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Fourier non-uniqueness sets from totally real number fields

Danylo Radchenko and Martin Stoller

Abstract. LetK be a totally real number field of degree n � 2. The inverse different ofK gives
rise to a lattice in Rn. We prove that the space of Schwartz Fourier eigenfunctions on Rn which
vanish on the “component-wise square root” of this lattice, is infinite dimensional. The Fourier
non-uniqueness set thus obtained is a discrete subset of the union of all spheres

p
mSn�1 for

integersm � 0 and, asm!1, there are� cKmn�1 many points on them-th sphere for some
explicit constant cK , proportional to the square root of the discriminant of K. This contrasts a
recent Fourier uniqueness result by Stoller (2021) Using a different construction involving the
codifferent ofK, we prove an analogue for discrete subsets of ellipsoids. In special cases, these
sets also lie on spheres with more densely spaced radii, but with fewer points on each.

We also study a related question about existence of Fourier interpolation formulas with
nodes “

p
ƒ” for general lattices ƒ � Rn. Using results about lattices in Lie groups of higher

rank we prove that if n � 2 and a certain group �ƒ � PSL2.R/n is discrete, then such
interpolation formulas cannot exist. Motivated by these more general considerations, we revisit
the case of one radial variable and prove, for all n � 5 and all real � > 2, Fourier interpolation
results for sequences of spheres

p
2m=�Sn�1, where m ranges over any fixed cofinite set of

non-negative integers. The proof relies on a series of Poincaré type for Hecke groups of infinite
covolume and is similar to the one in Stoller (2021).
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1. Introduction

The subject of this paper is motivated by recent work on Fourier uniqueness and
non-uniqueness pairs. Broadly speaking, we are interested in the following general
question. Given a space V of continuous integrable functions on Rn and two
subsets A;B � Rn, when is it possible to recover any function f 2 V from the
restrictions f jA and yf jB (where yf denotes the Fourier transform of f )? In other
words, we are interested in conditions on A;B; V , under which the restriction map
f 7! .f jA; yf jB/ is injective. When the map is injective, we say that .A;B/ is a
(Fourier) uniqueness pair and ifA D B , we simply say thatA is a (Fourier) uniqueness
set. Conversely, if the map is not injective, we call .A;B/ a non-uniqueness pair, and
when A D B we call A a non-uniqueness set. Naturally, one would like the function

https://creativecommons.org/licenses/by/4.0/
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space V to be as large as possible and the sets A and B to be as small as possible, or
“minimal” in a certain sense.

A prototypical example of a minimal Fourier uniqueness set was found by
Radchenko and Viazovska in [12], where they proved that, when V D Seven.R/
is the space of even Schwartz functions on the real line, the set

A D
p

ZC WD f
p
n W n 2 Z�0g

is a uniqueness set and established an interpolation theorem in this setting. The result
is sharp in the sense that no proper subset ofA remains a uniqueness set for Seven.R/.
Their proof was based on the theory of classical modular forms, which is also well-
suited to treat the case V D Srad.Rn/ of radial Schwartz functions on Rn and the
set

A D Un WD [m2N0

p
mSn�1:

For the latter generalization, we refer to [13, Section 2], which deduces the result
from [4].

The second author recently proved an interpolation formula [17, Theorem 1]
generalizing the one by Radchenko–Viazovska also to non-radial functions, that is,
to the space V D S.Rn/ and the same set of concentric spheres Un. However,
for n > 1, it is no longer minimal. Indeed, the (related) interpolation formula
in [13, Equation (4.1)] implies that the space of f 2 S.Rn/ satisfying

f .x/ D yf .x/ D 0 for all x 2 [m�N
p
mSn�1

is finite-dimensional for all N and is in fact contained in H4NC2 ˝ W for some
finite-dimensional space W � Srad.Rn/, where Hk denotes the space of harmonic
polynomials on Rn of degree� k. Since a generic subset of dim Hk points in rSn�1
is an interpolation set for the space Hk (in the sense that any polynomial p 2 Hk is
uniquely determined by its values on dim Hk generic points), this implies that there
is a uniqueness set properly contained in Un that contains only finitely many points
on spheres with radius �

p
N .

In fact, it was recently proved by the second author and Ramos in [13, Remark 4.1,
Corollary 4.1] that any discrete and sufficiently uniformly distributed subsetD � Un
remains a uniqueness set for S.Rn/. Here, “sufficiently” means that D \

p
mSn�1

contains at least Cnmcnm many points.
We contrast these Fourier uniqueness results by providing two families of discrete

non-uniqueness sets in Rn, where one of them is again contained Un, while the
other lies in a union of ellipsoids. Both of them are constructed from lattices
corresponding to ideals in totally real number fields K=Q of degree n and their
density grows with the discriminant ofK (although their distribution is not uniform,
in the sense that they “avoid” points near the coordinate axes; see Figure 1). We give
the precise formulations in the next subsection. Thus, characterizing the discrete
Fourier uniqueness sets contained in Un seems to be a subtle question.



Vol. 97 (2022) Fourier non-uniqueness sets from totally real number fields 515

Figure 1. Non-uniqueness sets constructed from Q.
p
17/ and Q.

p
257/.

In fact, the motivation for this work was not to find negative results in this
direction, but to try to generalize the modular form theoretic approach of Radchenko
and Viazovska to treat not necessarily radial functions on Rn, in a way that is very
different from the approach taken by Stoller (who essentially reduces the problem
again to the case of radial Schwartz functions). More specifically, we were interested
in (possible) interpolation formulas where we replace the set of nodes A D

p
ZC

by “square roots” of certain lattices coming from totally real number fields K,
specifically, the co-different O_K of their ring of integers OK . In this set up, it
seemed natural to ask whether one could be working with Hilbert modular forms and
associated integral transforms, similarly to the proof by Radchenko–Viazovska.

As we will explain more in Section 4 and briefly in Section 1.6, there is an
obstruction to the existence of such interpolation formulas. From the more general
point of view taken in Section 4, the obstruction arises because, for n � 2, subgroups
of PSL2.R/n that are commensurable to the Hilbert modular group PSL2.OK/ are
irreducible lattices and can therefore never contain subgroups of finite index with
infinite abelianization, by Margulis’ normal subgroup theorem. On the other hand
the presence of certain unfavorable relations in the Hilbert modular group can be
exploited in an explicit manner to obtain the non-uniqueness sets indicated in the
abstract.

1.1. Statement of non-uniqueness results. We prepare for the formulation of our
main non-uniqueness results and at the same time, introduce some notation that will
be used throughout the paper. Let K be a totally real number field of degree n � 2
with ring of integers OK . Some of the objects we will introduce depend on the
number field K, but we will not always display this dependence in our notation.
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We denote the n real embeddings by �j WK ! R, 1 � j � n and assemble them
into the map

� WK ! Rn; �.x/ D .�1.x/; : : : ; �n.x//:

We recall that the trace of an element x 2 K is given by

Tr.x/ D TrK=Q.x/ D
nX
jD1

�j .x/:

For any OK-submodule a � K, we write

a_ D fx 2 K W TrK=Q.ax/ 2 Z for all a 2 ag

for its dual with respect to the trace paring. As is well known, if a is a fractional ideal
in K, then �.a/ � Rn is a lattice and �.a_/ D �.a/_, where on the right we mean
the dual lattice in the usual sense. Moreover, the covolume of �.a/ is given by

covol .�.a// D N.a/
p
j disc.K/j; (1.1)

where N.a/ 2 Q>0 is the ideal norm of a (the unique extension of the absolute norm
on integral ideals to all fractional ideals of K) and j disc.K/j D covol.�.OK//2 is
the discriminant of K. For any fractional ideal a � K, we define
p
a WD

p
�.a/

WD f.x1; : : : ; xn/ 2 Rn W .x21 ; : : : ; x
2
n/ D �.˛/ for some ˛ 2 ag � Rn (1.2)

(which is not to be confused with the radical of an ideal). Recall that the codifferent
(or inverse different) of K is the fractional ideal O_K and that the different d D dK
is defined as d D .O_K/

�1. We see that the points
p

O_K lie on spheres
p
mSn�1

with non-negative integers m, the traces of the totally non-negative elements in O_K
(recall that an element x 2 K is said to be totally non-negative (respectively, totally
positive) if �j .x/ � 0 (respectively, �j .x/ > 0) for all j D 1; : : : ; n). We return to
these points in Section 1.2.

For f 2 L1.Rn/, we normalize its Fourier transform by

yf .�/ D

Z
Rn
f .x/e�2�ihx;�i dx; � 2 Rn:

We sometimes also use the notation F .f / D FRn.f / D yf . Finally, we write

H D fz 2 C W Im.z/ > 0g

for the upper half-plane.
Theorem 1.1. LetK be a totally real number field of degree n � 2 as above. Let V �
S.Rn/ denote the subspace linearly spanned by all Gaussians e�iz1x21 � � � e�iznx2n
with zj 2 H, xj 2 R. Then for any � 2 f˙1g the subspace of all f 2 V satisfying
f .x/ D 0 for all x 2

p
O_K and yf D �f is infinite dimensional.
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Remark 1.2. Since the space of Fourier eigenfunctions vanishing on
p

O_K is infinite-
dimensional we can obtain non-trivial functions vanishing in addition on an arbitrary
finite subset of Rn, by a simple linear algebra argument. A similar remark applies to
Theorem 1.3 below.

Besides points on spheres
p
mSn�1, our methods also allow us to treat other sets

related to the different, which in general lie on ellipsoids. To formulate it, we appeal
to a theorem of Hecke [6, Section 63, Satz 176], asserting that the different d defines
a square in the ideal class group of K. This means that we can choose a fractional
ideal a and a scalar c 2 K� such that

ca2 D d�1: (1.3)

Let us then define the set

E.c; a/ WD
˚
x 2 Rn W 9˛ 2 a2 such that

�.˛/ D
�
x21=j�1.c/j; : : : ; x

2
n=j�n.c/j

�	
: (1.4)

Note that this is a discrete subset of a union of ellipsoids in Rn.
Theorem 1.3. LetK, n, and V be as in Theorem 1.1 and let c and a be such that (1.3)
holds. Then, for every � 2 f˙1g the subspace of all f 2 V satisfying f .x/ D 0 for
all x 2 E.c; a/ and yf D �f is infinite dimensional.

The functions we produce for Theorems 1.1 and 1.3 are quite explicit. The proto-
typical example is a linear combination of 16 Gaussians whose parameters z 2 Hn

are of the form z D  � � for a generic point � 2 Hn and some special elements  2
PSL2.OK/, eight of which are written down explicitly in the proof of Proposition 2.4.
The entries of the matrices can be computed if one knows some non-trivial units of OK
in the congruence classes 1C 4OK and 1C 3OK .

In the remaining parts of this introduction we give further explanations for Theo-
rems 1.1 and 1.3 and add a few remarks. In Section 1.6, we describe the other two
results indicated in the abstract.

1.2. On the number of points in
p
d�1 \

p
mS n�1. The cardinality of

p
d�1\

p
mSn�1 is 2n times the number of totally non-negative elements in d�1 of tracem�0.

