

where X is some vector field and f a function on M , both depending smoothly on
time. This set-up can be generalized further.

We set B WD W 1;2.S1;M/ and equip B with the scale structure

Bm WD W
1Cm;2.S1;M/:

Choosing a Riemannian metric h� ; �iM on M turns B into an sc-Hilbert-manifold.
For each .�; x/ 2 R � B denote by E.�;x/ WD L2.S1; x�TM/ the Hilbert space of
L2-vector fields along x with scale structure

E.�;x/;k D W
k;2.S1; x�TM/:

These form a bundlepWE ! R�B with fiber E.�;x/ over .�; x/. The double filtration

Em;k WD
˚�
.�; x/; �

�
j .�; x/ 2 R �Bm; � 2 E.�;x/;k

	
for 0 � k � mC 1

gives pWE ! R �B the structure of a tame strong M-polyfold bundle. Still, every-
thing is modeled on sc-Hilbert spaces. We define a section by

� WR �B ! E;

.�; x/ 7! @tx � f .'.�; x// �X.x/:
(8.2)

Then the zero set
f.�; x/ 2 R �B j �.�; x/ D 0g

is the set of 1-periodic solutions of equation (8.1). The statements from Sections 4–7
carry over to the current set-up with minor modifications, see below. For convenience
we refer to the corresponding analogous statements in the previous sections.

Proposition 8.1 (cf. Proposition 4.8). The section � is sc-smooth. Its vertical sc-
differential dv�.�; x/ at the point .�; x/ 2 R �B1 is given by

dv�.�; x/WR � TxB ! E.�;x/;

.T; yx/ 7! r@tx yx � f .'.�; x// � ryxX.x/

� df .'.�; x//
�
'.�; yx/ � T � '.�; @tx/

�
�X.x/;

where r is the Levi-Civita connection on M with respect to h� ; �iM .

Proof. Sc-smoothness follows by chain rule from sc-smoothness of the shift map and
classical smoothness of f and X , together with sc-smoothness of @t , exactly as in
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the proof of Proposition 4.8. To get the explicit formula for the vertical differential,
we use the product rule to compute

dv�.�; x/.T; yx/ D r@tx yx �
�
d.f ı '/.�; x/.T; yx/ �X.x/C f .'.�; x// � ryxX.x/

�
and, with the chain rule,

d.f ı '/.�; x/.T; yx/ D df .'.�; x//
�
d'.�; x/.T; yx/

�
D df .'.�; x//

�
'.�; yx/ � T � '.�; @tx/

�
:

Theorem 8.2 (cf. Theorem 5.5 and Proposition 5.6). The section � is an sc-Fredholm
section of Fredholm index 1.

Since the sc-Fredholm property and the index computation is local, the proofs of
Theorem 5.5 and Proposition 5.6 work with minor adaptations. We skip the details
here.

Assume now that we have a solution x0WS1 ! M of equation (8.1) for � D 0.
For simplicity we assume in the following that x�0TM ! S1 is trivial. This is, for
instance, the case, if M is orientable. The general case can be treated after suitable
modifications.

Definition 8.3. Denote the flow of fX by ˆt
fX

. Let xWS1 ! M be a 1-periodic
orbit of fX with the property that x�0TM ! S1 is trivial. We call x non-degenerate
if the linearized time-1-map dˆ1X .x.0// does not have 1 as an eigenvalue.

We want to prove a statement about the existence of solutions of equation (8.1)
with small delay � ¤ 0, similar to Theorem 1.1. In order to apply the M-polyfold
implicit function theorem it only remains to infer surjectivity of dv�.0; x0/ from
non-degeneracy of x0.

Proposition 8.4 (cf. Proposition 6.4). Assume that x�0TM ! S1 is the trivial bundle.
Then the linear map

dv�0.x0/ D dv�.0; x0/.0; �/WTx0B ! E.0;x0/

is surjective if and only if x0 is non-degenerate as a 1-periodic orbit of the vector
field fX .

As before the following is an immediate corollary.

Corollary 8.5 (cf. Corollary 6.5). If x0 is a non-degenerate periodic orbit of the
vector field fX and the pullback bundle x�0TM ! S1 is trivial, then

dv�.0; x0/WR � Tx0B ! E.0;x0/

is surjective.
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Proof of Proposition 8.4. Since the bundle x�0TM ! S1 is trivial there is a
neighborhood U �M of x0.S1/ which is diffeomorphic to an open set V � Rn by
a diffeomorphism  WU ! V . Then  �.fX/ has  .x0/ as 1-periodic orbit and x0
is non-degenerate if and only if  .x0/ is non-degenerate. Moreover, the section

� jR�BU WR �BU ! EjR�BU ;

withBU WDW 1;2.S1; U /, is conjugated via and d to a section z� of the form (4.2).
Finally, dv�.0; x0/ is surjective if and only if dvz�.0;  .x0// is surjective. This
means that we reduced the situation to the case of Rn and the assertion follows from
Proposition 6.4.

