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An upper bound on the revised first Betti number
and a torus stability result for RCD spaces

Ilaria Mondello, Andrea Mondino and Raquel Perales

Abstract. We prove an upper bound on the rank of the abelianised revised fundamental group
(called “revised first Betti number”) of a compact RCD�.K;N / space, in the same spirit of
the celebrated Gromov–Gallot upper bound on the first Betti number for a smooth compact
Riemannian manifold with Ricci curvature bounded below. When the synthetic lower Ricci
bound is close enough to (negative) zero and the aforementioned upper bound on the revised
first Betti number is saturated (i.e. equal to the integer part of N , denoted by bN c), then we
establish a torus stability result stating that the space is bN c-rectifiable as a metric measure
space, and a finite cover must be mGH-close to an bN c-dimensional flat torus; moreover, in
case N is an integer, we prove that the space itself is bi-Hölder homeomorphic to a flat torus.
This second result extends to the class of non-smooth RCD�.�ı;N / spaces a celebrated torus
stability theorem by Colding (later refined by Cheeger–Colding).
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1. Introduction

Let us start by recalling that an RCD�.K;N / space is a (possibly non-smooth)
metric measure space .X; d;m/ with dimension bounded above by N 2 Œ1;1/ and
Ricci curvature bounded below by K 2 R, in a synthetic sense (see Section 2.3 for
the precise notions and the corresponding bibliography). The class of RCD�.K;N /
spaces is a natural non-smooth extension of the class of smooth Riemannian manifolds
of dimension � N and Ricci curvature bounded below by K 2 R, indeed:
� It contains the class of smooth Riemannian manifolds of dimension� N and Ricci

curvature bounded below by K 2 R;

� It is closed under pointed measured Gromov–Hausdorff convergence, so Ricci
limit spaces are examples of RCD�.K;N / spaces;

� It includes the class of bN c-dimensional Alexandrov spaces with curvature
bounded below by K=.bN c � 1/, the latter being the synthetic extension of the
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class of smooth bN c-dimensional Riemannian manifolds with sectional curvature
bounded below by K=.bN c � 1/;

� In contrast to the class of smooth Riemannian manifolds, it is closed under natural
geometric operations such as quotients, foliations, conical and warped product
constructions (provided natural assumptions are met);

� Several fundamental comparison and structural results known for smooth
Riemannian manifolds with Ricci curvature bounded below and for Ricci limits
have been extended to RCD�.K;N / spaces.

It was proved by Wei and the second named author [39] (after Sormani–Wei [43,45])
that an RCD�.K;N / space .X; d;m/ admits a universal cover . zX; d zX ;m zX /, which
is an RCD�.K;N / space as well. The group of deck transformations on the universal
cover is called revised fundamental group ofX and denoted by x�1.X/ (see Section 2.6
for the precise definitions and basic properties).

We next discuss the main results of the present paper. Let .X; d;m/ be a compact
RCD�.K;N / space and let x�1.X/ be its revised fundamental group. Set

H WD Œx�1.X/; x�1.X/� and � WD x�1.X/=H;

respectively the commutator and the abelianised revised fundamental group. As a
consequence of Bishop–Gromov volume comparison, � is finitely generated (see
Proposition 2.25, after Sormani–Wei [44]), and thus it can be written as

� D Zs � Zs1p1 � � � � � Zslpl :

We define the revised first Betti number of .X; d;m/ as

b1.X/ WD rank.�/ D s:

The goal of the paper is two-fold:
� First, we prove an upper bound for the revised first Betti number of a compact

RCD�.K;N / space, generalising to the non-smooth metric measure setting a
classical result of M. Gromov [30] and S. Gallot [24] originally proved for smooth
Riemannian manifolds with Ricci curvature bounded below.

� Second, we prove a torus stability/almost rigidity result, roughly stating that if
.X; d;m/ is a compact RCD�.�";N / space with b1.X/ D bN c, then a finite
cover must be measured Gromov–Hausdorff close to a flat bN c-dimensional
torus; if moreover N is an integer, then .X; d/ is bi-Hölder homeomorphic to
a flat N -dimensional torus and m is a constant multiple of the N -dimensional
Hausdorff measure. This extends to the non-smooth RCD setting a celebrated
result by T. Colding originally established for smooth Riemannian manifolds with
Ricci curvature bounded below [16, Theorem 0.2] and later refined by Cheeger–
Colding [12, Theorem A.1.13]; this proved an earlier conjecture by M. Gromov.
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More precisely, the first main result is the following upper bound on b1.X/:
Theorem 1.1 (An upper bound on b1.X/ for RCD�.K;N / spaces). There exists a
positive function

C.N; t/ > 0

with limt!0 C.N; t/ D bN c such that for any compact RCD�.K;N / space .X; d;m/
with

supp.m/ D X; diam.X/ � D

for some K 2 R, N 2 Œ1;1/, D > 0, the revised first Betti number satisfies

b1.X/ � C.N;KD2/:

In particular, for any N 2 Œ1;1/ there exists ".N / > 0 such that if .X; d;m/ is a
compact RCD�.K;N / space with diam.X/ � D, KD2 � �".N /, then

b1.X/ � bN c:

The upper bound of Theorem 1.1 is sharp, as a flat bN c-dimensional torus T bN c,
is an example of an RCD�.0; bN c/ space (thus, of an RCD�.�";N / space for any
" > 0) saturating the upper bound

b1
�
T bN c

�
D bN c:

In order to state the second main result, let us adopt the standard notation ".ıjN/
to denote a real valued function of ı and N satisfying that

lim
ı!0

".ı j N/ D 0;

for every fixed N . Let us also recall that (see Section 2.5 for more details and for the
relevant bibliography):
� We say that .X; d;m/ has essential dimension equal to N 2 N if m-a.e. x has a

unique tangent space isometric to the N -dimensional Euclidean space RN ;
� We say that .X; d;m/ is N -rectifiable as a metric measure space for some N 2 N

if there exists a family of Borel subsets U˛ � X and charts '˛WU˛ ! RN , which
are bi-Lipschitz on their image such that

m
�
X n

[
˛

U˛

�
D 0 and mxU˛ � HN xU˛;

where HN denotes the N -dimensional Hausdorff measure.
Theorem 1.2 (Torus stability for RCD�.K;N / spaces). For everyN 2 Œ1;1/, there
exists

ı.N / > 0

with the following property. Let .X; d;m/ be a compact RCD�.K;N / space with

K diam.X/2 > �ı.N / and b1.X/ D bN c:
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(1) Then .X; d;m/ has essential dimension equal to bN c and it is bN c-rectifiable
as a metric measure space.

(2) There exists a finite cover .X 0; dX 0 ;mX 0/ of .X; d;m/ which is ".ıjN/-mGH-
close to a flat torus of dimension bN c.

(3) If in addition N 2 N, then m D cHN for some constant c > 0 and .X; d/ is
bi-Hölder homeomorphic to an N -dimensional flat torus.

The torus stability above should be compared with the torus rigidity below, proved
by Wei and the second named author [39], extending to the non-smooth RCD�.0;N /
setting a classical result of Cheeger–Gromoll [15]. See also Gigli–Rigoni [29] for
a related torus rigidity result, where the maximality assumption on the rank of the
revised fundamental group is replaced by the maximality of the rank of harmonic
one forms (recall that the rank of the space of harmonic one forms coincides with the
first Betti number in the smooth setting).
Theorem 1.3 ([39], after [15]). Let .X; d;m/ be a compact RCD�.0;N / space for
someN 2 Œ1;1/. If the revised fundamental group x�1.X/ contains bN c independent
generators of infinite order, then .X; d;m/ is isomorphic as a metric measure space
to a flat torus

T bN c D RbN c=�

for some lattice � � RbN c.

1.1. Outline of the arguments and organisation of the paper. Our first goal will
be to establish the Gromov–Gallot’s upper bound on b1.X/ stated in Theorem 1.1.
To that aim:
� Let .X; d;m/ be a compact RCD�.K;N / space. If N D 1 then all the results

hold trivially (see Remark 2.7.1). So we assume that N 2 .1;1/;
� Let . zX; d zX ;m zX / be the universal cover of .X; d;m/. Recall that . zX; d zX ;m zX / is

an RCD�.K;N / space as well, and the revised fundamental group x�1.X/ acts on
. zX; d zX ;m zX / by deck transformations (actually x�1.X/ can be identified with the
group of deck transformations on zX );

� Let H D Œx�1.X/; x�1.X/� be the commutator of x�1.X/ and consider the quotient
space xX D zX=H . Then xX inherits a natural quotient metric measure structure
from zX , denoted by . xX; d xX ;m xX /, which satisfies the RCD�.K;N / condition
as well (see Corollary 2.26). Moreover, . xX; d xX ;m xX / is a covering space for
.X; d;m/, with fibres of countable cardinality (corresponding to� WD x�1.X/=H );

� We will also consider X 0 WD X=� 0, where � 0 Š Zb1.X/ is a suitable subgroup
of � . More precisely, fix a point xx 2 xX ; extending a classical argument of Gromov
to the non-smooth RCD setting, one can construct � 0 < � isomorphic to Zb1.X/

such that the distance between xx and any element in � 0xx is bounded above and
below uniformly in terms of diam.X/ (see Lemma 3.2 for the precise statement).
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The quotient space .X 0; dX 0 ;mX 0/ still satisfies the RCD�.K;N / condition, it is
a covering space for .X; d;m/, with fibres of finite cardinality (corresponding to
the index of � 0 in �).

After the above constructions, a counting argument combined with Bishop–Gromov’s
volume comparison Theorem in . xX; d xX ;m xX / will give Theorem 1.1 at the end of
Section 3.

In order to show Colding’s torus stability for RCD�.�ı;N / spaces (i.e. Theo-
rem 1.2), in Section 4 we will construct "-mGH approximations from large balls in xX
to balls of the same radius in the Euclidean space RbN c (see Theorem 4.1 for the
precise statement).

This is achieved by an inductive argument with bN c steps: in each step we
obtain that a ball in xX is mGH-close to a ball in a product Rn � Y , where Y is an
RCD�.0;N �n/ space. In order to prove the inductive step and pass from n to nC1,
we show that for ı > 0 small enough, Y must have large diameter, so that the almost
splitting theorem applies to Y . Therefore, we get an mGH approximation from a ball
in xX into RnC1 � Y 0. The diameter estimate for Y relies on the volume counting
argument described in the previous paragraph and contained in Section 3.

The approach above is inspired by Colding’s paper [16], however there are
some substantial differences: indeed Colding’s inductive argument is based on the
construction of what are now known as ı-splitting maps, while we only use "-mGH
approximations and the almost splitting theorem; moreover the non-smooth RCD�

setting, in contrast to the smooth Riemannian framework, poses some challenges at
the level of regularity, of global/local structure, and of topology. Below we briefly
sketch the main lines of arguments; the expert will recognise the differences from [16].

The existence of "-mGH approximations into the Euclidean space yields the first
claim of Theorem 1.2: for ı > 0 small enough, .X; d;m/ has essential dimension
equal to bN c, it is bN c-rectifiable as a metric measure space and moreover, if N is
an integer, the measure coincides with the Hausdorff measure HN , up to a positive
constant. This will be proved in Theorem 5.1 by combining Theorem 4.1 with an
"-regularity result by Naber and the second named author [38], revisited in the light
of the constancy of dimension of RCD�.K;N / spaces by Brué–Semola [6] and a
measure-rigidity result by Honda [33] for non-collapsed RCD�.K;N / spaces.