By choosing a Z-basis for OK containing 1 and considering the element ˛1 2 K
such that the Q-linear functional y 7! Tr.˛1y/ takes the value 1 on y D 1 and zero
on all other elements of the basis, we see that Tr.˛1/ D 1 and ˛1 2 d�1. It follows
that for all m 2 Z, we have

f˛ 2 d�1 W Tr.˛/ D mg D m˛1 C .d�1/0; .d�1/0 WD f˛ 2 d�1 W Tr.˛/ D 0g:

Thus, for m � 0, the subset of Rn whose cardinality we are interested in, can be
written as �

m�.˛1/C �..d
�1/0/

�
\ Œ0;1/n;
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whose cardinality equals that of

�..d�1/0/ \m
�
Œ0;1/n � �.˛1/

�
;

which is the set of lattice points of

�..d�1/0/ �

�
x 2 Rn W

nX
iD1

xi D 0

�
in a homogeneously expanding .n�1/-dimensional region, allowing for an application
of a standard estimate of the number of such points, as m ! 1. The necessary
volume computations are done (for any fractional ideal, in fact) in the work of Ash
and Friedberg, see [1, Section 5, Proposition 5.1 and Section 6]. From the cited parts
of their work, we deduce that

j

p

d�1 \
p
mSn�1j D 2n

p
j disc.K/j
.n � 1/Š

mn�1 CO.mn�2/; m!1; (1.5)

where the implied constant may depend on K and n.
We point out the following features of this asymptotic formula:

� The surface area of
p
mSn�1 grows likem.n�1/=2, so the points are more densely

spaced than a constant number of points per unit surface area on Sn�1.
� We may increase the density of points by a constant factor, by taking the

discriminant of K arbitrarily large, while keeping the degree n fixed.
� For small m, there may be no points in

p
d�1 \

p
mSn�1, but note that we can

add any finite set of points on these small spheres, by Remark 1.2.

1.3. The relation between Theorems 1.1 and 1.3. If the number c in (1.3) can be
taken totally positive, then E.c; a/ D

p
O_K and both theorems give the same result.

Since we are free to replace c by "c for any unit " 2 O�K , we can take c totally
positive, provided K has units " of all possible sign patterns�

�j ."/=j�j ."/j
�
1�j�n

2 f˙1gn:

In the real quadratic case, the latter is equivalent to the fundamental unit having
norm �1. Such conditions are studied more generally in the literature, via the notion
of signature rank.

In fact, wheneverK=Q is Galois and n is odd, then c D 1 is admissible. In other
words, the different is then exactly equal to the square of another ideal. This follows
from Hilbert’s formula, see [10, Exercise 5.45, p. 253].

Generally, recall that a large class of number fields which allows for an easy
determination of admissible c and a in (1.3) is given by monogenic number fields.
For example, for any irreducible monic polynomial P 2 ZŒX� with square-free
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discriminant and no complex roots, we can take K D Q.˛/ � R for some root ˛
of P . Then it is well known that

OK D ZŒ˛� and O_K D
1

P 0.˛/
OK ;

so that .c; a/ D .1=P 0.˛/;OK/ is admissible in (1.3).
We note further that, if there is a constant � > 0 so that j�j .c/j D � for all

j D 1; : : : ; n, then the set E.c; a/ is contained in the union of spheres
p
�mSn�1

(rather than in a union ellipsoids). This happens for some real-quadratic fields, see
Section 1.4.

1.4. Real quadratic fields. To illustrate the theorems in the case n D 2, consider
a real quadratic field K D Q.

p
D/ as a subfield of R of discriminant D;

p
D > 0

and for x 2 K write
�1.x/ D x and �2.x/ DW x

0;

so that
p
D
0
D �
p
D. Define ! WD .D C

p
D/=2 and c WD 1=

p
D. Then

OK D ZC Z! and O_K D cOK D cO
2
K

(square of a fractional ideal). Thus, every element of O_K may be written as ˛ D
c.`Cm!/ for `;m 2 Z and has

Tr.˛/ D `Tr.c/CmTr.!c/ D m:

The element ˛ is totally non-negative if and only if m � 0 and �m! � ` � �m!0.
This shows thatˇ̌q

O_K \
p
mS1

ˇ̌
D 2jZ \ Œ�m!;�m!0�j � 2m

p
D; m!1;

which exemplifies (1.5) and Theorem 1.1 in the simplest case.
Let us now illustrate Theorem 1.3 with a D OK and the above value of c, which

is not totally positive and satisfies

j�1.c/j D j�2.c/j D
1
p
D
:

We assume that 4jD and set d WD D=4 � 2; 3 .mod 4/, so that OK D ZC Z
p
d .

Then E.c; a/ is the set of x D .x1; x2/ 2 R2 such that

.x21 ; x
2
2/ D

1

2
p
d

�
aC b

p
d; a � b

p
d
�

for some a; b 2 Z satisfying

jb
p
d j � a and x21 C x

2
2 D

a
p
d
:
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In other words, E.c; a/ is a discrete subset of a union of circles of radii
q
a=
p
d , for

all integers a � 0 with about a=
p
d many points on each. If D � 1 .mod 4/, then

E.c; a/ is a discrete subset of the union of all circles of radii
q
t=
p
D for all integers

t � 0 with about 2t=
p
D points on each.

1.5. A minor generalization of Theorem 1.1. The space of Gaussians defined in
Theorem 1.1 is a subspace of the space of Schwartz functions on Rn that are even in
each variable (and it turns out to be dense in that space, see Proposition 4.1). More
generally, Theorem 1.1 holds and will be proved in the following setting.

Let d; n � 1 be integers and consider a partition d D d1C� � �Cdn of d . We view
the Euclidean space Rd as the product space Rd1�� � ��Rdn and elements x 2 Rd as
n-tuples x D .x1; : : : ; xn/ where xj 2 Rdj . The group O.d1/� � � � �O.dn/ embeds
block-diagonally into the orthogonal group O.d/. Denote by S.Rd /O.d1/�����O.dn/

the space of Schwartz functions on Rd that are radial in each of the n variables
xj 2 Rdj . Such functions can be identified with functions on Œ0;C1/n and we freely
use this identification to evaluate them on n-tuples of non-negative real numbers. An
O.d1/ � � � � � O.dn/-invariant function on Rd will be said to vanish on

p
O_K , if

f .x/ D 0 for all x 2 Rd such that�
jx1j

2; : : : ; jxnj
2
�
D .�1.˛/; : : : ; �n.˛//

for some ˛ 2 O_K .
Besides the case where all dj are equal, our proof of Theorem 1.3 does not seem to

easily generalize to the more general setting that we have just described, for technical
reasons having to do with the existence of automorphic factors, see Section 2.

1.6. General lattices and a radial uniqueness result. As already mentioned above,
in Section 4 we will consider general lattices ƒ � Rn and their square roots

p
ƒ WD f.x1; : : : ; xn/ 2 Rn W .x21 ; : : : ; x

2
n/ 2 ƒg:

In Section 4.1, we will explain (mainly for motivational purposes) a natural equivalent
formulation of a Fourier interpolation formula using the pair of sets .

p
ƒ1;
p
ƒ2/

for lattices ƒ1; ƒ2 � Rn in terms of generating series, viewed as functions on Hn

and describe their modular transformation properties in terms of a certain subgroup
�.L1; L2/ � PSL2.R/n, where Li D 2ƒ_i . We will prove in Proposition 4.4 that,
for n � 2, there is no pair of lattices .L1; L2/ such that the group �.L1; L2/ is
discrete and at the same time the free inner product of two subgroups of upper-
and lower triangular elements isomorphic to L1 and L2 respectively. We prove that
the latter property of �.L1; L2/ is a necessary condition for the existence of such
an interpolation formula (Proposition 4.2) and we argue why discreteness might be
necessary as well.

From this more general point of view we return in Section 5 to the case n D 1

and prove:
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Theorem (D Theorem 5.1 C Corollary 5.2 in Section 5). For all d � 5 and all
positive reals ˛; ˇ such that ˛ˇ � 1, the pair�

[m�1

p
m=˛Sd�1;[m�1

p
m=ˇSd�1

�
(1.6)

is a Fourier uniqueness pair for S.Rd / and there exists a linear interpolation formula
which proves this. Furthermore, if ˛ˇ > 1, then (1.6) remains a uniqueness pair
after removing any finite number of spheres from both sides.

The radial interpolation result (Theorem 5.1) will be proved via a series
construction generalizing the one used in [17] from �.2/ to the subgroup of PSL2.R/
generated by �

1 2˛

0 1

�
;

�
1 0

2ˇ 1

�
:

For ˛ˇ � 1, it is conjugate in PSL2.R/ to a normal subgroup of index two in a Hecke
group and is isomorphic to �.2/. For ˛ˇ > 1, these groups have infinite covolume
and infinite dimensional spaces of modular forms. The latter fact was proved by
Hecke [7, Section 3] and his construction of linearly independent modular forms
allows us to remove finitely many spheres from (1.6).

1.7. Some notation. Besides the notation introduced above, we will also use the
following general notation throughout the paper. For z 2 H, the number z=i belongs
to the right half-plane

H WD fw 2 C W Re.w/ > 0g
and on it, we always use the branch of the logarithm w 7! log.w/ that takes real
values on .0;C1/. For any z 2 H and k 2 C, we thus define

.z=i/k D exp.k log.z=i//:

For x2R, we define sgn.x/2f�1; 0; 1g as sgn.x/Dx=jxj if x¤0 and sgn.0/ WD0.
In the setting of Section 1.5 we will work with complex Gaussians, parametrized

by points z D .z1; : : : ; zn/ 2 Hn and defined as

g.z; x/ D e�iz1jx1j
2

� � � e�iznjxnj
2

; xj 2 Rdj : (1.7)

We sometimes also view g as a map gWHn ! S.Rd /O.d1/�����O.dn/, so that from
this point of view g.z/.x/ D g.z; x/. Moreover, for all z 2 Hn, we have

bg.z/ WD .z1=i/�d1=2 � � � .zn=i/�dn=2g.�1=z/; �1=z WD .�1=z1; : : : ;�1=zn/:
(1.8)

More specific notation will be introduced in the body of the paper.

Acknowledgements. The second author would like to thank Maryna Viazovska for
sharing ideas and techniques during his previous work [17], which were also useful
in Section 5.
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2. Proof of Theorem 1.3

The goal of this section is to prove Theorem 1.3. In Section 2.1 we introduce some
notation and define a “theta-subgroup” �# of the Hilbert modular group PSL2.OK/.
In Section 2.2 we define a slash action of the group algebra CŒ�# � on complex-valued
functions on a product of upper and lower half-planes, via theta functions. The
examples of non-trivial functions satisfying the vanishing conditions of Theorem 1.3
will be given as Gaussians slashed with suitable elements in CŒ�# �. Lemmas 2.2
and 2.3 will show that “suitable” means to belong to the intersection of two right ideals
in CŒ�# �. In Section 2.3, we will show that this intersection is infinite dimensional
and conclude the proof of Theorem 1.3 in Section 2.4.

2.1. Hilbert modular groups and subgroups. As in Section 1, we consider a totally
real number field K of degree n D ŒK W Q� � 2. As in (1.3), we choose and fix
c 2 K� and a fractional ideal a � K so that d�1 D ca2, where d is the different
of K. Depending upon these quantities we define signs ıj WD sgn.�j .c//, a vector
of signs ı D .ıj /1�j�n 2 f˙1gn and

Hn
ı WD fz D .z1; : : : ; zn/ 2 Cn

W Im.ıj zj / > 0 for all j 2 f1; : : : ; ngg:

Instead of the ones in (1.7), we will work, for all of Section 2, with Gaussians

gı.z/ 2 S.Rn/

defined by

gı.z/.x/ WD gı.z; x/ WD e
�i

Pn
jD1 ıj zjx

2
j ; z 2 Hn

ı ; x 2 Rn: (2.1)

We consider the Hilbert modular group � WD PSL2.OK/ and denote

S D

�
0 �1

1 0

�
; T ˇ D

�
1 ˇ

0 1

�
; ˇ 2 OK ; M."/ D

�
" 0

0 "�1

�
; " 2 O�K ;

viewing these as elements of � . Next, we embed � into PSL2.R/n via the real
embeddings �j . The latter group and hence � itself, acts on Hn

ı
via fractional linear

transformations. This action is faithful and we sometimes identify a group element
with the associated automorphism of Hn

ı
, in particular when writing compositions

of maps. Define

�# WD
˝
fSg [ fT 2ˇ gˇ2OK [ fM."/g"2O�

K

˛
� �:

Remark 2.1. Let z�# denote the image in � of the group of matrices in SL2.OK/,
which reduce to

�
� 0
0 �

�
or
�
0 �
� 0

�
in SL2.OK=2OK/. By definition, �# � z�# and

equality is known to hold (at least) in the case K D Q.
p
5/ (see [8, Section 1]).

