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Effective drilling and filling of tame hyperbolic 3-manifolds
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Abstract. We give effective bilipschitz bounds on the change in metric between thick parts of
a cusped hyperbolic 3-manifold and its long Dehn fillings. In the thin parts of the manifold,
we give effective bounds on the change in complex length of a short closed geodesic. These
results quantify the filling theorem of Brock and Bromberg, and extend previous results of the
authors from finite volume hyperbolic 3-manifolds to any tame hyperbolic 3-manifold. To prove
the main results, we assemble tools from Kleinian group theory into a template for transferring
theorems about finite-volume manifolds into theorems about infinite-volume manifolds. We also
prove and apply an infinite-volume version of the 6-Theorem.
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1. Introduction

Thurston’s celebrated hyperbolic Dehn surgery theorem says that almost all Dehn
fillings of a cusped hyperbolic 3-manifold produce closed hyperbolic 3-manifolds.
The other direction is also true: drilling a closed geodesic from a hyperbolic 3-
manifold produces another hyperbolic 3-manifold, with a cusp [2]. These original
results provide the existence of a hyperbolic metric but do not construct it. Hodgson
and Kerckhoff’s subsequent work [22–24] produces a way to continuously interpolate
between the drilled and filled manifolds via a family of manifolds with cone
singularities, in a process called cone deformation. Their work provides analytic
control over quantities such as volume.

Bromberg extended the theory of cone deformations to infinite-volume hyperbolic
3-manifolds [11]. Brock and Bromberg further proved bilipschitz estimates on the
change in geometry for such manifolds [9]. Their results are uniform, in the sense
that the change in geometry is controlled by constants independent of the manifold.
However, they are not effective, in the sense that the constants are not explicitly given.
For instance, Brock and Bromberg’s drilling theorem is as follows.

Theorem 1.1 (Drilling theorem, [9]). Fix J > 1 and " > 0, where " is smaller than
the Margulis constant "3. Then there is a number `0 D `0."; J / > 0 such that the
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following holds for every geometrically finite hyperbolic 3-manifold Y without rank-1
cusps. Suppose that † � Y is a geodesic link, whose total length is less than `0.
Then Y �† admits a hyperbolic structure Z with the same end invariants as those
of Y . Furthermore, the inclusion

�WZ ,! Y

restricts to a J -bilipschitz diffeomorphism on the complement of "-thin tubes about†.
Uniform results such as Theorem 1.1 are very useful for studying convergent

sequences of hyperbolic manifolds. Indeed, Brock and Bromberg’s application was
a special case of the density conjecture (compare Theorem 2.12). On the other hand,
ineffective results such as Theorem 1.1 are hard to apply in the study of individual
manifolds.

In recent years, there has been a major push to make geometric estimates effective.
For instance, in a previous paper, we prove an effective version of Theorem 1.1 in the
special case of finite-volume manifolds [20, Theorem 1.2]. Among other applications,
effective geometric estimates can be used to control Margulis numbers and rule out
cosmetic surgeries.

Our main result in this paper is an effective version of Theorem 1.1 for all tame
hyperbolic 3-manifolds. A 3-manifoldY is called tame if it is the interior of a compact
3-manifold with boundary. By the tameness theorem, due to Agol [3] and Calegari
and Gabai [13], a hyperbolic 3-manifold Y is tame if and only if �1.Y / is finitely
generated; see Theorem 2.3. Thus, our results apply to all hyperbolic 3-manifolds
with finitely generated fundamental group.
Theorem 1.2 (Effective drilling, tame manifolds). Let Y be a tame hyperbolic 3-
manifold. Fix any 0 < " � log 3 and any J > 1. Let † be a geodesic link in Y
whose total length ` satisfies

` <
1

4
min

�
"5

6771 cosh5.0:6"C 0:1475/
;
"5=2 log.J /
11:35

�
:

Then Y � † admits a hyperbolic structure Z with the same end invariants as Y .
Moreover, there are J -bilipschitz inclusions

'WY �" ,! Z�"=1:2;  WZ�" ,! Y �"=1:2:

We remark that existence of the hyperbolic metricZ does not need any numerical
hypotheses; see Lemma 6.1. Those hypotheses are only needed for the J -bilipschitz
conclusion.

Theorem 1.2 is stronger than Brock and Bromberg’s Theorem 1.1 in two respects
and weaker in one respect. Most notably, the hypotheses and conclusion of Theo-
rem 1.2 are completely effective. In addition, Theorem 1.2 applies to manifolds with
rank-1 cusps and geometrically infinite ends, which are excluded by the hypotheses
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of Theorem 1.1. On the other hand, Theorem 1.1 extends its bilipschitz control into
the thin parts of Y that do not correspond to components of †; this extension is not
present in Theorem 1.2. In Theorem 1.5 below, we provide some geometric control in
the thin parts of Y by estimating the change in complex length of the core geodesics.

We also prove a version of Theorem 1.2 with hypotheses on the drilled manifoldZ
rather than the filled manifold Y . That result requires the following definition. If s is
a slope on a rank-2 cusp C , the normalized length of s is

L.s/ D
len.s/p
area.@C /

;

where len.s/ denotes the length of a Euclidean geodesic representative of s on @C ,
and area.@C / is the area in the induced Euclidean metric on @C . The quantity L.s/
is scaling-invariant, hence does not depend on the choice of cusp neighborhood C .
Next, suppose we have a tuple of slopes s D .s1; : : : ; sk/ on rank-2 cuspsC1; : : : ; Ck ,
respectively. The total normalized length L D L.s/ is defined by

1

L.s/2
D

kX
jD1

1

L.sj /2
: (1.1)

In [20, Corollary 9.34], we prove effective bounds on the total normalized lengthL
that guarantee J -bilipschitz inclusions similar to those of Theorem 1.2. We can now
generalize that result to all tame hyperbolic 3-manifolds.
Theorem 1.3 (Effective filling, tame manifolds). Fix any 0 < " � log 3 and any
J > 1. Let M be a tame 3-manifold and † � M a link, such that M �† admits a
hyperbolic structure Z. Suppose that, in the hyperbolic structure Z on M �†, the
total normalized length of the meridians of † satisfies

L2 � 4 max
�
2� � 6771 cosh5.0:6"C 0:1475/

"5
C 11:7;

2� � 11:35

"5=2 log.J /
C 11:7

�
:

ThenM admits a hyperbolic structure Y with the same end invariants as those ofZ,
in which † is a geodesic link. Moreover, there are J -bilipschitz inclusions

'WY �" ,! Z�"=1:2;  WZ�" ,! Y �"=1:2:

The proofs of Theorems 1.2 and 1.3 rely on three major recent results in Kleinian
groups, recalled in Section 2. The first of these is the ending lamination theorem,
due to Minsky [32] and Brock, Canary, and Minsky [10], with an alternate proof
by Bowditch [8] that includes the result for compressible ends. The second is the
tameness theorem, due to Agol [3] and Calegari and Gabai [13]. The third and
most directly relevant result is the density theorem, which asserts that geometrically
finite hyperbolic manifolds are dense in the space of all tame hyperbolic 3-manifolds.
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The proof of the density theorem was concluded independently by Ohshika [34] and
Namazi and Souto [33], relying on many previous results including the tameness and
ending lamination theorems. These major results enable us to transfer bilipschitz
control from finite-volume manifolds to infinite-volume manifolds, by expressing the
infinite-volume manifolds as geometric limits of finite-volume ones. See Section 1.1
and specifically Theorem 1.6 for a template describing this transfer process.

Because we use finite-volume manifolds to approximate infinite-volume ones,
the effective hypotheses on length in Theorems 1.2 and 1.3 are directly derived
from the corresponding hypotheses in the finite-volume setting. See Theorems 6.4
and 7.4, and compare Remark 6.6. In turn, the constants appearing in Theorems 6.4
and 7.4 were obtained by bounding a number of analytic quantities appearing in a
cone deformation. The given hypotheses on length ensure the existence of a cone
deformation with a large embedded tube about the singular locus †, and provide
control on the infinitesimal change in geometry. See [20, Section 1.3] for a detailed
and relatively non-technical summary of the argument. We have no reason to believe
the constants in our theorems are sharp. However, they are uniform and effective, so
we expect the results to be useful.

If the manifolds Y and Z in Theorems 1.2 and 1.3 are geometrically finite,
those theorems can be proved using far less machinery. We only need Brooks’
work on circle packings [12], classical results from Ahlfors–Bers theory, and our
Theorems 6.4 and 7.4 for finite-volume manifolds. See Remarks 6.3 and 7.3 for
details. The geometrically finite case of Theorem 1.2, which is an effective version
of Brock and Bromberg’s Theorem 1.1, can be used to prove a case of the density
theorem; this was its main application in [9]. In the converse direction, the density
theorem allows us to extend Theorem 1.1 from geometrically finite manifolds to any
tame 3-manifold without rank-1 cusps; see Theorem 6.5.

Our proof of Theorem 1.3 also requires a version of the 6-Theorem for tame
manifolds, which is likely of some independent interest, although probably not
surprising to experts. The original 6-Theorem, due to Agol [1] and Lackenby [28],
states that Dehn filling a finite volume 3-manifold along a slope of length greater than 6
yields a manifold that admits a hyperbolic structure. Their result can be generalized
as follows.

Theorem 1.4 (6-Theorem for tame manifolds). Let Z be a tame hyperbolic 3-mani-
fold, with parabolic locus P [ .T1[ � � � [Tk/, where T1; : : : ; Tk are a subcollection
of the torus ends of Z. Let H1 [ � � � [Hk be pairwise disjoint horocusps, with Hi
a neighborhood of Ti . Let s D .s1; : : : ; sk/ be a tuple of slopes, such that the
length of a geodesic representative of each si on @Hi is strictly greater than 6. Then
the manifold Z.s/ D Z.s1; : : : ; sk/ obtained from Z by Dehn filling along slopes
s1; : : : ; sk admits a hyperbolic structure Y with end invariants identical to those ofZ.

The proof of Theorem 1.4 for infinite-volume manifolds closely parallels part of
the proofs by Agol and Lackenby for finite-volume manifolds [1, 28]. In both arg-
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uments, one has to show that the filled manifold Z.s1; : : : ; sk/ does not contain
any embedded surfaces that would obstruct hyperbolicity. The proof of the infinite-
volume case also uses the above-mentioned major recent results in Kleinian groups,
particularly the density theorem. We give the argument in Section 3.

Although we do not have full control on the change in geometry in the thin
part of the manifold Y , we do have results that bound the change in length of the
short geodesics that lie in at the cores of the thin part. The following result is an
effective version of a theorem of Bromberg [11, Theorem 1.4] and an extension
of [20, Corollary 7.20] to the infinite-volume case.
Theorem 1.5. Let Y be a tame hyperbolic 3-manifold. Let† be a geodesic link in Y ,
and 
 a closed geodesic disjoint from † with complex length

lenY .
/C i�Y .
/;

where lenY .�/ denotes the length in the complete metric on Y .
Suppose that

max.4 lenY .†/; lenY .
// < 0:0735:

Then Y �† admits a hyperbolic structure Z with the same end invariants as those
of Y . Furthermore, 
 is isotopic to a geodesic inZ, whose complex length lenZ.
/C
i�Z.
/ satisfies

1:9793�1 �
lenZ.
/
lenY .
/

� 1:9793 and j�Z.
/ � �Y .
/j � 0:05417:

We will prove Theorem 1.5 in Section 8 as a corollary of Theorem 8.5, which
provides explicit bounds on the change in complex length of 
 between Y and Z, as
a function of the real lengths lenY .†/ and lenY .
/. If we hold lenY .
/ fixed, we find
that the change in complex length of 
 tends to 0 as lenY .†/! 0. Thus, when the
geodesic link † is very short, the geometry of 
 barely changes at all under drilling.

In an analogous fashion, we prove a result that bounds the change in complex
length of a short geodesic 
 under filling, with hypotheses that use the geometry
of the drilled manifold Z rather than the filled manifold Y . See Theorem 8.7 for
a general result that provides a bound as a function of lenZ.
/ and the normalized
length L.s/ in Z, with the change in complex length tending to 0 as L.s/!1. See
also Corollary 8.9 for a simple statement akin to Theorem 1.5.

1.1. Bootstrapping from finite-volume manifolds to tame manifolds. The proofs
of Theorems 1.2 and 1.3 both start with the analogous result for finite-volume
manifolds in [20]. Using a strong version of density theorem due to Namazi and
Souto [33] (compare Theorem 2.12), we approximate any tame hyperbolic 3-manifold
by a sequence of geometrically finite hyperbolic 3-manifolds. These geometrically
finite manifolds, in turn, can be perturbed slightly to obtain manifolds that admit
circle packings on their ends, by work of Brooks [12]. Finally, manifolds that admit
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circle packings on their ends have convex cores embedding isometrically in finite
volume manifolds, by a process of “scooping” and “doubling” (see Definition 2.16).
At this point, the results for finite-volume manifolds can be applied. By taking better
and better finite-volume approximates, we obtain the desired results for any tame
manifold.

See Figure 1 for a diagram summarizing the above process. In that figure,
DD.V ın / andDD.W ın / are finite-volume hyperbolic manifolds obtained by the doub-
ling process, to which we can apply the results of [20]. The construction depicted in
Figure 1 can also be summarized as follows:
Theorem 1.6. Let Y be a tame, infinite-volume hyperbolic 3-manifold. Let † � Y
be a geodesic link, such that each component � � † is shorter than log 3. Then
Y � † admits a hyperbolic metric Z with the same end invariants as those of Y .
Furthermore, there is a sequence of finite-volume approximating manifoldsDD.V ın /
and DD.W ın / with the following properties:
(1) The manifold DD.V ın / contains a geodesic link DD.†n/, consisting of four

isometric copies of a link †n, such that

DD.W ın / D DD.V
ı
n / �DD.†n/:

(2) For any choice of basepoints y 2 Y and z 2 Z, there are basepoints in the
approximating manifolds such that

.DD.V ın /; vn/! .Y; y/ and .DD.W ın /; wn/! .Z; z/

are geometric limits.
(3) In the geometric limit .DD.V ın /; vn/! .Y; y/, we have †n ! †.

See Theorem 6.2 for a more detailed statement, of which Theorem 1.6 is a coroll-
ary. See also Figure 2 and Theorems 7.1 and 7.2 for a parallel statement about filling
rather than drilling.

Our hope is that Theorem 1.6, and the more detailed Theorems 6.2 and 7.2, can
serve as user-friendly templates for transferring results about finite-volume manifolds
to the infinite-volume setting. While the proofs of those results rely on the full
machinery of Kleinian groups that will be described in Section 2, knowledge of this
machinery is not needed to apply those theorems. We hope that this feature will make
these templates useful to other researchers.

1.2. Organization. The paper is organized as follows. In Section 2, we review the
tools from Kleinian groups that we need in this paper, particularly results on tame
manifolds, their hyperbolic structures, and their limits. In Section 3, we extend the
6-Theorem to tame hyperbolic manifolds. Sections 4 and 5 contain technical results
that make the proofs of the main theorems work smoothly. In Section 4, we show
that under appropriate hypotheses, geodesics in approximating manifolds converge
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to geodesics in the limiting manifold. In Section 5, we prove that if there are two
sequences of manifolds converging geometrically, and bilipschitz maps between the
approximating manifolds, then one has bilipschitz maps between their limits as well.
Then, we combine these technical results with the finite-volume bilipschitz theorems
from [20] to establish the effective drilling theorem in Section 6 and the effective
filling theorem in Section 7. Finally, the results on short geodesics are proved in
Section 8.

Acknowledgements. We thank Dick Canary for pointing us in the correct direction
for results on strong limits, particularly Theorem 2.10. We thank Craig Hodgson and
Steve Kerckhoff for helping us sort out some analytic details about maps between
cone manifolds. We thank Juan Souto for insight into circle packings.

During the course of this project, the first author was partially supported by NSF
grant DMS–1907708. The second author was partially supported by a grant from the
Australian Research Council.

2. Tools from Kleinian groups

This section reviews a number of definitions and results from Kleinian groups that
will be needed for our applications. As mentioned above, the proofs of our main
theorems use the full trifecta of major results in Kleinian groups from the early 2000s:
the tameness theorem, the ending lamination theorem, and the density theorem. We
also review the (older) work of Brooks on circle packings, which will similarly prove
crucial to our constructions.

Much of our exposition and notation is modeled on that of Namazi and Souto [33].
Another excellent source that surveys these recent results is Canary [15].

The tameness, ending lamination, and density theorems can be seen as results
that relate the geometry of a hyperbolic 3-manifold to its topology. While each
theorem has a succinct statement, we find it most useful to frame each result in the
context, notation, and terminology that will be used for the applications. Setting up
this notation and terminology requires a number of definitions. We have endeavored
to keep notation to a minimum, and to use consistent letters for parallel notions
throughout the paper.

2.1. Topology and geometry. Throughout the paper, the symbolM denotes a com-
pact 3-manifold with non-empty boundary, which is oriented, irreducible, and ator-
oidal.

Definition 2.1 (Pared manifolds). LetM be a 3-manifold as above: compact, oriented,
irreducible, atoroidal, with @M ¤ ;. We further assume that M is neither a 3-ball
nor a solid torus. LetP � @M be a compact subsurface consisting of incompressible
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tori and annuli. The pair .M;P / is called a pared manifold if the following additional
conditions hold:

� Every �1-injective map of a torus T 2 ! M is homotopic to a map whose image
is contained in P .

� Every �1-injective map of an annulus .S1 � I; S1 � @I /! .M;P / is homotopic
as a map of pairs to a map whose image is contained in P .

