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Abstract. The total-variation cutoff phenomenon has been conjectured to hold for simple random
walk on all transitive expanders. However, very little is actually known regarding this conjecture,
and cutoff on sparse graphs in general. In this paper we establish total-variation cutoff for simple
random walk on Ramanujan complexes of type zAd (d � 1). As a result, we obtain explicit
generators for the finite classical groups PGLn.Fq/ for which the associated Cayley graphs
exhibit total-variation cutoff.
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1. Introduction

The "-mixing time of a finite Markov chain is the earliest time at which the distribution
on states becomes "-close to the stationery one, regardless of the starting distribution.
There are several distance functions which one may use, and we focus onL1, or total-
variation (see (1.1)). The parameter " can be thought of as a measure of “standards”:
for example, in a professional poker tournament one expects the dealer to shuffle
the decks longer than in an amateur one. Loosely speaking, a sequence of Markov
chains is said to exhibit the cutoff phenomenon if it is insensitive to ones’ standards.
Namely, whether one seeks to be at most 0:01 away from the stationary distribution
or at most 0:99 away from it, it will roughly take the same amount of time. In
other words, for a long period of time the distribution is at almost maximal distance
from stationery, and then over a short period of time it mixes almost completely.
This counter-intuitive phenomenon was first demonstrated by Diaconis–Shahshahani
and Aldous [1, 6], and was subsequently shown to hold in many naturally occurring
Markov chains (see the surveys [5,23]). Common to all of these examples is that the
number of legal moves grows together with the number of states.

The case of a bounded number of legal moves – for example, simple random walk
(SRW) on a family of graphs with bounded degrees – turned out to be more resistant,
and much less is known about it. In 2004, Peres has conjectured that SRW on every
family of transitive bounded degree expanders exhibits the cutoff phenomenon [4],
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even though at the time no family of bounded degree expanders was known to do so.
In [16], Lubetzky and Sly used probabilistic methods to show that random regular
graphs exhibit cutoff asymptotically almost surely. The next big breakthrough was
achieved by Lubetzky and Peres [15], who showed that SRW on all Ramanujan graphs
(which are optimal expanders) exhibit cutoff. A main ingredient of [15] is to show
first that non-backtracking random walk (NBRW) on Ramanujan graphs exhibits
cutoff at an optimal time. The last assertion was generalized in [14] to the context of
Ramanujan complexes, which are high-dimensional analogues of Ramanujan graphs,
defined in [13, 20]. In the paper [14], Lubetzky, Lubotzky and the second author
establish optimal-time cutoff for a large family of asymmetric random walks on the
cells of these complexes (in the graph case, NBRW is an asymmetric walk on edges).
However, the techniques of [14] cannot be applied neither to any symmetric random
walk, nor to any walk on vertices.

The goal of the current paper is to establish cutoff for SRW on Ramanujan
complexes arising from the group PGLd over a non-archimedean local field.
Interestingly, while SRW on vertices only “sees” the 1-skeleton of the complex,
our proof makes use of asymmetric random walks on cells of all dimensions of the
complex, showing that the high-dimensional geometry can play an important role
even when studying walks on graphs. A main motivation to study these complexes is
the study of expansion in simple groups: the finite groups PGL2.Fq/ admit a Cayley
structure of a Ramanujan graph due to Lubotzky, Phillips and Sarnak [18], whereas
the groups PGLd .Fq/ for general d can be endowed with a Cayley structure which
is the 1-skeleton of a Ramanujan complex. Thus, we establish here cutoff for SRW
on the groups PGLd .Fq/, with respect to the appropriate generators. We remark that
the situation in the case d � 3 is even more striking than in the graph case .d D 2/:
by Kazhdan’s property .T /, for d � 3 every generating set of PGLd .Z/ gives rise
to an expander family of Cayley graphs of PGLd .Fq/ [21], but – except for the case
which we handle in this paper – it is unknown whether these families exhibit cutoff
or not.

We now move on to rigorous terms. Let D be a connected directed graph
(digraph), which we assume for simplicity to be k-out and k-in regular. Consider
random walk on D starting at a vertex v0 with uniform transition probabilities, and
denote by �t

D;v0
its distribution at time t . The "-mixing time of D is

tmix."/ D tmix.";D/ D min
˚
t 2 N j 8v0 2 D0; k�tD;v0 � �DkTV < "

	
;

where �D is the uniform distribution on D0 (the vertices of D), and k � kTV is the
total-variation norm

k� � �kTV D max
A�D0

j�.A/ � �.A/j D
1

2
k� � �k1: (1.1)
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A family of digraphs fDng is said to exhibit cutoff if

tmix.";Dn/

tmix.1 � ";Dn/

n!1
����! 1

for every 0 < " < 1. The cutoff is said to occur at time t .n/, if for every " > 0 there
exists a window of size w.n; "/ D o.t.n//, such that jtmix.";Dn/ � t .n/j � w.n; "/

for n large enough. If t .n/ D logk jDnj we say that the cutoff is optimal, since a
k-regular walk cannot mix in less steps.

Recall that a connected k-regular graph is called a Ramanujan graph if its
adjacency spectrum is contained in Œ�2

p
k � 1; 2

p
k � 1� [ fkg.

Theorem ([15]). The family fGng of all k-regular Ramanujan graphs exhibits
(1) cutoff for SRW at time k

k�2
logk�1 jGnj, with a window of size O.

p
log jGnj/;

(2) optimal cutoff for NBRW (at time logk�1 jGnj), with a window of size
O.log log jGnj/.
In [15], SRW-cutoff is first reduced to optimal NBRW-cutoff, by studying the

distance of SRW on the tree from its starting point. To obtain optimal cutoff for
NBRW new spectral techniques are developed for analyzing non-normal operators.

To see how the notion of Ramanujan graphs generalizes to higher dimension,
recall that Œ�2

p
k � 1; 2

p
k � 1� is theL2-adjacency spectrum of the k-regular tree,

which is the universal cover of every k-regular graph [12]. In accordance, Ramanujan
complexes are roughly defined as finite complexes which spectrally mimic their
universal cover; for a precise definition, see Section 2. In [14], a vast generalization
of part (2) of the theorem above is proved: say that a walk rule is collision-free if two
walkers which depart from each other can never cross paths again.
Theorem ([14]). Let B be an affine Bruhat–Tits building (see Section 2.1), and fix
a collision-free walk rule on cells of B. The family of Ramanujan complexes with
universal cover B exhibit optimal cutoff with respect to the corresponding walk rule
on them.

This recovers NBRW on Ramanujan graphs, since NBRW is indeed collision-free
on the edges of the tree. In higher dimension, NBRW is not collision-free anymore,
but in [14, Section 5.1] it is shown that collision-free walks do exist, on cells of
every dimension, except for vertices. As SRW is not collision-free, the techniques
of [14] cannot address it (in fact, they cannot address any operator on vertices; see
[22, Remark 3.5 (b)]).