When f.Xi ; di ;mi /gi2N is a sequence of spaces as in the assumptions of
Theorem 1.2 with ıi # 0, Theorem 4.1 yields pmGH convergence for . xXi ; d xXi ;m xXi

/

to the Euclidean space of dimension bN c. Then by taking the subgroups

ZbN c Š � 0i < �i WD x�1.Xi /=Hi

already considered above (i.e. the ones constructed in Lemma 3.2, with k D 3) and
using equivariant Gromov–Hausdorff convergence (introduced by Fukaya [22] and
further developed by Fukaya–Yamaguchi [23]), we deduce GH convergence of (a
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non-relabelled subsequence of)

X 0i WD
xXi=�

0
i

to a flat torus of dimension bN c. This will show the second claim of Theorem 1.2
(see Proposition 6.2 for more details).

When N is an integer, the measure of X 0i coincides with HN (up to a constant),
thanks to the aforementioned result by Honda [33]. This fact allows to apply Colding’s
volume convergence for RCD spaces proved by De Philippis–Gigli [18] and get that
the GH convergence obtained above can be promoted to mGH convergence of X 0i to
a flat torus. A recent result by Kapovitch and the second named author [34] (which
builds on top of Cheeger–Colding’s metric Reifenberg theorem [12]) states that for
N 2 N, if a non-collapsed RCD�.K;N / space is mGH-close enough to a compact
smooth N -manifold M , then it is bi-Hölder homeomorphic to M . This implies that
for ı > 0 small enough as in Theorem 1.2,

X 0 WD xX=� 0

is bi-Hölder homeomorphic to a flat torus, and thus xX is locally (on arbitrarily large
compact subsets) bi-Hölder homeomorphic to RN . In order to conclude the proof of
the third claim of Theorem 1.2, we show that � is torsion free, yielding that � Š ZN ,
and thus

X D xX=�

is bi-Hölder homeomorphic to a flat torus. This last step uses the classical Smith’s
theory of groups of transformations with finite period.

The paper is organised as follows. Section 2 is devoted to recall previous results
about RCD spaces, covering spaces and pointed Gromov–Hausdorff convergence
(measured and equivariant) that are used in the rest of the paper. In particular, we
show that a metric measure space .X; d;m/ is RCD�.K;N / if and only if any of
its regular coverings with countable fibre is an RCD�.K;N / space as well. This
is essential since in our proofs we often use properties of RCD� spaces on the
coverings zX; xX and X 0 of X . Section 3 contains the proof of the upper bound for
the revised first Betti number and its consequences. In Section 4, we construct by
induction "-mGH approximations between large balls in the covering xX and balls
in Euclidean space of dimension b1.X/ D bN c. Section 5 is devoted to proving
the bN c rectifiability, i.e. the first claim of Theorem 1.2. In Section 6, we conclude
the proof of Theorem 1.2 by first showing that X 0 is GH-close to a flat torus TN

and then obtaining that, for integer N , X 0 is bi-Hölder homeomorphic to TN and
X D X 0. In the appendix we construct two explicit mGH approximations that are
used in Section 4.
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2. Background

In this section we recall some fundamental notions about convergence of metric
measure spaces and about metric measures spaces with a synthetic lower bound on
the Ricci curvature which will be used in the paper.

2.1. Metric measure spaces and pointed metric measure spaces. A metric meas-
ure space (m.m.s. for short) is a triple .X; d;m/, where .X; d/ is a complete and
separable metric space and m is a locally finite non-negative complete Borel measure
onX , withX D supp.m/ and m.X/ > 0. A pointed metric measure space (p.m.m.s.
for short) is a quadruple .X; d;m; xx/ where .X; d;m/ is a m.m.s. and xx 2 X is a
given reference point. Two p.m.m.s. .X; d;m; xx/ and .X 0; d0;m0; xx0/ are said to be
isomorphic if there exists an isometry

'W .X; d/! .X 0; d0/ such that ']m D m0 and '.xx/ D xx0:

Recall that .X; d/ is said to be:
� proper if closed bounded sets are compact;
� geodesic if for every pair of points x; y 2 X there exists a length minimising

geodesic from x to y.
As we will recall later in this section, the synthetic Ricci curvature lower bounds
used in the paper (i.e. CD�.K;N / for some K 2 R, N 2 Œ1;1/) imply that .X; d/
is proper and geodesic (see Remark 2.8.1).

2.2. Gromov–Hausdorff convergence. We first define pointed measured Gromov–
Hausdorff (pmGH) convergence of p.m.m.s. which will be used in Section 4. For de-
tails, see [7,27,49]. Then we define equivariant pointed Gromov–Hausdorff (EpGH)
convergence and state some results by Fukaya and Fukaya–Yamaguchi which will be
employed in Section 6. For details, see [22, 23].
Definition 2.1 (Definition of pmGH convergence via pmGH approximations). Let

.Xn; dn;mn; xxn/; n 2 N [ f1g
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be a sequence of p.m.m.s. We say .Xn; dn;mn; xxn/ converges to .X1; d1;m1; xx1/
in the pmGH sense if for any "; R > 0, there exists N.";R/ 2 N such that, for each
n � N.";R/, there exists a Borel map

f R;"n WBR.xxn/! X1

satisfying:
� f

R;"
n .xxn/ D xx1;

� supx;y2BR.xxn/ jdn.x; y/ � d1.f
R;"
n .x/; f

R;"
n .y//j � ";

� the "-neighbourhood of f R;"n .BR.xxn// contains BR�".xx1/,
� .f

R;"
n /].mnxBR.xxn// weakly converges to m1xBR.x1/ as n ! 1, for a.e.

R > 0.
The maps f R;"n WBR.xxn/ ! X1 are called "-pmGH approximations. If we do
not require the maps f R;"n to be Borel, nor the last item to hold, we say that the
maps f R;"n are "-pGH approximations and that the sequence converges in pointed
Gromov–Hausdorff (pGH) sense.

We next define equivariant pointed Gromov–Hausdorff (EpGH) convergence. To
this aim, given a metric space .X; d/, we endow its group of isometries Iso.X/ with
the compact-open topology. In this case, it is known that the compact-open topology
is equivalent to the topology induced by uniform convergence on compact sets (see for
example [40, Theorem 46.8]). When X is proper, a sequence .fn/n2N of isometries
of X converges to f in the compact-open topology if and only if .fn/n2N converges
to f point-wise on X .
Remark 2.1.1. Given any x0 2 X , denote

dx0.f; g/ D sup
˚
exp

�
�d.x0; x/

�
d
�
f .x/; g.x/

�
j x 2 X

	
;

where d.x; y/ D minfd.x; y/; 1g. If .X; d/ is proper, one can check that dx0 induces
the compact-open topology and that the group .Iso.X/; dx0/ is a proper metric space.

Let M
p
eq be the set of quadruples .X; d; xx; �/, where .X; d; xx/ is a proper pointed

metric space and � � Iso.X/ is a closed subgroup of isometries. Define the set

�.r/ D
˚
 2 � j .xx/ 2 Br.xx/

	
:

We are now in position to define equivariant pointed Gromov–Hausdorff convergence
for elements of M

p
eq .

Definition 2.2. Let .Xn; dn; xxn; �n/2M
p
eq , nD1; 2. An "-equivariant pGH approx-

imation is a triple of functions .f; �;  /:

f WB"�1.xx1/! X2; �W�1."
�1/! �2;  W�2."

�1/! �1;

that satisfy
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(1) f .xx1/ D xx2;
(2) The "-neighbourhood of f .B"�1.xx1// contains B"�1.xx2/;
(3) For all x; y 2 B"�1.xx1/, it holds that

jd1.x; y/ � d2.f .x/; f .y//j < "I

(4) For all 1 2 �1."�1/ such that x; 1x 2 B"�1.xx1/, it holds that

d2.f .1x/; �.1/f .x// < "I

(5) For all 2 2 �2."�1/ such that x; .2/x 2 B"�1.xx1/, it holds that

d2.f . .2/x/; 2f .x// < ":

Note that we do not assume f to be continuous, nor � and  to be homeomor-
phisms.
Definition 2.3. A sequence f.Xn; dn; xxn; �n/gn2N of spaces in M

p
eq converges in the

equivariant pointed Gromov–Hausdorff (EpGH for short) sense to

.X1; d1; xx1; �1/ 2Mp
eq

if there exist "n-equivariant pGH approximations between

.Xn; dn; xxn; �n/ and .X1; d1; xx1; �1/

such that "n ! 0 as n!1.
Theorem 2.4 (Fukaya–Yamaguchi [23, Proposition 3.6]). Let f.Xn; dn; xxn; �n/gn2N

be a sequence in M
p
eq such that f.Xn; dn; xxn/gn2N converges in the pointed Gromov–

Hausdorff sense to .X1; d1; xx1/. Then there exist �1 a closed subgroup of isom-
etries of X1 and a subsequence f.Xnj ; dnj ; xxnj ; �nj /gj 2 M

p
eq that converges in

the equivariant pointed Gromov–Hausdorff sense to .X1; d1; xx1; �1/ 2M
p
eq .

For a closed subgroup � in Iso.X/ and x 2 X , let �x � X denote the orbit of x
under the action of � . The space of orbits is denoted by X=� . Let

dX=�.�x; �x0/ D inf
˚

dX .z; z0/ j z 2 �x; z0 2 �x0
	
: (2.1)

It is a standard fact that dX=� defines a distance on X=� . Indeed, the equivalence
between convergence in compact-open topology and point-wise convergence in X
implies that the orbits of � are closed in x. Then consider �x ¤ �x0 and assume by
contradiction that

dX=�.�x; �x0/ D 0:

Then there exists a sequence of points in �x converging to a point y in �x0, and since
orbits are closed, y belongs to �x too. Therefore the two orbits coincide, which we
assumed not. As a consequence, whenever �x ¤ �x0, we have

dX=�.�x; �x0/ > 0:
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Theorem 2.5 (Fukaya [22, Theorem 2.1]). Let f.Xn; dn; xxn; �n/gn2N be a sequence
in M

p
eq that converges in the equivariant pointed Gromov–Hausdorff sense to

.X1; d1; xx1; �1/ 2 M
p
eq . Then f.Xn=�n; dXn=�n ; �n � xxn/gn2N converges in

the pointed Gromov–Hausdorff sense to .X1=�1; dX1=�1 ; �1 � xx1/.