We call P the parabolic locus of .M;P /. The non-parabolic portion of @M is
denoted @0M D @M � P .

Throughout the paper, variants of the letter M (M , M 0, etc) always denote a
3-manifold defined only up to topological type. Similarly, variants of the letter P
denote the parabolic locus in a pared manifold. We will use variants of the letter N
(N 0, Nn, etc.) to denote a generic a 3-manifold endowed with a hyperbolic metric.
In the context of drilling and filling, we will use variants of V;W; Y;Z to denote
3-manifolds with hyperbolic metrics.

A Kleinian group � is a discrete group of isometries of H3. For this paper, all
Kleinian groups are presumed to be torsion-free and orientation-preserving, ensuring
that the quotientN D H3=� is an oriented hyperbolic manifold. All Kleinian groups
are also assumed non-elementary: this means that� has no global fixed points on @H3

and implies that the topological type of N is neither a solid torus nor the product
of a torus and an interval. If N is homeomorphic to the interior of M , we say that
the Kleinian group � , abstractly isomorphic to �1.M/, endowsM with a hyperbolic
structure.

A horocusp is the quotientC D H=G, whereH � H3 is an open horoball andG
is a discrete group of parabolic isometries of H , isomorphic to Z or Z2. In the first
case, C is homeomorphic to A � .0;1/ where A is a non-compact annulus, and is
called rank 1. In the second case, C is homeomorphic to T � .0;1/ where T is a
torus, and is called rank 2. A horocusp in N is an isometrically embedded (rank 1
or 2) horocusp in a hyperbolic 3-manifoldN . A tube inN is a regular neighborhood
of a simple closed geodesic, of fixed radius.

Given a constant " > 0, the thin part of N is set of points in N with injectivity
radius less than "=2, denotedN<". A Margulis number for a hyperbolic 3-manifoldN
is any number " > 0 such that N<" is a disjoint union of tubes and horocusps. The
optimal Margulis number of N , denoted �.N/, is the supremum of its Margulis
numbers. The Margulis constant "3 is the infimum of optimal Margulis numbers
over all hyperbolic 3-manifolds. While it is known that "3 > 0, the precise value is
currently unknown. Since the Weeks manifoldW has �.W / � 0:776, it follows that
"3 � 0:776. Meyerhoff [30] showed that "3 � 0:104.

In the setting of infinite-volume manifolds, we have a stronger estimate. The
following result is due to Culler and Shalen [18, Theorem 9.1], combined with the
tameness and density theorems. See Shalen [36, Proposition 3.12] for the derivation.
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Theorem 2.2 (Margulis numbers). Let N be a hyperbolic 3-manifold of infinite
volume. Then the optimal Margulis number of N satisfies �.N/ � log 3.

Several results in the paper assume a bound of the form " � log 3. This can be
viewed as ensuring " is a Margulis number for both N and the manifolds that will be
used to approximate N .

2.2. Tameness and compact cores. LetN be a hyperbolic 3-manifold, and suppose
that " is a Margulis number forN . Following Namazi and Souto, we letN " denote the
complement in N of the cusp components of N<". Then @N " is a disjoint union of
tori and open annuli that satisfies the incompressibility requirements for the parabolic
locus of a pared manifold. However, .N "; @N "/ is not a pared manifold because N "

is typically not compact. The powerful tool that gives us a pared manifold from this
data is the tameness theorem, proved independently by Agol [3] and by Calegari and
Gabai [13].

Theorem 2.3 (Tameness). Suppose N is a hyperbolic 3-manifold with finitely
generated fundamental group. ThenN is homeomorphic to the interior of a compact
3-manifold M . That is, N is tame.

As a corollary of Theorem 2.3, we obtain:

Corollary 2.4 (Standard compact cores). Suppose N is a hyperbolic 3-manifold
with finitely generated fundamental group and let 0 < " � �.N/. Then there is a
compact 3-manifold M whose boundary @M contains a subsurface P , consisting
of all toroidal components of @M and a possibly empty collection of annuli, such
that N " is homeomorphic to M � @0M .

The pair .M;P / produced by Corollary 2.4 is a pared manifold, unique up to
pared homeomorphism, and independent of the choice of ". We say that .M;P / is
the pared manifold associated withN . Note thatM � @0M is homeomorphic toN ",
but is not viewed as a submanifold of N ". A consequence of the tameness theorem
is that there is a compact submanifold .M 0; P 0/ � .N "; @N "/ that is homeomorphic
to .M;P /. We call such a submanifold a standard compact core of .N "; @N "/.

The components F1; : : : ; Fs of @0M D @M � P are called the free sides of
.M;P /. Then the submanifold N " �M 0 consists of s different components called
geometric ends, each homeomorphic to Fi � .0;1/ for some i . We sometimes refer
to Fi as an end of .M;P /. In the main case of interest, whereN has infinite volume,
@M must have some non-torus boundary components, hence .M;P /must contain at
least one free side.

2.3. End invariants and the ending lamination theorem. Let N D H3=� be a
tame hyperbolic 3-manifold. The limit set of� , denotedƒ� , is the set of accumulation
points of an orbit f�xg in @1H3 Š S2. The convex core CC.N/ D CH.ƒ�/=� is
the quotient by � of the convex hull of the limit set.
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The domain of discontinuity of � , denoted �� , is @1H3 � ƒ� . The group �
acts properly discontinuously on H3 [�� . The quotient of the action of � on ��
gives a (possibly disconnected) surface with a conformal structure. This surface is
the conformal boundary of N .

Following Corollary 2.4, let .M;P / be a pared manifold associated to N , and let
E Š F � .0;1/ be a geometric end ofN " associated to a free side F � @0M . Then
the geometric structure on E endows E and F with an end invariant, as follows.

A geometric end E � N " is called geometrically finite if it has a neighborhood
whose intersection with the convex core CC.N/ is compact. The end invariant of
a geometrically finite end is the point in the Teichmüller space T .F / determined by
the component of the conformal boundary corresponding to F . If every end of N is
geometrically finite, we say N is geometrically finite.

If the end E is not geometrically finite, then it is said to be degenerate. In this
case, the end comes equipped with a filling geodesic lamination � on the free side F .
This lamination, called the ending lamination of E , is the end invariant of E .

The following theorem is due to Minsky [32] and Brock–Canary–Minsky [10].
See also Bowditch [8] for an alternate proof that covers the case of compressible
ends.

Theorem 2.5 (Ending lamination). Let N , N 0 be tame hyperbolic 3-manifolds. Let
.M;P / and .M 0; P 0/ be standard compact cores ofN andN 0, respectively. Suppose
there is a homeomorphism �W .M;P /! .M 0; P 0/ satisfying the following:
� If F � @M � P is a geometrically finite end of N , then �.F / is a geometrically

finite end ofN 0, and the induced map between conformal boundaries is homotopic
to a bi-holomorphic map.

� If F � @M � P is a degenerate end with ending lamination �, then �.F / is a
degenerate end of N 0 with ending lamination �.�/.

Then there is an isometry ˆWN ! N 0, homotopic to �.

2.4. Hyperbolization theorems. We now review several results that guarantee that
the topological pared manifold .M;P / admits a hyperbolic structure with specified
end invariants.

A hyperbolic structure on a 3-manifold M defines a representation

�W�1.M/! PSL.2;C/;

and conjugate representations define isometric hyperbolic 3-manifolds. We
let AH.M;P / denote the set of conjugacy classes of discrete and faithful
representations �W�1.M/! PSL.2;C/ such that those elements whose conjugacy
classes are represented by loops on P are mapped to parabolic elements. The
spaceAH.M;P / is endowed with the topology of algebraic convergence: a sequence
of representations �n converges algebraically to � if for all 
 2 �1.M/, the sequence
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f�n.
/g converges to �.
/ in PSL.2;C/. Similarly, a sequence fŒ�n�g converges
algebraically to Œ�� 2 AH.M/ if there are representatives �n 2 Œ�n� and � 2 Œ�� such
that �n ! �. In a slight abuse of notation, we will write “� 2 AH.M;P /” as a
shorthand for the correct statement � 2 Œ�� 2 AH.M;P /.

A representation � 2 AH.M;P / is called minimally parabolic if it satisfies the
following property: �.
/ 2 PSL.2;C/ is parabolic if and only if 
 is conjugate into
the fundamental group of some component of P . The following result, due to
Thurston [37], establishes the existence of at least one such representation.
Theorem 2.6 (Hyperbolization). Let .M;P / be a pared manifold. Then there is a
geometrically finite hyperbolic 3-manifoldN such that the pared manifold associated
to N is .M;P /. Equivalently, there is a geometrically finite, minimally parabolic
representation � 2 AH.M;P /.

The next classical result on hyperbolicity is a parametrization of the set of
all geometrically finite, minimally parabolic representations in AH.M;P /. Two
representations � 2 AH.M;P / and �0 2 AH.M;P / are called quasi-conformally
conjugated if there is a quasi-conformal homeomorphism

f W @1H3
! @1H3

with �.
/ ı f D f ı �0.
/ for all 
 2 �1.M/. Representations that are quasi-
conformally conjugated to � form an open subset QH.�/ of AH.M;P /. Moreover,
if � is minimally parabolic and geometrically finite, then so is �0, and the conformal
boundary of N 0 D H3=�0.�1.M// gives a point in Teichmüller space.

The statement below combines the work of Ahlfors, Bers, Kra, Marden, Maskit,
Mostow, Prasad, Sullivan, and Thurston. Our formulation is drawn from Namazi
and Souto [33, Theorem 4.3]. See also Canary [15, Theorem 11.1] and Canary and
McCullough [17, Chapter 7].
Theorem 2.7 (Ahlfors–Bers uniformization). Let .M;P / be a pared manifold. Let
� 2 AH.M;P / be a minimally parabolic, geometrically finite representation, which
exists by Theorem 2.6. Then there is a covering map �AB from the Teichmüller space
T .@0M/ toQH.�/ � AH.M;P /with covering group ModC0 .M;P /. Furthermore,
for allX 2 T .@0M/, the hyperbolic manifold obtained from �AB.X/ has associated
pared manifold .M;P / and conformal boundary bi-holomorphic to X .

If @0M D ;, then Theorem 2.7 restates the Mostow–Prasad rigidity theorem that
QH.�/ contains a single point. In the main case of interest, if F1; : : : ; Fs are the free
sides of .M;P /, then a tuple

X D .X1; : : : ; Xs/ 2 T .@0M/ D T .F1/ � � � � � T .Fs/

in Techmüller space determines a conjugacy class �AB.X/ 2 AH.M;P /. Any
representative of this conjugacy class is called the Ahlfors–Bers representation
corresponding to X . The corresponding hyperbolic manifold has the chosen points
.X1; : : : ; Xs/ as the full collection of end invariants.
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The analogue of Theorem 2.7 in the presence of degenerate ends is Theorem 2.9
below. Stating this result is harder, as it requires definitions involving projectively
measured laminations. The following construction follows Thurston [38, pp. 421–
422].

LetF be a connected, oriented surface of finite type (for instance, the free side of a
pared manifold). Let C D C.F / be the set of essential non-peripheral simple closed
curves in F , considered up to isotopy. Given ˛; ˇ 2 C , we define the geometric
intersection number �.˛; ˇ/ to be the minimal intersection number between isotopy
representatives of ˛ and ˇ. For any ˛ we use �˛WC ! R to denote the resulting
function ˇ 7! �.˛; ˇ/.

Recall that RC is a topological vector space over R, equipped with the product
topology. In a minor abuse of notation, we write �WC ! RC for the resulting
injection. We define MC.F / D R�0 � �.C/ to be the subset of measured curves; that
is, functions of the form

r�˛; where r 2 R�0, ˛ 2 C :

We define ML.F / to be the space of measured laminations; this is the closure of
MC.F / inside of RC . We define P ML.F / to be the image of ML.F / in the
projectivization PRC . We end this review by noting the important fact, recorded by
Bonahon [6], that � extends to give a homogeneous, continuous function from

ML.F / �ML.F /! R:

Now, let F be a free side of a pared manifold .M;P /. A meridian on F is a
simple closed curve ˛ 2 C.F / that bounds a disk in M . The Masur domain of F
consists of all � 2 P ML.F / such that �.�; �/ ¤ 0 for every measured lamination
� 2ML.F / that arises as a limit of measured meridians. See [33, Section 6.1].

Definition 2.8 (Filling end invariants). Let .M;P / be a pared manifold with free
sides F1; : : : ; Fs . Let 0 � r � s. Consider a collection of end invariants

.X1; : : : ; Xr ; �rC1; : : : ; �s/;

whereXi 2 T .Fi / for i � r and �i is an ending lamination on Fi for i � rC1. This
collection of end invariants is called filling if it satisfies the following conditions:

(�) IfM is an interval bundle over a compact surface S andN has no geometrically
finite ends, then the projection of the ending laminations to S has transverse
self-intersection.

(��) If a compressible component Fi � @0M corresponds to a degenerate end,
then the end invariant �i , equipped with some transverse measure, is a Masur
domain lamination. Equivalently, �i is not contained in the Hausdorff limit of
any sequence of meridians.
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Canary [14] proved that conditions (�) and (��) are necessary for the end
invariants to be realized by a hyperbolic structure on .M;P /. Namazi and Souto
proved that these conditions are also sufficient for being realized by a hyperbolic
structure [33, Theorem 1.3]:
Theorem 2.9 (Realization). Let .M;P / be a pared 3-manifold, with a collection of
end invariants on the free sides of .M;P /. Then there exists a minimally parabolic
representation � 2 AH.M;P / yielding a hyperbolic manifoldN� D H3=�.�1.M//

with the given end invariants if and only if the collection of end invariants is filling.

2.5. Geometric and strong limits. In addition to the algebraic topology on the
space of hyperbolic 3-manifolds, we need to use another, finer topology. Let �n
be a sequence of Kleinian groups. We say that �n converges geometrically to �
if the groups converge in the Chabauty topology on closed subsets of PSL.2;C/.
Convergence in this topology can be characterized as follows:
� every 
 2 � is the limit of some sequence f
ng with 
n 2 �n;
� if 
n ! 
 is a convergent sequence with 
n 2 �n, then 
 2 � .
The Chabauty topology on Kleinian groups is metrizable [16, Proposition 3.1.2].
We use the notation dChaub to denote a conjugation-invariant metric inducing this
topology.

We endow H3 with an origin (denoted 0) and an orthonormal frame at 0. Then
each quotient manifold Nn D H3=�n is endowed with a baseframe !n, namely the
quotient of the fixed orthonormal frame at 0 2 H3. Then �n and the pair .Nn; !n/
determine one another. Changing �n by conjugation in PSL.2;C/ keeps the quotient
manifold the same up to isometry, but changes the baseframe. We emphasize that
the Chabauty topology is a topology on Kleinian groups (not conjugacy classes), or
equivalently a topology on the set of hyperbolic manifolds endowed with baseframes.

Geometric convergence has the following intrinsic characterization. Let .Nn; !n/
be a sequence of framed hyperbolic 3-manifolds. Let .N; !/ be another framed
hyperbolic 3-manifold, where! is a baseframe at x 2 N . ForR > 0, letBR.x/ � N
be the metric R-ball in N centered at x, meaning the set of points in N of distance
less than R from x. Then .Nn; !n/ converges geometrically to .N; !/ if and only if,
for every R, there are embeddings

fn;RW .BR.x/; !/ ,! .Nn; !n/ (2.1)

for all n sufficiently large, which converge to isometries in the C1 topology as
n!1. See [16, Theorem 3.2.9] for the equivalence between geometric convergence
.Nn; !n/! .N; !/ and convergence �n ! � in the Chabauty topology.

In practice, it is often sufficient to keep track of the points where frames are
based. If .Nn; xn/ is a sequence of hyperbolic 3-manifolds endowed with basepoints,
and .N; x/ is another hyperbolic 3-manifold with a basepoint x, we say that

.Nn; xn/! .N; x/
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if, for every R, there are embeddings

gn;RW .BR.x/; x/ ,! .Nn; xn/ (2.2)

for all n sufficiently large, which converge to isometries in the C1 topology as
n!1. Now, suppose we have chosen orthonormal frames !n at xn and ! at x. If
there is a geometric limit .Nn; !n/! .N; !/, then of course .Nn; xn/! .N; x/ as
well. Conversely, since the set of orthonormal frames at a given point is compact, a
pointed limit .Nn; xn/! .N; x/ implies that there is a subsequence ni and a frame �
at x such that .Nni

; !ni
/! .N; �/. See [16, Lemma 3.2.8].

By a mild abuse of notation, we will say that .Nn; xn/ converges geometrically
to .N; x/, meaning that there exists a choice of frames at xn and x such that
.Nn; !n/ ! .N; !/. In most of our limit arguments, basepoints will be important
while frames will remain implicit.

Now, consider a sequence of discrete, faithful representations

�nW�1.M/! PSL.2;C/

with image groups �n, and a representation � with image group � . We say that �n
converges strongly to � if �n ! � algebraically and �n ! � in the Chabauty
topology.

The question of whether algebraic and geometric limits agree is subtle, and has
received extensive attention in the literature. See Marden [29, Chapter 4] for a survey.
For our purposes, we will need only the following foundational statement.

Theorem 2.10 (Same topology onQH.�/). Let .M;P / be a pared 3-manifold, and
let � 2 AH.M;P / be a geometrically finite, minimally parabolic representation.
Then the algebraic and geometric topologies on the open set QH.�/ � AH.M;P /
agree. More precisely:
� If �n is a sequence inQH.�/ such that �n!� algebraically, then �n!� strongly.
� If �n is a sequence in QH.�/ such that �n.�1.M//! �.�1.M// geometrically,

then �n!� strongly.