Even though it would be convenient, we do not need to know equality in general and
only mention it to provide context (but we will also refer to this group in the proof of
Proposition 2.4).
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2.2. Automorphic factors and slash action. Our task here is to define a suitable
automorphic factor and a corresponding slash action of �# on spaces of functions
on Hn

ı
so that the action of S matches with the Fourier transform acting on Gaussians

and so that T 2ˇ simply acts as translation by 2�.ˇ/. We will use theta functions
attached to fractional ideals inK. Essentially the same functions were already studied
by Hecke [6, Section 56].

We define the function # WHn
ı
! C by the absolutely and normally convergent

series
#.z/ WD #.z1; : : : ; zn/ WD

X
˛2a

e�i
Pn
jD1 zj �j .c˛

2/;

where we recall that d�1 D ca2. We next determine the transformation behavior of #
under the generators of �# . These are certainly not new, but we include their proofs
to keep the presentation self-contained. First, since a is an OK-submodule of K, for
every " 2 O�K and every z 2 Hn

ı
, we have

#.M."/z/ D #.�1."/
2z1; : : : ; �n."/

2zn/ D #.z/:

Next, #.T 2ˇz/ D #.z/ for all z 2 Hn
ı

and all ˇ 2 OK , since for all ˛ 2 a, we have

nX
jD1

.zj C 2�j .ˇ//�j .c˛
2/ D

nX
jD1

zj�j .c˛
2/C 2TrK=Q.ˇc˛2/

and the above trace is an integer. To study the effect of # under S note that, by
definition, #.z/ is the sum over the lattice �.a/ of the Schwartz function

fz D gı
�
j�1.c/jz1; : : : ; j�n.c/jzn

�
;

whose Fourier transform is

�fz.�/ D nY
jD1

�
ıj j�j .c/jzj =i

��1=2
e
�iıj .�1=.j�j .c/jzj //�

2
j

D jNK=Q .c/j�1=2
nY
jD1

.ıj zj =i/
�1=2e

�i.�1=zj /.1=�j .c//�
2
j :

By applying Poisson summation to the function fz and the lattice �.a/ � Rn, we get

#.z/ D
1

covol .�.a//
X

��2�.a/_

�fz.��/
D

1

jNK=Q .c/j1=2 covol .�.a//

nY
jD1

.ıj zj =i/
�1=2

X
ˇ2ca

e�i
Pn
jD1 .�1=zj /.1=�j .c//�j .ˇ/

2

;
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where we used that a_ D ca, which follows from multiplying the relation ca2 D d�1,
by a�1 and using the general formula b_ D d�1b�1. Writing ˇ D c˛ and summing
over ˛ 2 a, the above computation proves

#.z/ D .ı1z1=i/
�1=2
� � � .ınzn=i/

�1=2#.Sz/

provided that jNK=Q .c/j covol .�.a//2 D 1 holds. This in turn follows again from
the relation ca2 D d�1, the general volume formula (1.1) and properties of the ideal
norm.

We now define �n
ı
WD fz 2 Hn

ı
W #.z/ ¤ 0g, a non-empty open subset of Hn

ı

containing the product of the imaginary axes, which is invariant under �# and the
1-cocycle j# W�# ! Hol .�n

ı
;C�/ by

j#./.z/ WD j#.; z/ WD
#.z/

#.z/
: (2.2)

Here, Hol .�n
ı
;C�/ denotes the abelian group of all nowhere vanishing, holomorphic

functions on�n
ı
. Our computations from above and the definitions imply that, for all

ˇ 2 OK , all " 2 O�K , all z 2 �n
ı
, and all 1; 2 2 �# , we have

j#.T
2ˇ / D 1; j#.M."// D 1;

j#.S; z/ D

nY
jD1

.ıj zj =i/
1=2; j#.12/ D .j#.1/ ı 2/ � j#.1/:

(2.3)

It is not strictly necessary for our purposes, but, for convenience, we will lift j#
to a cocycle j# W�# ! Hol .Hn

ı
;C�/. To explain how, note that, by our definition

of �# via generators, and by (2.3), each function j#./ can we written as a finite
product of functions j#.S/ ı  0 over some  0 2 �# and all of these are everywhere
defined, holomorphic and nowhere vanishing on Hn

ı
. Thus, we can (re-)define j#

on generators by requiring that (2.3) holds. Any relation in �# will be respected
in Hol .Hn

ı
;C�/ since the functions expressing the relation must agree on the non-

empty open subset �n
ı
� Hn

ı
.

Finally, for any function f on Hn
ı

with values in a complex vector space and any
 2 �# , we define a new function f j on Hn

ı
by

f j WD j#./
�1
� .f ı /; that is .f j/.z/ D j#.; z/

�1f . � z/: (2.4)

We extend this group action to the group algebra R WD CŒ�# � in the usual way.
The next two lemmas hint at the usefulness of the action we just introduced, for

the proof of Theorem 1.3. Indeed, these Lemmas will essentially reduce the proof
of Theorem 1.3 to a purely algebraic statement about a right ideal in the algebra R,
which will be addressed in the next section.
Lemma 2.2. For everyA 2 R and z 2 Hn

ı
, we have FRn..gı jA/.z// D .gı jSA/.z/.
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Proof. By linearity, we may assume thatA 2 �# . Given 1gı.z/ D j#.S; z/�1gı.Sz/
and the properties (2.3), we have

F ..gı jA/.z// D j#.A; z/
�1F .gı.Az// D j#.A; z/

�1j#.S; Az/
�1gı.S.Az//

D j#.SA; z/
�1gı.SAz/ D .gı jSA/.z/;

as claimed.

We denote by
I D

X
ˇ2OK

.1 � T 2ˇ /R

the right ideal generated by all elements .1 � T 2ˇ /, ˇ 2 OK .
Lemma 2.3. For all A 2 I and all z 2 Hn

ı
, the function .gı jA/.z/WRn ! C

vanishes at all points x D .x1; : : : ; xn/ 2 Rn for which there is ˛ 2 a2 such that
x2j D j�j .c/j�j .˛/ for all j , that is to say, at all points of the set E.c; a/, defined
in (1.4).

Proof. By linearity, may assume that A D .T 2ˇ � 1/ for some  2 �# and some
ˇ 2 OK . By definition and by (2.3), we have

.gı j.T
2ˇ
� 1//.z/ D .gı jT

2ˇ/.z/ � .gı j/.z/

D j#.; z/
�1
�
gı.z C 2�.ˇ// � gı.z/

�
:

Set � WD z. Then, for all x D .x1; : : : ; xn/ 2 Rn, we have

gı.� C 2�.ˇ//.x/ � gı.�/.x/ D
�
e
2�i

Pn
jD1 ıj �j .ˇ/x

2
j � 1

�
gı.�/.x/:

If there is ˛ 2 a2 so that x2j D j�j .c/j�j .˛/ for all j , then since ıj D �j .c/=j�j .c/j,
we have

nX
jD1

ıj�j .ˇ/x
2
j D

nX
jD1

�j .c/�j .ˇ/�j .˛/ D TrK=Q.cˇ˛/ 2 Z;

because c˛ 2 O_K and ˇ 2 OK . This proves what we want.

2.3. Ideals in the group algebra R D CŒ�# �. Lemma 2.2 and Lemma 2.3 together
show that, for any element A 2 R which belongs to the ideal I and which can also
be written as A D .1 C �S/A1 for some A1 2 R and � 2 f˙1g is such that, for
any z 2 Hn

ı
, the Schwartz function f D .gı jA/.z/ vanishes at all points of the

set E.c; a/ and has Fourier transform yf D �f . The next proposition will show that
there are plenty of such elements A. It lies at the heart of our proof of Theorem 1.3
(and Theorem 1.1).
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Proposition 2.4. We have .1 � S/R \ I ¤ 0 and .1C S/R \ I ¤ 0. Moreover,
these intersections are infinite dimensional vector spaces over C.

Proof. We first note that if J � R is any non-zero right ideal, then, since the
group �# is infinite, we can produce an arbitrarily high number of right translates
of a single non-zero element in J that have disjoint supports (say), showing that
dimC.J/ D1. So we only need to show that .1˙ S/R \ I ¤ 0.

To do that, we note that if two elements 1; 2 2 �# have the same bottom row
(possibly up to sign), then 1�2 D .1�2�11 /1 2 I. It thus suffices to construct
AC; A� 2 R such that .1�S/A� and .1CS/AC can be written as non-trivial finite
sums of differences of group elements with equal bottom row. We also know that left
multiplication by S interchanges the rows of a matrix and switches the sign on the
top. Guided by these two observations, we make the Ansatz

A� D
X

r2Z=2nZ

r ; r D

�
cr�1 dr�1
cr dr

�
;

AC D
X

r2Z=2nZ

.�1/r 0r ;  0r D

�
c0r�1 d 0r�1
c0r d 0r

�
;

where n � 1 and cr ; dr ; c0r ; d 0r 2 OK are to be found so that all elements r ;  0r
belong to �# and such that 0 ¤ .1˙ S/A˙ because these elements always belong
to I. Some experimentation shows that there are no non-trivial examples for n D
1; 2; 3 and further experimentation yields an example for n D 4 as follows. Choose
a; b; x; y 2 OK such that

.1C 4a/.1C 4x/ D 1 D .1 � 3b/.1 � 3y/; axby ¤ 0: (2.5)

This is possible by Dirichlet’s unit theorem, which implies that for all non-zero
integral ideals a � OK , the kernel of the natural map O�K ! .OK=a/

� is infinite
(use this for a D 4OK or 3OK). Consider then the elements r D  0r defined by

0 D

�
1 0

0 1

�
; 1 D

�
0 1

�1 2a

�
; 2 D

�
�1 2a

2 �.1C 4a/

�
;

3 D

�
2 �.1C 4a/

1�4b
1C4a

2b

�
; 4 D

 
1�4b
1C4a

2b

2y 1�4y
1C4x

!
; 5 D

�
2y 1�4y

1C4x

�.1C 4x/ 2

�
;

6 D

�
�.1C 4x/ 2

2x �1

�
; 7 D

�
2x �1

1 0

�
:

We claim that:
(i) each r belongs to �# , and
(ii) that .1˙ S/A˙ ¤ 0.
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To prove (i), we first verify, by computing determinants and using (2.5), that each r
belongs to the congruence group z�# � �# defined in Remark 2.1. On the other hand,
for r ¤ 4, either one of the diagonal or off-diagonal entries of r is a unit, so that,
by multiplying r from the right or the left by Sı1T 2˛Sı2 with suitable ˛ 2 OK ,
ı1; ı2 2 f0; 1g, we obtain a matrix in z�# one of whose diagonal or off-diagonal
entries is zero and hence belongs to �# . For 4, note that 4T 2.1C4a/ has lower right
entry equal to 1C 4a, which is a unit.

To verify (ii) note that, since none of a; b; x; y is zero, we have

frgr2Z=8Z \ fS; 1g D f1g;

so that the coefficient of 1 2 �# in the finite sum .1˙ S/A˙ is 1 2 C.

Having proved Proposition 2.4 it remains to show that we can produce any number
of linearly independent functions .gı jA/.z/ by varyingA 2 I\.1˙S/R and z 2 Hn

ı

suitably. This will be achieved via the next lemma and its consequences.

Lemma 2.5. Let c1; : : : ; cm 2 Cn be pairwise distinct. Then the functions

g�WR
n
! C; g�.r/ D e

Pn
jD1 c�;j r

2
j ; � D 1; : : : ; m

are C-linearly independent.

Proof. We induct on m � 1, the case m D 1 being clear. If m � 2 and

mX
�D1

t�g� D 0

for some t� 2 C, we divide by g1 and differentiate with respect to rj , giving

mX
�D2

2.c�;j � c1;j /rj t�g�.r/ D 0:

By continuity, we may also divide by rj and apply the inductive hypothesis to deduce
.c�;j � c1;j /t� D 0 for all j and �. Since c1 ¤ c� for all � � 2, this implies t� D 0
for all � � 2 and then also t1 D 0.