Combining all these results and using the M-polyfold implicit function theorem,
we get the following generalization of our main theorem.
Theorem 8.6 (cf. Theorem 1.1). We consider a vector fieldX and a function f , both
smooth and 1-periodic, on a manifold M . Let x0 be a non-degenerate 1-periodic
orbit of the vector field fX . (In particular, we assume that x�0TM ! S1 is trivial.)
Then there is �0 > 0 such that for every delay � with j� j � �0 there exists a (locally
unique) smooth 1-periodic solution x� of the delay equation (8.1). Moreover, the
parametrization � 7! x� is smooth.
Remark 8.7. In the case that x�0TM is not the trivial bundle, a straightforward idea
is to consider the double cover y0 of x0 and work on the space of 2-periodic functions
instead. Then, assuming that y0 is non-degenerate as a 2-periodic orbit of fX , the
M-polyfold implicit function theorem will provide a smooth family of 2-periodic
delay orbits y� near y0. In this situation non-degeneracy of y0 is equivalent to the
condition that dˆ1

fX
.x0.0// has neither 1 nor �1 as an eigenvalue.

A. Proofs for Section 3

In this appendix we give proofs for the facts that were mentioned in Section 3. The
following basic observation is repeatedly used throughout this appendix.
Remark A.1. From k'.�; x/kHm D kxkHm and linearity of ' in the second variable
we conclude that '.�; �/ is an Hm-isometry, i.e.,

k'.�; x/ � '.�; y/kHm D kx � ykHm :

Therefore, for every x 2 Hm, every sequence .xi /i � Hm and every � 2 R it is

'.�; xi /! '.�; x/ ” xi ! x:

Proof of Lemma 3.1. Let us recall that continuity of 'WR ! L.Hm;Hm/ with
respect to the compact-open topology means the following: For sequences .�i /i2N

in R and .xi /i2N inHm, if �i ! � in R and xi ! x inHm as i !1, it follows that

'.�i ; xi /! '.�; x/
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in Hm as i !1. We first note that it is enough to prove continuity at � D 0 since

'.�i ; xi /! '.�; x/ ” '.�i � �; xi /! x

by the previous remark. This means that for any " > 0 we need to show that

kx � '.�i ; xi /kHm � "

for i sufficiently large. As a first step, we show the claim in the case of a constant
sequence xi � x 2 Hm. Form D 0, this is Lemma 2.1 from [7], and we extend their
proof to the case m ¤ 0.

The map x may not be smooth, but it can be approximated in Hm by smooth
elements. Fix " > 0 and choose xx 2 C1.S1;Rn/ with

kxx � xkHm �
"

6
:

Now xx and its derivatives @kt xx, k D 0; : : : ; m, are uniformly continuous, thus

k@kt xx.t/ � @
k
t xx.t 9 �i /kRn �

"

6.mC 1/
for all t 2 S1;

for all k D 0; : : : ; m and i sufficiently large. In particular, the H0-distance satisfies

k@kt xx � '
�
�i ; @

k
t xx
�
kH0 �

"

6.mC 1/

and we can estimate

kxx � '.�i ; xx/kHm �

mX
kD0

k@kt xx � @
k
t '.�i ; xx/kH0

D

mX
kD0

k@kt xx � '
�
�i ; @

k
t xx
�
kH0 � .mC 1/ �

"

6.mC 1/
D
"

6
:

Hence,

kx � '.�i ; x/kHm � kx � xxkHm C kxx � '.�i ; xx/kHm C k'.�i ; xx/ � '.�i ; x/kHm

D kx � xxkHm C kxx � '.�i ; xx/kHm C kxx � xkHm

�
"

6
C
"

6
C
"

6
D
"

2
:

In particular, we have proved the statement for any constant sequence xi�x2Hm.
Now for the general case, let .xi /i � Hm be a sequence converging to x. For " > 0
and i sufficiently large we established

kx � '.�i ; x/kHm �
"

2
:
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After increasing i even further, we may assume that kx � xikHm � "
2

since xi ! x

converges in Hm. All in all, we get

kx � '.�i ; xi /kHm � kx � '.�i ; x/kHm C k'.�i ; x/ � '.�i ; xi /kHm

D kx � '.�i ; x/kHm C kx � xikHm �
"

2
C
"

2
D ";

as desired.

To prove Lemma 3.3, we need the following elementary lemma about difference
quotients of H1-functions.
Lemma A.2. Let x 2 H1. Then the following hold:
(i)



'.T;x/�x
T




H0
� k@txkH0 for T 2 R n f0g.

(ii) limT!0



'.T;x/�x
T

� @tx



H0
D 0.