The first bullet is due to Anderson and Canary [4, Theorem 3.1]. The second
bullet is due to Jørgensen and Marden [27, Theorem 4.9]. See also Marden [29,
Theorems 4.6.1 and 4.6.2].

2.6. Strong density and approximation theorems. The density theorem, whose
proof was concluded independently by Ohshika [34] and Namazi and Souto [33],
states that for every � 2 AH.M;P /, there exists a geometrically finite sequence
�n 2 AH.M;P / converging algebraically to �. The results we need, stated below
as Theorems 2.12 and 2.13, are stronger. Stating these results requires the notion of
a filling sequence.
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Definition 2.11 (Filling sequence in T .@M � P /). Let .M;P / be a pared manifold
with free sides F1; : : : ; Fs . As in Definition 2.8, let .X1; : : : ; Xr ; �rC1; : : : ; �s/ be a
filling tuple of end invariants, where X1; : : : ; Xr are points in Teichmüller space and
�rC1; : : : ; �s are ending laminations. Suppose a sequence

.Xn1 ; : : : ; X
n
s / 2 T .F1/ � � � � � T .Fs/ D T .@0M/

satisfies:
(1) for all n and all i � r , we have Xni D Xi , and
(2) for all i � r C 1, there is a sequence of simple closed curves 
ni 2 C.Fi / which

converge to �i in P ML.Fi /, such that the ratio of lengths `Xn
i
.
ni /=`X1

i
.
ni /

approaches zero.
Then the sequence .Xn1 ; : : : ; Xns / is said to be filling.

Let � 2 AH.M;P / be a discrete, faithful representation corresponding to
.X1; : : : ; Xr ; �rC1; : : : ; �s/, with quotient manifold N� D H3=�.�1M/. Then,
for i > r , the curves 
ni appearing in item (2) define closed geodesics in the end
of N� associated with Fi . These curves are said to exit the end associated with Fi .
This means that all but finitely many lie in the geometric end homeomorphic to
Fi � .0;1/, and for any compact set K � N�, only finitely many 
ni intersect K.

We can now state a strong form of the density theorem [33, Corollary 12.3].
Theorem 2.12 (Strong density theorem). Let� be a finitely generated Kleinian group.
Let .M;P / be the pared manifold associated with H3=� , and let �W� ,! PSL.2;C/
be the inclusion map. Then there is a sequence of geometrically finite, minimally
parabolic representations �n 2 AH.M;P / converging strongly to �. Furthermore,
the sequence of end invariants corresponding to �n is filling.

Note that the “furthermore” sentence in our statement of Theorem 2.12 is not
stated directly in [33, Corollary 12.3]. However, this assertion is central to the
proof of [33, Corollary 12.3]: the approximating manifolds appearing in Namazi and
Souto’s construction are taken to have ends forming a filling sequence. We also note
that the proof of Theorem 2.12 uses both the tameness and the ending lamination
theorems.

The following related statement is [33, Corollary 12.5].
Theorem 2.13 (Approximation theorem). Let .M;P / be a pared 3-manifold with
free sides F1; : : : ; Fs . Suppose .Xn1 ; : : : ; Xns / 2 T .@M � P / is a filling sequence
converging to the filling end invariants .X1; : : : ; Xr ; �rC1; : : : ; �s/. Let

�n 2 �AB.X
n
1 ; : : : ; X

n
s / 2 AH.M;P /

be the Ahlfors–Bers representation, giving an associated geometrically finite
hyperbolic 3-manifoldNn D H3=�n.�1.M//. Then, up to passing to a subsequence,
�n converges strongly to a discrete and faithful representation �. If .M 0; P 0/ is the
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pared manifold associated with the hyperbolic manifold N� D H3=�.�1.M//, then
there is a homeomorphism �W .M;P /! .M 0; P 0/ in the homotopy class determined
by � which maps the filling tuple .X1; : : : ; Xr ; �rC1; : : : ; �s/ to the end invariants
of N�.

2.7. Circle packings. LetR be a Riemann surface of hyperbolic type, meaning that
every component Ri � R has �.Ri / < 0. Let � be an open subset of the Riemann
sphere S2 that uniformizesR; that is,R is a quotient of� by Möbius transformations.
A configuration of circles onR (relative to�) is a collection of simple closed curves
on R that bound disks, such that the interiors of the disks are disjoint, and the lifts of
the curves to� are round circles on S2. A configuration of circles is a circle packing
if the interstitial regions, complementary to the interiors of the disks, consist only of
curvilinear triangles.

The following theorem is from Beardon and Stephenson [5, Theorem 6].

Theorem 2.14 (Uniformization theorem for circle packings). Let R be a Riemann
surface that admits a circle packing. Then the circle packing uniquely determines a
conformal structure on R.

Now, let� be a finitely generated Kleinian group, withƒ.�/ its limit set and�.�/
its domain of discontinuity. Then �.�/=� is a (possibly disconnected) Riemann
surface of hyperbolic type.

The following theorem follows from work of Brooks [12].

Theorem 2.15 (Circle packings approximate). Let N D H3=� be a geometrically
finite hyperbolic 3-manifold with associated pared manifold .M;P /, and let
�W�1.M/ ! � be the associated representation. Then, for every ı > 0, there is a
geometrically finite representation �ı 2 QH.�/, representing an eı -quasiconformal
deformation of �, such that the conformal boundary�.�ı/=�ı of the image group �ı
admits a circle packing.

Proof sketch. The ideas behind this statement are all contained in Brooks’ proof
of [12, Theorem 2]. If a component of R D �.�/=� is a closed surface S , then
we may uniformize S by a component of �.�/. Pack circles into this component S ,
obtaining interstices that are triangles and quads. Brooks shows that for every
ı > 0, there is an eı -quasiconformal deformation �ı that eliminates the quads of a
sufficiently fine packing, so the deformed conformal structure on S admits a circle
packing.

When a component S � R has cusps, the packing procedure requires some
additional care. The argument is given, for example, in Hoffman and Purcell [25,
Lemma 2.3]. Since � is geometrically finite, there is a fundamental domain F

for � whose sides consist of finitely many geodesic hyperplanes. Where there is a
rank-1 cusp, there will be two circular arcsC1; C2 bounding a polygonal region of the
boundary of F such that C1 and C2 meet tangentially. Begin by adding two circles
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meeting orthogonally at that point of tangency, and ensure those circles are small
enough that they meet no other sides of F . Then fill in the rest of �.�/ by circles,
and use Brooks to perform a quasi-conformal deformation as above to obtain a circle
packing.

We close this section with a definition that will be useful for our constructions.
Definition 2.16 (Scooped manifold, double-double of a circle packed manifold). Let
N D H3=� be a tame, geometrically finite hyperbolic manifold with associated pared
manifold .M;P /, and suppose the conformal boundary associated with each free side
of @M � P admits a circle packing. Let zC denote the collection of inverse images
in @1H3 of the circles in the packing. Scoop out the half spaces in H3 bounded
by Euclidean hemispheres with boundary circles zC , and color their boundaries blue.
The triangular interstices between circles of zC uniquely determine additional circles
dual to the blue ones. Scoop out the half spaces in H3 bounded by these dual circles
as well, and color their boundaries red. The resulting space, denoted zN ı, is H3 with
the interiors of red and blue hemispheres removed.

The group � stabilizes zN ı. The quotient space N ı D zN ı=� is a manifold with
corners whose interior is homeomorphic to N , and whose boundary consists of
geodesic blue ideal polygons and geodesic red ideal triangles. We callN ı the scooped
manifold associated with N .

Finally, starting with the scooped manifold N ı associated with N , double first
across the blue polygons, then double again across the red triangles. The result
is a finite volume hyperbolic manifold with rank-2 cusps, which we will call the
double-double of N , and denote by DD.N ı/.

3. A 6-Theorem for tame manifolds

The 6-Theorem for finite volume 3-manifolds, proved by Agol [1] and Lackenby [28],
states that Dehn filling along a slope of length greater than 6 yields a manifold that
admits a hyperbolic structure. In this section, we use many of the ideas behind their
proof to extend their result to the infinite volume setting.
Theorem 3.1 (6-Theorem for pared manifolds). LetZ be a tame hyperbolic 3-mani-
fold, with associated pared manifold .M;P [ .T1[ � � �[Tk//, where T1; : : : ; Tk are
torus boundary components of M . Assume that

@M � .T1 [ � � � [ Tk/ ¤ ;:

LetH1[� � �[Hk be pairwise disjoint horocusps, withHi a neighborhood of Ti . Let
s D .s1; : : : ; sk/ be a tuple of slopes, such that the length of a geodesic representative
of each si on @Hi is strictly greater than 6 for each i .

Let M.s/ D M.s1; : : : ; sk/ denote the 3-manifold obtained by Dehn filling M
along the slopes si on Ti . Then .M.s/; P / is a pared manifold, such that the free
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sides of @0M.s/ are identical to those of @0M . Furthermore, .M.s/; P / admits a
hyperbolic structure Y D Z.s/ with end invariants identical to those of Z.

Observe that Theorem 1.4 follows immediately from Theorem 3.1 and prior work.
If @M.s/ D ;, then Agol and Lackenby’s 6-Theorem [1, 28], combined with Perel-
man’s geometrization theorem, says thatM.s/ DM.s1; : : : ; sk/ admits a hyperbolic
structure (with empty end invariants). Otherwise, if @M.s/¤;, Theorem 3.1 gives
the desired conclusion.

There is one case where we re-prove a portion of the original 6-Theorem, by
following the same line of argument: the case where vol.Z/ < 1 and P ¤ ;.
In this case, Lemma 3.3 combined with Theorem 2.6 shows that M.s/ admits a
hyperbolic structure.

Before beginning the proof of Theorem 3.1, we record the following slight
generalization Böröczky’s theorem on cusp density [7].
Lemma 3.2. Let S be a hyperbolic surface with finite area, with a positive number
of cusps, and with (possibly empty) boundary consisting of geodesics. Let H � S
be an embedded neighborhood of the cusps, such H \ @S D ; and @H is a disjoint
union of horocycles. Then

area.S/ �
�

3
area.H/:

Proof. If @S D ;, this result is due to Böröczky [7, Theorem 4].
If @S ¤ ;, let DS be the complete hyperbolic surface obtained by doubling S

along its geodesic boundary. SinceH\@S D ;, the double ofH is an embedded cusp
neighborhood DH � DS , with @.DH/ a disjoint union of horocycles. Böröczky’s
theorem says that

area.DS/ �
�

3
area.DH/;

hence area.S/ � �
3

area.H/.

The first step of the proof of Theorem 3.1 is to show that .M.s/; P / is a pared
manifold. The main idea of the proof is drawn directly from the arguments of Agol [1]
and Lackenby [28].
Lemma 3.3. With notation and hypotheses as in Theorem 3.1, the pair .M.s/; P / is
a pared manifold.

Proof. Since M is compact and oriented, the filling M.s/ is compact and oriented
as well. Since @M � .T1 [ � � � [ Tk/ ¤ ;, it follows that @M.s/ ¤ ;. In addition,
M.s/ cannot be a 3-ball: otherwise, @M has a component † Š S2 and a separate
component T1 Š T 2, which is impossible because M is irreducible. The remaining
obstructions to .M.s/; P / being a pared manifold are as follows.

Claim 3.4. If .M.s/; P / is not a pared manifold, then there is an essential, embedded
surface .S; @S/! .M.s/; P /, where S is a sphere, disk, torus, or annulus.
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To prove the claim, we check the remaining conditions of Definition 2.1. IfM.s/
is reducible or toroidal, then by definition it contains an essential sphere or torus.
If M.s/ is a solid torus, then P � @M must be a torus that becomes compressible
in M.s/, hence .M.s/; P / contains an essential compression disk. If there is a
�1-injective map of an annulus

.S1 � I; S1 � @I /! .M.s/; P /;

which is not boundary-parallel, then the annulus theorem says that there is also
a �1-injective embedding of an annulus with the same property; see Jaco [26,
Theorem VIII.13] or Scott [35]. Finally, if there is a �1-injective map of a torus
T 2 ! M.s/, then observe that M.s/ is either reducible (hence the claim holds) or
Haken. In the latter scenario, the torus theorem [35] says that M.s1; : : : ; sk/ either
contains an essential torus or annulus (hence the claim holds), or is Seifert fibered.
But every Seifert fibered 3-manifold with non-empty boundary contains an essential
disk or annulus, proving the claim.

Now, let .S; @S/ ! .M.s/; P / be an essential, embedded surface as in the
claim. Assume that S has been moved by isotopy to intersect the filling solid tori a
minimal number of times. Then every component of intersection must be a meridian
disk of some filling solid torus. Note that the intersection is non-empty, because
.M;P [ T1 [ � � � [ Tk/ is a pared manifold by hypothesis. After removing the
meridian disks from S , we obtain an essential surface S 0 � M whose boundary
consists of @S and a collection of curves on the tori T1; : : : ; Tk , with each boundary
on Ti having slope si .

Because M is homeomorphic to a standard compact core of .Z"; @Z"/ for small
" > 0, we obtain an embedding of S 0 into Z", which we extend by a product into the
cusps, obtaining a punctured surface that we continue to call S 0.

Using the hyperbolic metric Z, we homotope S 0 to be a pleated surface. This
means that after a homotopy, S 0 becomes an immersed surface consisting of totally
geodesic ideal triangles, with bending allowed along the edges of the triangles. A
homotopy that moves S 0 into pleated form exists by [28, Lemma 2.2]. As in Agol’s
and Lackenby’s proof of the original 6-Theorem (see [1, Theorem 5.1], and compare
[21, Lemma 2.5]), the horocusp H D H1 [ � � � [ Hk induces a disjoint union of
horocycles in the pleated surface S 0, such that the length of each horocycle is at least
the length of the corresponding slope si , hence each has length strictly larger than 6.

Let m be the number of boundary components of S 0 on components T1; : : : ; Tk .
This is the number of horocycles in S 0 constructed in the previous paragraph. The
area of the cusp ends of S 0 cut off by these horocycles is the sum of the lengths of the
horocycles; hence, the total area is strictly larger than 6m. By Lemma 3.2, the area
of S 0 is at least �=3 times the area of the cusp neighborhood, hence area.S 0/ > 2�m.
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On the other hand, by the Gauss–Bonnet theorem, area.S 0/ D �2��.S 0/. Thus,
the area of S 0 satisfies:

area.S 0/ D

8̂<̂
:
2�.m � 2/ if S is a sphere,
2�.m � 1/ if S is a disk,
2�.m/ if S is a torus or annulus.

In all cases, the area is at most 2�m. This contradiction shows that S cannot exist,
hence Claim 3.4 shows that .M.s/; P / is a pared manifold.

The second step in the proof of Theorem 3.1 is to show that the same end invariants
that are realizable in .M;P [ .T1 [ : : : Tk// are also realizable in .M.s/; P /.

Proof of Theorem 3.1. By Lemma 3.3, .M.s/; P / is a pared manifold. Notice that
@0M D @0M.s/, hence the free sides of .M.s/; P / are identical to the free sides of

.M;P [ .T1 [ � � � [ Tk//:

Let F1; : : : ; Fs be these free sides. We further assume that the free sides have been
ordered so that the end invariants of Z are

.X1; : : : ; Xr ; �rC1; : : : ; �s/;

where Xi 2 T .Fi / for i � r and �j is an ending lamination for Fj for j � r C 1.
By the realization theorem, Theorem 2.9, .M.s/; P / admits a hyperbolic

structure with these end invariants if and only if the tuple of end invariants
.X1; : : : ; Xr ; �rC1; : : : ; �s/ is filling. That is, we must check that

.X1; : : : ; Xr ; �rC1; : : : ; �s/

satisfy properties (�) and (��) of Definition 2.8, when viewed as invariants of
.M.s/; P /.

If (�) is false, then M.s/ is an interval bundle over a surface S . Without loss
of generality (replacing S by its orientable double cover if needed), we may assume
thatS is orientable andM.s/ Š S�I . Since (�) has failed,M.s/ has no geometrically
finite ends. Furthermore, there is an ending lamination �i on a free side Fi � S�f0g
and an ending lamination �j on a free side Fj � S � f1g containing parallel,
non-isolated leaves. But these leaves are dense in �i and �j respectively, which
means .Fi ; �i / and .Fj ; �j / have the same projection to S . Since @Fi and @Fj are
contained in P , and the parabolic locus P cannot admit essential annuli, it follows
that Fi D S �f0g and Fj D S �f1g are the only free sides of .M.s/; P /. We write �
for the ending lamination on S � f0g and x� for the ending lamination on S � f1g. By
the above argument (dense leaves), � and x� are parallel.

Let Xn 2 T .S/ be a filling sequence converging to �. Writing SXn 2 T . xS/ for
the same hyperbolic structure with opposite orientation, the sequence xXn converges
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to x�. Then .Xn; xXn/ 2 T .@M � P / is a filling sequence converging to .�; x�/.
Theorems 2.6 and 2.7 imply there exists a hyperbolic 3-manifold Zn with standard
compact core homeomorphic to .M;P [ .T1 [ � � � [ Tk//, and with end invariants
.Xn; xXn/. Because the sequence .Xn; xXn/ is filling, there exists a sequence of
simple closed curves 
n � S converging to �, with `Xn.
n/=`X1.
n/! 0. In the
hyperbolic manifold Zn, the curve 
n is homotopic to a geodesic in the lower end
whose conformal structure isXn, and x
n is homotopic to a geodesic in the upper end
whose conformal structure is xXn.