Corollary 2.6. Let z 2 Hn
ı

be a point such that for all ; ! 2 �# , we have  ¤ ! )
z ¤ !z. Then the map ˆz WR! S.Rn/, ˆz.A/ D .gı jA/.z/ is injective.

Proof. Suppose that
A D

X
2�#

� 2 R
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is such that ˆz.A/ D 0. Let f1; : : : ; mg D f 2 �# W � ¤ 0g be the support of A
(with pairwise distinct i ). By assumption, we have

0 D ˆz.A/ D

mX
iD1

�i j#.i ; z/
�1g.iz/;

so �i D 0 follows by applying Lemma 2.5 to c� D �i�z.

There are uncountably many points z 2 Hn
ı

satisfying the assumption of Coroll-
ary 2.6; let us call such points good (for the field K). To see this, note that the set of
good points contains (since �# � �)\

1¤2�

fz 2 Hn
ı W z ¤ zg D Hn

ı X

[
1¤2�

fz 2 Hn
ı W z D zg (2.6)

and that each fix point set in the union on the right is either empty or a singleton set.
Since � is countable and Hn

ı
is uncountable, the above set is indeed uncountable. (It

is moreover dense in Hn
ı
, by Baire’s theorem, but we won’t need this fact.) We call

a point belonging to the intersection (2.6) a generic point (for the field K). Thus, all
generic points are good.

2.4. Conclusion. We can now give the proof of Theorem 1.3.

Proof of Theorem 1.3. Fix � 2 f˙1g and a good point z 2 Hn
ı

for the field K. By
Corollary 2.6, the linear map

ˆz WR! S.Rn/; ˆz.A/ D .gı jA/.z/

is injective. Note that it takes values in the space V � S.Rn/ of all linear combin-
ations of Gaussians. By Proposition 2.4, the space J� WD I\ .1C �S/R, and hence
also ˆz.J�/ is infinite dimensional. On the other hand, by Lemmas 2.2 and 2.3,
the space ˆz.J�/ is contained in the space of all f 2 V satisfying yf D �f and
f .x/ D 0 for all x 2 E.c; a/, proving the theorem.

3. Proof of Theorem 1.1

In this section we give the proof of Theorem 1.1. We let, as usual,K be a totally real
number field of degree n � 2 and use notation associated with it as in Section 1. We
will also use some of the notation and results of Section 2, in particular, the eight
elements r , r 2 Z=8Z given in the proof of Proposition 2.4, Lemma 2.5 and the
notion of a generic point for K, as defined near (2.6) (but with Hn

ı
replaced by Hn).
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The entries of the matrices r depend on a non-trivial solution a; b; x; y 2 OK to the
equation (2.5). Further below, we will need to assume in addition that

all four units .1C 4a/; .1C 4x/; .1 � 3b/; .1 � 3y/ 2 O�K are totally positive:
(3.1)

This is possible, since the subgroup of totally positive units in O�K is infinite (indeed,
already the subgroup of squared units is infinite, by Dirichlet’s unit theorem).

As advertised in Section 1.5, we work for all of Section 3, on Rd D Rd1�� � ��Rdn

and with the corresponding Gaussians g.z/WRd ! C, defined as in (1.7). This will
prove a more general statement than Theorem 1.1. We also fix a sign � 2 f˙1g and
consider a generic point z D .z1; : : : ; zn/ 2 Hn. We use the short hand notation

�.z/ WD

nY
jD1

.zj =i/
dj =2 2 C�:

For a set of coefficients f�r.z/gr2Z=8Z � C, which we will determine later, consider
the linear combination of Gaussians

hz D
X

r2Z=8Z

�r.z/g.rz/;

where the matrices r 2 � , r 2 Z=8Z, are as in the proof of Proposition 2.4.
Using (1.8), we define and compute

fz WD hz C ��hz D X
r2Z=8Z

�r.z/g.rz/C
X

r2Z=8Z

��r.z/�.rz/
�1g.Srz/

D

X
r2Z=8Z

�
�r�1.z/g.r�1z/C ��r.z/�.rz/

�1g.Srz/
�
:

By construction, �fz D �fz . We claim that the coefficients �r.z/ can be chosen in
such a way that

�r.z/ ¤ 0 and ��r.z/�.rz/
�1
D ��r�1.z/ for all r 2 Z=8Z: (3.2)

We postpone the proof of the claim to a later stage. Assuming it, we get

fz D
X

r2Z=8Z

�r�1.z/
�
g.r�1z/ � g.Srz/

�
: (3.3)

Each difference g.r�1z/ � g.Srz/ vanishes (in the sense defined in Section 1.5)
on
p

O_K , since, by construction, Sr D T 2ˇrr�1 for some ˇr 2 OK , and so

Srz D T
2ˇrr�1z D r�1z C 2�.ˇr/;
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implying that, if there is ˛ 2 O_K so that jxj j2 D �j .˛/ for all j , then

fz.x/ D
X

r2Z=8Z

�r�1.z/e
�i

Pn
jD1 �j .r�1/zj jxj j

2�
1 � e2�i

Pn
jD1 �j .ˇr /�j .˛/

�
D 0;

because
Pn
jD1 �j .ˇr/�j .˛/ D Tr.˛ˇr/ 2 Z.

So far, z was an arbitrary generic point. We now verify that fz ¤ 0 and that
we can produce an arbitrary number of linearly independent functions of this form.
Since z is generic for K, we have

fr 2 Z=8Z W rz D z or Srz D zg D fr 2 Z=8Z W r D 1 or Sr D 1g D f0g

and this shows fz ¤ 0 via Lemma 2.5 and �r.z/ ¤ 0 for all r . Assume we have
constructed linearly independent f�1 ; : : : ; f�m of this form with generic �j 2 Hn

(here, the subscripts do not denote coordinates). Since the set of generic points
for K is infinite (indeed uncountable), we can choose a generic point �mC1 2 Hn X

f�1; : : : ; �mg and the functions f�1 ; : : : ; f�mC1 are then linearly independent as well.
Indeed, if

0 D

mC1X
iD1

tif�i D
X
w2Hn

awg.w/

for ti 2 C and (unique) aw 2 C we find that 0 D a�i D ti for all i , as desired.
To finish the proof of Theorem 1.1, it remains to prove the claim made in (3.2).

A short calculation shows that this claim is equivalent to

1 D
Y

r2Z=8Z

�.rz/ D
Y

r2Z=8Z

nY
jD1

�
.�j .r/zj /=i

�dj =2: (3.4)

Indeed, if (3.4) holds, we can choose an arbitrary constant �0 D �0.z/ 2 C� and put

�kC8Z.z/ D .��/
k�0

Y
1�i�k

�.iC8Zz/ for 1 � k � 7:

Let us denote the product on the right of (3.4) by �.z/. From the specific shape
of the r , it is clear that �.z/8 D 1. Since Hn is connected, we deduce that the
continuous function z 7! �.z/ is constant, with constant value given by an eighth
root of unity �. To determine �, we will take the points zj to i1. For this we need
the following lemma.
Lemma 3.1. For any g D

�
a b
c d

�
2 SL2.R/, we have

lim
y!1

..g � .iy//=i/1=2

jg � .iy/j1=2
D exp

�
�
�i

4
sgn.ac/

�
D e

�
�
1

8
sgn.ac/

�
; (3.5)

where we write e.w/ D exp.2�iw/ and where, here and elsewhere, the conventions
of Section 1.7 are in place.
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We defer the proof of Lemma 3.1 to the end of this section. Writing

� D
�

j�j
D lim
y!1

�..iy; : : : ; iy//

j�..iy; : : : ; iy//j

and applying formula (3.5) (and using the fact that the dj are integers1) , we see that

� D
Y

r2Z=8Z

nY
jD1

e
�
�
dj

8
sgn.�j .crcr�1//

�
; (3.6)

where we recall that cr denotes the lower left entry of r and cr�1 the upper left
entry of r . Let us write down the eight products crcr�1 appearing in (3.6). For
˛1; ˛2 2 K, we write ˛1 � ˛2 to express that there is a totally positive ˇ 2 K� so
that ˛2 D ˛1ˇ. Then, by assumption (3.1), we have

c0c7 D 0; c1c0 D 0

c2c1 D �2 � �1; c3c2 D 2
1 � 4b

1C 4a
� 1 � 4b;

c4c3 D
1 � 4b

1C 4a
.2y/ � .1 � 4b/y; c5c4 D �.2y/.1C 4x/ � �y;

c6c5 D �2x.1C 4x/ � �x; c7c6 D 2x � x:

We introduce the short hands

�j WD sgn.1 � 4�j .b//; �j D sgn.�j .y//:

Interchanging the order of multiplication in (3.6), using the above list of identities
and noting that c0c7; c1c0 don’t contribute, while the contributions of c6c5 and c7c6
cancel, we arrive at the formula

� D e
�
�
1

8
†
�
;

where

† D

nX
jD1

dj .�1C �j C �j�j � �j / D

nX
jD1

dj .�j � 1/.�j C 1/:

We claim that for each j , we have .�j � 1/.�j C 1/ D 0, or equivalently

1 � 4�j .b/ > 0 or �j .y/ < 0: (3.7)

1We arrived at a minor conflict of notation: There are dimensions dj 2 N, j 2 f1; : : : ; ng and
elements dr 2 OK , r 2 Z=8Z, the entries of the right columns of the elements r . The dr 2 OK
won’t play a role in the remaining argument.
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By (2.5), we have .1 � 3b/.1 � 3y/ D 1, and hence

.1 � 3�j .b//.1 � 3�j .y// D 1:

By assumption (3.1), both factors in this product are positive. Assume now that

�j .y/ > 0:

Then the factor .1 � 3�j .y// belongs to the interval .0; 1/, implying that the factor
.1 � 3�j .b// belongs to the interval .1;1/, and so ��j .b/ > 0. But ��j .b/ > 0

implies
1 � 4�j .b/ > 1 > 0:

We assumed that �j .y/ > 0 and deduced

1 � 4�j .b/ > 0;

which proves (3.7). This finishes the proof of � D 1, hence the proof of the claim
made in (3.2) and thus the proof of Theorem 1.1. It only remains to prove Lemma 3.1.

Proof of Lemma 3.1. We need to show that for all g D
�
a b
c d

�
2 SL2.R/, we have

lim
y!1

arg.��=4;�=4/
��
.g � .iy//=i

�1=2�
D �

�

4
sgn.ac/: (3.8)

Both sides of (3.8) are unchanged if we replace g by �g, so we may assume c � 0
for the verification. For y > 0; we abbreviate

w.y/ WD .g � .iy//=i D
aiy C b

�cy C id
2 H WD fw 2 C W Re.w/ > 0g:

In this proof, any asymptotic notation refers to taking y ! 1. If c D 0, then
ad D 1, and we have

w.y/ D
a.iy/C b

id
D
a2.iy/C ab

i
D a2y � iab;

hence
Im.w.y//
Re.w.y//

D
�b

ay
�! 0;

which shows that that argument of w.y/, and hence that of w.y/1=2, goes to zero, as
claimed. If c > 0 and a D 0, then �bc D 1, and we have

w.y/ D
b

�cy C di
D

b2

y C dbi
D

b2y

y2 C .db/2
�

b2.db/i

y2 C .db/2
;

hence
Im.w.y//
Re.w.y//

D
�db

y
�! 0;
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as claimed. Assume now that c > 0 and that a ¤ 0. Then

w.y/ D
1

i

�
a

c
�

1

c.c.iy/C d/

�
D .�i/.a=c/C o.1/:

We deduce that
� if a > 0, then arg.w.y//! ��=2, hence arg.w.y/1=2/! ��=4, as claimed;
� if a < 0, then arg.w.y//! �=2, hence arg.w.y/1=2/! �=4, as claimed.
This finishes the proof of (3.8), and thus the proof of Lemma 3.1.