The goal of this paper is to establish cutoff for SRW on Ramanujan complexes.
We fix a non-archimedean local field F with residue field of size q, and denote by
B D Bd;F the Bruhat–Tits building associated with PGLd .F /.
Theorem 1.1 (Main theorem). The family fXng of all Ramanujan complexes with
universal cover B exhibits total-variation cutoff for SRW at time Cd;q logq jXnj, with
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a window of size O.
p

log jXnj/. The constant Cd;q is determined in (4.2) and for
each d , is a rational function in q of magnitude

1

bd=2cdd=2e
CO

�1
q

�
(see Table 1).

We emphasize that the graphs underlying these walks are not Ramanujan graphs
when d > 2. For example, in the two-dimensional case (where d D 3), the 1-
skeleton of X is a 2.q2 C q C 1/-regular graph. If it was a Ramanujan graph, its
second largest adjacency eigenvalue would be bounded by

2
p
2q2 C 2q C 1 � 2:8q;

but in truth this eigenvalue equals 6q � on.1/ (cf. [13,24]), reflecting the abundance
of triangles in X . In this case, the cutoff is achieved at time

q2 C q C 1

2.q2 � 1/
logq n

(see Theorem 3.1).

A motivation for our result, which does not require the notions of Ramanujan
complexes or buildings, is the study of expansion in finite simple groups; see [3] for
a recent survey. A celebrated result of Lubotzky, Phillips and Sarnak [18] uses the
building of PGL2.Qp/ to show that the groups PSL2.Fq/ have explicit generators
for which the resulting Cayley graphs are Ramanujan, so that [15] yields total-
variation cutoff for SRW on these groups. Turning to PSLd .Fq/, the work of [15]
does not apply anymore, since it is not known whether PSLd .Fq/ have generators
which yield Ramanujan Cayley graphs. Nevertheless, by considering the building of
PGLd .Fq..t///, it was shown by Lubotzky, Samuels and Vishne ([19], see also [25])
that the groups PSLd .Fq/ have explicit generators, for which the resulting Cayley
graph is precisely the 1-skeleton of a Ramanujan complex of type zAd . For d D 3,
such generators can also be given using the building of PGL3.Qp/ [2, 7]. We thus
achieve:
Corollary 1.2. (1) Fix d � 3 and a prime power q. The family fPSLd .Fq`/g`!1

has an explicit symmetric set of k D
Pd�1
jD1Œ

d
j �q (Gaussian binomial coefficients)

generators exhibiting TV-cutoff.
(2) For d D 3 and infinitely many pairs of primes p ¤ q, the family PSL3.Fq/ has

an explicit symmetric set of 2.p2 C p C 1/ generators exhibiting TV-cutoff (at
time p2CpC1

2.p2�1/
logp jPSL3.Fq/j).

We remark that even though this is a claim on Cayley graphs, the proof makes
use of the high-dimensional geometry of their clique complexes!
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Let us briefly explain our strategy for proving Theorem 1.1. Given a walk on X ,
we lift it to a walk on B, and then project it to a sector S � B, which can be identified
with the quotient of B by the stabilizer of the starting point of the walk. If X is a
k-regular graph then B is the k-regular tree, and S is simply an infinite ray which we
identify with N: SRW on B then projects to a . 1

k
; k�1
k
/-biased walk on this ray, and

the projected location ` 2 N of the walker is precisely its distance from the starting
point. On the other hand, this point is also the projection to S of all terminal vertices
of non-backtracking walks of length `; combining this with the optimal cutoff for
NBRW is used to establish SRW cutoff in [15].

For the building of dimension d , the so called Cartan decomposition gives an
isomorphism S Š Nd , and the projected walk from B on S is an explicit, homogen-
eous, drifted walk on Nd (with appropriate boundary conditions). Following the
Lubetzky–Peres strategy, we would have liked to use this walk to reduce SRW-cutoff
to some collision-free walk from [14], for which optimal cutoff is already established.
However, the terminal vertices of the various walks studied in [14] are all located on
the special rays in S which correspond to the standard axes in Nd . This is enough
for the graph case (when d D 1), but not in general. Our solution combines all the
walks from [14], using cells of all positive dimensions. For each point ˛ 2 S , we
construct a concatenation of collision-free walks on cells of different dimensions, so
that the possible paths of the walk terminate in a uniform vertex in the preimage of ˛
in B. The results of [14,22] are then used to bound the total-variation mixing of the
corresponding concatenated walk on a Ramanujan complex.

For the convenience of the reader, we have divided the proof to the two-
dimensional case (namely PGL3) in Section 3, and the general case in Section 4.
The case of d D 3 is considerably simpler, due to the fact that it has additional
symmetry: in this case PGL3.F / acts transitively on the cells of every dimension
of B; see [9–11] for detailed combinatorial studies of B.PGL3.F //. In addition, it is
easier to visualize (see Figure 1), and some computations can be made more explicit
and give sharper bounds.

Acknowledgements. The authors are grateful to Ori Gurel-Gurevich for his help with
proving Proposition 4.2. They also thank Eyal Lubetzky, Alex Lubotzky and Nati
Linial for helpful discussions and encouragement. M.C. was supported by ERC grant
339096 of Nati Linial and by ERC, BSF and NSF grants of Alex Lubotzky. O.P. was
supported by ISF grant 2990/21.

2. Preliminaries and notations

We briefly recall the notion of Bruhat–Tits buildings of type zAd and the Ramanujan
complexes associated with them. For a more detailed introduction, we refer the reader
to [13, 17, 20].
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2.1. Bruhat–Tits buildings. Let F be a non-archimedean local field with ring of
integers O, uniformizer$ , and residue field O=$O of size q. The simplest examples
are

F D Qp with .O;$; q/ D .Zp; p; p/;
F D Fq..t// with .O;$; q/ D

�
FqJtK; t; q

�
:

Let G D PGLd .F / and K D PGLd .O/, which is a maximal compact subgroup
of G. The Bruhat–Tits building B D B.G/ of type zAd�1 associated with G is
an infinite, contractible, .d � 1/-dimensional simplicial complex, on which G acts
faithfully. Denoting by Bj the cells of B of dimension j , the action of G on B is
transitive both on B0 and Bd�1. Furthermore, there is a vertex, which we denote
by � , whose stabilizer is K, so that B0 can be identified with left K-cosets in G. In
this manner each vertex g� is associated with the F -homothety class of the O-lattice
gOd � F d . A collection of vertices fgi�griD0 forms an r-cell if, possibly after
reordering, there exist scalars ˛i 2 F � such that

$g0O
d < ˛rgrO

d < ˛r�1gr�1O
d < � � � < ˛1g1O

d < g0O
d :

It follows that the link of a vertex in B can be identified with the spherical building
of PGLd .O=$O/ Š PGLd .Fq/, the finite complex whose cells corresponds to flags
in Fdq . In particular, its vertices correspond to non-zero proper subspaces of Fdq , so
that the degree of the vertices in B is

deg.�/ D
Pd�1
jD1

�
d
j

�
q
; where

�
d
j

�
q

are Gaussian binomial coefficients

(see examples in Table 1). The vertices of B are colored by the elements of Z=dZ,
via

col.g�/ D ord$ det.g/ 2 Z=dZ .g 2 PGLd .F //; (2.1)

and this coloring makes B a d -partite complex, namely, every .d � 1/-cell contains
all colors. For j � 1, we say that an ordered cell � 2 Bj is of type one if

col �iC1 � col �i C 1 .mod d/ for 0 � i < j ;

and we denote by B
j
1 all j -cells of type one.