2.3. Synthetic Ricci curvature lower bounds. We briefly recall here the definition
of RCD� spaces, and we refer to [1–4, 21, 26, 37, 47, 48] for more details about
synthetic curvature-dimension conditions and calculus on metric measure spaces.
There are different ways to define the curvature-dimension condition, that are now
known to be equivalent in the case of infinitesimally Hilbertian m.m.s. (see, for
example, [21, Theorem 7]). We chose to give here only the definitions of the
CD�.K;N / condition and infinitesimally Hilbertian m.m.s., since this will be the
framework of the paper. For �; s 2 R, we introduce the generalised sine function

sin�.s/ D

8̂̂<̂
:̂

sin.
p
�s/

p
�

if � > 0;
s if � D 0;
sinh.
p
��s/

p
��

if � < 0:

For .t; �/ 2 Œ0; 1� �RC and � 2 R, the distortion coefficients are defined by

� .t/� .�/ D

8̂<̂
:

sin�.t�/
sin�.�/

if ��2 ¤ 0 and ��2 < �2;
t if ��2 D 0;
C1 if ��2 � �2:

For a metric space .X; d/, let P2.X/ be the space of Borel probability measures �
over X with finite second moment, i.e. satisfyingZ

X

d.x0; x/2 d�.x/ <1

for some (and thus, for every)x02X . TheL2-Wasserstein distance between�0; �1 2
P2.X/ is defined by

W2.�0; �1/
2
D inf

q

Z
X�X

d.x; y/2 dq.x; y/; (2.2)

where q is a Borel probability measure onX �X with marginals �0; �1. A measure
q 2 P .X2/ achieving the minimum in (2.2) is called an optimal coupling. The L2-
Wasserstein space .P2.X/;W2/ is a complete and separable space, provided .X; d/
is so. Let

P2.X; d;m/ � P2.X/

denote the subspace of m-absolutely continuous measures and P1.X; d;m/ the set
of measures in P2.X; d;m/ with bounded support.
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Definition 2.6. LetK2R andN 2 Œ1;1/. A metric measure space .X; d;m/ satisfies
the curvature-dimension condition CD�.K;N / if and only if for each �0; �1 2
P1.X; d;m/ with �i D �im, i D 0; 1, there exists an optimal coupling q and a
W2-geodesic

.�t /t2Œ0;1� � P1.X; d;m/

between �0 and �1 such that for all t 2 Œ0; 1� and N 0 � N , we haveZ
X

�
�1=N 0

t d�t �

Z
X�X

�
�
.1�t/

K=N 0
.d.x0; x1//�0.x0/�1=N

0

C �
.t/

K=N 0
.d.x0; x1//�1.x1/�1=N

0�
dq.x0; x1/: (2.3)

Given a metric measure space .X; d;m/, the Sobolev space W 1;2.X; d;m/ is by
definition the space of L2.X;m/ functions having finite Cheeger energy, and it is
endowed with the natural norm

kf k2
W 1;2 WD kf k

2
L2
C 2Ch.f /;

which makes it a Banach space. Here, the Cheeger energy is given by the formula

Ch.f / WD
1

2

Z
X

jDf j2w dm;

where jDf jw denotes the weak upper differential of f .
The metric measure space .X; d;m/ is said to be infinitesimally Hilbertian if the

Cheeger energy is a quadratic form (i.e. it satisfies the parallelogram identity) or,
equivalently, if the Sobolev space W 1;2.X; d;m/ is a Hilbert space.
Definition 2.7. Let K 2 R and N 2 Œ1;1/. We say that a metric measure space
.X; d;m/ is an RCD�.K;N / space if it is infinitesimally Hilbertian and it satisfies
the CD�.K;N / condition.
Remark 2.7.1 (The case N D 1). If .X; d;m/ is a compact RCD�.K;N / space
withN D 1, then by Kitabeppu–Lakzian [36], we know that .X; d;m/ is isomorphic
either to a point, or a segment, or a circle. Hence, all the statements of this paper will
hold trivially. For instance:
� The revised first Betti number upper bound b1.X/ � 1 holds trivially;
� The torus stability holds trivially since b1.X/ D 1 only if .X; d;m/ is isomorphic

to a circle.
Without loss of generality, we will thus assume N 2 .1;1/ throughout the paper to
avoid trivial cases.
Remark 2.7.2 (Other synthetic notions: CD.K;N /, CDloc.K;N /, RCD.K;N /). For
K;N 2 R, N � 1, one can consider the � -distortion coefficients

�
.t/
K;N .�/ WD t

1=N�
.t/

K=.N�1/
.�/.N�1/=N :
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Replacing the � -distortion coefficients with the � -distortion coefficients in (2.3), one
obtains the CD.K;N / condition. Since

�
.t/
K;N .�/ � �

.t/

K=N
.�/;

the CD.K;N / condition implies CD�.K;N /. Conversely, the CD�.K;N / condition
implies CD.K�; N / for K� D K.N � 1/=N , see [4, Proposition 2.5 (ii)].

Analogously to Definition 2.7, one can define the class of RCD.K;N / spaces
as those CD.K;N / spaces which in addition are infinitesimally Hilbertian. It is
clear from the above discussion that RCD.K;N / implies RCD�.K;N /, and that
RCD�.K;N / implies RCD.K�; N /. An important property of RCD�.K;N / spaces
is the essential non-branching [42], roughly stating that every W2-geodesic with
endpoints in P2.X; d;m/ is concentrated on a set of non-branching geodesics. This
has been recently pushed to full non-branching in [20].

The local version of CD.K;N /, called CDloc.K;N /, amounts to require that
every point x 2 X admits a neighbourhood U.x/ such that for each pair �0; �1 2
P1.X; d;m/ supported in U.x/ there exists a W2-geodesic from �0 to �1 (not
necessarily supported in U.x/) satisfying the CD.K;N / concavity condition. For
essentially non-branching spaces, it is not hard to see that CD�.K;N / is equivalent to
CDloc.K;N /. It is much harder to establish the equivalence in turn with CD.K;N /.
This was proved for essentially non-branching spaces with finite total measure
in [8]. In particular, it follows that for spaces of finite total measure, the conditions
RCDloc.K;N /, RCD.K;N / and RCD�.K;N / are all equivalent.

We state here some well-known properties of RCD�.K;N / spaces that we are
going to use throughout the paper. First of all, we have the following natural scaling
properties: if .X; d;m/ is an RCD�.K;N / space, then
� for any c > 0, .X; d; cm/ is an RCD�.K;N / space,
� for any � > 0, .X; �d;m/ is an RCD�.��2K;N/ space.

The following sharp Bishop–Gromov volume comparison was proved in [48] for
CD.K;N / spaces, then generalised to non-branching CDloc.K;N / spaces in [10],
and to essentially non-branching CDloc.K;N / spaces in [9]. In particular, it holds
for RCD�.K;N / spaces. It will be useful in proving the appropriate upper bound for
the revised first Betti number b1.X/.
Theorem 2.8 (Bishop–Gromov volume comparison). Let K 2 R and N 2 .1;1/.
If K < 0, then for any RCD�.K;N / space .X; d;m/, all x 2 X and all r � R, we
have

m.Br.x//

m.BR.x//
�

R r
0

sinhN�1.
p
�K=.N � 1/t/ dtR R

0
sinhN�1.

p
�K=.N � 1/t/ dt

:

If K � 0, then
m.Br.x//

m.BR.x//
�

� r
R

�N
:
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Remark 2.8.1. The Bishop–Gromov volume comparison implies that RCD�.K;N /
spaces are locally doubling and thus proper. It is also not hard to check directly from
the Definition 2.6 that supp m (and thus X , since we are assuming throughout that
X D supp m) is a length space. Since a proper length space is geodesic, we have
that RCD�.K;N / spaces are proper and geodesic. Thus, without loss of generality,
we will assume that all the metric spaces in the paper are proper and geodesic.

The set of RCD�.K;N / spaces is compact when endowed with the pointed meas-
ured Gromov–Hausdorff topology ([2, 21, 27, 37, 47]):
Theorem 2.9 (Stability with respect to pmGH convergence). Let K2R, N 2 Œ1;1/
and C > 1. The set˚

.X; d;m; xx/ p.m.m.s. such that .X; d;m/ is an RCD�.K;N / space
and C�1 � m.B1.xx// � C

	
endowed with the pmGH topology is compact.

Following the terminology of De Philippis–Gigli [18] (after Cheeger–Colding [12]),
recall that an RCD�.K;N / space .X; d;m/ is said to be:
� non-collapsed if m D HN up to a positive constant;
� weakly non-collapsed if m� HN .
It follows from [18, Theorem 1.12] that whenever .X; d;m/ is a weakly non-collapsed
RCD�.K;N / space, N is necessarily an integer. Honda [33, Corollary 1.3] proved
the following additional property of compact weakly non-collapsed spaces:
Theorem 2.10. Let K 2 R and N 2 N. For any compact weakly non-collapsed
RCD�.K;N / space .X; d;m/, there exists c > 0 such that m D cHN .

2.4. Almost splitting. We recall some results from [38] that we will use in the
proofs, starting from an Abresh–Gromoll inequality on the excess function. For a
metric measure space .X; d;m/ we consider two points p; q and define the excess
function as

ep;q.x/ WD d.p; x/C d.x; q/ � d.p; q/:

For radii 0 < r0 < r1, let Ar0;r1.fp; qg/ be the annulus around p and q:

Ar0;r1
�
fp; qg

�
D
˚
x 2 X j r0 < d.p; x/ < r1 _ r0 < d.q; x/ < r1

	
:

We will use the following estimates, contained in [38, Theorem 3.7, Corollary 3.8
and Theorem 3.9].
Theorem 2.11. Let .X; d;m/ be an RCD�.K;N / space for some K 2 R and
N 2 .1;1/, and let p; q 2 X with

dp;q WD d.p; q/ � 1:
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For any "0 2 .0; 1/, there exists

xr D xr.K;N; "0/ 2 .0; 1�

such that if x 2 A"0dp;q ;2dp;q .fp; qg/ satisfies ep;q.x/ � r2 dp;q for some r 2 .0; xr�,
then
(i) The following integral estimate holds:?

Brdp;q .x/

ep;q.y/ dm.y/ � C.K;N; "0/r
2 dp;q:

(ii) There exists ˛ D ˛.N / 2 .0; 1/ such that

sup
y2Brdp;q .x/

ep;q.y/ � C.K;N; "0/r
1C˛dp;q: (2.4)

(iii) If, moreover, x is such that the ball B2rdp;q .x/ is contained in the annulus
A"0dp;q ;2dp;q .fp; qg/, then there exists ˛ D ˛.N / 2 .0; 1/ such that?

Brdp;q .x/

jDep;qj
2dm � C.K;N; "0/r

1C˛: (2.5)

The almost splitting theorem for RCD� spaces states that if there exist k points
in .X; d;m/ that are far enough, and whose excess function and derivatives satisfy
the appropriate smallness condition, then the space almost splits k Euclidean factors,
meaning that .X; d;m/ is mGH-close to a product Rk � Y , for an appropriate
RCD� metric measure space .Y; dY ;mY /. More precisely, we follow the notation
of [38, Theorem 5.1], where pi C pj denotes a point and dp is the distance function
dp.�/ D d.p; �/.
Theorem 2.12. Let " > 0, N 2 .1;1/ and ˇ > 2. Then there exists ı.";N / > 0

with the following property. Assume that, for some ı � ı.";N /, the following holds:
(i) .X; d;m/ is an RCD�.�ı2ˇ ; N / space;
(ii) there exist points x, fpi ; qi ; pi C pj g1�i<j�k in X for some k � N , such that

d.pi ; x/; d.qi ; x/; d.pi C pj ; x/ � ı�ˇ for 1 � i < j � k;

and for all r 2 Œ1; ı�1�, we have

kX
iD1

sup
Br .x/

epi ;qi C

kX
iD1

?
Br .x/

jDepi ;qi j
2 dm

C

X
1�i<j�k

?
Br .x/

ˇ̌̌̌
D

�
dpi C dpj
p
2

� dpiCpj
�ˇ̌̌̌2

dm � ı:
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Then there exists a p.m.m.s. .Y; dY ;mY ; y/ such that

dmGH
�
BX
"�1
.x/; BRk�Y

"�1
..0k; y//

�
< ":

More precisely,
(1) if N � k < 1, then Y D fyg is a singleton;
(2) if N � k 2 Œ1;C1/, then .Y; dY ;mY / is an RCD�.0;N � k/-space, there exist

maps
uWX � B"�1.x/! Rk and vWX � B"�1.x/! Y;

where ui D d.pi ; �/ � d.pi ; x/, such that the product map

.u; v/WX � B"�1.x/! Rk � Y

is an "-mGH approximation on its image.
Theorem 2.12 was proved in [38] by Naber and the second named author, building

on top of Gigli’s proof of the Splitting theorem for RCD�.0;N / spaces [25], after
Cheeger–Gromoll’s Splitting theorem [15] and Cheeger–Colding’s Almost splitting
theorem [11].