4. Group theoretic obstructions to interpolation

In this section, we generalize the setting we have been studying so far in the following
way. We replace the (embedded) codifferent �.O_K/ � Rn of a totally real field K
and its square root

p
�.O_K/ � Rn by a general lattice ƒ � Rn and its square root

p
ƒ WD f.x1; : : : ; xn/ 2 Rn W .x21 ; : : : ; x

2
n/ 2 ƒg:

To motivate looking at possible Fourier uniqueness or non-uniqueness sets of this
shape, we give below in Section 4.1 a translation of a general Fourier interpolation
problem with uniqueness pairs of the form .

p
ƒ1;
p
ƒ2/, to the problem of finding

certain holomorphic functions on Hn having modular transformation behavior with
respect to a certain subgroup �.L1; L2/ � PSL2.R/n, where Li D 2ƒ_i . Ideally,
we would want this group to be discrete and at the same time isomorphic to the free
product L1 � L2. In Proposition 4.4 below we show that, for n � 2, this can never
happen. The results of Section 4 will not be used elsewhere in this paper, but may be
of independent interest and provide further context and motivation.

4.1. Generating series and functional equations. Adopt the general setting of Sec-
tion 1.5. Thus, n; d; d1; : : : ; dn � 1 are integers and d D d1 C � � � C dn. Fix two
lattices ƒ1; ƒ2 � Rn and for i D 1; 2, define

ƒi;C WD ƒi \ Œ0;1/
n:

We want to know whether there exist functions a�; za�WRn ! C such that for all
f 2 S.Rd /O.d1/�����O.dn/ and all x D .x1; : : : ; xn/ 2 Rd , we have

f .x1; : : : ; xn/ D
X

�2ƒ1;C

a�
�
jx1j; : : : ; jxnj

�
f .
p
�/

C

X
�2ƒ2;C

za�
�
jx1j; : : : ; jxnj

�
yf .
p
�/; (4.1)

where we used the notation
p
� WD .

p
�1; : : : ;

p
�n/ for � D .�1; : : : ; �n/.
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Let us first assume that such functions a�; za� exist and that, for each fixed r D
.r1; : : : ; rn/ 2 Œ0;C1/

n, they grow at most polynomially in their index parameters
� 2 ƒ1 and � 2 ƒ2, respectively. We consider the generating functions

F.z; r/ D
X

�2ƒC;1

a�.r/e
�i

Pn
iD1 zi�i ;

zF .z; r/ D
X

�2ƒ2;C

za�.r/e
�i

Pn
iD1 zi�i ; z 2 Hn: (4.2)

By construction, each of these functions is holomorphic in z and periodic with respect
to the lattices 2ƒ_1 or 2ƒ_2 , respectively. Moreover, applying the formula (4.1) to the
Gaussian f D g.z/, as defined in (1.7), shows that

g.z; r/ D F.z; r/C .z1=i/
�d1=2 � � � .zn=i/

�dn=2 zF .�1=z; r/: (4.3)

Conversely, no longer assuming the existence of a�; za� but the existence of hol-
omorphic 2ƒ_1 -periodic functions z 7! F.z; r/ and holomorphic 2ƒ_2 -periodic
functions z 7! zF .z; r/ satisfying suitable growth conditions, which are related via
the functional equations (4.3) and with Fourier expansions indexed over ƒi;C only
(instead of the whole ƒi ), we can deduce an interpolation formula (4.1) by making
use of the following Proposition.
Proposition 4.1. The linear span of all Gaussians g.z/, z 2 Hn is dense in
S.Rd /O.d1/�����O.dn/

Proof. We defer this proof to the Appendix C, as we will not need it for n � 2, but
it seems worth recording. For n D 1, this is also contained in [5, Lemma 2.2].

4.2. Group theoretic and modular considerations. The modular transformation
properties of the generating functions zF andF defined above are governed by a certain
subgroup of PSL2.R/n acting on Hn, depending upon the latticesƒ1; ƒ2 � Rn (but
not on the dimensions dj ) which we define next. In the notation of Section 2, this
subgroup can be thought of as the analogue of the subgroup of PSL2.OK/ generated
by all elements T 2ˇ ; ST 2ˇS , ˇ 2 OK in the case where ƒ1 D ƒ2 D �.O_K/.

Instead of working with PSL2.R/n, we find it more convenient to work with
the isomorphic group G WD PSL2.Rn/, where Rn D R � � � � � R is viewed as
commutative ring with component wise addition and multiplication. For x 2 Rn we
define

T x WD

�
1 x

0 1

�
; V x WD

�
1 0

x 1

�
2 G; (4.4)

where 0 D .0; : : : ; 0/, 1 D .1; : : : ; 1/. We also define the element S WD
�
0 �1
1 0

�
2 G,

so that ST xS D V �x . For any lattice L � Rn, we define the following subgroups
of G:

�upp.L/ WD fT
x
W x 2 Lg Š L; �low.L/ WD fV

y
W y 2 Lg Š L
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and then, for any two lattices L1; L2 � Rn, we also define the subgroup

�.L1; L2/ WD h�upp.L1/ [ �low.L2/i � G:

The subgroup relevant to the setting described in Section 4.1 is then �.L1; L2/,
where Li D 2ƒ_i . To explain this, let us suppose that we are given a cocycle

J WG ! Hol.Hn;C�/

satisfying J.T x/ D 1 for all x 2 Rn and

J.S/.z/ D

nY
jD1

.zj =i/
dj =2:

We may then define a slash action of G (and its group algebra CŒG�) on functions f
on Hn by f j WD J./�1 � .f ı /,  2 G, similarly to Section 2.

In practice, it suffices that J can be defined only on the subgroup generated by
�.L1; L2/ and S , but its existence is non-trivial and may not always be guaranteed,
compare with Section 2. On the other hand, when 8jdj for all j , such a cocycle J
can be defined on the full group G, namely, we define

JGId1;:::;dn.g/ D

nY
jD1

.g0j /
�dj =4;

where g D .g1; : : : ; gn/, and g0j is the derivative of the Möbius transformation gj .
Now consider the functions F , zF introduced in Section 4.1. In what follows

we will suppress the parameters r 2 Œ0;1/n and z 2 Hn from the notation. Using
the slash action just introduced, F and zF (as functions on Hn) must satisfy, besides
certain growth conditions,

F j.T x�1/ D 0 for all x 2 L1; zF j.T y�1/ D 0 for all y 2 L2; F C zF jS D g;

where g is the Gaussian (1.7). It suffices to find only F such that

F j.T x � 1/ D 0 for all x 2 L1; F j.V y � 1/ D gj.V y � 1/ for all y 2 L2:

Indeed, we can then define zF as zF D gjS�F jS and this function will beL2-periodic.
We see from the above cohomological formalism that any relation between

elements in the group �.L1; L2/ imposes a condition on the 1-cocycle

ˆW  7! F j. � 1/:

There are trivial relations that come from the fee abelian subgroups �upp.L1/ and
�low.L2/ that are always respected. There is, however, no reasons why a “mixed”
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relation between elements of these two groups should hold, as such a relation
translates to non-trivial conditions for the Gaussian g. Thus, one would like that

�.L1; L2/ is the free inner product of �upp.L1/ and �low.L2/: (F)

A natural further desideratum is:

�.L1; L2/ is discrete in G Š PSL2.R/n: (D)

In fact, the existence of F and zF with the above transformation properties implies (F)
by the following proposition.
Proposition 4.2. Assume that there exist functions F and zF as in (4.2) satisfy-
ing (4.3). Then condition (F) holds.

Proof. By way of contradiction, assume that (F) fails and consider a non-trivial
relation

V y1T x1V y2T x2 � � �V ymT xm D 1

with m � 1 minimal and with x1; : : : ; xm 2 L1, y1; : : : ; ym 2 L2, all non-zero (by
conjugation with some T x or V y if necessary, we can bring any minimal non-trivial
relation into the above form). Consider the cocycle ˆ./ D F j. � 1/ as above and
apply the cocycle property ˆ.12/ D ˆ.1/j2 Cˆ.2/ repeatedly, to obtain

0 D ˆ.1/ D

mX
iD1

ˆ.V yi /jPi D

mX
iD1

�
gjV yiPi � gjPi

�
; (4.5)

wherePi WDT xiV yiC1 � � �V ymT xm . Since xm¤0, all 2m group elementsV yiPi ; Pi
are pairwise distinct by minimality of m. Thus, we have an identity

0 D

2mX
jD1

ıjJ.j /
�1g.j /

with ıj 2 f˙1g and with pairwise distinct j 2 �.L1; L2/. We obtain the desired
contradiction by specializing this identity to some point z 2 Hn, which is not fixed
by any i�1j for i ¤ j and invoking Lemma 2.5.

Remark 4.3. In the above proof we assumed the existence of the automorphy factor J
defined on the group �.L1; L2/. When J is not well-defined we can modify the
argument to obtain the same conclusion in the following way. Consider the abstract
free product

z� D z�.L1; L2/ D �upp.L1/ � �low.L2/

and define zJ W z� ! Hol.Hn;C�/ by

zJ .T x/.z/ D 1; zJ .V y/.z/ D �.T �ySz/�.z/;
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for x 2 L1, y 2 L2, where, as in Section 3,

�.z/ D

nY
jD1

.zj =i/
dj =2:

Since �.z/�.Sz/ D 1, the cocycle QJ is well-defined on �low.L2/, hence on all of z� .
Let � denote the natural homomorphism from z� onto �.L1; L2/. We may then
define a right action of z� on functions f WHn ! C by

f j WD zJ ./�1.f ı �.//:

We define a z�-cocycle ẑ by
ẑ ./ WD F j. � 1/:

Since JGI8d1;:::;8dn ı � agrees with zJ 8 on the generators of z� , we see that for all
 2 ker.�/, the function zJ ./ is constant and equal to some 8-th root of unity. Then,
instead of (4.5), we obtain

. zJ .R/�1 � 1/F D ẑ .R/ D

mX
iD1

ẑ .V yi /jPi D

mX
iD1

�
gjV yiPi � gjPi

�
;

where R D V y1T x1V y2T x2 � � �V ymT xm is an element in ker.�/ � z� with m � 1
minimal and Pi as in (4.5). Since F is L1-periodic, by acting on both sides of
the above equation by T x � 1 for a suitable x 2 L1 (so that the resulting linear
combination of Gaussians on the right-hand side involves 4m distinct elements) and
again invoking Lemma 2.5 for suitable z 2 Hn (not fixed by any element in a finite
set of non-trivial group elements) we arrive at the desired contradiction.

Thus, condition (F) is necessary for the existence of F and zF . Regarding
condition (D) we don’t have a rigorous justification for its necessity. However,
one can show that if (D) fails, then �.L1; L2/ contains many elliptic elements of
infinite order (here we call  2 PSL2.R/n elliptic if each component is either an
elliptic element in PSL2.R/ or identity), and any such element  imposes rather
strong conditions on ˆ./ and F (e.g., if the closure of hi is a maximal compact
subgroup of PSL2.R/n, F is uniquely defined by the relation ˆ./ D F j. � 1/).
Thus, it seems plausible that (D) is also necessary for the existence of F and zF .

Before stating the next result, let us return to the examples coming from totally real
number fields. As already mentioned, in the notation of Section 2, for a totally real
number field K=Q of degree n � 2 and L1 D L2 D �.2OK/, the group �.L1; L2/
is the subgroup of PSL2.OK/ generated by all elements T 2ˇ ; V 2ˇ , ˇ 2 OK . As such,
it is well known to be a discrete subgroup of G, so (D) holds. On the other hand, the
condition (F) never holds in this case. To give a concrete example, if 0 ¤ ˇ 2 OK
is such that 1C 5ˇ 2 O�K , then

T �2ˇ.1C5ˇ/
�1

V 2T 2V 2ˇT �2.1C5ˇ/
�1

V �2.1C5ˇ/ D 1: (4.6)
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Returning to general lattices, for n � 2, there are unfortunately no examples
of lattices L1; L2 � Rn for which both conditions (D), (F) hold, as the following
proposition shows.