2.2. Ramanujan complexes. A branching operator on a set � is a function

T W�! 2�:

By a geometric operator T on B we mean a branching operator on some subset C

of the cells of B (e.g., all cells of dimension j ), which commutes with the action
of G. If � is a torsion-free lattice in G D PGLd .F /, then the quotient X D �nB

is a finite complex, equipped with a covering map 'WB ! X , and T induces a
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branching operator T jX on the cells �nC in X , via T jX D 'T '�1. A function
on X is considered trivial if its lift to a function on B is constant on every orbit
of G0 D PSLd .F /, and an eigenvalue of T jX is called trivial if its eigenfunction is
trivial. Denote byL2col.X/ the space of trivial functions, and byL20.X/ its orthogonal
complement.

Definition 2.1. The complex X D �nB is called a Ramanujan complex if for
every geometric operator T on C � B, the non-trivial spectrum Spec.T jL2

0
.�nC// is

contained in the spectrum of T acting on L2.C/.

In the above notations, we denote by DT .B/ the digraph with vertices C , and
edges f� ! � 0 j � 2 C ; � 0 2 T .�/g, and similarly DT .X/ for the induced digraph
on �nC .

Theorem 2.2 ([14, Theorem 3 and Proposition 5.3]). Let T be a k-regular geometric
operator on B

j
1 . If DT .B/ is collision-free andX D �nB is a Ramanujan complex,

then DT .X/ is a .d/j -normal Ramanujan digraph (where .d/j D dŠ=.d � j /Š/:

This requires some explanation. A k-regular digraph D is called:

(1) collision-free if it has at most one directed path between any two vertices;

(2) r-normal if its adjacency matrix AD is unitarily similar to a block diagonal
matrix with blocks of size at most r � r ;

(3) a Ramanujan digraph if the spectrum of AD is contained in

fz 2 C j jzj D k or jzj �
p
kg:

Denoting byL20.D/ the orthogonal complement to allAD -eigenfunctions with eigen-
value of absolute value k, we have the following theorem.

Theorem 2.3 ([22, Proposition 4.1]). If D is a k-regular r-normal digraph with
� D maxfjzj j z 2 Spec.AD jL2

0
.D//g, then

A`D ˇ̌L2
0
.D/


2
�

 
`C r � 1

r � 1

!
kr�1�`�rC1:

In particular, if D is a k-regular r-normal Ramanujan digraph, then we have
j�j �

p
k for every � 2 Spec.AD jL2

0
.D//, so that

A`D ˇ̌L2
0
.D/


2
�

 
`C r � 1

r � 1

!
k.`Cr�1/=2 � .`C r/rk.`Cr/=2: (2.2)
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2.3. Cartan decomposition. With the notations of Section 2.1, the fundamental ap-
artment A � B is the subcomplex of B induced by all translations of � by diagonal
matrices inG. Geometrically, A is a simplicial tessellation of the affine space Rd�1.
The edges in A are as follow: every vertex$˛� D diag.$˛1 ; : : : ;$˛d�1 ;$˛d /� is
connected to $˛C� where  runs over all non-constant binary vectors, i.e.  2
f0; 1gdnf0; 1g (here 0 and 1 denote the all-zero and all-one vectors in f0; 1gd ,
respectively).

We denote by S � A the sector in A induced by A� , where

A D
˚
$˛
D diag.$˛1 ; : : : ;$˛d�2 ;$˛d�1 ; 1/ j ˛1 � � � � � ˛d�1 � ˛d D 0

	
:

It is easy to see that S is a fundamental domain for the action of Sd � G (the so
called spherical Weyl group) on A. We identify S with Nd�1 via

diag.$˛1 ; : : : ;$˛d�2 ;$˛d�1 ; 1/� 7! .˛1 � ˛2; : : : ; ˛d�2 � ˛d�1; ˛d�1/;

thereby giving Nd�1 a graph structure. Denote by @S the boundary of S , which corre-
sponds to

@Nd�1
D
˚
Ex 2 Nd�1

j xi D 0 for some i
	
:

Except at @S , the edges are the same as in A, parametrized by  2 f0; 1gdnf0; 1g.
For $˛ 2 @S , it might happen that $˛C … S , e.g. when ˛i C i > ˛i�1 C i�1,
and one obtains the appropriate terminus of  by reordering the entries of $˛C in
descending order, and then dividing it by its last coordinate if it is not 1. The case of
d D 3 is depicted in Figure 1.

The Cartan decomposition for PGLd states that

G D
G
a2A

KaK; or (equivalently) B0
D

G
a2A

Ka�;

and the proof is a simple exercise (see e.g. [8, Section 13.2]). It follows that S can
also be identified with the quotient of B byK, and we denote the obtained projection
from B to Nd�1 by ˆ. In conclusion, we have identified four complexes:

KnB Š SdnA Š S Š Nd�1:

3. The PGL3 case

In this section, B D B3;F is the two-dimensional Bruhat–Tits building of G D
PGL3.F /. The 1-skeleton of B is a k-regular graph, with

k D deg.�/ D 2.q2 C q C 1/;

where q is the size of the residue field of F .
Theorem 3.1. Let X D �nB3;F be a Ramanujan complex with n vertices. Then
SRW on the underlying graph of X has total-variation cutoff at time q2CqC1

q2�1
logq2 n

with a window of size O.
p

logn/.
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3.1. A lower bound on the mixing time. Throughout this section we fix " > 0.
Denote by B.�; r/ the r-ball around � , i.e. the vertices of graph distance at most r
from � in B. First, we show that the ball of radius

r0 D logq2 n � 3 logq2 logq2 n

can cover only a small fraction of any n-vertex quotient of B:
Proposition 3.2. For n large enough, jB.�; r0/j � "n.

Proof. Given r � 1, the r-sphere S.�; r/ is shown in [7] to be of size

jS.�; r/j D .r C 1/q2r C 2rq2r�1 C 2rq2r�2 C .r � 1/q2r�3:

Thus, one can crudely bound the size of the r-ball by jB.�; r/j � 8r2q2r , hence

jB.�; r0/j � 8r
2
0q
2r0 �

8.logq2 n/2

.logq2 n/3
n � "n

for n large enough.