2.5. Structure of RCD�.K; N/ spaces and rectifiability. We collect here some
known results about the structure of RCD�.K;N / spaces, which extended to the
RCD�.K;N / setting previous work on Ricci limit spaces [12–14,16, 17]. They will
be used in order to prove that for " > 0 small enough, a compact RCD�.�";N / space
.X; d;m/ with

b1.X/ D bN c and diam.X/ D 1

is bN c-rectifiable and the measure m is absolutely continuous with respect to the
Hausdorff measure H bN c.

We first recall the notion of k-rectifiability for metric and metric measure spaces.
Definition 2.13 (k-rectifiability). Let k 2 N. A metric measure space .X; d;m/ is
said to be .m; k/-rectifiable as a metric space if there exists a countable collection
of Borel subsets fAigi2I such that

m
�
X n

[
i2I

Ai

�
D 0

and there exist bi-Lipschitz maps between Ai and Borel subsets of Rk . A metric
measure space .X; d;m/ is said to be k-rectifiable as a metric measure space if,
additionally, the measure m is absolutely continuous with respect to the Hausdorff
measure Hk .
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We next recall the definitions of tangent space and of k-regular set Rk .
Definition 2.14. Let .X; d;m/ be an RCD�.K;N / space forN 2 .1;1/ andK 2 R,
and let x 2 X . A metric measure space .Y; dY ;mY ; xy/ is a tangent space of .X; d;m/
at x if there exists a sequence ri 2 .0;C1/, ri # 0 such that .X; r�1i d;mx

ri
; x/

converges in the pmGH topology to .Y; dY ;mY ; xy/, where

mx
r D

�Z
Br .x/

�
1 �

d.x; y/
r

�
dm.y/

��1
m:

The set of all tangent spaces of .X; d;m/ at x is denoted by Tan.X; d;m; x/.
Definition 2.15. Let .X; d;m/ be an RCD�.K;N / space forN 2 .1;1/ andK 2 R.
For any k 2 N, the k-th regular set Rk is given by the set of points x 2 X such that
tangent space at x is unique and equal to the Euclidean space .Rk; dRk ; ckHk; 0k/,
with

ck D

�Z
B1.0k/

�
1 � jyj

�
dLk.y/

��1
:

In [38, Theorem 1.1] it was proved that for any RCD�.K;N / space .X; d;m/,
the k-regular sets Rk for k D 1; : : : ; bN c are .m; k/-rectifiable as a metric spaces
and form an essential decomposition of X , i.e.

m
�
X n

bN c[
kD0

Rk

�
D 0:

A subsequent refinement by the independent works [19, 28, 35] showed that the
measure m restricted to Rk is absolutely continuous with respect to Hk . Moreover,
in [6], E. Bruè and D. Semola showed that there exists exactly one regular set Rk

having positive measure. It is then possible to define the essential dimension of an
RCD�.K;N / space as follows.
Definition 2.16 (Essential dimension). Let K 2 R; N 2 .1;1/ and let .X; d;m/
be an RCD�.K;N / space. The essential dimension of X is the unique integer k 2
f1; : : : ; bN cg such that m.Rk/ > 0:

Observe that, as a consequence, any RCD�.K;N / space of essential dimension
equal to k is k-rectifiable as a metric measure space.

We finally state two theorems that will be used in the final part of the paper, to
show that an RCD�.K;N / space with

b1.X/ D N 2 N and diam.X/2K � �"

is mGH-close and bi-Hölder homeomorphic to a flat torus TN .
Theorem 2.17 ([18, Theorem 1.2]). Let N 2 N, N > 1 and let .Xi ; di ;HN ; xi / be
a sequence of non-collapsed RCD�.K;N / spaces such that .Xi ; di ; xi / converges to
.X; d; x/ in the pointed Gromov–Hausdorff sense. Then one of the following holds:
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(i) If
lim sup

i

HN .B1.xi // > 0;

then HN .B1.xi // converges to HN .B1.x// and .Xi ; di ;HN ; xi / converges in
the pmGH sense to .X; d;HN ; x/.

(ii) If
lim
i!1

HN .B1.xi // D 0;

then dimH .X/ � N � 1.
In the following statement, we rephrase Theorem 1.10 of [34]:

Theorem 2.18 ([34, Theorem 1.10]). Let .M; g/ be a compact manifold of dimen-
sion N (without boundary). There exists

" D ".M/ > 0

such that the following holds. If .X; d;m; x/ is a pointed RCD�.K;N / space for
some K 2 R satisfying

dpmGH .X;M/ < ";

then m D cXHN for some cX > 0 and .X; d/ is bi-Hölder homeomorphic to M .

2.6. Covering spaces, universal cover and revised fundamental group. We first
discuss the definition of covering spaces, universal cover, revised fundamental group,
and actions of groups of homeomorphisms over topological spaces. Then we focus
on length metric measure spaces and see that the RCD�.K;N / condition can be
lifted to the total space of an RCD�.K;N / base, when having a covering map.

2.6.1. Covering spaces. Let us provide some definitions and results related to cov-
erings spaces from [32, 46]. In particular, we state the notion of a group acting
properly discontinuously as it appears in these references. Note that sometimes this
is defined differently.

We say that a topological space Y is a covering space for a topological space X
if there exists a continuous map

pY;X WY ! X;

called a covering map, with the property that for every point x 2 X there exists a
neighbourhood U � X of x such that p�1Y;X .U / is the disjoint union of open subsets
of Y and so that the restriction of pY;X to each of these subsets is homeomorphic
to U . By definition, the covering map is a local homeomorphism. Two covering
spaces Y; Y 0 ofX are said to be equivalent if there exists a homeomorphism between
them,

hWY ! Y 0;
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so that
pY 0;X ı h D pY;X :

IfX is path-connected then the cardinality of p�1Y;X .x/ does not depend on x 2 X .
We recall that given a topological space Z and z 2 Z, the fundamental group of Z,
�1.Z; z/, is the group of the equivalence classes under based homotopy of the set of
closed curves from Œ0; 1� to Z with endpoints equal to z. Any covering map pY;X
induces a monomorphism

pY;X]W�1.Y; y0/! �1.X; pY;X .y0//I

moreover, when both Y andX are path-connected, the cardinality of p�1Y;X .x/ agrees
with the index of pY;X].�1.Y; y0// in �1.X; pY;X .y0//. For Y path-connected,
the covering map pY;X is called regular if pY;X].�1.Y; y0// is a normal subgroup
of �1.X; pY;X .y0//.

Before defining the group of deck transformations of a covering space, we
introduce some terminology of group actions.
Definition 2.19. A group of homeomorphisms G of a topological space Y is said to
act effectively or faithfully if \

y2Y

fg j g.y/ D yg D feg;

where e denotes the identity element of G. It acts without fixed points or freely if the
only element of G that fixes some point of Y is the identity element. We say that G
acts discontinuously if the orbits of G in Y are discrete subsets of Y and we say
thatG acts properly discontinuously if every y 2 Y has a neighbourhood U � Y , so
that

U \ gU D ;

for all g 2 G n feg1.
So, acting properly discontinuously implies acting discontinuously and without

fixed points, and every free action is effective.
The group of deck transformations of a covering space Y of X is the group of

self-equivalences of Y :

G.Y j X/ WD
˚
hWY ! Y j h is a homeomorphism and pY;X ı h D pY;X

	
:

By the unique lifting property, G.Y j X/ acts without fixed points. Combining this
fact with the definition of covering map, we see that G.Y j X/ also acts properly
discontinuously on Y .

If Y is connected and locally path-connected, then pY;X is regular if and only
if the group G.Y j X/ acts transitively on each fibre of pY;X . In this case, for any
y0 2 Y , we have

1This is sometimes defined differently, i.e. G acts properly discontinuously if every y 2 Y has a
neighbourhood U � Y , so that U \ gU ¤ ; for finitely many g 2 G
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� an isomorphism of groups:

G.Y j X/ Š �1.X; pY;X .y0//
ı
pY;X].�1.Y; y0//I

� a bĳection between any fibre of pY;X and G.Y j X/;
� a homeomorphism of spaces:

X Š Y=G.Y j X/:

Definition 2.20 (Universal cover of a connected space). Given a connected
topological space X , a universal covering space zX for X is a connected covering
space for X such that for any other connected covering space Y of X there exists a
map

f W zX ! Y

that forms a commutative triangle with the corresponding covering maps, i.e.

pY;X ı f D p zX;X :

Since we do not require X to be semi-locally simply connected, then zX might
not be simply connected. Thus, the group G. zX j X/ of deck transformations of zX
might not be isomorphic to the fundamental group of X . However, G. zX j X/
acts properly discontinuously on zX , transitively on each fibre of pY;X ; thus, p zX;X
is regular. Moreover, any (connected) covering space of X is covered by zX . In
particular, universal covering spaces of a connected and locally path-connected space
are equivalent.

Recall also that for a connected topological space Y and a group G of homeo-
morphisms of Y acting properly discontinuously on Y , the projection map Y!Y=G

is a regular covering whose group of deck transformations coincides with G, i.e.

G.Y j Y=G/ D G:

We conclude this subsection summarising some results that will be used later.

Proposition 2.21. Let pWY ! X be a regular covering and let H � G.Y j X/.
� If Y is connected, then the projection map Y ! Y=H is a regular covering map

and
G.Y j Y=H/ D H I

� If Y is path connected and locally path connected and H is a normal subgroup
of G.Y j X/, then the projection map Y=H ! X is a regular covering map and

G.Y=H j X/ D G.Y j X/=H:
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Proof. For a covering map, the group of deck transformations acts properly discon-
tinuously on the total space. Hence, H also acts properly discontinuously on Y and
so the first item holds by the paragraph above this proposition. The second item can
be proved in a similar way: first observe that Y=H is connected because it is the image
of the projection map which is continuous, then note thatG.Y j X/=H acts properly
discontinuously on Y=H (see also [32, Chapter 1, Section 1.3, Exercise 24]).

2.6.2. Coverings of metric spaces and RCD�.K; N/ spaces. We now discuss some
definitions and results related to coverings of metric spaces. For more details we refer
to [44] and [39].

Let .X; dX / be a length metric space and pY;X WY ! X be a covering map. The
length and metric structure ofX can be lifted to Y so that the covering map becomes
a local isometry. Explicitly, denoting by LX the length structure of X , define the
metric dY WY � Y ! R as

dY .y; y0/ WD inf
˚
LX .pY;X ı / j  W Œ0; 1�! Y; pY;X ı  is Lipschitz

and .0/ D y; .1/ D y0
	
: (2.6)

This lifting process implies that Y is complete whenever X is so. In particular,
if X is compact, then Y will be a complete, locally compact length space, and thus
proper [7, Proposition 2.5.22].

IfX is locally compact and mX is a Borel measure on it, we can lift mX to a Borel
measure mY on Y that is locally isomorphic to mX . In order to define mY , denote
by B.Y / the family of Borel subsets of Y and consider the following collection of
subsets of Y :

† WD
˚
E � Y j pY;X jE WE ! pY;X .E/ is an isometry

	
:

Note that† is stable under intersections and that Y is locally compact given that pY;X
is a local isometry. Thus, the smallest � -algebra that contains † equals B.Y /.
For E 2 †, define

mY .E/ WD mX

�
pY;X .E/

�
and then extend it to all B.Y /.

From now on, all the covering spaces will be endowed with this metric and
measure. The following result was proved in [39].