The approximation Theorem 2.13 implies that after passing to a subsequence, the
manifolds Zn converge strongly to a manifold homeomorphic to M , with the same
end invariants as Z. The ending lamination Theorem 2.5 implies that the limiting
manifold is isometric toZ. For each n, letHn D Hn

1 [ � � � [H
n
k

be a disjoint union
of horocusps for T1 [ � � � [ Tk in Zn, which converge to the horocusp neighborhood

H D H1 [ � � � [Hk � Z:

The strong limit Zn ! Z implies that for sufficiently large n, we have len.si / > 6

in the Euclidean metric on @Hn
i .

Consider an annulus

An D 

n
� I � S � I DM.s/:

Let A0n be the remnant of An in M � M.s/, moved by isotopy to minimize the
intersection number with the cores of filling solid tori. Then A0n has a boundary
component along 
n in the lower end, a boundary component along x
n in the
upper end, as well as some number of punctures along meridians s1; : : : ; sk . In the
hyperbolic metric Zn, we may homotope A0n to be a pleated surface with geodesic
boundary along 
n [ x
n. For sufficiently large n, the geodesics 
n [ x
n � Zn
are disjoint from Hn, because the geodesic realizations of the same curves in Z are
exiting the ends of Z as n ! 1. Furthermore, the horocusp neighborhood Hn

induces a disjoint union of horocycles inA0n, where each horocycle has length greater
than 6.

Let mn be the number of punctures in A0n. As in the proof of Lemma 3.3, the
Gauss–Bonnet theorem implies that area.A0n/ D 2�mn. On the other hand, for n
large, the cusp area of A0n is strictly larger than 6mn, hence Lemma 3.2 implies that
area.A0n/ > 2�mn. This contradiction proves that the end invariants of .M.s/; P /
must satisfy (�).

Next, suppose (��) is false. Then .M.s/; P / has a compressible free side F , and
the ending lamination � is contained in a limit of meridians. It follows that there is
a sequence of compression disks Dn for .M.s/; P / such that the boundary curves

n D @Dn converge to a lamination � containing �. Since � is not contained in
a limit of meridians in .M;P /, it follows that the curve 
n cannot be a meridian
in .M;P / for sufficiently large n. In other words, viewing M as a submanifold
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ofM.s1; : : : ; sk/, it follows that the meridian disksDn cannot be contained inM for
large n. We isotope each Dn to meet the filling solid tori as few times as possible,
and set D0n D Dn \M .

By strong density, Theorem 2.12, there is a sequence of geometrically finite and
minimally parabolic representations �n 2 AH.M;P / converging strongly to the
representation � corresponding to Z. Let Zn be the associated manifolds. As above,
each Zn is equipped with a disjoint union of horocusps

Hn
D Hn

1 [ � � � [H
n
k ;

where for sufficiently large n we have len.si / > 6 in the Euclidean metric on @Hn
i .

Since the curves 
n limit to a lamination containing �, they must exit the end of Z
corresponding to F , hence 
n is disjoint from the horocusp neighborhood Hn for
large n. As above, we may pleat the punctured diskD0n in Zn, so that it has geodesic
boundary along 
n and some number of punctures corresponding to meridians of
s1; : : : ; sk . These punctures are cut off by disjoint horocycles in D0n, where each
horocycle has length greater than 6.

We can now obtain a contradiction as above. Let mn be the number of punctures
in D0n. The Gauss–Bonnet theorem implies that

area.D0n/ D 2�.mn � 1/:

On the other hand, for n large, the cusp area of D0n is strictly larger than 6mn, hence
Lemma 3.2 implies that area.D0n/ > 2�mn. This contradiction proves that the end
invariants .X1; : : : ; Xr ; �rC1; : : : ; �s/ must satisfy (��) as well.

Since the tuple of end invariants .X1; : : : ; Xr ; �rC1; : : : ; �s/ satisfy both (�)
and (��), Theorem 2.9 says that these invariants are realized by a hyperbolic metric Y
on .M.s/; P /.

4. Convergence of geodesics

In several theorems in the subsequent sections, we will need to control geodesic links
in a convergent sequence of manifolds. The following proposition says that geodesic
links behave exactly as expected.

Proposition 4.1. Let N1 be a hyperbolic 3-manifold with standard compact core
.M;P / and associated representation �1 2 AH.M;P /. Let �n 2 AH.M;P / be
a sequence of geometrically finite, minimally parabolic representations converging
strongly to �1. Let Nn be the hyperbolic 3-manifolds associated to �n. Let † D
�1 [ : : : [ �k �M be a smooth link. Then the following are equivalent:

(1) † is isotopic to a geodesic link †1 � N1, where each component has length
less than log 3.



Vol. 97 (2022) Effective drilling and filling of tame hyperbolic 3-manifolds 479

(2) For all n� 0,† is isotopic to a geodesic link†n in the hyperbolic structureNn,
where each component has length less than log 3 � ı for some uniform ı > 0.

Furthermore, assuming either (1) or (2) hold, we have †n ! †1 in the geometric
limit.

Proof. If @0M D ;, then any convergent sequence in AH.M;P / is eventually
constant, hence the result is vacuous. We may now suppose that @0M ¤ ;, or
equivalently vol.Nn/ D vol.N1/ D1.

We begin by setting some notation. For each component �i � †, orient �i and
choose an arc ˛i that runs from the basepoint x 2 M to �i . Then the based loop
˛i � �i � x̨i represents a homotopy class 
i 2 �1.M; x/. We also choose basepoints
xn 2 Nn and x1 2 N1 so that

.Nn; xn/! .N1; x1/

is a geometric limit.
We first prove that (1) implies (2). Suppose †1 � N1 is a geodesic realization

of†. Since the components �1; : : : ; �k � † are isotopic to disjoint, simple geodesics
in N1, the group elements 
1; : : : ; 
k corresponding to �1; : : : ; �k are primitive and
pairwise non-conjugate.

Choose a radius R large enough so that †1 � BR.x1/. According to the
characterization of geometric convergence in (2.2), for large n we have embeddings

gn;RW .BR.x1/; x1/ ,! .Nn; xn/

that converge to isometries in theC1 topology. These embeddings map the geodesic
link †1 to a link †0n � Nn.

Since each of the k components of †1 is shorter than log 3, there is a uniform
ı > 0 such that each component is shorter than log 3 � ı.

Let �i;1 be a component of †1. Then, for all sufficiently large n, the image

� 0i;n D gn;R.�i;1/ � †
0
n

is shorter than log 3 � ı. By Theorem 2.2, log 3 is a Margulis number for each Nn.
Since the group elements 
1; : : : ; 
k represent distinct, primitive conjugacy classes,
the curves � 01;n; : : : ; � 0k;n lie in disjoint tube components of N<log3

n , with each
component homotopic to the core of its tube. Furthermore, each � 0i;n can be taken
to have arbitrarily small geodesic curvature (by choosing n large and applying the
definition of a geometric limit), hence �n cannot have any local knotting. Thus, � 0i;n
is isotopic to the core of the tube, denoted �i;n, where len.�i;n/ < log 3 � ı. The
isotopies in distinct tubes do not interact, hence†0n is isotopic to a geodesic link†n,
proving (2).
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Next, we check that †n ! †1. For each n, let �n.
i / be the holonomy of 
i in
the hyperbolic structure Nn. For each n� 0, the group element �n.
i / stabilizes a
geodesic axis z�i;n that covers �i;n. The algebraic limit �n ! �1 implies that

�n.
i /! �1.
i / 2 Isom.H3/:

Thus, the fixed points of �n.
i / converge to the fixed points of �1.
i /, and the
axes z�i;n converge to the axis z�i;1 that covers �i;1. Projecting down to the quotient
manifold M , we learn that the closed geodesics �i;n � Nn converge to �i;1, as
desired.

Now, we prove that (2) implies (1). Suppose that for n � 0, the hyperbolic
structureNn contains a geodesic link†n isotopic to†. Then the component �i � †
is isotopic to a closed geodesic �i;n � Nn, of length len.�i;n/ < log 3 � ı for some
uniform ı. By the same argument as in the above paragraph, the algebraic limit
�n ! �1 implies that the geodesic axes z�i;n for �n.
i / converge to the geodesic
axis z�i;1 for �1.
i /. Thus, for each i , the closed geodesics �i;n � Nn converge to a
closed geodesic �i;1 � N1. Since translation lengths converge in the limit, we have

len.�i;1/ � log 3 � ı < log 3

for each i . Consequently, the closed geodesics �1;1; : : : ; �k;1 lie at the cores of
disjoint tube components of N<log3

1 , and †1 D �1;1 [ : : : [ �k;1 is a geodesic
link.

By construction, the loop 
i D ˛i � �i � x̨i is freely homotopic to �i , hence the
closed geodesic �i;1 is freely homotopic to �i . It remains to show that this homotopy
can be achieved by isotopy, and that the isotopies for different components of † do
not interact.

As above, we may choose a radius R large enough that †1 � BR=2.x1/. Then,
for n� 0, we have embeddings

gn;RW .BR.x1/; x1/ ,! .Nn; xn/

that converge to isometries in the C1 topology. Since †n ! †1, it follows
that for n � 0, we have †n � gn;R.BR.x1//. Then, for each component �i ,
the preimage g�1n;R.�i;n/ is an almost-geodesic closed curve in the Margulis tube
containing �i;1. As above, the control on geodesic curvature implies that g�1n;R.�i;n/
cannot have local knotting, hence is isotopic to �i;1. Thus, �i � † is isotopic
to �i;1, with isotopies of different components supported in disjoint Margulis tubes.
Thus, † �M is isotopic to †1, as desired.

5. Extracting bilipschitz limits

In this section, we describe the construction of a bilipschitz function from a pair of
geometric limits. The main result, Theorem 5.1, is a technical statement that will be
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used in the proofs of Theorems 1.2 and 1.3. The idea is that if hyperbolic 3-manifolds
Y andZ each have a sequence of manifolds limiting to them geometrically, and there
are J -bilipschitz maps between the thick parts of the approximating manifolds, then
there is also a J -bilipschitz map between the thick parts of Y and Z.

The precise statement that we need involves convex submanifolds of a hyperbolic
manifold. If Y is a hyperbolic 3-manifold with universal covering map � WH3 ! Y ,
a submanifold Q � Y is called convex if the full preimage ��1.Q/ is a convex
subset of H3. The inclusion Q ,! Y is necessarily a homotopy equivalence. The
convex core CC.Y / is always a convex submanifold; in fact, it is the intersection of
all convex submanifolds of Y . Another important example of a convex submanifold
is the scooped manifold N ı � N in Definition 2.16.

One important property of a convex submanifold Q � Y is that intrinsic and
extrinsic notions of injectivity radius agree. Given a point x 2 Q, the injectivity
radius injrad.x/ D "=2 is realized by a geodesic loop 
 based at x, of length
exactly 2"; compare [20, Lemma 2.11]. By convexity, this loop must be contained
in Q. Consequently, Q�" D Q \ Y �".

We have the following theorem.
Theorem 5.1 (Bilipschitz limit). Fix ı > 0, " > 0 andJ > 1. Let .Ym; ym/! .Y; y/

and .Zm; zm/! .Z; z/ be geometrically converging sequences of based hyperbolic
manifolds. For each m, let Y ım and Zım be convex submanifolds of Ym and Zm,
respectively. Suppose that y 2 Y >" and ym 2 .Y ım/�", while zm 2 Zım. Suppose
.Y ım; ym/! .Y; y/ and .Zım; zm/! .Z; z/.

Suppose that, for each m, there is a J -bilipschitz inclusion

'mW .Y
ı
m/
�" ,! .Zım/

�ı ;

such that d.'m.ym/; zm/ is uniformly bounded. Then there is also a J -bilipschitz
inclusion

'WY �" ,! Z�ı :

The proof of Theorem 5.1 proceeds in two steps. In the first step, carried
out in Lemma 5.2, we construct compact sets Kn � Y and bilipschitz functions
hnWKn!Z, such that eachhn is almost J -bilipschitz and has image almost contained
inZ�ı . These compact sets are nested, withK1 � K2 � � � � , and form an exhaustion
of Y >". In the second step, carried out in Lemma 5.3, we extract subsequential limits
of the locally defined functions hn to obtain the desired bilipschitz inclusion '.
Lemma 5.2. Let the notation and hypotheses be as in Theorem 5.1. For n 2 N,
define sequences of numbers as follows:

ın D
�
1 �

1

n

�
ı; "n D

�
1C

1

n

�
"; Jn D 2

1=nJ:

Then, for all sufficiently large n, there is a Jn-bilipschitz map

hnW xBn.y/ \ Y
�"n ,! Z�ın :

Furthermore, fhn.y/g is a bounded sequence in Z.
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Proof. We begin by characterizing what it means for n to be “sufficiently large”.
Since y 2 Y >" by hypothesis, and "n ! ", we choose n large enough to ensure
y 2 Y �"n . Next, let D be an upper bound on the distances d.'.ym/; zm/, where
ym 2 .Y

ı
m/
�" is the basepoint of Y ım and zm 2 Zım is the basepoint of Zım. We also

choose n large enough so that

4Jn > 21=nJ � 2nCD:

For each sufficiently large n, we will construct a map hn. To that end, consider
the set of points in Y of distance less than 2n from y, denoted B2n.y/. Since
.Y ım; ym/! .Y; y/, equation (2.2) says that for large m 2 N there exist embeddings

fm;2nW .B2n.y/; y/ ,! .Y ım; ym/

that converge to isometries in the C1 topology as m!1.
We will collect several desirable properties that hold for large m. First, observe

that the closed set xBn.y/ is compact and the derivatives of fm;2n are converging to
the identity. Thus, for all sufficiently large m, we have:

The restriction of fm;2n to xBn.y/ is 21=2n-bilipschitz. (5.1)

Next, a lemma of Canary, Epstein, and Green [16, Lemma 3.2.6] shows that injectivity
radii converge in a geometric limit. Since "n > ", it follows that for all sufficiently
large m, we have

fm;2n
�
xBn.y/ \ Y

�"n
�
� .Y ım/

�": (5.2)

In particular,
fm;2n.y/ D ym 2 .Y

ı
m/
�":

Combining (5.1), (5.2), and the J -bilipschitz property of the map 'mW .Y ım/�" !
.Zım/

�ı gives

diam
�
'm ı fm;2n

�
xBn.y/ \ Y

�"n
��
� J � 21=2n � 2n:

The image set 'mıfm;2n. xBn.y/\Y �"n/ contains 'm.ym/, hence this set is contained
in the .21=2nJ � 2nCD/-neighborhood of zm, by the definition of D.

Now, consider the geometric limit .Zım; zm/ ! .Z; z/. For large m, there exist
embeddings

gm;4JnW .B4Jn.z/; z/ ,! .Zım; zm/

that converge to isometries as m ! 1, with injectivity radii converging as before.
Since the image of B4Jn.z/ converges to a set of point of distance less than 4Jn
to zm, and we have already chosen n so that 4Jn > 21=nJ � 2nCD, it follows that
for large m, we have

'm ı fm;2n
�
xBn.y/ \ Y

�"n
�
� gm;4Jn.B4Jn.z// � .Z

ı
m/
�ı : (5.3)
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Since the derivatives of gm;4Jn and its inverse converge to the identity as m ! 1,
choosingm large ensures that the lipschitz constants on any compact subset are close
to 1. Thus, for m large, we have

The restriction of g�1m;4Jn to 'm ı fm;2n
�
xBn.y/ \ Y

�"n
�

is 21=2n-bilipschitz.
(5.4)

Finally, since 'm ı fm;2n. xBn.y/ \ Y �"n/ � .Zım/
�ı , and injectivity radii converge

in the limit .Zım; zm/! .Z; z/, it follows that choosing m large ensures:

g�1m;4Jn ı 'm ı fm;2n
�
xBn.y/ \ Y

�"n
�
� Z�ın : (5.5)

We are now ready to define the function hn and check that it has all the desired
properties. For each n, choose a single numberm D mn so that conditions (5.1)–(5.5)
hold simultaneously. Then, set

hn D g
�1
m;4Jn ı 'm ı fm;2nW

xBn.y/ \ Y
�"n ! Z:

This function is well-defined by (5.2) and (5.3). It is Jn-bilipschitz for Jn D 21=nJ ,
because fm;2n and g�1m;4Jn are both 21=2n-bilipschitz on the relevant domain by (5.1)
and (5.4), while 'm is J -bilipschitz. The image hn. xBn.y/ \ Y �"n/ is contained
in Z�ın by (5.5). Finally, the points

hn.y/ D g
�1
m;4Jn

�
'm.ym/

�
and z D g�1m;4Jn.zm/

are within distance 2D, by (5.4) and the definition ofD, hence fhn.y/g is a bounded
sequence.

The second step of the proof of Theorem 5.1 is to extract a subsequential limit of
the functions hn that were built in Lemma 5.2. This step does not need any hyperbolic
geometry or smoothness, and only needs Y and Z to be metric spaces. So we write
down the proof in that generality.
Lemma 5.3. Let Y and Z be metric spaces. Let K1 � K2 � � � � be an exhaustion
of Y by compact sets. For each n, let hnWKn ! Z be a continuous function that is
a Jn-bilipschitz homeomorphism to its image. Suppose that the sequence of images
fhn.y/g is bounded for some basepoint y 2 K1, and that limn!1 Jn D J for
some J . Then there is a J -bilipschitz inclusion hWY ,! Z. Furthermore, for every
x 2 Y , we have h.x/ D lim hni

.x/ for some subsequence ni .

Proof. After replacing fhng by a subsequence, we may assume without loss of
generality that fJng is a monotonic sequence. We will construct h by repeated
application of the Arzela–Ascoli theorem.