Let .Xt / be a SRW on B starting at � . We would like to determine until when
does the walk remain in the r0-ball around � with high probability. Since the distance
from � is K-invariant, we have

dist.�; �/ D dist.ˆ.�/;ˆ.�// D dist.ˆ.�/; .0; 0//

for � 2 B0, which leads us to consider the projection of Xt by ˆ. In this manner,
we obtain a (non-simple) random walk .ˆ.Xt // on N2 , and we define

�.t/ D dist.ˆ.Xt /; .0; 0// D dist.Xt ; �/:

Recall that we identified S Š N2 by mapping diag.$˛;$ˇ ; 1/� to .˛ � ˇ; ˇ/, and
the edges in N2 (except at the boundary) are˙.1; 0/,˙.0; 1/,˙.1;�1/; see Figure 1.

Let Ex and Ey be the boundary lines of S (the x and y axes in Figure 1). The
transition probabilities of the projected random walk are as follows: from .0; 0/ there
is a probability of 1

2
of moving to .1; 0/ and to .0; 1/. Outside the boundary, the

edge .�x; �y/ is taken with probability q�xC�yC1=k. On Exn.0; 0/, the edges with
�y D �1 are folded back in, giving the probabilities shown in Figure 1, and on Ey
the folding is symmetric.

Denote y.t/ D dist.ˆ.Xt /; Ex/ and x.t/ D dist.ˆ.Xt /; Ey/, which measure the
distance of the projected walk from the boundary. Clearly, �.t/ D y.t/C x.t/. We
consider y.t/, x.t/ and �.t/ as random walks on N starting at zero.
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Ex

Ey

.0; 0/

.0; 1/

.0; 2/

.0; 3/

.1; 0/ .2; 0/ .3; 0/

1

1

q

q q2

q2

1 q2
qC 1 q2 C q

q2 C qC 1
q2 C qC 1

Figure 1. The sector S � B as N2, and transition probabilities projected from SRW on B,
scaled by 2.q2 C q C 1/.

Proposition 3.3. The walks x.t/ and y.t/ are transient.

Proof. We treat only x.t/, and the proof for y.t/ is analogous. Although the
distribution of the random variable @x.t/ D x.t/� x.t � 1/ depends on the position
of the walk at time t � 1, there are only four cases to consider: when the walk is at
the origin, when the walk is on Ex or Ey, and when both x.t � 1/ and y.t � 1/ are
positive. In all of these cases, we have

EŒ@x.t/� �
q2 � q � 2

2.q2 C q C 1/
:

Thus, for q > 2, the value of x.t/ is expected to strictly grow at each step and
thus x.t/ is transient. To cover the case of q D 2, one can look “two steps ahead”,
namely on @2x.t/ D x.t/ � x.t � 2/. There are more cases to check, but explicit
computation shows that

EŒ@2x.t/� �
4q4 C q3 � 5q2 � 9q � 7

4.q2 C q C 1/2
;

which is positive for all q � 2, giving again transience.

Define

S.t/ D

tX
iD1

Yi ;

where Yi D �.i/ � �.i � 1/ whenever x.i � 1/; y.i � 1/ > 0, and otherwise Yi is a
random variable independent of any other, attaining 1; 0;�1 with respective probab-
ilities 2q2=k, 2q=k, 2=k. It follows that the Yi ’s are i.i.d., and by the central limit
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theorem, we have
zS.t/ D

S.t/ � Et

�
p
t
) N .0; 1/;

where

E D
q2 � 1

q2 C q C 1
; � D

p
q3 C 4q2 C q

q2 C q C 1
; (3.1)

and N .0; 1/ is the standard normal distribution. Let E.t/ D .�.t/ � S.t//=�
p
t .

Since x.i/ and y.i/ are transient, the difference �.t/ � S.t/ is bounded with
probability 1, so that

P ŒjE.t/j < C�
t!1
���! 1

for every C > 0. Hence, E.t/ converges to the Dirac measure concentrated at 0, and

„.t/ D
�.t/ � Et

�
p
t
D zS.t/C E.t/) N .0; 1/: (3.2)

Recall that " > 0 and r0 were fixed at the beginning of Section 3.1.
Proposition 3.4. For n large enough and any s � 0, at time

t0 D t0.s/ D
q2 C q C 1

q2 � 1
logq2 n � .s C 1/

q
logq2 n (3.3)

the distance of Xt from � satisfies

P Œ�.t0/ > r0� < P ŒZ > cq � s�C ";

where Z � N .0; 1/ and

cq D
E3=2

�
D

s
.q2 � 1/3

.q2 C q C 1/.q3 C 4q2 C q/

(see (3.1)).

Proof. We note that �.t0/ > r0 is equivalent to

„.t0/ >
r0 � Et0

�
p
t0
D
.s C 1/E

p
logq2 n � 3 logq2 logq2 n

�
p
t0

:

For n large enough we have E
p

logq2 n � 3 logq2 logq2 n, and thus

.s C 1/E
p

logq2 n � 3 logq2 logq2 n
�
p
t0

>
sE
p

logq2 n
�
p
t0

;

and from
p
t0 < E�1=2

p
logq2 n it follows that

sE
p

logq2 n
�
p
t0

>
sE3=2

�
D cqs:
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Lastly, since „.t0/ converges to Z in distribution and t0
n!1
����! 1, for n large

enough, we have
jP Œ„.t0/ > cqs� � P ŒZ > cqs�j < ":

All in all, we conclude that

P Œ�.t0/ > r0� � P Œ„.t0/ > cqs� � P ŒZ > cqs�C ":

Now let X be a quotient of B with n vertices. For any v 2 X0 we can choose the
covering map 'WB ! X to satisfy '.�/ D v. This map induces a correspondence
between paths in X starting at v and paths in B starting at � , and in particular,

'.B.�; r// D B.v; r/:

The projectionXt D '.Xt / is a SRW on (the 1-skeleton of)X starting at v. We recall
that �tX D �tX;v denotes the distribution of .Xt / and �X the uniform distribution
on X0.
Proposition 3.5. There exists s D s.q; "/ such that for n large enough, the .1�3"/-
mixing time of SRW on X is at least t0 D t0.s/.

Proof. Using '.B.�; r// D B.v; r/, which implies in particular

�tX;v.B.v; r// � �
t
B;�.B.�; r//;

together with Propositions 3.4 and 3.2, we have for n large enough�t0X;v � �XTV � �X .X0nB.v; r0// � �t0X;v.X0nB.v; r0//
�
n � jB.v; r0/j

n
� �

t0
B;�
.B0
nB.�; r0//

�
n � jB.�; r0/j

n
� P ŒZ > cqs� � "

� 1 � 2" � P ŒZ > cqs�:

This implies in particular

max
v2X0

k�
t0
X;v � �XkTV � 1 � 2" � P ŒZ > cqs�;

and we can choose s such that P ŒZ > cqs� < ", and thus tmix.1 � 3"/ > t0.