Proof. Since the map x 2 H1 is, in particular, weakly differentiable, we get

kx.t C T / � x.t/k �

Z 1

0

k@tx.t C sT /kjT j ds

for every t 2 S1, T 2 R. Squaring this and using the Cauchy–Schwarz inequality
leads to

kx.t C T / � x.t/k2 � jT j2
Z 1

0

k@tx.t C sT /k
2 ds;

which is of course equivalent to

kx.t C T / � x.t/k2

T 2
�

Z 1

0

k@tx.t C sT /k
2 ds:

Now we integrate over t 2 S1 and get


'.�T; x/ � x
T




2
H0
D

Z 1

0

kx.t C T / � x.t/k2

T 2
dt

�

Z 1

0

Z 1

0

k@tx.t C sT /k
2 ds dt D k@txk2H0 :

Using k'.T; x/ � xkH0 D k'.�T; x/ � xkH0 the first assertion follows.
To show (ii), we approximate x in H1 by smooth functions xk 2 C1.S1;Rn/.

Using the triangle inequality, we compute


'.T; x/ � x
T

� @tx




H0
�




'.T; x/ � x
T

�
'.T; xk/ � xk

T





H0

C




'.T; xk/ � xk
T

� @txk





H0
C k@txk � @txkH0
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for every k. The second term on the right-hand side goes to 0 for T ! 0 because xk
is smooth. The first term is bounded by k@tx � @txkkH0 according to (i) using
linearity of ' in its second argument. Therefore, the second assertion follows.

Proof of Lemma 3.3. We have to show that

lim
k.T;yx/k!0

1

k.T; yx/k
k'.� C T; x C yx/ � '.�; x/ � '.�; yx/C T � '.�; @tx/kH0 D 0;

where it is convenient to define the norm of the pair .T; yx/ by

k.T; yx/k2 D jT j2 C kyxk2H1 :

Using k'.�; x/kH0 D kxkH0 , we compute the following:

1

k.T; yx/k2
k'.� C T; x C yx/ � '.�; x/ � '.�; yx/C T � '.�; @tx/k

2
H0

D
1

k.T; yx/k2
k'.T; x C yx/ � '.0; x/ � '.0; yx/C T � '.0; @tx/k

2
H0

D
1

k.T; yx/k2
k'.T; x/C '.T; yx/ � x � yx C T � @txk

2
H0

�
1

k.T; yx/k2

�
k'.T; x/ � x C T � @txkH0 C k'.T; yx/ � yxkH0

�2
D

1

k.T; yx/k2
k'.T; x/ � x C T � @txk

2
H0

C
1

k.T; yx/k2
k'.T; yx/ � yxk2H0

C
2

k.T; yx/k2
k'.T; x/ � x C T � @txkH0 � k'.T; yx/ � yxkH0 : (A.1)

For the first term in (A.1) we use 1
k.T;yx/k

�
1
jT j

and obtain

1

k.T; yx/k2
k'.T; x/ � x C T � @txk

2
H0
�




'.T; x/ � x
T

C @tx



2
H0
! 0

as T ! 0, where we used Lemma A.2 (ii). For the second term in (A.1) we similarly
use 1

k.T;yx/k
�

1
kyxkH1

and see

1

k.T; yx/k2
k'.T; yx/ � yxk2H0 �

1

kyxk2H1

k@t yxk
2
H0
� T 2 ! 0

as T ! 0, where we used Lemma A.2 (i). For the product in the third term in (A.1)
we use the same arguments to treat both factors separately and see that both tend
to 0.
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Proof of Lemma 3.5 (sketch). Using the formula (3.2) for the first derivative of ', we
get that if a second derivative of ' exists at the point .�; x/ 2 R �Hm, then it has to
be

d2'.�; x/
�
.T1; yx1/; .T2; yx2/

�
D T2 � '.�; @t yx1/ � T1 � '.�; @t yx2/

C T1 � T2 � '.�; @
2
t x/;

which is well-defined if x 2 H2. Iteratively computing what anm-th derivative of '
at .�; x/ should look like, we see that as a multilinear map

dm'.�; x/W .R �Hm/ � � � � � .R �Hm/„ ƒ‚ …
m times

! H0 (A.2)

�
.T1; yx1/; : : : ; .Tm; yxm/

�
7! � � � C .�1/m

mY
iD1

Ti � '.�; @
m
t x/

it has a lot of summands that involve shifts by � of the maps yxm, @t yxm�1, @2t yxm�2; : : : ,
@m�1t yx1 and @mt x. Thus it needs an m-th derivative of x. To show that (A.2) really
meets the definition of a derivative, one can estimate each summand exactly as in the
proof of Lemma 3.3. Again, one can show that all these derivatives are continuous,
so the map 'WR �Hm ! H0 is Cm.
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