Theorem 2.22. For any K 2 R and any N 2 .1;1/, any RCD�.K;N / space
admits a universal cover space . zX; d zX ;m zX / which is itself an RCD�.K;N / space.

We now state Sormani–Wei’s definition of revised fundamental group [44].

Definition 2.23. (Revised fundamental group) Given a complete length metric
space .X; dX / that admits a universal cover . zX; d zX /, the revised fundamental group
ofX , denoted by x�1.X/, is defined to be the group of deck transformationsG. zX j X/.
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Recall that the covering map p zX;X associated to the universal cover space of X
is regular and thus x�1.X/ acts transitively on each fibre of p zX;X and properly
discontinuously on zX by homeomorphisms; such homeomorphisms are measure-
preserving isometries on zX , provided zX is endowed with the lifted distance and
measure of X , as described above.

We conclude this subsection by mentioning two properties that will be used later.
First, for a covering map pY;X WY ! X , one can prove (by lifting geodesics of X
to Y ) that for any x; x0 2 X and y 2 Y with y 2 p�1Y;X .x/ there exists y0 2 p�1Y;X .x

0/

such that
dY .y; y0/ D dX .x; x0/:

It follows that if pY;X is regular, and thus G.Y j X/ acts transitively on its fibres,
then for any y; y00 2 Y there exists h 2 G.Y j X/ such that

dY .y; h.y00// � diam.X/: (2.7)

The second property is that a quotient space Y=H as in Proposition 2.21 is an
RCD�.K;N / space provided eitherX or Y is an RCD�.K;N / space. We give more
details below. In Theorem 1.1 we will use this fact to get an upper bound on the
revised first Betti number of an RCD�.K;N / by passing to a quotient space ( zX=H
for H D Œx�1.X/; x�1.X/�); this fact will be also useful in Lemma 6.3 to infer that
the GH convergence of a sequence of quotient spaces can be promoted to mGH
convergence.
Lemma 2.24. Let .X; dX ;mX / be a compact m.m.s with a regular covering map
pY;X WY ! X . Assume that .Y; dY ;mY / has the structure of m.m.s. so that pY;X is
a surjective local isomorphism of m.m.s. and that p�1Y;X .x/ is at most countable. Let
K 2 R and N 2 .1;1/. Then .X; dX ;mX / is an RCD�.K;N / space if and only
if .Y; dY ;mY / is so.

Proof. We argue along the lines of [39, Lemma 2.18].
Assume that .X; dX ;mX / is an RCD�.K;N / space. Then .X; dX / is complete,

separable, proper and geodesic. Since pY;X is a regular covering map, we can
apply [7, Proposition 3.4.16] stating that the length metrics on X are in 1-1 corre-
spondence with theG.Y j X/-invariant length metrics on Y ; thus .Y; dY / is a length
metric space. Since pY;X is a local isometry, we automatically get that .Y; dY / is
a complete and locally compact space. Moreover, by our assumption on p�1Y;X .x/,
.Y; dY / is separable. Now every complete locally compact length space is geodesic [7,
Theorem 2.5.23]. Hence, .Y; dY / is a complete, separable and geodesic space.

In order to prove that .Y; dY ;mY / is an RCD�.K;N /, first recall that by [21,
Theorem 3.17] we know that .Y; dY ;mY / is RCD�.K;N / if and only if it is infinites-
imally Hilbertian and it satisfies the strong CDe.K;N / condition, defined as in [21,
Definition 3.1]. Since .X; dX ;mX / is an RCD�.K;N / space, by [21, Theorem 3.17,
Remark 3.18] we infer that .X; dX ;mX / satisfies the strong CDe.K;N / condition.
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Now [21, Theorem 3.14] says that on a geodesic m.m.s. the strong CDe.K;N /

condition is equivalent to the strong local CDe
loc.K;N / condition, thus in particular

.X; dX ;mX / satisfies the strong local CDe
loc.K;N / condition. Now each point y 2 Y

has a compact neighbourhood Uy such that�
Uy ; dY jUy�Uy ;mY xUy

�
is isomorphic as metric measure space to�

pY;X .Uy/; dX jpY;X .Uy/�pY;X .Uy/;mXxpY;X .Uy/
�
:

It follows that the strong local CDe
loc.K;N / condition satisfied by .X; dX ;mX / passes

to the covering .Y; dY ;mY /. Since Y is geodesic, then by [21, Theorem 3.14] it also
satisfies the strong CDe.K;N / condition.

It remains to show that .Y; dY ;mY / is infinitesimally Hilbertian. This follows by
a partition of unity on Y made by Lipschitz functions with compact support contained
in small metric balls isomorphic to metric balls in X , using the fact that the Cheeger
energy is a local object (see [2,26]). Indeed, the validity of the parallelogram identity
for the Cheeger energy on Y can be checked locally (on each small ball) using a
partition of unity. Since such small balls in Y are isomorphic to small balls of X
where the Cheeger energy satisfies the parallelogram identity, we conclude that the
Cheeger energy on Y satisfies the parallelogram identity as well.

Thus, .Y; dY ;mY / is infinitesimally Hilbertian, satisfies the CDe.K;N / condition
and

supp.mY / D Y:

It follows by [21, Theorem 3.17] that .Y; dY ;mY / is an RCD�.K;N / space.
The converse implication can be proved with analogous arguments.

Proposition 2.25. Let .X; d;m/ be a compact RCD�.K;N / space for some K 2 R
and N 2 .1;1/. Then the revised fundamental group x�1.X/ is finitely generated.

Proof. By [44, Proposition 6.4 and Lemma 6.2] and Bishop–Gromov volume
comparison theorem, for any compact RCD�.K;N / space .X; d;m/, its revised
fundamental group x�1.X/ can be generated by a set of cardinality at most

N.ı0; diam.X// <1;

where ı0 corresponds to the ı0-cover of X so that zX D Xı0 and N.ı0; diam.X// is
the maximal number of balls in zX of radius ı0 in a ball of radius diam.X/.

Corollary 2.26. Let .X; d;m/ be a compact RCD�.K;N / space, for some K 2 R
and N 2 .1;1/. Then for any normal subgroup H of the revised fundamental
group x�1.X/, the metric measure space�

zX=H; d zX=H ;m zX=H

�
is an RCD�.K;N / space which is covered by zX and covers X .
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Proof. Since from Proposition 2.25 we know that x�1.X/ is finitely generated, then
it is at most countable. Thus the cardinality of each fibre of the covering map is at
most countable. We can thus conclude using Proposition 2.21 and Lemma 2.24.

Remark 2.26.1. Since the group of deck transformations G.Y j X/ acts properly
discontinuously on Y , the semi-metric

dY=H .Hy;Hy0/ D inf
˚
dY .z; z0/ j z 2 Hy; z0 2 Hy0

	
(2.8)

defined on the quotient space

Y=H D fHy j y 2 Y g

is actually a metric (this can be seen, for example, using Section 2.2). We also
observe that, under the assumptions of Proposition 2.21, since Y=H is a cover of X
it can also be endowed with the lifted metric of X as defined in (2.6). We note
that this metric coincides with (2.8), so we will use the quotient metric of Y=H
whenever it is convenient. Notice that, in particular, all the covering maps appearing
in Proposition 2.21 are local isometries.

3. Upper bound on the revised first Betti number: b1 � bNc

In this section we obtain an upper bound for the revised first Betti number of an
RCD�.K;N / space with K � 0 and N 2 .1;1/. In the case of smooth mani-
folds, the estimate is due to M. Gromov [30] and S. Gallot [24] (compare also [41,
Section 9.2]).

We consider a compact geodesic space admitting a universal cover and define its
revised first Betti number as the rank of the abelianisation of the revised fundamental
group, whenever the abelianisation is finitely generated. Indeed, the fundamental
theorem of finitely generated abelian groups states that for any finitely generated
abelian group G there exist a rank s 2 N, prime numbers pi and integers si such
that G is isomorphic to Zs � Zs1p1 � � � � � Zslpl .
Definition 3.1. Let .X; d/ be a compact geodesic space admitting a universal cover.
Let x�1.X/ be its revised fundamental group, set

H WD Œx�1.X/; x�1.X/�

the commutator and
� WD x�1.X/=H:

Then we define the revised first Betti number of X as

b1.X/ WD

(
s if � is finitely generated, � D Zs � Zs1p1 � � � � � Zslpl ;

1 otherwise.
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From now on, we denote by xX the quotient space zX=H :�
xX; d xX ;m xX

�
WD
�
zX=H; d zX=H ;m zX=H

�
: (3.1)

By Proposition 2.21, we know that xX is a cover of X ; moreover, � acts on xX as an
abelian group of isometries. Since the action of x�1.X/ is properly discontinuous, the
same is true for � . In particular, the action is discontinuous and all the orbits �x,
x 2 X , are discrete.

The first step in proving the upper bound on the revised first Betti number consists
in showing the appropriate analog of a result of Gromov [31, Lemma 5.19]. In the
case of smooth manifolds, compare with [41, Lemma 2.1, Section 9.2] for k D 1 and
for general k 2 N with [16, Lemma 3.1].
Lemma 3.2. Let .X; d/ be a compact geodesic space that admits a universal cover
. zX; d zX /, assume that � WD x�1.X/=H is finitely generated and let . xX; d xX / be as
in (3.1). Then for any k 2 N and x 2 xX , there exists a finite index subgroup

� 0 D hz1; : : : ; zb1.X/i

of � isomorphic to Zb1.X/ such that for any non-trivial element z 2 � 0

k diam.X/ < d xX
�
z.x/; x

�
; (3.2)

and for all i D 1; : : : ; b1.X/, we have

d xX
�
zi .x/; x

�
� 2k diam.X/: (3.3)

Proof. We first find a subgroup � 00 � � of finite index and generated by elements
that satisfy (3.3) for k D 1. For any " > 0, set

r" D 2 diam.X/C "

and let �" be the subgroup of � generated by the set

�.r"/ WD
˚
 2 � j d xX

�
.x/; x

�
� 2 diam.X/C "

	
:

Observe that the previous set is not empty since, because of (2.7), there exists  2 �
such that

d xX
�
.x/; x

�
� diam.X/:

Endow xX=�" with the quotient topology and the distance d xX=�" induced by d xX ,
c.f. (2.1). Let �"W xX ! xX=�" be the covering map.

Step 1. We claim that xX=�" � xBdiam.X/C".�".x//, i.e. that for each z 2 xX it holds

d xX=�"
�
�".x/; �".z/

�
� diam.X/C ": (3.4)
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By contradiction, assume that there is z 2 xX such that

d xX=�"
�
�".x/; �".z/

�
> diam.X/C ":

Since xX=�" is a geodesic space, we can take a point in the geodesic connecting �".x/
to �".z/, that we denote again by �".z/, so that

d xX=�"
�
�".x/; �".z/

�
D diam.X/C ":

Since the action of � in xX is discontinuous and hence the same is true for the
action of �", there exist representatives x; z 2 xX that achieve d xX=�".�".x/; �".z//,
c.f. (2.1), we have

d xX .x; z/ D d xX=�"
�
�".x/; �".z/

�
D diam.X/C ":

Now, there is  2 � such that d xX ..x/; z/ � diam.X/, c.f. (2.7). Then,

d xX
�
.x/; x

�
� d xX

�
.x/; z

�
C d xX .z; x/

� 2 diam.X/C ":

This implies that  2 �". Thus, �"..x// D �".x/ and

0 D d xX=�"
�
�".x/; �"..x//

�
� d xX=�"

�
�".x/; �".z/

�
� d xX=�"

�
�".z/; �"..x//

�
� ";

where we used that by definition of the quotient distance d xX=�" and the choice of 
we have

d xX=�"
�
�".z/; �"..x//

�
� d xX

�
z; .x/

�
� diam.X/:

This is a contradiction, and thus claim (3.4) is proved.