3.2. An upper bound for the mixing time. Recall from (2.1) that B is tri-partite
via colWB0 ! Z=3Z. The quotient X D �nB is tripartite if and only if the map
col factors through X0, which is equivalent to ord$ det  2 3Z for all  2 � . When
this is the case, the trivial functions L2col.X

0/ (see Section 2.2) are those which are
constant on each color, and when X is not tri-partite, L2col.X

0/ are the constant
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functions. Denote by Pcol and P0 the orthogonal projections corresponding to the
decomposition L2.X0/ D L2col.X

0/˚ L20.X
0/. For any t , we have

k�tX � �XkTV � kP0.�
t
X /kTV C kPcol.�

t
X / � �XkTV : (3.4)

We first bound the second term.
Proposition 3.6. There exist t4 D t4."/ such that kPcol.�

t
X / � �XkTV � " for

any t � t4.

Proof. If X is non-tripartite then Pcol.�
t
X / D �X , as both are constant functions of

sum one. If X is tripartite, col induces a simplicial map colWX ! 4, where 4 is
the 2-simplex with vertices Z=3Z. In this case, Pcol.�

t
X / is the pullback of SRW on

the 2-simplex starting at 0 D col.v/, i.e.

Pcol.�
t
X /.w/ D

3

n
� �t4.col.w//:

The triangle is connected and non-bipartite, so there exists a time t4, not depending
on n, such that k�t

4
� ��kTV < " for t > t4, hence

kPcol.�
t
X / � �XkTV D k�

t1
� � ��kTV � ":

Next, we define

r1 D logq2 nC 16 logq2 logq2 n;

t1 D
q2 C q C 1

q2 � 1
logq2 nC .s C 1/

q
logq2 n;

where s is as in Proposition 3.5. Observe that by time t1 SRW on B leaves B.�; r1/
with high probability: the same arguments as in Propositions 3.4 and 3.5 give for n
large enough

P Œ�.t1/ < r1� � P ŒZ > cqs�C " < 2": (3.5)

It is left to bound kP0.�t1X /kTV , and for this we use for the first time the assumption
that X is a Ramanujan complex. We decompose �t1X by conditioning on the values
of �; x; y at time t1: denoting

�
t;x;y
X D P

�
Xt D � j

x.t/Dx;
y.t/Dy

�
;

we have

kP0.�
t1
X /kTV D

P
�
�.t1/ < r1

�
P0
�
P
�
Xt D � j �.t1/<r1

��
C

X
r1�xCy

P
�
x.t1/Dx;
y.t1/Dy

�
P0.�

t1;x;y
X /


TV

� 2"C max
r1�xCy�t1

P0.�
t1;x;y
X /


TV
; (3.6)
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using x.t/Cy.t/ � t1 and (3.5). To understand the L20-projection of the conditional
distribution �t1;x;yX , we turn to study the fiber ˆ�1.x; y/, using carefully chosen
geometric operators on the cells of B.

Recall the definition of cells of type one from Section 2.1. While g 2 G does
not preserve colors in B0 in general, it does preserve the difference between colors,
so that the cells of type one in X are well defined (namely, Xj1 D �nB

j
1 ). Let T1

and T2 be the geodesic edge-flow and triangle-flow operators from [14, Section 5.1]:
the operator T1 acts on B1

1 , taking a (directed) edge vw to all edges wu of type one
such that vwu is not a triangle in B. The operator T2 acts on B2

1 , taking the (ordered)
triangle vwu to all triangles wuy with y ¤ v. We introduce the operators:

T01WB
0
! B1

1 ; T01.v/ D fwv j w 2 B0 (and wv is of type one)g;
T12WB

1
1 ! B2

1 ; T12.wv/ D fuwv j uwv 2 B2
1g;

T20WB
2
1 ! B0; T20.uwv/ D fvg:

All of the operators Ti ; Tij are regular and geometric.

Proposition 3.7. For any .x; y/ 2 N2, we have ˆ�1.x; y/ D T.x;y/.�/, where

T.x;y/ D T20 ı T
2y
2 ı T12 ı T

x
1 ı T01WB

0
! B0:

Proof. If �1; �2 are two cells in B with correspondingG-stabilizersG�i , any double
coset G�1gG�2 defines a geometric branching operator from the orbit G�1 to G�2,
by

.G�1gG�2/.g
0�1/ D g

0G�1g�2: (3.7)

Defining

e1 D diag.$;$; 1/� ! � and �1 D Œdiag.$; 1; 1/�; diag.$;$; 1/�; ��;

we have orbits B0 D G�, B1
1 D Ge1, B2

1 D G�1, and stabilizers

K D G� ; P1 D Ge1 D
�

O O O
$O O O
$O O O

�
\K; P2 D G�1 D

�
O O O
$O O O
$O $O O

�
\K:

The operators we defined arise as

T01 D KP1; T1 D P1

�
$
1
1

�
P1; T12 D P1P2;

T2 D P2

�
1

$
1

�
P2; T20 D P2K:

Thus, successively applying (3.7) we obtain

T.x;y/.�/ D KP1

�
P1

�
$
1
1

�
P1

�x
P1P2

�
P2

�
1

$
1

�
P2

�2y
P2�:
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Explicit computation in [14, Section 5.1] shows that�
P1

�
$
1
1

�
P1

�x
D

n�
$x ˛ ˇ

1
1

�
j ˛; ˇ 2 O=$xO

o
P1;

and we note that
K
�
$x ˛ ˇ

1
1

�
D K

�
$x

1
1

�
for ˛; ˇ 2 O, so that

T.x;y/.�/ D K
�
$x

1
1

�
P1P2

�
P2

�
1

$
1

�
P2

�2y
�

(we have used also P1; P2 � K). Denoting

K1;2 D
˚� �

A

�
j � 2 O�; A 2 GL2.O/

	
;

one can verify that P1P2 � K1;2P2. In fact,

P1P2 D
n
I;
�
1

O 1
1

�o
P2;

and since the elements of K1;2 commute with
�
$x

1
1

�
this implies

T.x;y/.�/ D K
�
$x

1
1

��
P2

�
1

$
1

�
P2

�2y
�:

Finally, explicit computation shows that�
P2

�
1

$
1

�
P2

�2y
D

n�
$y ˛

$y ˇ
1

�
j ˛; ˇ 2 O=$yO

o
P2;

yielding (with ˛; ˇ ranging over O=$yO)

T.x;y/.�/ D K

�
$xCy $x˛

$y ˇ
1

�
� D K

�
$xCy

$y

1

�
� D ˆ�1.x; y/:

Proposition 3.8. If r1 � xCy � t1, then for n large enough kP0.�t1;x;yX /kTV � ".