Focusing attention on a single compact set Km, the functions hn are defined
on Km for all n � m. The family fhn W n � mg is equicontinuous on Km because
each hn is xJ -lipschitz, where xJ D supJn. Furthermore, the set of images fhn.y/g is
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bounded by hypothesis, and d.hn.y/; hn.x// is also uniformly bounded for x 2 Km
because the functions hn are uniformly lipschitz. Thus, fhn W n � mg is uniformly
bounded onKm. By Arzela–Ascoli, some subsequence converges uniformly onKm.

Now, consider K1. By the above paragraph, there is a subsequence fh1ng of fhng
that converges uniformly on K1. Define h.x/ D limn!1 h

1
n.x/ for x 2 K1.

Next, consider K2 � K1. As above, there is a subsequence fh2ng of fh1ng that
converges uniformly on K2. Define h.x/ D limn!1 h

2
n.x/ for x 2 K2. This agrees

with the previous definition of h on K1 � K2 because we have taken a subsequence
of a sequence that already converges on K1.

Continuing inductively in this manner, we have a subsequence fhmn g of fhm�1n g

that converges uniformly onKm. We then have h.x/ D limn!1 h
m
n .x/ for x 2 Km.

Since theKm provide an exhaustion of Y , and the definition is consistent asm grows,
this defines h on all of Y .

It remains to show that h is J -bilipschitz, where J D limJn. Consider a pair
of points x; x0 2 Y , and let Km be such that x; x0 2 Km. Recall our assumption at
the beginning of the proof that fJng is monotonic. If Jn is monotonically increasing
with n, then every hmn is already J -bilipschitz. In particular, we have

J�1 � d.x; x0/ � d
�
hmn .x/; h

m
n .x

0/
�
� J � d.x; x0/:

As n!1, the middle term converges to d.h.x/; h.x0//, hence h is J -bilipschitz.
If Jn is monotonically decreasing with n, then Jmn is also monotonically

decreasing. Fix an integer k � 0. Then, for n � k, every hmn is Jm
k

-bilipschitz.
Thus, for all n � k, we have:

.Jmk /
�1
� d.x; x0/ � d

�
hmn .x/; h

m
n .x

0/
�
� Jmk � d.x; x

0/:

As n!1 (holding k fixed), the middle term converges to d.h.x/; h.x0//. Then we
take a limit as k !1, and Jm

k
converges to J . We obtain

J�1 � d.x; x0/ � d
�
h.x/; h.x0/

�
� J � d.x; x0/;

hence h is J -bilipschitz.

Proof of Theorem 5.1. As in the statement of the theorem, we have hyperbolic
manifolds Y andZ, with a basepoint y 2 Y >". Let ın ! ı, "n ! ", and Jn ! J be
the convergent sequences of Lemma 5.2, and let Kn D xBn.y/ \ Y �"n be a compact
set. Lemma 5.2 says that for all sufficiently large n, there is a Jn-bilipschitz map
hnWKn ,! Z�ın , such that the images of the basepoint fhn.y/g are bounded in Z.
We reindex the sequence so that it starts at n D 1.

Observe that K1 � K2 � � � � is an exhaustion of Y >" by compact sets. Now,
Lemma 5.3 constructs a J -bilipschitz function hWY >" ,! Z. For every x 2 Y , there
is a subsequence hni

(depending on the compact set containing x) such that

h.x/ D lim hni
.x/:
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Since hni
.x/ 2 Z�ıni , and ıni

! ı, it follows that in fact h.x/ 2 Z�ı . Thus, we
have a J -bilipschitz map

hWY >" ,! Z�ı :

Since h is J -bilipschitz, it has a continuous and J -bilipschitz extension to @Y >".
This achieves our goal: a J -bilipschitz inclusion ' D hWY �" ,! Z�ı .

Remark 5.4. In the proof of Theorem 6.5, we will rely on the following straight-
forward extension of Theorem 5.1. Suppose that " and ı are Margulis numbers for Y
andZ, respectively. Let Y <"† be the disjoint union of certain components of Y <", and
letZ<ı† be the disjoint union of certain components ofZ<ı . Let .Ym/<"† and .Zm/<ı†
be the corresponding subsets of the approximating manifolds in the geometric limits
.Ym; ym/ ! .Y; y/ and .Zm; zm/ ! .Z; z/. Suppose that, for each m, there is a
J -bilipschitz inclusion

'mW
�
Ym � .Ym/

<"
†

�
,!

�
Zm � .Zm/

<ı
†

�
;

such that d.'m.ym/; zm/ is uniformly bounded. Then there is also a J -bilipschitz
inclusion 'W .Y � Y <"† / ,! .Z �Z<ı† /.

The main change from the statement of Theorem 5.1 is that Y �" has been replaced
by .Y � Y <"† /, and similarly for Z, so that the J -bilipschitz inclusion ' now extends
into some of the thin parts of Y . The only change needed in the proof is that in
Lemma 5.2 the compact set xBn.y/ \ Y �" should be replaced by the compact set

xBn.y/ \ .Y � Y
<"
† /:

This again gives a compact exhaustion of the desired submanifold of Y ; the rest of
the argument works verbatim.

6. The effective drilling theorem

In this section, we prove Theorem 1.2. The proof proceeds in two main steps. In the
first step, accomplished in Theorem 6.2, we use a number of results from Kleinian
groups (Section 2) to approximate both Y and the drilled manifold Z Š Y �† with
geometrically finite manifolds that admit a circle packing. We also double-double
the scooped versions of the geometrically finite manifolds to obtain finite-volume
hyperbolic manifolds converging to Y andZ, respectively. In the second step, we use
the geometric limits constructed in Theorem 6.2, combined with the finite-volume
Theorem 6.4 and the bilipschitz limit Theorem 5.1, to build bilipschitz maps between
the thick parts of Y and Z. See Figure 1 for a visual outline.

We also employ the same outline to prove Theorem 6.5, which extends Brock and
Bromberg’s Theorem 1.1 to all tame hyperbolic 3-manifolds without rank-1 cusps.
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Before beginning the proofs of those results, we need to verify that for any
geodesic link †, the complement Y � † admits a hyperbolic structure Z with end
invariants identical to those of Y .
Lemma 6.1. Let Y be a tame hyperbolic 3-manifold with standard compact core
.M;P /. Let † � Y be a geodesic link with a regular neighborhood N .†/ � M .
Then .M�N .†/; P[@N .†// is a pared manifold that admits a hyperbolic metricZ
with the same end invariants as those of Y .

Proof. We begin by checking that .M � N .†/; P [ @N .†// is a pared manifold.
Since M is compact, oriented, and not a 3-ball or solid torus, the same is true of
M�N .†/. For the other properties, recall a theorem of Kerckhoff thatM�† admits
a complete metric of variable negative curvature. (See Agol [2, pages 908–909] for a
proof.) It follows thatM �N .†/ is irreducible and algebraically atoroidal, meaning
that every �1-injective map of a torus T 2 ! M � N .†/ is homotopic into some
boundary torus belonging to either P or to @N .†/.

Now, consider a �1-injective map of an annulus

f W .A; @A/! .M �N .†/; P [ @N .†//:

Since † is a disjoint union of geodesics in Y , an essential curve on @N .†/ cannot
be homotopic to P through A, and two distinct essential curves on @N .†/ cannot be
homotopic to each other through A. Thus, both components of @A must be mapped
to P , which means that we in fact have

f W .A; @A/! .M �N .†/; P /:

Since .M;P / is a pared manifold, it follows that f is homotopic into P throughM .
Since we have already checked that M �N .†/ is irreducible and atoroidal, and the
geodesic components of † cannot be homotopic into P , the homotopy of f can be
taken to avoid N .†/. This proves that .M �N .†/; P [@N .†// is a pared manifold.

To prove that the end invariants of Y are realized by a hyperbolic structure on
M � N .†/, we need to check that the end invariants of Y are still filling when
viewed as end invariants for .M �N .†/; P [ @N .†//. That is, we need to check
conditions (�) and (��) of Definition 2.8. Condition (�) holds automatically: the only
wayM �N .†/ can be an interval bundle over a surface is ifM is a solid torus, which
we have already ruled out. For condition (��), let Fi be a free side of @0M and �i be
the ending lamination on Fi . If �i is contained in the Hausdorff limit of a sequence
of meridians in M � N .†/, then the same meridians are also meridians in M , a
contradiction. Thus, the end invariants of M � N .†/ are filling, and Theorem 2.9
says that these end invariants are realized by a hyperbolic structure Z.

6.1. Scooped manifolds approaching Y and Z . The following theorem encapsu-
lates the limiting construction that will be used in the proof of Theorem 1.2. We will
also use this result in the proof of Theorem 8.5.
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Theorem 6.2. LetY be a tame, infinite-volume hyperbolic 3-manifold with associated
pared manifold .M;P / and associated representation � 2 AH.M;P /. Let † � Y
be a geodesic link, such that each component of † is shorter than log 3. Then
.M � N .†/; P [ @N .†// is a pared manifold admitting a hyperbolic metric Z
with the same end invariants as those of Y . Furthermore, there exist approximating
sequences such that the following properties hold for all n� 0:
(1) There is a geometrically finite, minimally parabolic representation�n2AH.M;P /.

The conformal boundary of Vn D H3=�n.�1M/ admits a circle packing Cn.
Furthermore, �n ! � is a strong limit.

(2) For every y 2 Y , there is a choice of basepoints vn 2 V ın , such that .V ın ; vn/
converges geometrically to .Y; y/. There is a geodesic link †n � V ın , carried
to † by a homeomorphism Vn ! Y , such that †n ! † in the geometric limit.

(3) There is a geometrically finite, minimally parabolic representation

�n 2 AH.M �N .†/; P [ @N .†//

such that the associated hyperbolic manifoldWn is homeomorphic to Y �† and
Vn �†n and has end invariants that are identical to those of Vn. In particular,
the conformal boundary of Wn admits the same circle packing Cn.

(4) For every z 2 Z, there is a choice of basepoints wn 2 W ın , such that .W ın ; wn/
converges geometrically to .Z; z/. Furthermore, there is a strong limit �n ! � ,
where � 2 AH.M �N .†/; P [ @N .†// is a representation associated to Z.

(5) The operations of drilling and double-doubling commute. That is:

DD.V ın / �DD.†n/ Š DD.W
ı
n /:

(6) The manifolds Y and Z are geometric limits of finite-volume hyperbolic mani-
folds, as follows: .DD.V ın /; vn/! .Y; y/ and .DD.W ın /; wn/! .Z; z/.
Observe that Theorem 1.6, stated in the Introduction, is an immediate corollary

of the above theorem.
See Figure 1 for a commutative diagram encapsulating the main objects in the

statement of Theorem 6.2, as well as in its proof. We will begin with the top-right
of the diagram, with the strong limit Yn ! Y , and then construct the approximating
manifolds Vn and V ın by proceeding right to left. We will then drill out an appropriate
copy of † from each of these manifolds and construct the limiting sequences in the
bottom row of the diagram.

Proof of Theorem 6.2. Let � D �.�1.M// be the Kleinian group associated to Y .
Let fOn W n 2 Ng be an open neighborhood system about Œ�� 2 AH.M;P /. By
strong density, Theorem 2.12, there exists a strongly convergent sequence �n ! �,
such that Œ�n� 2 On. Let �n D �n.�1.M//, and let Yn D H3=�n be the associated
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Y

DD.V ın / V ın Vn Yn

Z

DD.W ın / W ın Wn Zn

geom limit strong density

drill†isometric inclusion

drillDD.†n/finite vol

isometric inclusion
<ın

circle pack

drill
geom limit approximation thm

isometric inclusion isometric inclusion

drill†n

<ın

circle pack

drill†n

Figure 1. The manifolds appearing in the statement and proof of Theorem 6.2. Hooked horiz-
ontal arrows represent isometric inclusions. Dashed horizontal lines represent a small quasi-
conformal deformation that produces a circle-packed manifold. Vertical arrows represent drilling
out an embedded link. Solid diagonal arrows represent strong limits. Dashed diagonal arrows
represent geometric limits only.

geometrically finite hyperbolic 3-manifolds. After passing to a subsequence, we
can ensure that dChaub.�; �n/ < 2�n. By Theorem 2.12, the end invariants of Yn
form a filling sequence, converging to the end invariants of Y . Fix an arbitrary
basepoint y 2 Y .

For each n, pick a constant ın > 0 such that lim ın D 0. (In subsequent
paragraphs, we will impose additional constraints, all of which hold when ın
is sufficiently small.) For each n, Brooks’ Theorem 2.15 says that there is
a geometrically finite Kleinian group �n;ın

representing an eın-quasiconformal
deformation of �n, such that the conformal boundary of �n;ın

admits a circle
packing. Let �nW�1.M/ ! PSL.2;C/ be the associated representation. The
bound of eın on the quasiconformal deformation means that the distance in T .@0M/

between the conformal end invariants of �n and �n;ın
is at most ın. Here, we

are measuring distances in the Teichmüller metric on the Teichmüller space of the
(possibly disconnected) surface @0M D @M � P . We choose ın small enough that

dChaub.�n;ın
; �n/ < 2

�n: (6.1)

We also choose ın small enough to ensure Œ�n� 2 On; this is possible by Theorem 2.10.
The restrictions on ın ensure that �n ! � is a strong limit. Let Vn D H3=�n;ın

be
the quotient manifold.

Next, we construct three sets of hyperbolic manifolds with pared manifold
.M �N .†/; P [ @N .†//:
� A hyperbolic manifold Z whose end invariants agree with those of Y .
� A hyperbolic manifold Zn whose end invariants agree with those of Yn.
� A hyperbolic manifold Wn whose end invariants agree with those of Vn.
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The pared manifold .M � N .†/; P [ @N .†// and the hyperbolic structure Z are
both guaranteed to exist by Lemma 6.1. Let �W�1.M � N .†// ! PSL.2;C/ be
the discrete faithful representation corresponding to Z, with image

� D �.�1.M �N .†///:

Let � 0 2 AH.M�N .†/; P [@N .†// be a geometrically finite, minimally parabolic
representation; this exists by Theorem 2.6. Thus, by Theorem 2.7, there exist
representations �n 2 QH.� 0/with image group�n and quotient manifoldZn, as well
as representations �n 2 QH.� 0/ with image group �n;ın

and quotient manifold Wn.
LetQ0 D AH.M �N .†/; P [ @N .†//. Let fQn W n 2 Ng be a nested system

of open neighborhoods about Œ�� 2 AH.M � N .†/; P [ @N .†//. Now, define a
sequence m.n/ as follows. If Œ�n� D Œ��, let m.n/ D n; otherwise, let m.n/ be the
largest integerm such that Œ�n� 2 Qm. In either case, we have Œ�n� 2 Qm.n/. We will
check below that Œ�n�! Œ��, which implies m.n/!1.

Observe that @0.M � N .†// D @0M , because @N .†/ is part of the parabolic
locus. Since the (geometrically finite) end invariants of Zn and Wn agree with
those of Yn and Vn, respectively, the distance in T .@0.M � N .†/// between the
conformal end invariants ofZn andWn is at most ın. Recall that by the Ahfors–Bers
Uniformization Theorem 2.7, T .@0.M � N .†/// provides a local parametrization
of the interior

QH.� 0/ � AH.M �N .†/; P [ @N .†//;

and by Theorem 2.10 the algebraic topology on QH.� 0/ agrees with the Chabauty
topology. Thus, a sufficiently small choice of ın ensures that �n has the following
properties. We choose ın so that

dChaub.�n;ın
; �n/ < 2

�n: (6.2)

and so that Œ�n� 2 Qm.n/ for each n. This completes the list of requirements that ın
needs to satisfy.

Now, we proceed to verify that the sequences Vn and Wn have all of the required
properties. Conclusion (1) holds by construction, since we have chosen �n;ın

so that
the conformal boundary of Vn D Hn=�n;ın

admits a circle packing. We call this
circle packing Cn.

Equation (6.1) implies that �n;ın
! � in the Chabauty topology. Thus, there

is a choice of basepoints vn 2 Vn giving a geometric limit .Vn; vn/ ! .Y; y/. In
particular, for any fixed R and large n, there is an almost-isometric embedding

fnW .BR.y/; y/ ,! .Vn; vn/:

Since R is fixed, a sufficiently large choice of n ensures that the image fn.BR.y//
will be contained in the scooped manifold V ın . Thus, we also have a geometric limit
.V ın ; vn/ ! .Y; y/. Since �n ! � is a strong limit, Proposition 4.1 says that the
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homeomorphic image of † is a link in Vn, isotopic to a geodesic link †n when
n� 0. Observe that †n � CC.Vn/ � V ın , hence (2) holds.

Conclusion (3) holds by construction, becauseWn has pared manifold .M�N .†/;

P [ @N .†// and conformal boundary identical to that of Vn. Thus, Cn is also a
circle packing on the conformal boundary of Wn. Observe that �n 2 QH.� 0/ is
geometrically finite and minimally parabolic by construction. The homeomorphism

Wn Š Y �† Š Vn �†n

holds by (2).
Next, we turn to conclusion (4). Recall that the end invariants of �n form a filling

sequence, converging to the end invariants .X1; : : : ; Xr ; �rC1; : : : ; �s/ associated
to � and to Y . Thus, the end invariants of �n (which are the same as those of �n) also
form a filling sequence, converging to the end invariants .X1; : : : ; Xr ; �rC1; : : : ; �s/
of � . Now, the approximation Theorem 2.13 combined with the ending lamination
Theorem 2.5 says that (after passing to a subsequence) we have a strong limit �n ! � .
Having passed to this subsequence, we have Œ�n� 2 Qm.n/ wherem.n/!1, as well
as a Chabauty limit �n ! �.