Step 2. Proof of (3.3) in case k D 1.
From step 1 we know that

xX=�" � xBdiam.X/C"
�
�".x/

�
:

Since xX=�" is proper, we infer that xX=�" is compact and thus the index of �" in �
is finite.

Since the action of � in xX is discontinuous, the set

�.3 diam.X// WD
˚
 2 � j d

�
x; .x/

�
< 3 diam.X/
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is finite. Thus, there exists some "1 < diam.X/ such that for all " � "1 the sets
�.r"/ have bounded cardinality. Since their intersection is not empty, we get that it
coincides with some finite set

�.r"0/ D f1; : : : ; mg

for "0 small enough, i.e.

�.r"0/ D
\
">0

�.r"/ D �.2 diam.X// WD
˚
 2 � j d

�
x; .x/

�
� 2 diam.X/

	
:

Hence, for every element of �.r"0/ inequality (3.3) holds with k D 1.

Step 3. Conclusion by induction.
We are going to select b1 elements of �.r"0/, say fz1; : : : ; zb1g, in such a way that

the subgroup � 0 generated by fz1; : : : ; zb1g satisfies the conclusions of the lemma.
First observe that, since the rank of �"0 equals b1, by possibly discarding some
elements we can choose a linearly independent subset of �.r"0/ with cardinality b1.
For simplicity, let us denote this subset by f1; : : : ; b1g. Consider � 00 � �"0 the
subgroup generated by f1; : : : ; b1g. For fixed k 2 N, we are going to choose

fz1; : : : ; zb1g in � 00 \ �.2 diam.X//

and such that both (3.2) and (3.3) hold. In order to do that, we proceed by induction
on j D 1; : : : ; b1 and we choose

z1; : : : ; zj in � 00 \ �.2 diam.X//

such that:
(a) the subgroup hz1; : : : ; zj i has finite index in h1; : : : ; j i;
(b) zj D  D `1j z1 C � � � C `j�1;j zj�1 C `jj j is chosen so that

ljj D max
˚
jkj; k 2 Z such that 9 `1j ; : : : ; `j�1;j 2 Z

such that if  D `1j z1 C � � � C `j�1;j zj�1 C kj ;
then d xX ..x/; x/ � 2k diam.X/

	
:

Notice that condition (b) ensures that � 0 D hz1; : : : ; zb1i satisfies (3.3). We now
show that � 0 also satisfies (3.2). For any element  2 � 0, there exists j 2 f1; : : : ; b1g
such that  can be written as

 D m1z1 C � � � Cmj zj

with mj ¤ 0. Assume by contradiction that

d
�
x; .x/

�
� k diam.X/
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and consider

2.x/ D 2m1z1 C � � � C 2mj zj D

j�1X
iD1

.2mi C 2mj `ij /zi C 2mj `jj j :

Then by using the triangle inequality and (3.3), we obtain that

d xX
�
x; 2.x/

�
� d xX

�
x; .x/

�
C d xX

�
.x/; 2.x/

�
D 2d xX

�
x; .x/

�
� 2k diam.X/:

Then 2 satisfies

d xX
�
2.x/; x

�
� 2k diam.X/ and j2mj `jj j > j`jj j;

contradicting the way we chose `jj and zj in (b). This concludes the proof.

Remark 3.2.1. With a more careful analysis, a similar version of Lemma 3.2 holds
true if one replaces geodesic space by length spaces. c.f. [31]. Furthermore, the
same conclusion holds if we consider xX=T instead of xX , where T is any torsion
subgroup of � .
Remark 3.2.2. Note that xX is not compact. Indeed, for any xx 2 xX and correspond-
ing � 0 given by Lemma 3.2, the orbit

� 0xx D f.xx/ j  2 � 0g

is countable, since� 0 acts properly discontinuously on xX and� 0 is isomorphic to Zb1 .
Now, if by contradiction xX is compact, then � 0xx has a converging subsequence
fi .xx/g. By using either that the action is properly discontinuous or property (3.2), it
is not difficult to show that fi .xx/g must be a constant sequence starting from i large
enough, giving a contradiction.
Remark 3.2.3. It is not difficult to see that � 0 is a closed discrete group in the
compact-open topology. Recall if a sequence of isometries i in � 0 converges to 
in the compact-open topology, then it converges uniformly on every compact subset
and in particular for any xx 2 xX , we have

i .xx/! .xx/:

We know that for any fixed xx 2 xX , the only converging sequences in the orbit � 0xx
are (definitely) constant sequences. Thus there exist  2 � 0 and i0 2 N such that for
all i � i0, we have

i .xx/ D .xx/:

Therefore, any converging sequence i in � 0 is constantly equal to an element  of � 0,
yielding that � 0 is closed and discrete.
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In the following, we consider a compact RCD�.K;N / space, .X; d;m/ with
N 2 .1;1/. By Theorem 2.22, we know that it admits a universal cover space,
. zX; zd; zm/, that satisfies the RCD�.K;N / condition. Using the same notation as in
Lemma 3.2, by Corollary 2.26, the quotient m.m.s. . xX; xd; xm/ is also an RCD�.K;N /
space. Since by Proposition 2.25 we know that the revised fundamental group x�1.X/
is finitely generated, we infer that the revised first Betti number of .X; d;m/ is finite.

We are now ready to prove the first main result of the paper, namely the desired
upper bound for b1.X/. This is done by combining Lemma 3.2 with Theorem 2.8
for . xX; xd; xm/, and generalises to the non-smooth RCD setting the celebrated upper
bound proved in the smooth setting by M. Gromov [30] and S. Gallot [24] (see
also [41, Theorem 2.2, Section 9.2] and [31, Theorem 5.21]).

Proof of Theorem 1.1. Let .X; d;m/ be a compact RCD�.K;N / space withK 2 R,
N 2 Œ1;1/, supp.m/ D X and diam.X/ � D. If N D 1, the claim holds trivially
(see Remark 2.7.1); thus, we can assume N 2 .1;1/ without loss of generality.
By [39, Theorem 1.2], if K > 0, then x�1.X/ is finite. Hence,

b1.X/ D rank.�/ D 0:

Thus, the claim holds trivially.
Assume that K � 0 and take x 2 xX D zX=H . Recall that both X and xX are

geodesic spaces (see Section 2), thus we can apply Lemma 3.2 with k D 1. Therefore,
there exists a subgroup of deck transformations

� 0 D h1; : : : ; b1i � �

such that

diam.X/ < d xX ..x/; x/ for all non-trivial  2 � 0; (3.5)
d xX .i .x/; x/ � 2 diam.X/ for all i D 1; : : : ; b1: (3.6)

By (3.5) all the open balls Bdiam.X/=2..x//,  2 � 0, are mutually disjoint. Now set

Ir D
˚
 D l11 C � � � C lb1b1 2 �

0
W jl1j C � � � C jlb1 j � r; li 2 Z

	
:

By (3.6), since each element of � is an isometry and applying the triangle inequality,
for all  2 Ir , we have

d xX
�
.x/; x

�
� 2r diam.X/:

Hence, for all  2 Ir , we have

Bdiam.X/=2
�
.x/

�
� B2r diam.X/Cdiam.X/=2.x/:

Since each element of � preserves the measure, i.e.

]m xX D m xX ;
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then all the balls Bdiam.X/=2..x// have the same m xX -measure, and thus

jIr jm xX

�
Bdiam.X/=2..x//

�
� m xX

�
B2r diam.X/Cdiam.X/=2.x/

�
:

By the definition of Ir , jIr j is non-decreasing with respect to r . If r D 1, then
fig

b1
iD1 � Ir , and thus

b1 � jIr j for r � 1: (3.7)

For arbitrary r 2 N, it is easy to check that

jIr j D .2r C 1/
b1 : (3.8)

Now we apply the relative volume comparison theorem, Theorem 2.8, to obtain
an upper bound on the cardinality of Ir . Since the right-hand sides of both equations
in Theorem 2.8 are non-increasing as a function of K, we can assume that K < 0.
Thus,

jIr j �
m xX

�
B2r diam.X/Cdiam.X/=2.x/

�
m xX

�
Bdiam.X/=2..x//

�
�

R 2r diam.X/Cdiam.X/=2
0

sinhN�1
�p
�K=.N � 1/s

�
dsR diam.X/=2

0
sinhN�1

�p
�K=.N � 1/s

�
ds

D

R .2rC1=2/p�K diam.X/2=.N�1/
0 sinhN�1.s/ dsR p�K diam.X/2=.N�1/=2

0 sinhN�1.s/ ds

DW Cr
�
N;�K diam.X/2=.N � 1/

�
: (3.9)

That is, Cr.N; �/W Œ0;�KD2=.N � 1/�! R is the function given by

Cr.N; t/ D

R .2rC1=2/pt
0

sinhN�1.s/ dsR pt=2
0

sinhN�1.s/ ds
:

By (3.7) and since Cr.N; t/ is non-decreasing as a function of t , we have

b1.X/ � Cr
�
N;�KD2=.N � 1/

�
:

By using the Taylor expansion of sinh, we calculate that

lim
t!0

Cr.N; t/ D

�
.2r C 1=2/

1=2

�N
:

Thus, for small t , we have

Cr.N; t/ < 2
N
�
2r C

1

2

�N
C ı: (3.10)
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Now assume by contradiction that there exists a sequence "i # 0 and RCD�.Ki ; N /
metric measure spaces .Xi ; di ;mi / such that

�Ki diam.Xi /2 � "i ; b1.Xi / > N:

Thanks to (3.8) and (3.9), we know that for any integer r � 1, we have

.2r C 1/b1.Xi / � Cr.N;�Ki diam.Xi /2=.N � 1//:

For "i small enough, we can apply (3.10), so that for all r 2 N, r � 1, we have

.2r C 1/b1.Xi / � Cr.N; "i / < 2
N .2r C 1=2/N C ı:

Thus, for r large enough
.2r C 1/b1.Xi / � 5N rN :

Now, if b1.Xi / > N , it is easily seen that the last inequality fails for r D r.N / large
enough. Hence, we have shown that there exists ".N / > 0 such that if .X; d;m/ is
an RCD�.K;N / m.m.s. with �K diam.X/2 � ".N /, then b1.X/ � N . Since by
definition b1.X/ is integer, the last bound is actually equivalent to

b1.X/ � bN c:

This concludes the proof of the second assertion.
In order to prove the first assertion, set

C.N; t/ D sup
˚
b1.X/ W .X; d;m/ is an RCD�.K;N / m.m.s.

with �K diam.X/2 D t
	

and observe that, thanks to (3.9), C.N; t/ is bounded by Cr.N; t=.N � 1//. Since it
is a bounded supremum of integer numbers, C.N; t/ is an integer. Moreover, the flat
torus T bN c is an RCD�.0;N / space with b1.TN / D bN c, hence

C.N; t/ � bN c:

The previous argument also shows that for t � ".N /, it holds that b1.X/ � N , thus
for any t � ".N /, we have

bN c � C.N; t/ � N:

This implies that C.N; t/ D bN c for any t � ".N /. As a consequence, C.N; t/ is
the desired function tending to bN c as t ! 0.