Proof. Recall that ' induces a correspondence between SRW on B and X , so that
�
t;x;y
X (for any t; x; y) is the pushforward of �t;x;y

B;�
by ':

�
t;x;y
X .w/ D �

t;x;y

B;�
.'�1.w// D P

�
Xt 2 '

�1.w/
ˇ̌
x.t/Dx;
y.t/Dy

�
8w 2 X0:

It follows from the Cartan decomposition that the distances from Ex and Ey together
determine a unique K-orbit in B0. Since the SRW on B commutes with K, this
implies that for any distance profile .x; y/ 2 N � N the distribution �t;x;y

B;�
is the

uniform distribution over ˆ�1.x; y/, which we denote by �x;y . We conclude that

�
t;x;y
X D �x;y ı '

�1:
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For any of the geometric operators T D Ti ; Tij ; T.x;y/, we denote by zT the corre-
sponding stochastic operator on L2-spaces, e.g.

zT01WL
2.B0/! L2.B1

1/; . zT01f /.e/ D
X

wWe2T01.w/

f .w/

jT01.w/j
:

By Proposition 3.7, we have

supp AT.x;y/.1�/ � ˆ�1.x; y/:
Furthermore, AT.x;y/.1�/ is K-invariant as

AT.x;y/.1�/.k� 0/ D AT.x;y/.1k�1�/.� 0/ D AT.x;y/.1�/.� 0/;
hence

AT.x;y/.1�/ D �x;y :
The stochastic operator zT jX corresponding to T jX D 'T '�1 satisfies . zT�/ı'�1 D
zT jX .�ı'

�1/ for any distribution � on B, so that

�
t;x;y
X D AT.x;y/.1�/ ı '�1 D AT.x;y/

ˇ̌
X
.1v/ DeT20 eT 2y2 eT12 fT x1 eT01

ˇ̌
X
.1v/: (3.8)

It follows from the regularity of incidence relations in X that the operators eTi jX andfTij jX decompose with respect to the direct sums L2 D L2col˚L
2
0 of the appropriate

cells, and in particular

P0.�
t;x;y
X / D AT.x;y/

ˇ̌
X
.P0.1v//:

The operators T1 and T2 are q2- and q-regular, respectively, and they are shown
in [14, Proposition 5.2] to be collision-free. By Theorems 2.2 and 2.3, this implies

kfT x1 jL2
0
.X1
1
/k2 �

1

q2x

 
x C 2

2

!
q4 � qx�2 D

 
x C 2

2

!
q2�x;

k
e
T
2y
2 jL2

0
.X2
1
/k2 �

1

q2y

 
2y C 5

5

!
q5 �
p
q
2y�5

D

 
2y C 5

5

!
q5=2�y :

In addition, we have

keT01jXk2 D 1=
p
q2 C q C 1; keT12jXk2 D 1=

p
q C 1;

keT20jXk2 D
p
.q2 C q C 1/.q C 1/

by degree considerations and evaluation on constant functions. Returning to (3.8),
we use k � kTV �

p
n

2
k � k2 to conclude thatP0.�

t;x;y
X /


TV
�

p
n

2

AT.x;y/ˇ̌L2
0
.X0/

.P0.1v//

2

�

p
n

2

AT.x;y/ˇ̌L2
0
.X0/


2
�

p
n
�
xC2
2

��
2yC5
5

�
q9=2

2qxCy
:
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Taking now r1 � xCy � t1, we assume n is large enough that t1 � 3r1, hence for n
large enoughP0.�

t1;x;y
X /


TV
�

p
n
�
3r1C2
2

��
6r1C5
5

�
q9=2

2qr1
�

p
n.7r1/

7q9=2

2qr1

D
.7 logq2 nC 112 logq2 logq2 n/7q9=2

2.logq2 n/8
� ":

We come to the proof of the main theorem of this section.

Proof of Theorem 3.1. From (3.4), Proposition 3.6 (which applies once t1 � t4),
(3.6), and Proposition 3.8, we conclude that

k�
t1
X � �XkTV � 3"C max

r1�xCy�t1

P0.�
t1;x;y
X /


TV
� 4";

so that tmix.4"/ � t1. Together with Proposition 3.5, this implies the cutoff
phenomenon at time q2CqC1

q2�1
logq2 n, with a window of size O.

p
logq2 n/.

4. The case of PGLd for all d � 2

The main difference between PGL3 and the general case is that PGL3 acts transitively
on Bj for all j , but the same does not happen for general d . As a result, the projected
walk on the sector S D KnB is no longer isotropic – some directions are more likely
to be chosen than others. Our approach is to define a suitable metric on S and B,
which takes this asymmetry into account. Albeit, PGLd still acts transitively on B0,
so the 1-skeleton of B is a regular graph.

4.1. The projected walk on S . As in Section 3, we consider a SRW .Xt / on B

starting from �, which projects moduloK to a weighted random walk on S . Recalling
the identification S Š Nd�1, we define xi .t/ to be the i -th index of the projected
walk ˆ.Xt /, so that

ˆ.Xt / D Ex.t/ D .x1.t/; : : : ; xd�1.t//:

We consider S as a weighted directed graph, with the weight of an edge being the
probability that the projected walk chooses this edge. The weights are easier to
describe outside the boundary: it follows from the identification of the link of a
vertex as the flag complex of Fdq that for every  2 f0; 1gdnf0; 1g (see Section 2.3)
and $˛� 2 Sn@S , the probability of moving from $˛� to $˛C� is

P Œ$˛� ! $˛C�� D
qZ

deg �
; where Z D #f.i; j / j i < j; i D 1; j D 0g:

At the boundary, the only difference is that  which leads outside of S is folded back
into it by the action of the spherical Weyl group Sd .
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Claim 4.1. If ˆ.Xt�1/ … @Nd�1, then

P Œxi .t/ � xi .t � 1/ D 1� D q � P Œxi .t/ � xi .t � 1/ D �1� .1 � i � d � 1/:

Proof. When moving along  (except at the boundary) the i -th index xi of the
projected walk changes by i�1�i . The permutation � on f0; 1gd , which transposes
the i -th and .i � 1/-th indices, induces an involution on f0; 1gdnf0; 1g that reverses
the change in xi . If i�1 D 1 and i D 0, then Z D 1

q
Z�./, so for every edge that

decreases xi there is an edge which increases it whose weight is q times larger.

In what follows, for  2 Zd we denote by  0 the difference vector

 0 D .1 � 2; 2 � 3; : : : ; d�1 � d / 2 Zd�1:

Proposition 4.2. The projected walk ˆ.Xt / visits @Nd�1 only a finite number of
times with probability one.