In (6.2), we chose ın so that

dChaub.�n;ın
; �n/ < 2

�n:

Thus, �n;ın
! �. Similarly, ın was chosen so that Œ�n� 2 Qm.n/ for the same

sequencem.n/!1. SinceQm.n/ is a nested system of open neighborhoods of Œ��,
it follows that Œ�n�! Œ�� in the algebraic topology. Thus, �n ! � is a strong limit.

Since the geometric topology is the Chabauty topology, for every z 2 Z there is
a choice of basepoints wn such that .Wn; wn/! .Z; z/. Furthermore, as above, the
almost-isometric image of BR.z/ will be contained in the scooped manifold W ın for
large n, hence we also have a geometric limit .W ın ; wn/! .Z; z/, hence (4) holds.

After double-doubling the scooped manifold V ın , as in Definition 2.16, we obtain
a finite-volume hyperbolic manifoldDD.V ın /. This finite-volume manifold contains
a link DD.†n/, consisting of four isometric copies of †n. Recall that by (3), Wn
is homeomorphic to Vn � †n, and has identical conformal boundary admitting the
same circle packing Cn. Applying Definition 2.16 again, we may double W ın twice,
first in the blue faces and then the red, to obtain a finite-volume hyperbolic manifold
homeomorphic toDD.V ın �†n/. Thus, by Mostow–Prasad rigidity (or by the rigidity
of circle packings, Theorem 2.14), we have isometries

DD.V ın / �DD.†n/ D DD.V
ı
n �†n/ D DD.W

ı
n /;

establishing conclusion (5).
Finally, conclusion (6) is a corollary of (2) and (4), because for any R > 0, a

metric R-ball about vn 2 DD.V ın / will in fact be contained in the original copy
of V ın for n� 0. A similar statement holds in DD.W ın /.
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Remark 6.3. If the hyperbolic manifold Y is geometrically finite, the preceding proof
becomes considerably more lightweight. In this special case, one can take constant
sequences Yn D Y andZn D Z. Consequently, the strong density Theorem 2.12 and
the approximation Theorem 2.13 become unnecessary, as does the ending lamination
theorem. Thurston’s hyperbolization, Theorem 2.6, becomes unnecessary because
the representation � corresponding toZ is already geometrically finite and minimally
parabolic. Finally, the realization Theorem 2.9, which is used inside Lemma 6.1
to establish a hyperbolic structure on .M � N .†/; P [ @N .†// with the correct
end invariants, can be replaced with the Ahlfors–Bers Theorem 2.7. Thus, in the
geometrically finite case, the only tools required in the proof are Theorem 2.7 and
Brooks’ Theorem 2.15.

The final tool that we need to prove Theorem 1.2 is a finite-volume analogue of
the same result. The following is a restatement of [20, Theorem 1.2].
Theorem 6.4 (Effective drilling in finite volume, [20]). Fix 0 < " � log 3 and
J > 1. Let V be a finite-volume hyperbolic 3-manifold and † a geodesic link in V
whose total length ` satisfies

` � min
�

"5

6771 cosh5.0:6"C 0:1475/
;
"5=2 log.J /
11:35

�
:

Then V �† admits a complete hyperbolic metric W . There are canonical J -bilip-
schitz inclusions

'WV �" ,! W �"=1:2;  WW �" ,! V �"=1:2:

The maps ' and  are equivariant with respect to the symmetry group of the
pair .V;†/.

We now have all the necessary tools to bootstrap from Theorem 6.4 to
Theorem 1.2. The proof involves chasing the left half of the diagram in Figure 1.
Starting from Y , we will consider a circle-packed approximating manifold Vn,
the finite-volume manifold DD.V ın /, its drilling DD.W ın /, and the scooped
submanifold W ın that approximates Z, the hyperbolic structure on Y �†.

Proof of Theorem 1.2. If vol.Y / < 1, the desired statement already appears in
Theorem 6.4, substituting V D Y andW D Z. For the rest of the proof, we assume
vol.Y / D1.

Let Vn and Wn be the sequences of geometrically finite manifolds constructed
in Theorem 6.2. In particular, every Vn is homeomorphic to Y and every Wn
is homeomorphic to Z. Furthermore, the conformal boundaries of each Vn and
each Wn admit the same circle packing Cn. By Theorem 6.2, we have strong limits
�n ! � (corresponding to Vn ! Y and �n ! � (corresponding to Wn ! Z).

Recall that by Theorem 2.2, " < log 3 is a Margulis number for every infinite-
volume hyperbolic 3-manifold, hence Y <" is a disjoint union of tubes and horocusps.
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We let T <" denote a component of @Y <"; this is either a horotorus about a cusp or an
equidistant torus about a short geodesic. We can choose a number � 2 ."; 2"/ such
that � is still a Margulis number for Y .

Fix a basepoint y 2 Y so that 2injrad.y/ D � 2 ."; 2"/, and furthermore y lies
on an embedded, �-thick equidistant torus T �.�/ about the first component � � †.
Such a choice of y 2 Y >" is possible because � is a Margulis number for Y , hence the
thick part Y >� is non-empty. Similarly, fix a basepoint z 2 Z so that 2injrad.z/ D ",
and furthermore z lies on an embedded "-thick horotorus T ".�/ that bounds an
embedded horocusp about the same component � � †. Again, such a choice is
possible because " is a Margulis number for Z.

Now, Theorem 6.2 says that for n� 0, there exist choices of basepoints vn 2 V ın
and wn 2 W ın , such that .V ın ; vn/! .Y; y/ and .W ın ; wn/! .Z; z/. Furthermore,
the homeomorphic image of † is a link in Vn, isotopic to a geodesic link †n
when n� 0. Note that †n � CC.Vn/ � V ın .

After doubling V ın twice to obtain the finite-volume manifold DD.V ın /, as in
Definition 2.16, we also obtain a geodesic link DD.†n/ � DD.V ın / consisting of
four isometric copies of †n. By Proposition 4.1, the strong limit �n ! � means that
†n ! †. Thus, for large n, the length of †n is arbitrarily close to len.†/ D `. In
particular, we have

len.DD.†n// D 4 len.†n/

� min
�

"5

6771 cosh5.0:6"C 0:1475/
;
"5=2 log.J /
11:35

�
: (6.3)

Thus, we may apply the finite-volume effective drilling result, Theorem 6.4, to
DD.V ın / and DD.†n/. For the unique hyperbolic metric on DD.V ın /�DD.†n/,
Theorem 6.4 gives J -bilipschitz inclusions

'nWDD.V
ı
n /
�"
!
�
DD.V ın /�DD.†n/

��"=1:2
;

 nW
�
DD.V ın /�DD.†n/

��"
! DD.V ın /

�"=1:2:

Furthermore, 'n and  n respect the symmetries of the pair .DD.V ın /;DD.†n//.
The pair .DD.V ın /;DD.†n// has a Z2 � Z2 group of symmetries, where the

generator of the first Z2 acts by reflection in the blue faces of V ın and the generator
of the second Z2 acts by reflection in the red faces. This action restricts to a Z2�Z2
group of symmetries of

DD.V ın / �DD.†n/ D DD.V
ı
n �†n/;

with a fundamental domain of the form V ın � †n. Since 'n and  n respect these
symmetries, we obtain J -bilipschitz inclusions

'nW .V
ı
n /
�"
! .V ın �†n/

�"=1:2;  nW .V
ı
n �†n/

�"
! .V ın /

�"=1:2;

isotopic to the topological drilling of†n. By Theorem 6.2, we have V ın �†n Š W ın .
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We can now construct the J -bilipschitz inclusions 'WY �" ,! Z�"=1:2 and
 WZ�" ,! Y �"=1:2 using Theorem 5.1. Most of the hypotheses of that theorem
have already been verified. We have geometrically convergent sequences .V ın ; vn/!
.Y; y/ and .W ın ; wn/! .Z; z/We have y 2 Y >" as required. Since injectivity radii
converge in a geometric limit [16, Lemma 3.2.6], it follows that vn 2 .V ın /�" for
large n. For large n, we have a J -bilipschitz inclusion

'nW .V
ı
n /
�"
! .W ın /

�"=1:2:

To apply Theorem 5.1, it remains to check that d.'n.vn/; wn/ is uniformly bounded.
This can be checked as follows. By construction, the basepoint y 2 Y lies on an

equidistant torus T �.�/ about � � †, where

" < 2injrad.y/ < 2":

By [16, Lemma 3.2.6], the same two-sided bound holds for injrad.vn/ for large n.
By [20, Theorem 9.30], of which Theorem 6.4 is a corollary, the injectivity radius of
vn 2 .V

ı
n /
�" changes by a factor of at most 1:2 under 'n. Thus,

"=1:2 < 2injrad.'n.vn// D �n < 2:4";

and furthermore 'n.vn/ still lies on a �n-thin horospherical torus about the same
component � � †. Meanwhile, observe that 2injrad.wn/ is nearly equal to ", andwn
also lies on a horospherical torus about � � †. The diameter of each of those tori
is uniformly bounded, by the geometric limit .Wn; wn/! .Z; z/, while the distance
between the �n-thin and "-thin tori is uniformly bounded by [19, Proposition 1.4].
Thus, d.'n.vn/; wn/ is uniformly bounded. Hence Theorem 5.1 gives a J -bilipschitz
inclusion 'WY �" ,! Z�"=1:2.

The reverse inclusion  WZ�" ,! Y �"=1:2 is constructed in exactly the same way,
tracing points backwards to check the hypotheses of Theorem 5.1. The points vn
and  n.wn/ lie on equidistant tori in a tube about � � †, hence d.vn;  n.wn// is
uniformly bounded by [19, Proposition 5.7].

6.2. Extended and strengthened results. The above proof method can be used to
extend Brock and Bromberg’s Theorem 1.1 to all tame hyperbolic manifolds without
rank-1 cusps.
Theorem 6.5. Fix J > 1 and " > 0, where " is smaller than the Margulis constant "3.
Then there is a number `0 D `0."; J / > 0 such that the following holds for every
tame hyperbolic 3-manifold Y without rank-1 cusps. Suppose that † � Y is a
geodesic link, whose total length is less than `0. Then Y � † admits a hyperbolic
structure Z with the same end invariants as those of Y . Furthermore, the inclusion

�WZ ,! Y

restricts to a J -bilipschitz diffeomorphism on the complement of "-thin tubes about†.
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In contrast with Theorem 1.2, this result is not effective because the function
`0."; J / is not explicitly given. On the other hand, this result has the advantage that
J -bilipschitz control extends into the thin parts of Y and Z that do not correspond
to components of †.

For the following proof, it is helpful to consult the commutative square in Figure 1
with corners at Y , Vn, Wn, and Z.

Proof of Theorem 6.5. Fix " < "3, and recall from Section 2.1 that "3 < 1. One of
the first constraints in Brock and Bromberg’s proof of Theorem 1.1 is that `0 < ".

Let Y be a tame hyperbolic 3-manifold without rank-1 cusps. We may assume
that Y is geometrically infinite, as otherwise Theorem 1.1 already gives the desired
conclusion. Let † � Y be a geodesic link with len.†/ < `0 < ". Then Lemma 6.1
implies that Y � † admits a hyperbolic structure Z with the same invariants.
Theorem 6.2 constructs (type-preserving) geometric limits .Vn; vn/ ! .Y; y/ and
.Wn; wn/ ! .Z; z/, where Wn is obtained by drilling a geodesic link †n from Vn,
and where †n ! † in the geometric limit.

We introduce the following notation. Let Y <"† be the union of the "-thin Margulis
tubes about the components of†. This is a disjoint union, because len.†/ < " < "3.
LetZ<"† be the union of "-thin cusps inZ corresponding to components of†. Define
.Vn/

<"
† and .Wn/<"† similarly.

Since Vn is geometrically finite, and len.†n/ < `0 D `0."; J / for all sufficiently
large n, Theorem 1.1 says that the homeomorphism Vn � †n ! Wn induces a
J -bilipschitz diffeomorphism

'nWVn � .Vn/
<"
† ! Wn � .Wn/

<"
†

As in the proof of Theorem 1.2, the distance estimate [19, Proposition 1.4] ensures
that basepoints on equidistant tori about a component � � † do not escape under 'n.
Then Theorem 5.1 and Remark 5.4 imply that the J -bilipschitz maps 'n converge
(after passing to a subsequence) to the desired J -bilipschitz map

'WY � Y <"† ! Z �Z<"† :

We also discuss a quantitative strengthening of Theorem 1.2.
Remark 6.6. An astute reader will notice that the quantitative hypothesis on ` D
len.†/ in Theorem 1.2 differs from the hypothesis in Theorem 6.4 by a factor of 4.
This discrepancy occurs because we need to double-double the scooped manifold V ın
to obtain a finite-volume manifoldDD.V ın /. See equation (6.3), where the transition
from len.†/ to len.DD.†n// happens.

One may ask whether paying a factor of 4 is a necessary price in adapting finite-
volume results in the infinite-volume setting. We suspect that the factor of 4 can
probably be eliminated, at the cost of a different price: reexamining some of the
technical analytic estimates that were used to prove Theorem 6.4. Here are the two
most salient points.
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In the cone deformation theory of Hodgson and Kerckhoff [23,24], the length of
the geodesic link † is used to control the radius R of an embedded tube about †; in
turn, this tube radius is used to control almost all other quantities. (See the discussion
around Definition 8.1 for a more quantitative summary.) Hodgson and Kerckhoff
proved the original radius bound [24, Theorem 5.6], and we adapted their proof
in [20, Theorem 4.21]. The proof is essentially a packing argument. In the context
of the symmetric manifoldDD.V ın /, one should be able to adapt the argument to use
len.†n/ rather than len.DD.†n//, provided that the tubes in different copies of V ın
do not meet during the cone deformation. This can probably be ensured, because the
tubes stay in the core portion of V ın , whereas the circle-packing and scooping happen
deep into the ends.

Since the length of † and its cone angle ˛ both change throughout the cone
deformation, the change in length must itself be controlled. A key differential
inequality, proved in [24, Proposition 5.5 and p. 1079] and restated in [20,
Lemma 6.7], bounds the change in the ratio˛= len.†/ in terms of functions of the tube
radius R. This estimate does not scale correctly when we pass from V ın toDD.V ın /,
because the length gets quadrupled but the radius stays the same. Thus, removing
the factor of 4 would also require adapting the proof of [24, Proposition 5.5] to work
directly in V ın , thought of as a hyperbolic orbifold with mirrored boundary. This can
be done, because the proof of [24, Proposition 5.5] is essentially an application of
the Cauchy–Schwartz inequality.

Provided the above technical points are addressed, the rest of the estimates
from [20] should go through unchanged, with len.†/ in place of len.DD.†n//.

7. The effective filling theorem

In this section, we prove Theorem 1.3, giving effective bilipschitz bounds on Dehn
fillings of tame hyperbolic 3-manifolds. The proof follows the same two-step
process as in the previous section. The first step, Theorem 7.2, is an analogue
of Theorem 6.2. It uses a number of results from Kleinian groups to approximate
both the drilled and filled manifolds with sequences of geometrically finite manifolds
whose conformal boundaries admit a circle packing. See Figure 2 for a visual
preview. The second step uses the sequences constructed in Theorem 7.2, together
with a finite-volume bilipschitz theorem (Theorem 7.4, proved in [20]), to complete
the proof of Theorem 1.3.

The first step can be summarized by the following theorem, which is analogous
to Theorem 1.6, but in the filling rather than drilling case.
Theorem 7.1. Let Z be a tame, infinite-volume hyperbolic 3-manifold with a fixed
collection of rank-2 cusps, and with fixed slopes on those cusps of total normalized
length at least L2 � 230:1. Then the Dehn filling of Z along those slopes is a
tame manifold that admits a hyperbolic metric Y with the same end invariants as
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those of Z, and a geodesic link † � Y such that Z is homeomorphic to Y � †.
Furthermore, there is a sequence of finite-volume approximating manifoldsDD.W ın /
and DD.V ın / with the following properties:

(1) The manifold DD.V ın / contains a geodesic link DD.†n/, consisting of four
isometric copies of a link †n, such that

DD.W ın / D DD.V
ı
n / �DD.†n/:

(2) For any choice of basepoints y 2 Y and z 2 Z, there are basepoints in the
approximating manifolds such that

.DD.V ın /; vn/! .Y; y/ and .DD.W ın /; wn/! .Z; z/

are geometric limits.

(3) In the geometric limit .DD.V ın /; vn/! .Y; y/, we have †n ! †.

Indeed, Theorem 7.1 is an immediate consequence of the following more detailed
result.

Theorem 7.2. LetM be a compact 3-manifold, and P � @M a collection of annuli
and tori. Let † � M be a smooth link with regular neighborhood N .†/. Suppose
that .M � N .†/; P [ @N .†// is a pared manifold that admits an infinite-volume
hyperbolic structureZ, uniformized by a representation � , where the total normalized
length of the meridians of † satisfies L2 � 230:1.

Then .M;P / is a pared manifold that admits a hyperbolic structure Y ,
uniformized by a representation � 2 AH.M;P /, with the same end invariants as
those ofZ. Furthermore, there exist approximating sequences such that the following
hold for all n� 0:

(1) There is a geometrically finite, minimally parabolic representation �n 2

AH.M �N .†/; P [ @N .†//, such that the 3-manifold

Wn D H3=�n.�1.M �†//

has conformal boundary admitting a circle packing Cn. Furthermore, �n ! �

is a strong limit.