Proposition 4.4. Let n � 2 and let L1; L2 � Rn be arbitrary lattices. Suppose the
group �.L1; L2/ � G is discrete. Then (F) does not hold.

Proof. Consider the following property (irreducibility) of a lattice L � Rn

L X f0g � .R�/n: (I)

For example, if L is the image of a fractional ideal in a totally real number
field under the natural embedding then (I) holds. The proof distinguishes two cases,
according to whether both L1; L2 satisfy (I) or one of them does not.

Case 1. Both L1;L2 have property (I). In this case, by a result of A. Selberg
(sketched in [16]), generalized by Benoist–Oh [2, Corollary 1.2], there exists a totally
real number fieldK of degree n such that�.L1; L2/ is commensurable to a conjugate
of the group PSL2.OK/ embedded in G. Since Hilbert modular groups of totally
real number fields are known to be irreducible lattices2 in PSL2.R/n, it follows that
�.L1; L2/ is an irreducible lattice in G Š PSL2.R/n. Margulis’ normal subgroup
theorem [9, Theorem 4.9] then implies that the abelianization of �.L1; L2/ must be
finite, which rules out (F).

Case 2. One of the latticesL1;L2 does not have property (I). Let us first suppose
that L1 does not have property (I). Fix a non-zero element x0 2 L1 whose (say) first
coordinate is zero. We will construct a sequence of lattice vectors yk 2 L2 X f0g
such that the commutators

ŒT x0 ; V yk � D T x0V ykT �x0V �yk 2 �.L1; L2/

tend to 1 2 G, as k ! 1. As we are assuming that �.L1; L2/ is discrete,
the sequence must be stationary and so (F) would not hold. To produce the
sequence yk , we apply Minkowski’s lattice point theorem to the convex, compact,
centrally symmetric bodies

Ck WD
˚
.t1; : : : ; tn/ 2 Rn W jt1j � 1C k

n�12n covol .L2/; max
2�j�n

jtj j � 1=k
	
;

whose volumes are > 2n covol .L2/. We may thus choose 0 ¤ yk 2 L2 \ Ck and
with this choice, we have ŒT x0 ; V yk �! 1 as k !1.

2We use the definition that a lattice � in a connected, real semi-simple Lie groupG with finite center
is irreducible if for all non-discrete closed normal subgroups N of G the subgroup �N is dense in G.
The set of such irreducible lattices in G is closed under the equivalence relations given by conjugation
and commensurability. See [11, Section 4.3].
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Finally, if L2 does not have property (I), we can modify the argument just
given in an obvious way, by taking a fixed non-zero element y0 2 L2 with some
vanishing coordinate and a sequence of non-zero lattice vectors xk 2 L1 all of whose
coordinates tend to zero, except in the coordinate where y0 is zero.

To summarize the general results of this section, we have shown that for n � 2 and
for any two latticesƒ1; ƒ2 � Rn, the following holds: If the group �.2ƒ_1 ; 2ƒ_2 / is
discrete, then no interpolation formula as in (4.1) can exist, by Proposition 4.4 and
Proposition 4.2. Combined with our previous remark on the necessity of (D), it may
well be that no interpolation formula of the form (4.1) exists for n � 2.

5. Interpolation result via Hecke groups with infinite covolume

By the analysis of Section 4, Fourier interpolation for square roots of lattices seems
to be limited to the case of radial Schwartz functions and 1-dimensional lattices. Let
us revisit this case in more detail and compare it to similar known results on Fourier
uniqueness.

Let ˛; ˇ > 0 and consider the one-dimensional lattices ƒ1 D .1=˛/Z � R and
ƒ2 D .1=ˇ/Z � R. Thus, we consider (the possibility of existence of) interpolation
formulas of the form

f .x/ D

1X
nD0

f
�p
n=˛

�
an
�
jxj
�
C

1X
nD0

yf
�p
n=ˇ

�
zan
�
jxj
�
; f 2 Srad.R

d /; x 2 Rd :

(5.1)
The relevant subgroup of PSL2.R/ is thus

�
�
2
� 1
˛

Z
�_
; 2
� 1
ˇ

Z
�_�
D �.2˛Z; 2ˇZ/ D hT 2˛; V 2ˇ i D hT 2˛; ST 2ˇSi:

Conjugating the group by
�
t 0
0 t�1

�
with t D .ˇ=˛/1=4 allows us to reduce to the case

˛ D ˇ. Alternatively, we may reduce to that case by directly applying a scaling
argument to (5.1). We then write ˛ D ˇ D �=2 for � > 0 and consider the groups

�.�/ WD �.�Z; �Z/ D hT �; V �i GH.�/ WD hS; T �i � PSL2.R/: (5.2)

The latter groups H.�/ are well-studied and known to be discrete precisely when
� � 2 or � D 2 cos.�=p/ for some integer p � 3 (we refer to [3] or [7] for back-
ground). The group �.�/ is known to be discrete and free precisely when � � 2.
The papers [4, 12, 17] focus on the case � D 2. Recently, Sardari [14] investigated
the case 1 < � < 2 to answer a question raised in [5]. The paper [5] itself considers
the case � D 1, but in a vector-valued setting.

In view these results and of the conditions (D), (F), it remains to consider the
case � > 2, which is the purpose of this section. Using a series construction similar
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to the construction of Poincaré series and analogous to the one used in [17], we will
prove the following theorem.
Theorem 5.1. Let � � 2 be a real number and let d � 5 be an integer. Set
k D d=2. There exist sequences of entire even functions ak;�;n; zak;�;nWC ! C,
n D 1; 2; 3; : : : , such that for all f 2 Srad.Rd / and all x 2 Rd , we have

f .x/ D

1X
nD1

ak;�;n
�
jxj
�
f
�p
2n=�

�
C

1X
nD1

zak;�;n
�
jxj
�
yf
�p
2n=�

�
(5.3)

and both series converge absolutely and uniformly on Rd . There are absolute con-
stants C1; C2; C3 > 0 such that

sup
r2R
jak;�;n.r/j C sup

r2R
jzak;�;n.r/j � C1.C2=k/

k=2nk (5.4)

for all n � 1 and such that

jak;�;n.r/j C jzak;�;n.r/j � C3n
k=2C9=8r�kC9=4 (5.5)

for all r > 0 and n � 1.
Corollary 5.2. For all d � 5 and ˛; ˇ > 0 such that ˛ˇ > 1 and all integers n0 � 1,
the pair �

[n�n0

p
n=˛Sd�1;[n�n0

p
n=ˇSd�1

�
is a Fourier uniqueness pair for S.Rd /. If ˛ˇ D 1, then this is true for n0 D 1.
Remark 5.3. In the known case � D 2, one can actually take n0 D b.d C 4/=8c
for all d � 2 in the statement of the corollary. This follows from [4], see also
[13, Theorems 1 and 2].

Proof of Corollary 5.2. As already explained, it suffices to consider ˛ D ˇ D �=2.
For radial functions and n0 D 1, this is a direct consequence of Theorem 5.1.
For n0 > 1, we will prove in Appendix B that the radial interpolation formula (5.3)
can be modified, so that both series start at n D n0. We will see that this is
a consequence of the fact that, for � > 2, the space modular forms of weight k
onH.�/ is infinite dimensional; see [7, Section 3] or also [3, Chapter 4]. Finally, the
case of general Schwartz function follows from the case of radial Schwartz functions
by [17, Corollary 2.2].

The proof of Theorem 5.1 will occupy the remainder of Section 5. We remark
that weaker and less explicit bounds than (5.4) and (5.5) suffice to establish (5.3)
with point-wise absolute convergence. The more explicit bounds (5.4) and (5.5)
can be used to upgrade the uniqueness result of Corollary 5.2 to an interpolation
formula that can be written as in [17, Theorem 1] which then justifies the claim made
in Section 1.6. But even without these more explicit bounds, [17, Corollary 2.1]
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allows to deduce some interpolation result from (5.3), but possibly suboptimal from
analytic point of view. The details of this passage are almost identical to the analysis
in [17, Section 3] so we will not give them here. However, we include a proof of (5.4)
and (5.5) in Appendix A, for the sake of completeness and since it is not obvious
how to generalize the corresponding proof in the case for � D 2 from [17]. In this
section (Section 5), we will prove enough to establish (5.3) with absolute uniform
convergence by proving a version of (5.4) with unspecified dependence on k and �.

5.1. Preliminaries for the proof of Theorem 5.1. Below in Section 5.2, we will
define the functions ak;�;n.r/, zak;�;n.r/ that enter (5.3) in Theorem 5.1 as the Fourier
coefficients of certain 2-periodic holomorphic function Fk;�.z; r/, zFk;�.z; r/ but
before defining those, we gather here some notation and preliminary results.

5.1.1. Notation for Section 5. For the remainder of Section 5, k denotes a real
number and we will also assume (most of the time) that k > 2. For x 2 R we use the
elements T x; V x 2 PSL2.R/ as defined in (4.4) as well as the element S D

�
0 �1
1 0

�
.

We allow � to be a complex number and define �.�/ and H.�/ as subgroups of
PSL2.C/ via the generators as in (5.2). The reason for this is mainly for the proof of
part (vi) of Lemma 5.6 below, but otherwise, we are only interested in real � � 2.
For expediency, we will sometimes use the notation

 D

�
a b
c d

�
for entries of a 2-by-2 matrix. If  is an element of PSL2.R/ D SL2.R/=f˙I g, we
will only use such notation if the expression in terms of a ; b ; c ; d is well-defined
for  2 PSL2.R/, e.g. ja j 2 R�0 is well-defined for  2 PSL2.R/ and so is the
condition c ¤ 0.

5.1.2. Slash action. For � � 2, it is known that the only relation in the Hecke group
H.�/ is S2 D 1. We may therefore define a 1-cocycle jk WH.�/! Hol.H;C�/ by
prescribing its values on the generators S; T �:

jk.S/.z/ WD jk.S; z/ D .z=i/
k
WD exp.k log.z=i//;

jk.T
�/.z/ WD jk.T

�; z/ WD 1

and in general by requiring the cocycle property jk.12/ D .jk.1/ ı 2/ � jk.2/

to hold. Since jk respects the relation S2 D 1, this is possible. We define a right
action of H.�/ on the space of all C-valued functions F on H by

F jk WD jk./
�1
� .F ı /:

We extend it to the group algebra CŒH.�/� in the usual way.
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Lemma 5.4. For all k 2 R, all  2 H.�/, and all z 2 H, we have

jjk./.z/j D jcz C d j
k :

Proof. Both sides of the claimed identity are 1-cocycles H.�/ ! C.H;R>0/, so
it suffices to verify the identity for the generators S; T � of H.�/, in which case it
follows from the definitions.

5.1.3. Complex �. We will need the following lemma.
Lemma 5.5. For � 2 C with j�j � 2 the group �.�/ D hT �; V �i � PSL2.C/ is
freely generated by T � and V �.

Proof. Consider the following subsets of P1.C/:

X� WD
˚
z 2 C W jzj � 1=

�
j�j � 1

�	
; Y� D f1g [

˚
z 2 C W jzj �

�
j�j � 1

�	
:

Let m 2 Z X f0g. By the Ping-pong lemma, it suffices to show that

Tm�X� � Y�; V m�Y� � X�:

Since SX� D Y�, S2 D 1 and STm�S D V �m�, it suffices to prove the first of these
containments. And indeed, for z 2 X�, we have

jTm�zj D jz Cm�j � jmjj�j � jzj � j�j � jzj � j�j �
1

j�j � 1
� j�j � 1;

since the last inequality is equivalent to j�j � 2.