Proof. In essence this follows from the fact that the boundary is sink-less, and on its
complement the walk is a positively-drifted walk on Zd�1. Namely, from any point
in Nd�1 the probability to enter

D D f˛ 2 Nd�1
j 8i; ˛i � d � 1g

in d.d � 1/ steps is at least .deg �/�d.d�1/. Let PEx be the probability that a walk
which starts from Ex 2 Nd�1 ever touches the boundary. This is the same as the
probability of the walk on Zd�1 with transition probability qZ= deg � of moving
along  0, where  2 f0; 1gdnf0; 1g, to ever reach from Ex to a point with a zero
coordinate. This is bounded by

d�1X
iD1

PEx;i ;

where PEx;i is the probability that the i -th coordinate ever vanishes. But on Zd�1

each coordinate is a drifted walk as in Claim 4.1, hence it follows from standard
arguments that PEx;i � 1=qxi . Thus, for Ex 2 D we obtain PEx � d=qd < 1, and it
follows that the expected number of visits to the boundary is bounded by

1X
iD0

d i .deg �/d.d�1/=qdi <1:

4.2. Geometric operators on B.PGLd/. For 1 � j < d , the geodesic j -flow Tj

defined in [14] is a qd�j -regular branching operator on B
j
1 (the j -cells of type one),

which takes the (ordered) cell Œv0; : : : ; vj � to all cells Œv1; : : : ; vj ; w� 2 B
j
1 such that

fv0; : : : ; vj ; wg … B. Defining

�i D diag.$�.d�i/; 1�i /� and �j D Œ�j ; �j�1; : : : ; �0�;
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we have B
j
1 D G�

j , and the operator Tj corresponds to the double coset PjwjPj ,
where

Pj WD G�j D
˚
g 2 K j gr;c 2 $O for c � min.j; r � 1/

	
;

wj D

0BBB@
Ij�1

$ 0 � � � 0

Id�j

1CCCA
(note B0

1 D B0 D G�0 and P0 D K, though there is no 0-flow). Each double coset
PjPjC1 (0 � j � d � 2) gives via (3.7) an operator

Tj;jC1WB
j
1 ! B

jC1
1 ;

which takes � 2 B
j
1 to all v� 2 B

jC1
1 (v 2 B0). In addition, Pd�1P0 yields

Td�1;0WB
d�1
1 ! B0;

which returns the last vertex of a cell.

Proposition 4.3. For any Ex 2 Nd�1, the fiber ˆ�1.Ex/ equals TEx.�/, where

TEx WD Td�1;0

1Y
jDd�1

T
jxj
j Tj�1;j WB

0
! B0:

Proof. Denoting gt D diag.$x1C���Cxt ;$x2C���Cxt ; : : : ;$xt ; 1; : : : ; 1/, we claim
that

TEx.�/ D Kgt�1

� d�1Y
jDt

Pj .wjPj /
jxj

�
� for 1 � t � d: (4.1)

For t D 1, the definitions of TEx and the operators Ti ; Ti;j indeed give

TEx.�/ D

� d�1Y
jD1

Pj�1Pj .PjwjPj /
jxj

�
Pd�1P0� D Kg0

� d�1Y
jD1

Pj .wjPj /
jxj

�
�:

Assume that (4.1) holds for some 1 � t � d � 1. Explicit computation as in [14,
Section 5.1] gives

Pt .wtPt /
txt D

�
$xt It Mt�d�t .O/

0 Id�t

�
Pt ;
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and using K to perform row elimination we obtain

TEx.�/ D Kgt�1

�
$xt It Mt�d�t .O/

0 Id�t

�
Pt

� d�1Y
jDtC1

Pj .wjPj /
jxj

�
�

D KgtPtPtC1

� d�1Y
jDtC1

Pj .wjPj /
jxj

�
�:

Next, observe that PtPtC1 decomposes as StPtC1 when St � K is any set which
takes � t to all .t C 1/-cells containing it. There are .qd�t � 1/=.q � 1/ such cells,
as in the spherical building � t corresponds to a t -dimensional subspace of Fdq , and
these cells to the minimal subspaces containing it. This also shows how to compute
such a transversal St , and

St D

d�tG
jD1

diag.It ;Qj ; Id�t�j /; where Qj D

0@ Fq 1
:::

:::
Fq 1

1 0 ��� 0

1A � GLj .O/;
is one option. Since the matrices in St above commute with gt (and lie in K), this
shows that

KgtPtPtC1

� d�1Y
jDtC1

Pj .wjPj /
jxj

�
� D Kgt

� d�1Y
jDtC1

Pj .wjPj /
jxj

�
�;

establishing (4.1) for t C 1. Taking t D d in (4.1), we obtain

TEx.�/ D Kgd�1� D ˆ
�1.x1; : : : ; xd�1/:

The decomposition of ˆ�1.Ex/ suggests the metric to impose on S .
Definition 4.4. The R-norm on Nd�1 Š S is

R.x1; : : : ; xd�1/ D

d�1X
jD1

j.d � j /xj :

In addition, we obtain a bound on the size of the fiber above Ex.
Corollary 4.5. For Ex 2 Nd�1, the size of the fiber ˆ�1.Ex/ is bounded by

jˆ�1.Ex/j �

d�1Y
jD1

qjC1 � 1

q � 1
� qR.Ex/ � dŠ q.

d
2/CR.Ex/:

Proof. This follows from Proposition 4.3, since Tj is qd�j -regular, Tj;jC1 is
.qd�j�1/=.q�1/-regular (see proof of Proposition 4.3), andTd�1;0 is 1-regular.
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Later, we will be interested in the long-term behavior of the R-distance of the
random walk on S from � . The change in the R-distance distributes in the same
manner whenever the walk is not at the boundary @S . We denote this distribution
by D:

P ŒD D j � D
X

2f0;1gdnf0;1gWR. 0/Dj

qZ

deg.�/
;

and define Ed D EŒD� and �d D
p

VarŒD� (note that E from Section 3 is E3=2).
The reciprocal of Ed is the constant Cd;q , which appears in Theorem 1.1:

Cd;q WD
1

Ed
D

� X
2f0;1gdnf0;1g

R. 0/qZ

deg.�/

��1
: (4.2)

Proposition 4.6. We have Ed D bd2 cd
d
2
e CO. 1

q
/.

Proof. Recall that �
d

j

�
q

D

jY
iD1

qd�iC1 � 1

qi � 1
:

Writing f � g for f .q/ D g.q/.1CO.1=q//, this implies Œ dj �q � qj.d�j /, and thus

deg.�/ �
dd=2eX
jDbd=2c

�
d

j

�
q

�
3 � .�1/d

2
qbd=2cdd=2e:

Similarly, Z is largest when  is a sequence of bd=2c or dd=2e ones, followed by
zeros. In this case, we have Z D bd=2cdd=2e, and also R. 0/ D bd=2cdd=2e,
hence it follows from (4.2) that Ed � bd=2cdd=2e.

We demonstrate the first few cases of Ed and deg.�/ in Table 1.