(2) For every z 2 Z, there is a choice of basepoints wn 2 W ın , such that .W ın ; wn/
converges geometrically to .Z; z/.

(3) There is a geometrically finite, minimally parabolic representation�n2AH.M;P /
such that the associated hyperbolic 3-manifold Vn has end invariants that are
identical to those of Wn. In particular, the conformal boundary of Vn admits
the same circle packing Cn. Furthermore, † � M is isotopic to a geodesic link
†n � V

ı
n .
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Y

DD.V ın / V ın Vn Yn

Z

DD.W ın / W ın Wn Zn

geom limit approximation thm

fillisometric inclusion isometric inclusion
<ın

circle pack

geom limit strong density

isometric inclusion

finite vol fill

isometric inclusion

fill

<ın

circle pack

fill fill

Figure 2. The manifolds appearing in the statement and proof of Theorem 7.2. Hooked horiz-
ontal arrows represent isometric inclusions. Dashed horizontal lines represent a small quasi-
conformal deformation that produces a circle-packed manifold. Vertical arrows represent Dehn
filling. Solid diagonal arrows represent strong limits. Dashed diagonal arrows represent geom-
etric limits only.

(4) For every y 2 Y , there is a choice of basepoints vn 2 V ın , such that .V ın ; vn/
converges geometrically to .Y; y/. In the geometric limit, we have †n ! †1,
where †1 � Y is a geodesic link isotopic to †. Furthermore, there is a strong
limit �n ! �, where � 2 AH.M;P / is a representation associated to Y .

(5) The operations of filling and double-doubling commute. That is:

DD.V ın / �DD.†n/ Š DD.W
ı
n /:

(6) The manifolds Y and Z are geometric limits of finite-volume hyperbolic
manifolds, as follows:

.DD.V ın /; vn/! .Y; y/ and .DD.W ın /; wn/! .Z; z/:

See Figure 2 for a visual summary of the theorem.

Proof. The proof is very similar to the proof of Theorem 6.2, with the notable
difference that drilling is replaced by filling. This change of direction means that
some more work is required to ensure that the filled manifolds are hyperbolic and
contain geodesic links representing †.

We begin by verifying the existence of a hyperbolic manifold Y with pared
manifold .M;P / and the same end invariants as those of Z. Let H1; : : : ;Hk be
disjoint horocusps in Z about the components �1; : : : ; �k of †. By a theorem of
Meyerhoff [30, Section 5], the Hi can be chosen so that area.@Hi / �

p
3=2 for

every i . Let si be a Euclidean geodesic on @Hi representing the meridian of �i .
Let Li D len.si /=

p
area.@Hi / be the normalized length of si , and L D L.s/ the
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total normalized length of s D .s1; : : : ; sk/. Thus, our hypothesis L.s/2 � 230:1

combined with (1.1) implies

1

230:1
�

1

L.s/2
�

1

L.si /2
D

area.@Hi /
len.si /2

�

p
3=2

len.si /2
; (7.1)

hence len.si / > 14 for each i . Consequently, Theorem 3.1 tells us that .M;P / is
a pared manifold that admits a hyperbolic structure Y with end invariants matching
those of Z.

Starting from Z, we apply strong density, Theorem 2.12, to find a sequence of
geometrically finite, minimally parabolic representations

�n 2 AH.M �N .†/; P [ @N .†//;

such that �n ! � is a strong limit. The end invariants of the associated hyperbolic
manifolds Zn form a filling sequence, converging to the end invariants of Z. The
Kleinian groups�n associated toZn converge (both geometrically and algebraically)
to the Kleinian group � associated to Z. In particular, we have �n ! � in the
Chabauty topology. We also choose an open neighborhood system Qn about Œ��,
such that Œ�n� 2 Qn.

For each n, we choose a positive constant ın such that lim ın D 0 and several
more constraints (specified below) are all satisfied. For each n, Brooks’ Theorem 2.15
says that there is a geometrically finite Kleinian group �n;ın

representing an eın-
quasiconformal deformation of �n, and such that the conformal boundary of �n;ın

admits a circle packing. By picking ın small enough, we ensure that

dChaub.�n;ın
; �n/ < 2

�n:

Picking ın small enough also ensures that the associated representation �n satisfies
Œ�n�2Qn. These choices imply that �n!� is a strong limit. We letWnDH3=�n;ın

.
Next, we fill in the meridians of † to recover the pared manifold .M;P /. We

obtain three sets of hyperbolic structures on .M;P /:
� A hyperbolic structure Y , whose end invariants agree with those of Z.
� A hyperbolic structure Yn, whose end invariants agree with to those of Zn.
� A hyperbolic structure Vn, whose end invariants agree with those of Wn.
Since .M;P / is a pared manifold, Theorem 2.6 says there is also a geometrically finite,
minimally parabolic representation �0 2 AH.M;P /. The hyperbolic structures Yn
and Vn, represented by �n 2 QH.�0/ and �n 2 QH.�0/, respectively, exist by
Theorem 2.7.

By construction, the conformal boundary of Vn is an eın-quasiconformal
deformation of the conformal boundary of Yn. Thus, the distance in T .@0M/

between the conformal boundaries of those manifolds is at most ın. By choosing ın
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small enough, we ensure that Yn and Vn are represented by Kleinian groups �n
and �n;ın

, respectively, such that

dChaub.�n;ın
; �n/ < 2

�n:

We also ensure that, for a neighborhood system fOng about Œ��, we have �n 2 Om.n/
whenever � ¤ �n 2 Om.n/, and �n 2 On whenever �n D �. This completes the list
of conditions that ın needs to satisfy.

Now, we check the conclusions of the proposition. Conclusion (1) holds by
construction, because we have chosen �n;ın

so that the conformal boundary of
Wn D H3=�n;ın

admits a circle packing Cn, and because we have chosen ın small
enough to ensure �n ! � is a strong limit.

For conclusion (2), recall that we have already checked that �n;ın
! � in

the Chabauty topology. Thus, for every basepoint z 2 Z, there exist basepoints
wn 2 Wn such that .Wn; wn/ ! .Z; z/. For any fixed radius, the ball BR.wn/
will lie in the scooped manifold W ın when n � 0, hence the sequence of scooped
manifolds .W ın ; wn/ also converges geometrically to .Z; z/.

We will prove conclusions (3) and (5) together. Observe that since the conformal
boundary of Vn agrees with that of Wn, it also admits the same circle packing Cn.
Thus, we may double-double the scooped manifolds V ın and W ın to obtain finite-
volume manifolds DD.V ın / and DD.W ın /, respectively. The scooped manifold W ın
contains a tuple of slopes sn D .sn1 ; : : : ; s

n
k
/ corresponding to the meridians of †,

with the property that L.sni / ! L.si / in the geometric limit .W ın ; wn/ ! .Z; z/.
Thus, for n � 0, we have L.sn/2 > 230:08. Thus, the finite-volume manifold
DD.W ın / contains a tuple of slopesDD.sn/, containing four copies of each meridian
of†. The definition of normalized length in (1.1) implies that for all n� 0, we have

1

L.DD.sn//2
D

4

L.sn/2
<

4

230:08
D

1

57:52
;

and hence
L.DD.sn// >

p
57:52 > 7:584: (7.2)

Consequently, a theorem of Hodgson and Kerckhoff [24, Theorem 1.2], implies
that Dehn filling DD.W ın / along the tuple of slopes DD.sn/ produces a hyperbolic
manifold Un, where the union of cores of the Dehn filling solid tori is a geodesic
link ‡n. By [24, Corollary 5.13], the total length of ‡n is less than 0:16.

Now, recall that each Vn is homeomorphic to M , and contains a smoothly
embedded copy of †, such that Wn is homeomorphic to Vn � †. After an isotopy,
we may assume that the embedded copy of † lies in V ın , hence DD.V ın / contains
the double-doubled link DD.†/. Since @V ın and @W ın contain exactly the same
pattern of red and blue faces, the double-doubling construction shows thatDD.W ın /
is homeomorphic to DD.V ın / �DD.†/ by a homeomorphism that carries DD.sn/
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to the tuple of meridians of DD.†/. The above homeomorphism extends to a
homeomorphism of pairs

.Un; ‡n/! .DD.V ın /;DD.†//:

Since DD.V ın / is Haken, Waldhausen’s topological rigidity theorem [39, Theo-
rem 7.1] implies that DD.†/ is isotopic to the geodesic link ‡n. The components
of ‡n that lie in the original copy of V ın form a geodesic link †n, with the property
that

DD.V ın / �DD.†n/ Š DD.V
ı
n �†n/ Š DD.W

ı
n /;

proving (3) and (5). We note that len.†n/ D len.‡n/=4 < 0:04.
Conclusion (4) is established exactly as in Theorem 6.2. By construction, the

end invariants of Yn agree with those of Zn. Thus, those end invariants form a
filling sequence that limits to the end invariants of Y . Thus, by the approximation
Theorem 2.13, the representations �n associated to Yn converge strongly (after a
subsequence) to a representation of a hyperbolic manifold homeomorphic to Y and
having the same end invariants as Y . By the ending lamination Theorem 2.5, we have
a strong limit �n ! � for a representation � associated to Y . In particular, �n ! �

in the Chabauty topology and Œ�n� 2 Om.n/ for a sequence m.n/!1.
By our choice of ın, we have a Chabauty limit �n;ın

! � and Œ�n� 2 Om.n/ for
the same sequence m.n/, hence �n ! � is a strong limit. As above, we can fix a
basepoint y 2 Y and then find basepoints vn 2 Vn, which lie in V ın for n� 0, such
that .V ın ; vn/ converges geometrically to .Y; y/. Since �n ! � is a strong limit, and
len.†n/ < 0:04 for all n� 0, Proposition 4.1 says that †n ! †1 � Y , a geodesic
link isotopic to †.

Finally, conclusion (6) is a corollary of (2) and (4).

Remark 7.3. If the end invariants of Y (equivalently, the end invariants of Z) are
geometrically finite, the preceding proof becomes considerably more lightweight.
In this case, one can take constant sequences Yn D N and Zn D Z. Thus,
as in Remark 6.3, the hyperbolization, strong density, ending lamination, and
approximation theorems become unnecessary. Thus, in the geometrically finite case,
the only tools required in the proof are Theorem 2.7 and Brooks’ Theorem 2.15.

Next, we record a finite-volume version of Theorem 1.3, with some additional
information. The following result is [20, Corollary 9.34]. As in Remark 6.6, the
hypotheses of Theorem 7.4 differ from those of Theorem 1.3 by a factor of 4.
Theorem 7.4 (Effective filling in finite volume, [20]). Fix any 0 < " � log 3 and
any J > 1. Let M be a 3-manifold with empty or toroidal boundary, and † a link
in M . Suppose that M � † admits a complete, finite-volume hyperbolic metric W ,
in which the total normalized length of the meridians of † satisfies

L2 � max
�
2� � 6771 cosh5.0:6"C 0:1475/

"5
C 11:7;

2� � 11:35

"5=2 log.J /
C 11:7

�
:
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Then M has a hyperbolic metric V , in which † a geodesic link. Furthermore, there
are canonical J -bilipschitz inclusions

'WV �" ,! W �"=1:2;  WW �" ,! V �"=1:2;

which are equivariant with respect to the symmetry group of the pair .M;†/.
We can now use Theorems 7.2 and 7.4 to prove Theorem 1.3. The proof involves

chasing the left half of the diagram in Figure 2. Starting from the hyperbolic
structureZ on the complement of†, we will consider a circle-packed approximating
manifold Wn, the finite-volume manifold DD.W ın /, its filling DD.V ın /, and the
scooped submanifold V ın that approximates Y .

Proof of Theorem 1.3. Let M be a tame 3-manifold and † � M a link such that
M �† admits a hyperbolic structureZ. If vol.Z/ <1, then the desired conclusion
is covered by Theorem 7.4, substituting V D Y and W D Z. For the rest of the
proof, we assume vol.Z/ D1.

Let s D .s1; : : : ; sk/ be a tuple of slopes on the cusps of Z, with one slope for
the meridian of each component of †. We may think of each si as a slope on a torus
of N .†/. Recall our hypothesis on the total normalized length of the meridians:

L.s/2 > 4max
�
2� � 6771 cosh5.0:6"C 0:1475/

"5
C 11:7;

2� � 11:35

"5=2 log.J /
C 11:7

�
:

(7.3)
Since " � log 3, and since cosh5.x/ � 1 for any x, hypothesis (7.3) is considerably
stronger than the normalized length hypothesis of Theorem 7.2. Thus, Y D Z.s/ is
a hyperbolic structure on M with the same end invariants as those of Z.

Fix a basepoint z 2 Z so that " D 2injrad.z/, and furthermore z lies on an
embedded, "-thick horotorus T �.�/ about the first component � � †. Such a choice
of z 2 Z�" is possible because " is a Margulis number for Z by Theorem 2.2; hence
the thick part Z>" is non-empty.

Let Vn and Wn be the sequences of geometrically finite manifolds constructed in
Theorem 7.2. In particular, the conformal boundaries of each Vn and eachWn admit
the same circle packingCn. LetV ın � Vn andW ın � Wn be the scooped submanifolds
defined by Cn, as in Definition 2.16. We also have strong limits �n ! � and �n ! �,
as described in Theorem 7.2.

By Theorem 7.2, each approximating manifoldWn has pared manifold .M�N .†/;

P [ @N .†//. Thus, each Wn has a rank-2 horocusp Hn
i corresponding to each

component �i � †, with meridian slope sni . We may assume Hn
i � W ın , after

shrinking the horocusp as needed. For each i , the normalized lengthL.sni / converges
to the normalized length L.si / measured in Z. Write sn D .sn1 ; : : : ; snk / for the tuple
of slopes inWn representing the meridians of†. SinceL.sni /! L.si / as n!1, it
follows that for n� 0, the total normalized length L.sn/ must also satisfy the lower
bound (7.3).
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After doubling W ın twice, as in Definition 2.16, we obtain a finite-volume
hyperbolic manifold DD.W ın /. This manifold contains the disjoint union of four
isometric copies ofHn

i for each i . Then the tuple of slopes sn is also double-doubled
to become a tuple of slopes DD.sn/ on the cusps of DD.W ın /. Because each
slope sni appears four times in DD.sn/, the total normalized length of the meridians
of DD.Hn/ satisfies

L2 > max
�
2� � 6771 cosh5.0:6"C 0:1475/

"5
C 11:7;

2� � 11:35

"5=2 log.J /
C 11:7

�
:

Thus, for n� 0, Theorem 7.4 enables us to fillDD.W ın / along the tuple of meridians
of sn and obtain a hyperbolic 3-manifold Un, in which the union of cores of the filled
solid tori is a geodesic link ‡n. By Theorem 7.2, we have Un D DD.V ın / and
‡n D DD.†n/ for a geodesic link †n � V ın .

Now, Theorem 7.4 says that there are J -bilipschitz inclusions

'nWU
�"
n ! DD.W ın /

�"=1:2;  nWDD.W
ı
n /
�"
! U�"=1:2n ;

which are equivariant with respect to the Z2 � Z2 group of symmetries of the pair
.Un; ‡n/. Since .V ın ; †n/ is a fundamental domain for this group action, 'n and  n
restrict to J -bilipschitz inclusions

'nW .V
ı
n /
�"
! .W ın /

�"=1:2;  nWDD.W
ı
n /
�"
! .V ın /

�"=1:2:

By Theorem 7.2, the geodesic links †n � V ın converge to a geodesic link †1 � Y ,
isotopic to †. After performing this isotopy, we may suppose that † � Y is a
geodesic link.

In preparation for Theorem 5.1, we choose appropriate basepoints for our
geometric limits. Recall that we have picked a component � � †, and chosen a
basepoint z 2 Z so that

2injrad.z/ D ";

and furthermore z lies on an embedded "-thick horotorus T ".�/. In a similar fashion,
we choose a basepoint y 2 Y so that

2injrad.y/ D � 2 ."; 2"/;

and furthermore y lies on an embedded, �-thick equidistant torus T �.�/ about the
same component � � †. Such a choice of y 2 Y >" is possible because " is a
Margulis number for N ; hence the thick part N>" is non-empty.

Theorem 7.2 says that for n� 0, there exist choices of basepoints vn 2 V ın and
wn 2 W

ı
n , such that .V ın ; vn/ ! .Y; y/ and .W ın ; wn/ ! .Z; z/. The convergence

of injectivity radii in a geometric limit implies that 2injrad.vn/ 2 ."; 2"/ for large n.
Similarly, 2injrad.wn/! " as n!1.
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We are now ready to construct the J -bilipschitz inclusion 'WY �" ,! Z�"=1:2,
using Theorem 5.1. We have geometrically convergent sequences .V ın ; vn/! .Y; y/

and .Wn; wn/! .Z; z/. We have y 2 Y >" and vn 2 .V ın /�" for large n, as required.
For large n, we have a J -bilipschitz inclusion

'nW .V
ı
n /
�"
! .W ın /

�"=1:2:

Furthermore, d.'n.vn/; wn/ is uniformly bounded, by exactly the same argument as
in the end of the proof of Theorem 1.2. (Essentially, this follows because injectivity
radii are well-behaved under both geometric limits and bilipschitz maps.) Thus,
Theorem 5.1 gives a J -bilipschitz inclusion 'WY �" ,! Z�"=1:2.

The reverse inclusion  WZ�" ,! Y �"=1:2 is constructed in exactly the same way,
tracing points backwards to check the hypotheses of Theorem 5.1.