5.1.4. Special subsets of �.�/. For � 2 C with j�j � 2, we define the subset
V� � �.�/ to be the set of all  2 �.�/ of the form

 D V e1�T f1�V e2�T f2� � � �V en�T fn�; (5.6)

where n � 1 and e1; : : : ; en; f1; : : : fn�1 2 Z X f0g, fn 2 Z.
We also define two subsets R�; zR� � f1g [ V� by

R� WD f 2 V� W  as in (5.6) with fn D 0g;
zR� WD f1g [ f 2 V� W  as in (5.6) with fn ¤ 0g:

The set V� is stable under right multiplication by powers of T � and R� is a complete
set of pairwise inequivalent representatives for V�=hT

�i. Similarly, f1g[V� is stable
under right multiplication by powers of V � and zR� is a complete set of pairwise
inequivalent representatives for .f1g [ V�/=hV

�i.
Lemma 5.6. Consider an element  2 V� as in (5.6) and write  D

�
a b
c d

�
, so that

the entries a; b; c; d depend on n; ei ; fi and �. Then the following hold:
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(i) If fn D 0, then jcj � jd j.
(ii) If fn ¤ 0, then jd j � jcj.
(iii) c ¤ 0 ¤ d .
(iv) jaj � jcj and jbj � jd j.
(v) Viewing � as a formal variable and the entries of  as elements of ZŒ��, the

degrees of the polynomials c and d are at least 2n � 2.
(vi) Viewed as functions of � 2 Œ2;1/, the entries jcj and jd j are monotonically

increasing on Œ2;1/.

Proof. We prove parts (i), (ii), and (iii) simultaneously, using induction on n, by
multiplying on the right with a non-trivial power of V � or T � . The base case is
n D 1, f1 D 0, so  D V e1� and the inequality in (i) holds trivially and certainly
cd ¤ 0. For the inductive step, assume n � 2. If fn ¤ 0, set  0 D T �fn� and
if fn D 0, set  0 D V �en�. Thus, we have either

 D  0T fn� D

�
� �

c 0 d 0 C fn�c 0

�
or  D  0V en� D

�
� �

c 0 C en�d 0 d 0

�
:

If fn ¤ 0, then jc 0 j � jd 0 j > 0 by inductive hypothesis, and hence

jd j D jd 0 C �fnc 0 j � jfnjj�jjc 0 j � jd 0 j � 2jc 0 j � jc 0 j D jc 0 j D jcj > 0;

as desired. If fn D 0, then jd 0 j � jc 0 j > 0 by inductive hypothesis and we deduce
jcj � jd j > 0 in a similar way.

Part (iv) may be proved by induction on n, in the reverse order, that is, by
multiplying elements  from the left by elements V e�T f �, starting with .e; f / D
.en; fn/ and  D 1, then .e; f / D .en�1; fn�1/ and so on. The proof can be given
almost exactly as in [17, Lemma 5.2] in the case � D 2.

Part (v) can also be proved by induction on n, as parts (i) and (ii). In fact, one has
deg.c/ D deg.d/C 1, if fn D 0 and deg.d/ D deg.c/C 1 if fn ¤ 0.

Part (vi) is easily verified for n D 1. For n � 2, note that parts (v) and (iii)
together imply that the functions c and d are non-constant polynomial functions of �
(with coefficients in Z, depending upon ei ; fi ), all of whose complex zeros lie in the
disc j�j < 2. It follows from the Gauss–Lucas theorem that the zeros of their first
derivatives also lie in that disc. In particular, the derivatives of the polynomials c
and d have no real zeros in R X .�2; 2/ and this implies the claim in (vi).

As a final preliminary fact, we record the following consequence of Lemma 5.6:

max
�
jzj; jSzj; jSzj

�
� 1C Im.z/�1 for all  2 V�; z 2 H: (5.7)

To see this, note that for  2 V , we have c ¤ 0 and so

jzj D

ˇ̌̌̌
a

c
�

1

c .cz C d /

ˇ̌̌̌
� 1C jc j

�2 Im.z/�1 � 1C Im.z/�1;
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where the first inequality uses part (iv) and the second uses part (vi) of Lemma 5.6
and the observation that for � D 2 (iii) implies jc j � 1. The upper bound for jSzj
follows in the same way, since S D

�
b �a
d �c

�
.

5.2. Definition of ak;�;n and zak;�;n via their generating functions. For r 2 C
and z 2 H, define 'r.z/ D e�izr

2 . Using the subsets V� defined in Section 5.1.4
and the slash action defined in Section 5.1.2, we define, for all � � 2, k 2 R, z 2 C,
r 2 C, the formal series

Fk;�.z; r/ WD .�1/
X
2V�

.'r jk/.z/; zFk;�.z; r/ WD
X

2V�[f1g

.'r jkS/.z/: (5.8)

Formally, we clearly have

Fk;�.z; r/C .z=i/
�k zFk;�.�1=z; r/ D 'r.z/: (5.9)

Moreover, since V�T
� D V� and since�

V� [ f1g
�
ST � D

��
V� [ f1g

�
V ��

�
S D

�
V� [ f1g

�
S;

both Fk;�.z; r/ and zFk;�.z; r/ are �-periodic in z (at least formally). The next lemma
asserts that, for k > 2, the series defined in (5.8) converge absolutely and uniformly
on compact sets, and thus show that all of these formal identities hold at the level of
functions.
Lemma 5.7. Fix real k > 0, � � 2,X � 1, y0 > 0 and fix a compact subset� � C.
Define

B WD fz 2 H W Im.z/ � y0; jRe.z/j � Xg:
There is a constant C > 0, depending only on � and y0, so that

sup
.z;r/2B��

j.'r jk/.z/j � C.1C 1=y/
k.X C 1/k.c2 C d

2
 /
�k=2 (5.10)

for all  2 V�[fSg[V�S . If k > 2, the series defined in (5.8) converge absolutely
and uniformly on B ��.

Proof. Let W� WD V�[fSg[V�S . Let  2 W� and .z; r/ 2 B��. By Lemma 5.4
and the estimate (5.7), we have

j.'r jk/.z/j D jcz C d j
�keRe.�i.z/r2/

� jcz C d j
�ke�.1Cy

�1
0
/ supr2� jrj2 :

(5.11)
Let Az WC ! C denote the R-linear map given by Az.ci C d/ D czC d , c; d 2 R.
Working with the operator norm of A�1z (and using the equivalence of norms on
EndR.C/) we find a universal constant C1 > 0 so that

.c2 C d2/1=2 D jA�1z .cz C d/j

� kA�1z kjcz C d j � C1.X C 1/.1C 1=y/jcz C d j
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for all .c; d/ 2 R2. Raising this to the power k and then inserting into (5.11)
yields (5.10). For k > 2, uniform and absolute convergence follows now from
part (vi) of Lemma 5.6 and the fact that for � D 2, the set f.c ; dg/2W

is a subset
of the primitive vectors in Z2 (modulo f˙1g).

For each k > 2, � � 2, r 2 C and n 2 Z, we now define

ak;�;n.r/ WD
1

�

Z iyC�=2

iy��=2

Fk;�.z; r/e
�2�inz=� dz;

zak;�;n.r/ WD
1

�

Z iyC�=2

iy��=2

zFk;�.z; r/e
�2�inz=� dz;

(5.12)

where y > 0 can be taken arbitrarily, since F and zF are holomorphic and �-periodic.
Lemma 5.8. For n � 0, we have ak;�;n D 0 D zak;�;n and, as n!1, we have

sup
r2R
jak;�;n.r/j C sup

r2R
jzak;�;n.r/j D O.n

k/; (5.13)

where the implied constant depends only on k and �.

Proof. We prove the assertions for ak;�;n, the ones for zak;�;n are proved in the same
way. Note that, by the triangle inequality,

jak;�;n.r/j � e
2�ny=� sup

jxj��=2

jFk;�.x C iy; r/j (5.14)

for all y > 0. If n � 0, the exponential is bounded by 1, while the supremum
tends to 0 as y !1. The latter follows from Lemma 5.7 and its proof: we can use
uniform convergence to pull the limit inside the series and the fact that c ¤ 0 for all
 2 W� D V� [ fSg [V�S . For n � 1 and r 2 R, we again use Lemma 5.7 and its
proof (modified by using the trivial bound je�i� r2 j � 1 for � 2 H, r 2 R) to deduce

sup
jxj��=2;r2R

jFk;�.x C iy; r/j .k;� .1C 1=y/k :

This holds for all y > 0, in particular for y D 1=n, which then yields (5.13).

5.3. Proof of (5.3) in Theorem 5.1. Let d � 5 be an integer, k D d=2, � � 2 real.
We claim that the functions ak;�;n, zak;�;n defined in (5.12) are such that (5.3) holds.
By their definition, the first assertion of Lemma 5.8, and by (5.9), the formula (5.3)
holds for f .x/ D 'jxj.z/ for all z 2 H and all x 2 Rd . On the other hand, from the
bound in Lemma 5.8, for fixed x 2 Rd , the right-hand side of (5.3) is continuous
in f 2 Srad.Rd / and so the claimed formula follows in general by the density of
Gaussians (Proposition 4.1, although we only need the case n D 1, for which we
can also cite [5, Lemma 2.2]). We prove the more precise bounds (5.4) and(5.5) in
Appendix A.
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A. Proof of the upper bounds (5.4) and (5.5) in Theorem 5.1

We will generalize [17, Lemma 5.3] and then proceed similarly as in the rest of
[17, Section 5]. For real � � 9=4 and � � 2, let us define zV� WD .f1g [ V�/S and

U�;�.z/ WD
X
2V�

jcz C d j
�� ;

zU�;�.z/ WD
X
z2 zV�

jczz C dz j
��
D

X
2f1g[V�

jdz � c j
�� :

We note that these are both�-periodic, continuous functions on H because of the proof
of Lemma 5.7 and because both sets V� and zV� are stable under right multiplication
by powers of T �.
Lemma A.1. There is a constant C0 > 0 so that for all z D x C iy 2 H, all � � 2
and all � � 9=4, we have

max
�
jU�;�.x C iy/j; j zU�;�.x C iy/j

�
� C02

�.y��=2 C y��/:

Proof. By �-periodicity, it suffices to consider z D xC iy 2 H with jxj � �=2. We
start with the analysis of zUk;�.x C iy/ and explain the modifications for Uk;� at the
end. We divide the series into subseries over orbits of right multiplication by T �.
For this, recall from Section 5.1.4 the definition of the set zR� and then note that

zU�;�.z/ D
X
2 QR�

X
e2Z

jdz � .c C e�d /j
��

D

X
2 QR�

jd j
��
X
e2Z

jz � .c=d C e�/j
�� :

For all e 2 Z, we have

jz C .c=d C e�/j
2
D y2 C .�e C x C c=d /

2
� y2:

By part (ii) of Lemma 5.6, we have jc=d j � 1 for all  2 zR� and therefore, for
jej � 2, we have

jz C .c=d C e�/j
2
� 2yj�e C x C c=d j � 2y

�
�jej � �=2 � 1

�
� 2y�

�
jej � .1=2C 1=�/

�
� 2y�

�
jej � 1

�
:

Using these lower bounds, we obtain

zU�;�.z/ �
X
2 zR�

1

.d2 /
�=2

�
3y�� C

X
jej�2

1

.2y�.jej � 1//�=2

�
�

X
2 QR�

1

..c2 C d
2
 /=2/

�=2

�
3y�� C .2�y/��=22�.�=2/

�
;
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where we used that c2 � d2 for  2 zR�. Since � � 9=4 > 2 and � � 2, the claimed
upper bound for zU�;� follows by appealing once again to part (vi) of Lemma 5.6 and
arguing as at the end of the proof of Lemma 5.7.

To treat U�;�, we also split the sum over V� into orbits modulo hT �i and use
instead the set of representatives R� defined in Section 5.1.4 and correspondingly
part (i) of Lemma 5.6.