4.3. Cutoff on B.PGLd/. Fix " > 0. For r � 0 we define BR.�; r/, the R-norm-
alized r-ball around � , to be the set of vertices � 2 B0 satisfying R.ˆ.�/// � r .
From Corollary 4.5, we obtain the bound

jBR.�; r/j � jfEx j R.Ex/ � rgjdŠq.
d
2/Cr � dŠq.

d
2/ � rd�1qr : (4.3)

Defining
r0 D logq n � d logq logq n;

we obtain, for n large enough, that

jBR.�; r0/j � dŠq
.d2/

logd�1q .n/ � n

logdq .n/
< "n: (4.4)
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d Ed � deg.�/ deg.�/ D
Pd�1
jD1Œ

d
j �q

2 q � 1 q C 1

3 4q2 � 4 2q2 C 2q C 2

4 4q4 C 8q3 C 2q2 � 4q � 10 q4 C 3q3 C 4q2 C 3q C 3

5 12q6 C 8q5 C 16q4 C 4q3

� 8q2 � 12q � 20

2q6 C 2q5 C 6q4 C 6q3

C 6q2 C 4q C 4

6 9q9 C 23q8 C 22q7 C 25q6

C 21q5 C 3q4 � 15q3

� 28q2 � 25q � 35

q9 C 3q8 C 4q7 C 7q6

C 9q5 C 11q4 C 9q3

C 8q2 C 5q C 5

7 24q12 C 20q11 C 52q10 C 52q9

C 56q8 C 32q7 C 24q6

� 8q5 � 40q4 � 52q3

� 60q2 � 44q � 56

2q12 C 2q11 C 6q10 C 18q6

C 16q5 C 8q9 C 12q8

C 12q7 C 16q4 C 12q3

C 10q2 C 6q C 6

Table 1. The polynomials which arise in the computation of deg.�/;Ed ; Cd;q .

For a finite quotient X of B and v 2 X0, we choose a covering map 'WB ! X

with '.�/ D v as before, and define BR.v; r/ D '.BR.�; r// (this is independent of
the choice of ' as R isK-invariant). As in Section 3, .Xt / D '.Xt / is a SRW on X
starting from v. We define

�.t/ D R.ˆ.Xt // D

d�1X
jD1

j.d � j /xj .t/;

and recall that �.t/��.t�1/ � Dwhenˆ.Xt�1/ … @Nd�1. By the same arguments
as in PGL3 (with Proposition 4.2 replacing Proposition 3.3), we see that

.�.t/ � Ed t /=.�d
p
t /) N .0; 1/:

Proposition 4.7. There exists s D s.q; "/ such that tmix.1 � 3"/ > t0 for large
enough X , where

t0 D
1

Ed
logq n � .s C 1/

q
logq n:

Proof. Using a similar computation to the one in Proposition 3.4, we obtain

P Œ�.t0/ > r0� < P ŒZ > cs�C "

for Z � N .0; 1/ and c D c.q; d/ D E
3=2

d
=�d . Combining this with (4.4), the proof

continues as that of Proposition 3.5, with BR.v; r0/ replacing B.v; r0/.
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We turn to the upper bound, starting again with the trivial spectrum. For X D
�nB, we have

ford$ det  j  2 �g D mZ

for a uniquem j d , and we say thatX ism-partite. We obtain a map colWX0!Z=mZ,
which we again consider as a simplicial map from X to 4m�1, the .m � 1/-dimen-
sional simplex. We have

L2col.X
0/ D col�1.L2.40m�1//;

and L20.X0/, Pcol, P0 are defined as before. The walk induced from X on 4m�1
is not simple, but every edge is taken with positive probability. Furthermore, unless
d D m D 2, the walk is aperiodic, since even ifm D 2 there are loops at the vertices
of 41 when d � 3. The case d D m D 2 is that of bipartite Ramanujan graphs,
on which SRW does not mix, and for the rest of the paper we exclude this case. We
conclude as before that there exists t4 D t4."/ with kPcol.�

t
X / � �XkTV � " for

any t � t4, hence

k�tX � �XkTV � kP0.�
t
X /kTV C kPcol.�

t
X / � �XkTV

� kP0.�
t
X /kTV C ": (4.5)

We now choose

r1 D logq nC 4 dŠ logq logq n;

t1 D
1

Ed
logq nC .s C 1/

q
logq n;

and the same c and s as in Proposition 4.7 give for n large enough

P Œ�.t1/ < r1� � P ŒZ > cs�C " < 2":

Denoting �t;ExX D P ŒXtD �
ˇ̌
Ex.t/D Ex� and

S D

�
Ex 2 Nd�1

j

d�1X
iD1

xi � t1 and R.Ex/ � r1
�
;

we obtainP0.�
t1
X /

TV
D

P
�
�.t1/ < r1

�
P0
�
P ŒXt D � j �.t1/ < r1�

�
C

X
ExWr1�R.Ex/

P
�
Ex.t1/ D Ex

�
P0.�

t1;Ex
X /


TV

� 2"Cmax
Ex2S

P0.�
t1;Ex
X /


TV
: (4.6)
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Proposition 4.8. If
Pd�1
iD1 xi � t1 and R.Ex/ � r1, then for n large enough, we haveP0.�

t1;Ex
X /


TV
� ":

Proof. Denote by �Ex the uniform distribution on ˆ�1.Ex/. Using the same argument
as in Proposition 3.8, with Proposition 4.3 replacing Proposition 3.7, for any t , we
obtain

�
t;Ex
X D �Ex ı '

�1
DfTEx.1�/ ı '�1

DfTEx ˇ̌X .1v/ DBTd�1;0
1Y

jDd�1

fTj jxj ATj�1;j
ˇ̌
X
.1v/:

Again the operators eTi jX and fTij jX decompose with respect to L2 D L2col ˚ L
2
0, so

that
P0.�

t;Ex
X / DfTEx ˇ̌X .P0.1v//:

By [14, Section 5.1], the j -flow operator Tj is qd�j -regular and collision-free, and
using Theorem 2.2 and (2.2), we obtain

k
A
T
jxj
j j

L2
0
.X
j
1
/
k2 �

1

q.d�j /jxj
�
�
jxj C .d/j

�.d/j .qd�j / jxjC.d/j2

D

�
q.d�j /=2.jxj C .d/j /

�.d/j
q.d�j /jxj =2

.�/
�
.2qddt1/

.d/j

q.d�j /jxj =2
;

where .�/ assumes n is large enough. If T is a branching operator of out-degree do
and in-degree di , then k zT k2 D

p
di=do, so that

kATd�1;0k2
1Y

jDd�1

kATj�1;jk2 D 1:

Using
Pd�1
jD1.d/j < 2 � dŠ, we obtain for n large enough that

kfTExjL2
0
.X0/k2 �

d�1Y
jD1

k
A
T
jxj
j j

L2
0
.X
j
1
/
k2

�
1

qR.Ex/=2

d�1Y
jD1

.2qddt1/
.d/j �

.2qddt1/
2dŠ�1

qR.Ex/=2
:

Taking n large enough such that t1 � 2
Ed

logq n, we obtain fromR.Ex/ � r1 that for n
large enoughP0.�

t;Ex
X /


TV
D
fTEx ˇ̌X .P0.1v//TV � pn2 fTEx ˇ̌L2

0
.X0/


2

�
.4qddE�1

d
logq n/2dŠ�1

2.logq n/2dŠ
< ":
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We conclude with the proof of the main theorem:

Proof of Theorem 1.1. From (4.5), (4.6), and Proposition 4.8, we conclude that

tmix.4"/ � t1

for n D jX0j large enough. Together with Proposition 4.7, this implies the cutoff
phenomenon at time 1

Ed
logq n, with a window of size O.

p
logn/, and

Cd;q D
1

Ed
D

1

bd=2cdd=2e
CO

�1
q

�
by Proposition 4.6.
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