Remark 3.2.4. In the case of n-dimensional manifolds, Gallot proved an optimal
bound for b1.M/ and expressed the function C.n; t/ as �.n; t/n, where �.n; t/ is an
explicit function tending to one as t tends to zero [24, Section 3].
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Corollary 3.3. Let .X; d;m/ be a compact RCD�.K;N / space with N 2 .1;1/
and diam.X/ D 1. Let . xX; d xX ;m xX / be as in (3.1). Then for any xx 2 xX , k 2 N
and R > 1, the open ball BR.xx/ contains at least bR=kcb1.X/ disjoint balls of
radius k=2.

Proof. By Lemma 3.2, there exists a subgroup of deck transformations

� 0 D h1; : : : ; b1i � �

such that

k diam.X/ < d xX ..x/; x/ for all non-trivial  2 � 0;
d xX .i .x/; x/ � 2k diam.X/ for all i D 1; : : : ; b1:

Arguing as in the proof of Theorem 1.1 we get that, for any r 2 N, the number of
disjoint balls of radius k=2 in Bk=2C2kr.xx/ is larger than or equal to the number of
elements in

Ir D
˚
 2 � 0 j  D `11 C � � � C `b1.X/b1.X/; j`1j C � � � C j`b1.X/j < r

	
:

The cardinality of Ir equals .2r C 1/b1.X/. Then for R > 1 write bRc D k.2r C 1/
and get that BR.xx/ contains at least .2r C 1/b1.X/ D bR=kcb1.X/ disjoint balls of
radius k=2.

4. Construction of mGH approximations in the Euclidean space

This section is devoted to proving Theorem 4.1, which corresponds to the non-
smooth RCD version of [16, Lemma 3.5]. The main goal is to show that if .X; d;m/
is an RCD�.�ı;N / space with ı D ı.";N / small enough, diam.X/ D 1 and
b1.X/ D bN c, then the covering space . xX; d xX ;m xX / (defined in (3.1)) is locally (on
suitably large metric balls) mGH-close to the Euclidean space RbN c.

The proof consists in applying inductively the almost splitting theorem. More
precisely, we show that . xX; d xX ;m xX / is locally (on suitably large metric balls) mGH-
close to a product Rk � Yk by induction on k D 1; : : : ; bN c. Since the diameter of
the covering space xX is infinite (see Remark 3.2.2), the base case of induction k D 1
will follow by carefully applying the almost splitting theorem. As for the inductive
step, thanks to Corollary 3.3 we will prove a diameter estimate on Yk that allows us to
apply the almost splitting theorem on Yk . We will conclude by deducing the almost
splitting of an additional Euclidean factor by constructing an "-mGH approximation
into RkC1 � YkC1.
Theorem 4.1. Fix N 2 .1;1/ and ˇ > .2C ˛/=˛, where ˛ D ˛.N / is given by
Theorem 2.11. For any " 2 .0; 1/, there exists

ı.";N / > 0
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such that the following holds. Let .X; d;m/ be an RCD�.�ı2ˇ ; N / space with
ı 2 .0; ı.";N /�, b1.X/ D bN c and diam.X/ D 1, and let . xX; d xX ;m xX / be the
covering space as in (3.1). Then there exists xx 2 xX such that

dmGH
�
B
xX
"�1
.xx/; BRbNc

"�1

�
0bN c

��
� ":

Remark 4.1.1. From Theorem 4.1 it directly follows that the point xx 2 xX has a bN c-
dimensional Euclidean tangent cone and it belongs to the bN c-regular set RbN c.

Indeed, if .Xi ; di ;mi / is a sequence of RCD�.�ı2ˇi ; N / spaces with ıi ! 0,
b1.Xi / D bN c, diam.Xi / D 1 and xxi are as in Theorem 4.1, then the covering spaces
. xXi ; d xXi ;m xXi

; xxi / converge in the pointed measured Gromov–Hausdorff sense to the
Euclidean space �

RbN c; dRbNc ;L
bN c; 0bN c

�
:

The claim follows by applying this observation to a sequence of blow-ups of xX
centred at xx.

In order to prove the base case of induction k D 1, we start by showing the almost
splitting of a line for . xX; d xX ;m xX /. This will be a direct consequence of the next
proposition, which in turn will follow by combining Theorems 2.11 and 2.12 with
suitable blow-up arguments.
Proposition 4.2. Fix N 2 .1;1/ and ˇ > .2C ˛/=˛, where ˛ D ˛.N / is given by
Theorem 2.11. For any " > 0, there exists

ı1 D ı1."; N / > 0;

where ı1."; N / ! 0 as " goes to zero, such that for any ı 2 .0; ı1� the following
holds. Let .X; d;m/ be an RCD�.�ı2ˇ ; N / m.m.s. such that

diam.X; d/ � 2ı�ˇ :

Then there exist x" 2 X , a pointed RCD�.0;N � 1/ metric measure space
.Y"; dY" ;mY" ; y"/, such that

dmGH
�
BX
"�1
.x"/; B

R�Y"
"�1

.0; y"/
�
� ":

Proof. Let .X; d;m/ be an RCD�.�ı2ˇ ; N / space. Because of the assumption on
the diameter, there exist points p; q 2 X such that

d.p; q/ D 2ı�ˇ :

Define x" as the midpoint of a geodesic connecting p and q. Consider the rescaled
metric

dı D .ıˇ=2/ d:

SinceX is an RCD�.�ı2ˇ ; N / space, .X; dı ;m/ is an RCD�.�4;N / space. Observe
that dı.p; q/ D 1. With respect to the metric dı , we have that x" 2 A1=4;2.fp; qg/
and eıp;q.x"/ D 0.
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Step 1. Estimate on the sup of the excess.
We can apply Theorem 2.11 and infer that there exist

xr D xr.N / > 0; C D C.N/ > 0; ˛ D ˛.N / 2 .0; 1/

such that the estimate (2.4) centred at x" holds for dı . By scaling back to the metric d,
such an estimate can be written as follows:

sup
y2Br .x"/

ep;q.y/ � C.N/ ı
˛ ˇ r1C˛ for all r 2 .0; 2ı�ˇxr.N /�: (4.1)

We aim to choose ı > 0 such that (4.1) can be turned into the following:

sup
y2Br .x"/

ep;q.y/ < ı=2 for all r 2 Œ1; ı�1�: (4.2)

Hence, we first require
1 � ı�1 � 2ı�ˇxr.N /; (a)

so that (4.1) applies to all radii r 2 Œ1; ı�1�. Secondly, we need

C.N/ ı˛ ˇ .ı�1/1C˛ < ı=2;

so the right-hand side of (4.1) is bounded above by ı=2. That means

ıˇ˛�2�˛ < 1=.2C.N //: (b)

Such a choice is possible since the assumption ˇ > .2C ˛/=˛ ensures that the
exponent on the left-hand side is strictly positive. By choosing ı > 0 sufficiently
small so that both conditions (a) and (b) are satisfied, we obtain from (4.1) that
estimate (4.2) holds.

Step 2. L2-estimate on the gradient of the excess.
Consider again the rescaled metric dı D .ıˇ=2/ d and choose r > 0, so that

r � minfxr.N /; 1=4g:

Then BX2r.x"/ � A1=4;2.fp; qg/ and estimate (2.5) of Theorem 2.11 holds as well.
By scaling back to the metric d, we have:?

BXr .x"/

jDep;qj
2dm � C.N/ ıˇ.1C˛/r1C˛ for all r � 2ı�ˇ minfxr.N /; 1=4g:

(4.3)
As in step 1, we aim to choose ı > 0 so that (4.3) implies the following:?

BXr .x"/

jDep;qj
2dm � ı=2 for all r 2 Œ1; ı�1�: (4.4)
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Hence, we require
1 � ı�1 � 2ı�ˇ minfxr.N /; 1=4g: (c)

In order for the right-hand side of (4.3) to be less than or equal to ı=2 we need

C.N/ıˇ.1C˛/ı�.1C˛/ < ı=2;

that is,
ı.1C˛/.ˇ�1/�1 < 1=.2C.N //: (d)

Note that since ˇ > 2, the exponent on the left-hand side is strictly positive.

Step 3. Conclusion.
Fix ı0 D ı0.N / > 0 satisfying inequalities (a), (b), (c) and (d). Then for all

ı 2 .0; ı0.N /�, inequalities (a), (b), (c) and (d) hold as well. Now, for any " > 0 let
ı.";N / > 0 be as in Theorem 2.12. We define

ı1 D ı1."; N / D minfı0.N /; ı.";N /g:

Then for all ı 2 .0; ı1�, inequalities (4.2) and (4.4) hold and we have

sup
y2BXr .x"/

ep;q.y/C

?
BXr .x"/

jDep;qj
2dm � ı for all r 2 Œ1; ı�1�:

Since ı � ı1 � ı.";N /, we can apply Theorem 2.12 and conclude the proof.

Proposition 4.2 can be in particular applied to the covering space . xX; d xX ;m xX /.
Indeed, thanks to Corollary 2.26 it is an RCD� space and it is not compact (thus it
must have infinite diameter, since it is proper), as it was pointed out in Remark 3.2.2.
This gives the base case of induction, k D 1.
Corollary 4.3. Let .X; d;m/ and . xX; d xX ;m xX / be as in Theorem 4.1. Then there
exist xx1;" 2 xX and a pointed RCD�.0;N � 1/ space .Y1;"; dY1;" ; mY1;" ; y1;"/ such
that

dmGH
�
B
xX
"�1
.xx1;"/; B

R�Y1;"
"�1

.0; y1;"/
�
� ":

Observe that for the base case of induction (i.e. in Corollary 4.3), we did not use
the assumptions on the diameter and revised first Betti number. These assumptions
will play a key role in the following, instead. Let us state the induction hypothesis.
Assumption Ak. Fix N 2 .1;1/ and let k 2 N with k < bN c. For all � 2 .0; 1/,
there exists ık D ık.�;N / > 0 such that for all ı 2 .0; ık�, the following holds: if
.X; d;m/ and . xX; d xX ;m xX / are as in Theorem 4.1, then there exists xxk;� 2 xX and a
pointed RCD�.0;N � k/ space .Yk;�; dYk;� ; mYk;� ; yk;�/ such that

dmGH
�
B
xX
��1

.xxk;�/; B
Rk�Yk;�
��1

�
0k; yk;�

��
� �:
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In order to prove AkC1 given Ak, we aim to apply Proposition 4.2 to the spaceYk;�:
in this way, Yk;� will almost split a line, thus xX will almost split an additional Euclid-
ean factor, yielding AkC1. To this aim, the following diameter estimate will be
key.
Lemma 4.4. Assume that Ak holds. For any � 2 .0; 1/, let ık.�;N / > 0, .X; d;m/
and . xX; d xX ;m xX / be as in Ak and .Yk;�; dYk;� ; mYk;� ; yk;�/ be the corresponding
RCD�.0;N � k/ p.m.m.s. Then there exist cN 2 .0; 1/ and �0.N / > 0 such that for
all � 2 .0; �0.N /� and for all ı 2 .0; ık.�;N /�, it holds that

diam
�
B
Yk;�

��1
.yk;�/

�
> cN�

�1:

Proof. We argue by contradiction. Assume there exists a sequence �i # 0, corre-
sponding ıiDık.�i ; N /!0 and pointed RCD�.�ı2ˇi ; N / spaces . xXi ; d xXi ;m xXi

; xxi /

for which there exists pointed RCD�.0;N � k/ spaces .Yi ; dYi ;mYi ; yi / such that

dmGH
�
B
xXi

��1
i

.xxi /; B
Rk�Yi
��1
i

..0k; yi //
�
� �i and lim

i!C1
�i diam

�
B
Yi

��1
i

.yi /
�
D 0:

(4.5)
Let i be sufficiently large so that �i < 1. By Corollary 3.3 we know that B

xXi

��1
i

.xxi /

contains at least .b��1i c/
b disjoint balls of radius 1=2, at positive mutual distance.