Lemma A.1 together with the trivial bound je�i� r2 j � 1, valid for all � 2 H,
r 2 R, implies that for all � � 2, k � 5=2, x 2 R, y > 0, r 2 R, we have

jFk;�.x C iy; r/j � Uk;�.x C iy/ � C02
k.y�k C y�k=2/

for some absolute constant C0, not depending on k; �; x; y or r and that the same
holds with the tilde. If we insert this into the general bound (5.14) for integers n � 1
and set y D k

�n
we obtain (after a short computation) (5.4) in Theorem 5.1 for the

functions ak;�;n (the analysis for zak;�;n is the same).
To prove the remaining bound (5.5), we assume that r > 0. Then, for some ˇ > 0

to be determined, we write

jFk;�.z; r/j �
X
2V�

jcz C d j
�ke�� Im.z/r2 Im.z/ˇ Im.z/�ˇ

�

X
2V�

jcz C d j
�k
� ˇ

�er2

�ˇ
Im.z/�ˇ

�

� ˇ

�er2

�ˇ
Im.z/�ˇUk�2ˇ;�.z/:

We take ˇ D k=2� 9=8, so that we can apply Lemma A.1 with � D 9=4, and so that

jFk;�.z; r/j �
� ˇ
�e

�ˇ
r�2ˇy�ˇU9=8;�.z/

� C1

� ˇ
�e

�ˇ
r�2ˇ

�
y�.ˇC9=4/ C y�.9=8Cˇ/

�
;

for some absolute constant C1 > 0. We may now use this upper bound in the general
estimate (5.14) for integers n � 1 and set y D ˇ

�n
to obtain (5.5) in Theorem 5.1

(the analysis for zak;�;n is the same).

B. Removing finitely many interpolation nodes

Here, we prove the modification of Theorem 5.1 explained in the proof of
Corollary 5.2. We assume that � > 2 throughout this section. We first reformulate
our problem by decomposing (5.3) into Fourier eigenspaces so that we can work with
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modular forms on the bigger groupH.�/ � �.�/. This is convenient sinceH.�/ has
only one cusp, but it requires some additional notation and preliminary explanation.

For � 2 f˙1g, let��WH.�/! f˙1g denote the group homomorphisms satisfying
��.S/ D � and ��.T �/ D 1. We twist the slash action defined in Section 5.1.2 by
the character �� by defining

f j�k D ��./jk./
�1
� .f ı /

for  2 H.�/ and functions f on H. For k 2 R, letMk.�; �/ denote the space of all
holomorphic functions f WH ! C which satisfy f j�

k
 D f for all  2 H.�/ and

which admit a Fourier expansion of the form

f .z/ D

1X
nD0

bne
�i.2n=�/z

with polynomially growing Fourier coefficients: bnDO.nc/ for some cDc.f /�0.
Recall that we constructed Fk;�.z; r/; zFk;�.z; r/ which are holomorphic and �-

periodic in z and satisfy (5.9). For � 2 f˙1g, we define F �
k;�
.z; r/ by 

FC
k;�

F �
k;�

!
D

�
1 �1

1 1

��
Fk;�
zFk;�

�
,

�
Fk;�
zFk;�

�
D
1

2

�
1 1

�1 1

� 
FC
k;�

F �
k;�

!
: (B.1)

Then each F �
k;�
.z; r/ is �-periodic in z and by (5.9), we have

F �k;�.�; r/j
�
k.1 � S/ D 'r j

�
k.1 � S/: (B.2)

In fact, (B.2) and (5.9) are equivalent. For n 2 Z we define (note the sign change)

b�k;�;n.r/ WD
1

�

Z iyC�=2

iy��=2

F ��k;�.z; r/e
��i.2n=�/z dz;

so that, by (B.1), we have 
bC
k;�

b�
k;�

!
D

�
1 1

1 �1

��
ak;�
zak;�

�
,

�
ak;�
zak;�

�
D
1

2

�
1 1

1 �1

� 
bC
k;�

b�
k;�

!
: (B.3)

For any �� 2 Mk.�; �/ we can replace F �
k;�
.z; r/ by F �

k;�
.z; r/ � ��.z/ and these

functions will still be holomorphic, �-periodic, satisfy the functional equation (B.2)
and have polynomially bounded Fourier coefficients. In particular, we can take for ��
any linear combination of functions b��

k;n
.r/��n.z/ for suitable ��n. We may then

redefine F; zF in terms of such modified FC; F � via (B.1) and the (new) Fourier
coefficients of F and zF will still satisfy the interpolation formula (5.3) with uniform
convergence.

Thus, the proof of the remaining part of Corollary 5.2 is reduced to the proof
of the following proposition. Indeed, given any integer N � 1, we can use the
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F�

�
�
2

�1 0 1 �
2

Figure 2. A fundamental domain for H.�/ for � > 2.

functions f �n , 1 � n � N provided by the proposition and linearly combine them to
create ��n 2Mk.�; �/ such thatb��n.0/ D 0 and b��n.m/ D ın;m
for all n;m 2 f1; : : : ; N g (where the hat-notation means Fourier coefficient).
Proposition B.1. Fix k > 0, � > 2 and � 2 f˙1g. Then, for every integer n � 1,
there exists f �n 2Mk.�; �/ vanishing to order exactly n at infinity.

Proposition B.1 is essentially due to Hecke [7, Section 3] who proved the existence
of such f �n for all integers n � k=2. We will add a further observation (below
near (B.5)) to his proof and show that the construction extends to all n � 1. Hecke’s
treatment in loc. cit. is somewhat brief and we refer to [3, Chapter 4] for more details
and explanation, also for parts of the proof given below.

Proof of Proposition B.1. Let B1 WD fz 2 C W ��=2 < Re.z/ < 0; jzj > 1g, so that
B1 \H is the left half of the fundamental domain F� drawn in Figure 2. Consider
the following pieces of the boundary of B1:

L1 D ��=2C iR; L2 D i Œ1;1/;

L3 D fz 2 C W Re.z/ < 0; jzj D 1g; L4 D i.�1;�1�:

By the Riemann mapping theorem, there exists a biholomorphic map hWB1 ! H. It
may be chosen uniquely so that it extends continuously to the boundary of B1 (minus
the point �i ), maps the latter to R and satisfies

h.i/ D 0; h.�i/ D �1; h.i1/ D 1; h.�i1/ D a0; (B.4)

for some a0 > 1, where the values at˙i1 are understood in the limit Im.�/!˙1.
We then have

h.L1/ D .1; a0/; h.L2/ D Œ0; 1/; h.L3/ D .�1; 0/; and h.L4/ D .a0;1/:



550 D. Radchenko and M. Stoller CMH

By the Schwarz reflection principle applied toL1,L2, andL3, one may extend h to an
analytic function on C minus the set of points equivalent to �i under the reflections
just mentioned. Then hjH is bounded, H.�/-invariant and never takes the value 1.

We claim that there is ı > 0 so that for all � 2 B1 with j Im.�/j � 2, we have
jg.�/ � 1j � ı. To prove this, it suffices to show that for all � 2 B1 we have

h.x�/ D
a0

h.�/
; (B.5)

because if we specialize the above to � 2 R \ B1, we get jh.�/j2 D a0 > 1 and
can then use continuity of h to prove the claim. To prove (B.5), we note that both
sides define biholomorphic mappings B1 ! fz 2 C W Im.z/ < 0g and that they
extend in the same way to the boundary points � D ˙i;˙i1. Now Hecke proves
the existence of a holomorphic function H WH! C satisfying

h.� C �/ D H.�/; H.�1=�/ D �H.�/; H.�/2 D h.�/

for all � 2 H and then considers

g.�/ WD
h0.�/

H.�/.h.�/ � 1/
;

which is holomorphic and nowhere vanishing on H [ fi1g and transforms like a
modular form in M2.�;C1/ (we again refer to [3, Chapter 4] for justification and
details). Using a suitable logarithm of g, Hecke defines

f �n .�/ WD H.�/
.1��/=2g.�/k=2.h.�/ � 1/n

and proves that f �n 2 Mk.�; �/ for n � k=2. Note that since h.�/ � 1 vanishes to
order 1 at i1 while H and g are non-vanishing at i1, each f �n indeed vanishes
to order exactly n at i1. It remains to be shown that f �n belongs to Mk.�; �/ for
all n � 1. For this, it suffices to show that the H.�/-invariant, continuous function
jf �n .�/j Im.�/k=2 is bounded on the fundamental domain F�.

For � 2 F� with Im.�/ � 2, we have

g.�/ � 1 D O
�
e�.2�=�/ Im.�/�

while g.�/k=2 and H.�/ are both O.1/. For � 2 F� with Im.�/ � 2, we write

jf �n .�/j Im.�/
k=2
D jh.�/j.1��/=4jh.�/ � 1jn�k=2jf �.�/jk=2; (B.6)

where f �.�/ WD Im.�/jh0.�/=H.�/j. The function f �WH ! R�0 is easily seen to
be bounded (see [3, Chapter 4, p. 31]) and since we showed that jh.�/�1j is bounded
away from zero for � 2 F� with Im.�/ � 2 and since we know that h is bounded
on H, we are done.
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C. Proof of Proposition 4.1

Recall that n � 1 and dj � 1 are integers such that d D d1 C � � � C dn and that we
view Rd D

Qn
jD1 Rdj . Abbreviate H WD O.d1/ � � � � � O.dn/ ,! O.d/. We need

to show that the linear span W � S.Rd /H , of all Gaussians

g.z/.x/ D e�i
Pn
jD1 zj jxj j

2

; z 2 Hn; xj 2 Rdj ;

is dense in S.Rd /H . As a matter of notation, we will write

g.z/.x/ D g.z; x/ D gz.x/

in this proof.
By adapting the proof of the fact that C1c .Rn/ is dense in S.Rn/, one may show

that C1c .Rd /O.d/ is dense in S.Rd /H . In particular the larger space C1c .Rd /H is
dense in S.Rd /H .

We now fix f 2 C1c .Rd /H and aim to show that f 2 xW . Fix positive reals
b1; : : : ; bn > 0 and consider the function

h.x/ WD f .x/e�
Pn
jD1 bj jxj j

2

; x D .x1; : : : ; xn/ 2 Rd ; xj 2 Rdj :

Then h 2 C1c .Rd /H . We claim that there exists a function � 2 C1c .Rn/ such that

h.x/ D �
�
jx1j

2; : : : ; jxnj
2
�

for all x 2 Rd : (C.1)

To prove this, let us fix the unit vectors ej 2 Sdj�1 � Rdj and define

h0 2 C
1
c .R

n/O.1/�����O.1/

by
h0.t1; : : : ; tn/ WD h.t1e1; : : : ; tnen/:

Since the algebra of real polynomials in n variables, which are even in each variable,
is generated (as an algebra) by the squares of the variables, a general result of
G. Schwarz [15] implies the existence of � 2 C1c .Rn/ such that h0.t1; : : : ; tn/ D
�.t21 ; : : : ; t

2
n / for all tj 2 R and this function then also satisfies (C.1).

Now, for a function u 2 S.Rn/ such that yu is compactly supported, but otherwise
unspecified for the moment, we write

f .x/ D h.x/g.ib1;:::;ibn/.x/

D .� � u/
�
jx1j

2; : : : ; jxnj
2
�
g.ib1;:::;ibn/.x/C u

�
jx1j

2; : : : ; jxnj
2
�
g.ib1;:::;ibn/.x/

D .� � u/
�
jx1j

2; : : : ; jxnj
2
�
g.ib1;:::;ibn/.x/C

Z
Rn
yu.�/g.ib1C2�1;:::;ibnC2�n/.x/ d�;
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where we applied the Fourier inversion on Rn in the last step. The latter integral
belongs to xW , regardless of the choice of u, as long as yu has compact support. This
follows from integration theory in Fréchet spaces and continuity of the map

Hn
! S.Rd /; z 7! gz

(or alternatively by approximation via Riemann sums). It therefore suffices to show
that the term involving ��u can be made arbitrarily small in the Schwartz topology.
To see this, consider the linear map EWS.Rn/! S.Rd /H defined by

E'.x/ WD '
�
jx1j

2; : : : ; jxnj
2
�
:

It continuous for the Schwartz topology and multiplication by g.ib1;:::;ibn/ is
continuous. Since the space of u 2 S.Rn/ such that yu has compact support is
dense in S.Rn/ and E is continuous, we can choose u in such a way that E.� � u/
is in any prescribed open zero neighborhood of S.Rd /. This finishes the proof of
Proposition 4.1.
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