8. Short geodesics in infinite-volume manifolds

The main results of this section are Theorem 8.5 and Theorem 8.7, which bound the
change in complex length of a short geodesic under drilling and filling, respectively.
Corollaries of those results include Theorem 1.5 and Corollary 8.9, where the
functions that estimate the change in complex length are replaced by constants.

As in Section 6, the proof of Theorem 8.5 combines an approximation result
(Theorem 6.2) with a previously proved theorem that works in finite volume
(Theorem 8.6). Similarly, the proof of Theorem 8.7 combines an approximation
result (Theorem 7.2) with a finite-volume theorem (Theorem 8.8).

To set up our results, we need to define the functions that will estimate the change
in length.

Definition 8.1. Let z0 D
pp

5 � 2 D 0:5306 : : : : For z 2 Œz0; 1�, define a function

haze.z/ D 3:3957
z.1 � z2/

1C z2
:

By a derivative computation, the function haze.z/ is decreasing and invertible in this
domain. Using Cardano’s formula, the inverse function haze�1 can be expressed as
follows:

haze�1.3:3957x/ D
2
p
x2 C 3

3
cos
�
�

3
C
1

3
tan�1

�
�3
p
�3x4 � 33x2 C 3

x3 C 18x

��
�
x

3
:

Note that haze�1 is defined and monotonically decreasing on Œ0; 1:0196�. Com-
pare [20, Remark 4.23].

Here is the geometric meaning of haze and haze�1. If .N;†; gt / is a hyperbolic
cone manifold whose singular locus † has angle ˛ 2 Œ0; 2��, the visual area of † is
defined to be

A.†/ D ˛ len.†/:
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Hodgson and Kerckhoff showed that under appropriate hypotheses, there is an
embedded tube about † of radius

R � arctanh.haze�1.A.†///:

See [23, Theorem 5.6] and [20, Corollary 4.25] for details. In turn, the radius of this
tube is used to control a number of geometric quantities through the cone deformation
[20, Sections 5–7]. One of those quantities is the complex length of a non-singular
closed geodesic, which we seek to control here.
Definition 8.2. Let 
 be a closed geodesic in a hyperbolic 3-manifold N . Then 

corresponds to a loxodromic isometry ' D '.
/ 2 IsomC.H3/. This loxodromic
isometry ' has an invariant axis in H3, which it translates by distance len.
/ and
rotates by angle �.
/. We define the complex length

LN .
/ D L.
/ D len.
/C i�.
/:

Observe that iL.
/ lies in the upper half-plane of C, which we identify with the
hyperbolic plane H2.

Given two complex lengths LY .
/, LZ.ı/, we define the hyperbolic distance
between them to be

dhyp.LY .
/;LZ.ı// D dH2.iLY .
/; iLZ.ı//:

This is closely related to distance in the Teichmüller space of the torus, which is
isometric to H2. See Minsky [31, Section 6.2] for details.

The hyperbolic distance between lengths can be translated into a bound on the real
and imaginary parts of length. The following elementary lemma is [20, Lemma 7.14].
Lemma 8.3. Let LY .
/ and LZ.ı/ be complex lengths. Suppose that

dhyp.LY .
/;LZ.ı// � K

for some K > 0. Then the real and imaginary parts of LY .
/ and LZ.ı/ are
bounded as follows:

e�K �
lenZ.ı/
lenY .
/

� eK ; j�Z.ı/ � �Y .
/j � sinh.K/ �minflenY .
/; lenz.ı/g:

Finally, given a filled manifold Y and a drilled manifold Z, we control the
hyperbolic distance dhyp.LY .
/; LZ.
// via the following function.
Definition 8.4. For z 2 Œz0; 1� and ` 2 .0; 0:5085�, define a function

F.z; `/ D
.1C z2/

z3.3 � z2/
�

`

10:667 � 20:977`
:

Note that F is positive everywhere on its domain, decreasing in z, and increasing
in `. Compare [20, Definition 7.2].
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8.1. Short geodesics under drilling. The first main result of this section controls
the complex length of a short geodesic 
 under the drilling of a geodesic link †. In
the next theorem, ` D lenY .†/ is the length of the geodesic link that we wish to drill,
m D lenY .
/ is the length of the geodesic that we wish to control, and

z D zmin D tanhRmin;

where Rmin is the minimum radius of an embedded tube about †C D † [ 
 . Then
the function F.z; `/ controls the change in the complex length L.
/. We will not
compute Rmin or zmin directly; we will merely estimate zmin as a function of ` andm.

Theorem 8.5. Let Y be a tame hyperbolic 3-manifold. Let † be a geodesic link
in Y , and 
 a closed geodesic disjoint from †. Let ` D lenY .†/ and m D lenY .
/
be the lengths of † and 
 in the complete metric on Y . Suppose ` < 0:018375 and
m < 0:0996 � 1:408 � `. Let

zmin D haze�1.2�.4`CmC 10�5//:

Then Y �† also admits a complete hyperbolic metricZ, with the same end invariants
as those ofY . The closed curve 
 is isotopic to a geodesic in this metric. Furthermore,
the complex lengths of 
 in Y and Z are related as follows:

dhyp.LY .
/;LZ.
// � 4�
2 F.zmin; 4`/:

The proof of Theorem 8.5 relies on the following finite-volume analogue [20,
Theorem 7.19].

Theorem 8.6 (Short geodesics under drilling, [20]). Let V be a complete, finite
volume hyperbolic 3-manifold. Let † be a geodesic link in V , and 
 a closed
geodesic disjoint from †. Let ` D lenV .†/ and m D lenV .
/ be the lengths of †
and 
 in the complete metric on V . Suppose ` � 0:0735 andm � 0:0996�0:352 � `.
Let

z0min D haze�1.2�.`CmC 10�5// > 0:6288:

Then V �† also admits a complete hyperbolic metricW , in which 
 is again isotopic
to a geodesic. Furthermore, the complex lengths of 
 in V and W are related as
follows:

dhyp.LV .
/;LW .
// � 4�
2 F.z0min; `/:

Proof of Theorem 8.5. If vol.Y / <1, the desired result already follows from Theo-
rem 8.6. (Although the definition of z0min in Theorem 8.6 differs from the definition
of zmin in Theorem 8.5, the monotonicity of haze�1 implies that z0min > zmin. Then, the
monotonicity of F ensures that the conclusion of Theorem 8.6 still applies with zmin
in place of z0min and 4` in place of `.) For the rest of the proof, we assume that
vol.Y / D1.
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We will apply Theorem 6.2. Let Vn and Wn be the sequences of geometrically
finite manifolds constructed in that theorem. Let Z be the hyperbolic manifold
homeomorphic to Y � †, with the same end invariants as those of Y . Then, by
Theorem 6.2, the conformal boundaries of each Vn and each Wn admit the same
circle packing Cn. That theorem also guarantees a strong limit �n ! � (where �n is
the representation corresponding to Wn and � corresponds to Y ) and a strong limit
�i ! � (where �n is the representation corresponding toWn and � corresponds toZ).

Now, let 
 � Y be a closed geodesic satisfying the length bound of the theorem.
By Meyerhoff’s theorem [30, Section 7], we have


 \† D ;;

hence†C D †[
 is a geodesic link where each component is shorter than 0:1. Then
Proposition 4.1 implies that for n � 0, the approximating manifold Vn contains a
geodesic link†Cn D †n[
n, where the sequence f†Cn g converges to†C as n!1.
In particular, setting

`n D lenVn
.†n/ and mn D lenVn

.
n/;

we have `n ! ` and mn ! m. Consequently, for all n� 0, we have

`n � 0:018375 and mn � 0:0996 � 1:408 � `n:

For every n where †Cn is defined, we have †Cn � CC.Vn/ � V ın . Thus, for all
n� 0, the double-doubleDD.V ın / contains the double-doubleDD.†n/, a geodesic
link of total length 4`n � 0:0735. Furthermore, by construction, we have

mn � 0:0996 � 1:408 � `n D 0:0996 � 0:352 � 4`n:

Thus, DD.V ın / satisfies the hypotheses of Theorem 8.6. Combining that result with
Theorem 6.2, we may drill the link DD.†n/ and obtain a cusped hyperbolic 3-
manifold DD.W ın / D DD.V ın / � DD.†n/ containing a closed geodesic isotopic
to 
n. Furthermore, Theorem 8.6 gives

dhyp.LDD.V ı
n /
.
n/;LDD.W ı

n /
.
n// � 4�

2 F.znmin; 4`n/;

where
znmin D haze�1.2�.4`n Cmn C 10�5//:

Observe that the isotopy class of 
n in V ın �†n contains a representative disjoint
from the scooped boundary (the red and blue faces). Thus, the closed geodesic 
n in
the hyperbolic metric onDD.W ın / D DD.V ın /�DD.†n/must be disjoint from the
red and blue totally geodesic surfaces that partition the four copies of the fundamental
domains W ın . In short, we may take 
n to be a closed geodesic in W ın . Thus, by the
above displayed equation, we also have

dhyp.LVn
.
n/;LWn

.
n// � 4�
2F.znmin; 4`n/: (8.1)
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Observe that

lim
n!1

znmin D lim
n!1

haze�1.2�.4`n Cmn C 10�5//

D haze�1.2�.4`CmC 10�5// D zmin:

Since znmin � 0:6288 by Theorem 8.6, we can substitute F.znmin; 4`n/ � 0:0174

in (8.1), hence Lemma 8.3 implies lenWn
.
n/ < 2mn < 0:2.

Now, recall the strong limit �n ! � . The closed geodesics 
n � Wn have length
universally bounded by a constant less than log 3, hence Proposition 4.1, says that

n � Wn converge to a closed geodesic 
 � Z in the geometric limit. In particular,
LWn

.
n/! LZ.
/. Taking limits of the bound in (8.1) as n!1 gives

dhyp.LY .
/; LZ.
// � 4�
2 F.zmin; 4`/;

as desired.

We can now derive Theorem 1.5, which was stated in the introduction.

Proof of Theorem 1.5. Let ` D lenY .†/ andm D lenY .
/, and assume maxf4`;mg
< 0:0735. This hypothesis implies ` < 0:018375, and thus mC 1:408` < 0:0996,
hence the hypotheses of Theorem 8.5 are satisfied. By Lemma 6.1, Y �† admits a
hyperbolic metricZ, with the same end invariants. In addition, the above hypothesis
on ` and m, combined with the monotonicity of haze�1, implies

zmin D haze�1.2�.4`CmC 10�5// � 0:6299:

Now, Theorem 8.5 gives

dhyp.LY .
/; LZ.
// � 4�
2F.zmin; 4`/ � 4�

2F.0:6299; 0:0735/ � 0:6827;

where the second inequality uses the monotonicity of F and the third inequality
comes from evaluating Definition 8.4. Finally, Lemma 8.3 gives

1:9793�1 �
lenZ.
/
lenY .
/

� 1:9793 and j�Z.
/ � �Y .
/j � 0:05417:

8.2. Short geodesics under filling. Next, we turn our attention to bounding the
length of a short geodesic under filling rather than drilling. The following result is
the filling analogue of Theorem 8.5.
Theorem 8.7. Let V be a tame, hyperbolic 3-manifold and † a geodesic link in V .
Suppose that V �† admits a hyperbolic structureW with the same end invariants as
those of V , such that the total normalized length of the meridians of † inW satisfies
L2 > 512. Let 
 � W be a closed geodesic of lengthm D lenW .
/ < 0:056. Define

zmin D haze�1
�

.2�/2

.L=2/2 � 14:7
C 2� � 1:656m

�
:
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Then 
 is isotopic to a closed geodesic in V . Furthermore, the complex lengths of 

in V and W are related as follows:

dhyp.LV .
/;LW .
// � 4�
2 F

�
zmin;

2�

.L=2/2 � 14:7

�
:

Just as with the drilling argument, the proof of Theorem 8.7 relies on the following
finite-volume analogue [20, Theorem 7.21].
Theorem 8.8 (Short geodesics under filling, [20]). Let Y be a complete, finite-volume
hyperbolic 3-manifold and † a geodesic link in Y . Suppose that Y � † admits a
hyperbolic structure Z, such that the total normalized length of the meridians of †
in Z satisfies L2 � 128. Let 
 � Z be a closed geodesic of length m D lenZ.
/ �
0:056. Define

z0min D haze�1
�

.2�/2

L2 � 14:7
C 2� � 1:656m

�
> 0:624:

Then 
 is isotopic to a closed geodesic in Y . Furthermore, the complex lengths of 

in Y and Z are related as follows:

dhyp.LY .
/;LZ.
// � 4�
2 F

�
z0min;

2�

L2 � 14:7

�
:

Proof of Theorem 8.7. If vol.Y / < 1, the desired result already follows from The-
orem 8.8. (Although the definition of z0min in Theorem 8.8 differs from the definition
of zmin in Theorem 8.7, the monotonicity of haze�1 andF ensures that the conclusion
of Theorem 8.6 still applies with .L=2/2 in place of L2.) For the rest of the proof,
we assume that vol.Y / D1.

Let Vn and Wn be the sequences of geometrically finite manifolds constructed in
Theorem 6.2. By that theorem, the conformal boundaries of each Vn and each Wn
admit the same circle packing Cn. Furthermore, there is a strong limit �n ! �

(where �n is the representation corresponding to Vn and � corresponds to Y ) and
a strong limit �i ! � (where �n is the representation corresponding to Wn and �
corresponds to Z).

Let 
 � Z be a closed geodesic satisfying the length bound of the theorem.
Then Proposition 4.1 implies that for n � 0, the approximating manifold Wn
contains a closed geodesic 
n, where the sequence f
ng converges to 
 as n ! 1.
Consequently, LWn

.
n/! LZ.
/. In particular, for all n� 0, we have

mn D lenWn
.
n/ � 0:056:

Let s be the tuple of slopes inZ corresponding to the meridians of†, and let sn be
the tuple of slopes inWn corresponding to the meridians of †. Then, as in the proof
of Theorem 7.2, we have L.sn/ ! L.s/ > 512 as n ! 1. In the double-doubled
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manifoldDD.W ın /, we obtain a tuple of slopesDD.sn/, where each coordinate of sn
appears four times, once per copy of W ın . Thus, just as in (7.2), we get

1

L.DD.sn//2
D

4

L.sn/2
�

4

512
D

1

128
;

where the inequality holds for n � 0. Thus, DD.W ın / satisfies the hypotheses of
Theorem 8.8. By Theorem 7.2, filling DD.W ın / along the tuple of slopes DD.sn/
produces the finite-volume hyperbolic manifold DD.V ın /.

By Theorem 8.8, the closed geodesic 
n � DD.W ın / is isotopic to a geodesic in
the filled manifold DD.V ın /. Furthermore, since 
n can be isotoped to be disjoint
from the red and blue totally geodesic surfaces that partition the copies of V ın , the
geodesic representative of 
n must be entirely contained in one copy of V ın . Applying
Theorem 8.8 to DD.W ın / and DD.V ın /, we obtain

dhyp.LV ı
n
.
n/;LW ı

n
.
n// � 4�

2F

�
znmin;

2�

.L.sn/=2/2 � 14:7

�
;

where

znmin D haze�1
�

.2�/2

L.DD.sn//2 � 14:7
C 2� � 1:656mn

�
D haze�1

�
.2�/2

.L.sn/=2/2 � 14:7
C 2� � 1:656mn

�
:

Since we are using Theorem 8.8 with znmin� 0:624 and .L.sn/=2/2 � 14:7�113:3,
we can substitute F.0:642; 2�=113:3/ � 0:128 in the above bound on complex
length. Thus, Lemma 8.3 implies lenVn

.
n/ < 1:66mn < 0:1, enabling us to apply
Proposition 4.1.

Now, recall the strong limit �n ! �. By Proposition 4.1, the geodesics 
n � Vn
converge to a geodesic 
 � Y . In particular, LVn

.
n/ ! LY .
/. Taking limits of
the above bound on dhyp.LV ı

n
.
n/; LW ı

n
.
n//, we have

dhyp.LY .
/;LZ.
// � 4�
2F

�
zmin;

2�

.L.sn/=2/2 � 14:7

�
;

as desired.

As a corollary of Theorem 8.7, we obtain
Corollary 8.9. Let Y be a tame hyperbolic 3-manifold and † a geodesic link in Y .
Suppose that Y �† admits a hyperbolic structureZ with the same end invariants as
those of Y , and such that the total normalized length of the meridians of † satisfies
L2 > 512. Let 
 � Z be a closed geodesic of complex length lenZ.
/ C i�Z.
/,
with lenZ.
/ < 0:056. Then 
 is isotopic to a closed geodesic in Y , and furthermore

1:657�1 �
lenZ.
/
lenY .
/

� 1:657 and j�Z.
/ � �Y .
/j � 0:0295:
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Proof. The hypotheses of this corollary match those of Theorem 8.7. The assump-
tion L2 > 512 is equivalent to .L=2/2 � 14:7 � 113:3, hence

zmin D haze�1
�

.2�/2

.L=2/2 � 14:7
C 2� � 1:656m

�
� haze�1

�
.2�/2

113:3
C 2� � 1:656 � 0:056

�
� 0:624:

Plugging z D zmin � 0:624 and ` D 2�=..L=2/2 � 14:7/ � 2�=113:3 into
Theorem 8.7, we obtain

dhyp.LY .
/;LZ.
// � 4�
2F.z; `/ � 4�2F

�
0:624;

2�

113:3

�
� 0:5045;

where the second inequality uses the monotonicity of F and the third inequality
comes from evaluating Definition 8.4. Finally, Lemma 8.3 converts the bound on
dhyp.LY .
/; LZ.
// into the desired upper bounds on the distance between the real
and imaginary parts of LY .
/ and LZ.
/.
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