Using (4.5) we infer that, for i large enough, the ball

B
Rk�Yi
��1
i

..0k; yi //

in Rk � Yi also contains at least .b��1i c/
b disjoint balls of radius 1=2.

Rescale the metric of Rk � Yi by a factor �i and denote the resulting space as
.Rk � Yi /�i . Then for large enough i the ball of radius 1 in .Rk � Yi /�i centred
at .0k; yi / contains at least .b��1i c/

b disjoint balls of radius �i=2 at positive mutual
distance. Furthermore, since

�i diam
�
B
Yi

��1
i

.yi /
�

tends to zero as i tends to infinity, when taking the Gromov–Hausdorff limit of such
balls we obtain

lim
i!1

dGH
�
B
.Rk�Yi /

�i

1 .0k; yi /; B
.Rk/�i
1 .0/

�
D 0:

As a consequence, for large enough i , B.R
k/�i

1 .0/ contains at least .b��1i c/
b disjoint

balls of radius �i=2. Denote by !k the volume of BRk
1 .0/. Since we only rescaled

the metric of Rk � Yi by a factor �i , then the mass of B.R
k/�i

1 .0/ equals !k.��1i /
k

and the mass of a ball of radius �i=2 in B.R
k/�i

1 .0/ equals !k.1=2/k . Hence,

!k
�
b��1i c

�b
.1=2/k � !k.�

�1
i /

k : (4.6)

However, since 1 � k < bN c D b and �i ! 0, the estimate (4.6) cannot hold for i
sufficiently large.
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Remark 4.4.1. Notice that we used the hypotheses

diam.X/ D 1 and b WD b1.X/ D bN c

to have a given number of disjoint balls of radius 1=2 in a ball in xX of radius larger
than 1.

We next combine Lemma 4.4 and Proposition 4.2 in order to prove that the
space Yk;� almost splits a line, for � > 0 small enough depending on " > 0.
Proposition 4.5. Assume that Ak is satisfied. Then for any " 2 .0; 1/, there exists

�.";N / > 0

such that the following holds. For any � 2 .0; �.";N /�, let .Yk;�; dYk;� ;mYk;� ; yk;�/

be the pointed m.m.s. given by Ak. Then there exist y 2 BYk;�
��1=2

.yk;�/ and a pointed
RCD�.0;N � k � 1/ space .Y 0; dY 0 ;mY 0 ; y

0/ such that

B
Yk;�

"�1
.y/ � B

Yk;�

��1
.yk;�/ and dmGH

�
B
Yk;�

"�1
.y/; BR�Y 0

"�1
.0; y0/

�
� ":

Proof. Define
�.";N / D min

n "
2
; �0.N /;

cN

2
ı1."; N /

ˇ
o
;

where ı1."; N / > 0 is the quantity given by Proposition 4.2 and cN ; �0.N / are
defined in Lemma 4.4. Then by assumption Ak and Lemma 4.4, for any � 2
.0; �.";N /� and for all ı 2 .0; ık.�;N /�, if .X; d;m/ is an RCD�.�ı2ˇ ; N / space
as in assumption Ak, then there exist xxk;� 2 xX and a pointed RCD�.0;N � k/ space
.Yk;�; dYk;� ;mYk;� ; yk;�/ such that

dmGH
�
B
xX
��1

.xxk;�/; B
Rk�Yk;�
��1

�
0k; yk;�

��
� �

diam
�
B
Yk;�

��1
.yk;�/

�
> cN �

�1:
(4.7)

Let � > 0 be such that cN ��1 D 2��ˇ . Our choice of �.";N / ensures that for any
� 2 .0; �.";N /�, we have � 2 .0; ı1."; N /�. Therefore, we can apply Proposition 4.2
to Yk;� and get that there exist y 2 Yk;� and a pointed RCD�.0;N � k � 1/ space
.Y 0; dY 0 ;mY 0 ; y

0/ such that

dmGH
�
B
Yk;�

"�1
.y/; BR�Y 0

"�1
.0; y0/

�
� ":

It remains to show that y 2 BYk;�
��1=2

.yk;�/ and that BYk;�
"�1

.y/ � B
Yk;�

��1
.yk;�/.

From the proof of Proposition 4.2, we know that y is a midpoint of a geodesic
between two pointsp; q at distance equal to cN��1. SinceYk;� is a geodesic space and
cN 2 .0; 1/, it is easily seen that (4.7) implies that there exists a point q 2 BYk;�

��1
.yk;�/

such that
dYk;�.q; yk;�/ D cN�

�1:
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Then, in the proof of Proposition 4.2 we can chose p D yk;� , q 2 Yk;� with

dYk;�.q; yk;�/ D cN�
�1

and y a midpoint of a geodesic between p and q. Therefore,

dYk;�.y; yk;�/ D cN�
�1=2:

Now, for any point z 2 BYk;�
"�1

.y/, we have

dYk;�.z; yk;�/ � dYk;�.z; y/C dYk;�.y; yk;�/

< "�1 C cN�
�1=2:

Moreover, our choice of � � �.";N / � "=2 ensures that "�1 � ��1=2. Therefore,
for any z 2 BYk;�

"�1
.y/, we have

dYk;�.z; yk;�/ < �
�1;

as desired.

We are now in position to prove Theorem 4.1.

Proof of Theorem 4.1. We proceed by induction. For k D 1, A1 follows from Corol-
lary 4.3. Now assume that Ak holds for some 1� k < bN c and let us show AkC1.
Denote by C1; C2 > 0 the constants appearing in Propositions A.1 and A.2, respec-
tively, and define

C WD maxfC1C2; 2C1g:

Fix " 2 .0; 1/ and let

"1 WD minf1=2; 1=C g "; �1 WD minf"1=4; �."1; N /g;

where �."1; N / > 0 is given by Proposition 4.5.
With these choices, if ı 2 .0; ık.�;N // and .X; dX ;mX / is an RCD�.�ı2ˇ ; N /

space that satisfies Ak, then there exist xxk;�1 2 xX , a pointed RCD�.0;N � k/ space
.Yk;�1 ; dYk;�1 ;mYk;�1

; yk;�1/ and an �1-mGH approximation

�WB
xX

��1
1

.xxk;�1/! B
Rk�Yk;�1
��1
1

�
0k; yk;�1

�
:

Moreover, by Proposition 4.5, there exist

y 2 B
Yk;�1

��1
1
=2
.yk;�1/ with B

Yk;�1

"�1
1

.y/ � B
Yk;�1

��1
1

.yk;�1/;

an RCD�.0;N � k � 1/ space .Y 0; dY 0 ;mY 0 ; y
0/ and an "1-mGH approximation

'0WB
Yk;�1

"�1
1

.y/! BR�Y 0

"�1
1

.0; y0/:
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Since �1 2 .0; "1/, the inclusion

B
Yk;�1

"�1
1

.y/ � B
Yk;�1

��1
1

.yk;�1/

ensures that
B

Rk�Yk;�1
"�1
1

..0k; y// � B
Rk�Yk;�1
��1
1

..0k; yk;�1//:

Therefore, there exists xxkC1;�1 in B xX
��1
1

.xxk;�1/ such that

dRk�Yk;�1

�
.0k; y/; �.xxkC1;�1/

�
� �1:

We aim to show that

dmGH
�
B
xX
"�1
.xxkC1;�1/; B

RkC1�Y 0

"�1
.0kC1; y0/

�
� ": (4.8)

We first claim that
B
xX

��1
1
=4
.xxkC1;�1/ � B

xX

��1
1

.xxk;�1/: (4.9)

Indeed, since � is an �1-mGH approximation, by the definition of xxkC1;�1 and y,
we have

d xX .xxkC1;�1 ; xxk;�1/ � dRk�Yk;�1

�
�.xxkC1;�1/;

�
0k; yk;�1

��
C �1

� dRk�Yk;�1

�
�.xxkC1;�1/; .0

k; y/
�
C dRk�Yk;�1

�
.0k; y/;

�
0k; yk;�1

��
C �1

� 2�1 C
1

2
��11 :

The claim (4.9) follows by the triangle inequality.
As a consequence, since "�1 � ��11 =4, by Proposition A.1 we can construct a

.C1�1/-mGH approximation out of � as follows:

�1WB
xX
"�1
.xxkC1;�1/! B

Rk�Yk;�1
"�1

..0k; y//:

Thanks to Proposition A.2, there exists a .C2"1/-mGH approximation

'WBRk

"�1
1

.0k/ � B
Yk;�1

"�1
1

.y/! BRk

"�1
1

.0k/ � BR�Y 0

"�1
1

..0; y0//:

Since the ball centred at .0k; y/ of radius "�1 � "�11 =
p
2 is included in the previous

product of balls, we can use again Proposition A.1 to construct a .C1C2"1/-mGH
approximation out of ' as follows:

'1WB
Rk�Yk;�1
"�1

..0k; y//! BRkC1�Y 0

"�1
..0kC1; y0//:

The composition of '1 with �1 then gives a .2C1�1CC1C2"1/-mGH approximation:

f D '1 ı �1WB"�1.xxkC1;�1/! BRkC1�Y 0

"�1
..0kC1; y0//:
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Thanks to our choices of C; "1 and �1, the map f is an "-mGH approximation and
the claim (4.8) is proved.

Finally, set
YkC1;" WD Y

0 and ykC1;" WD y
0:

We have proved that given Ak, for any " 2 .0; ".N /�, there exists

ıkC1 WD ık."; N /

such that for any ı 2 .0; ıkC1."; N // and any RCD�.�ı�2ˇ ; N / space .X; d;m/
with

diam.X/ D 1 and b1.X/ D bN c;

there exist xxkC1;" 2 xX and a pointed RCD�.0;N � k � 1/ space�
YkC1;"; dYkC1;" ;mYkC1;" ; ykC1;"

�
such that

dmGH
�
B
xX
"�1
.xxkC1;"/; B

RkC1�YkC1;"
"�1

..0kC1; ykC1;"//
�
� ":

This shows that for any integer 0 < k < bN c, Ak implies AkC1.

5. Proof of Theorem 1.2, first claim

In this section we prove the first part of the main Theorem 1.2, by combining
Theorem 4.1 with the structure theory of RCD�.K;N / spaces [6, 28, 35, 38]. More
precisely we show the following result, which in turn immediately implies the first
claim of Theorem 1.2 by a standard scaling argument.
Theorem 5.1. For any " 2 .0; 1/ and N 2 .1;1/, there exists

ı.";N / > 0

such that for all ı 2 .0; ı.";N /�, any RCD�.�ı;N / space .X; d;m/ with

b1.X/ D bN c and diam.X/ D 1

has essential dimension equal to bN c and it is bN c-rectifiable as a metric measure
space. Moreover, if N 2 N, there exists c > 0 such that m D cH bN c.

In [38, Theorem 6.8], the authors proved that for any " > 0 there exists ı > 0 such
that if .X; d;m/ is an RCD�.�ı;N / space and a ball of radius ı�1 is ı-mGH-close
to a Euclidean ball of the same radius in RbN c, then there exists a subset (of large
measure) U" of the unit ball which is .1 C "/ bi-Lipschitz to a subset of RbN c. In
order to construct U" and the bi-Lipschitz map into RbN c, they showed the existence
of a function u on the unit ball which, restricted to any ball Bs.x/ centred at a
point x of U", is an ."s/-mGH isometry. We summarise these results in the following
statement.
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Theorem 5.2 ([38, Theorem 6.8]). For every N 2 .1;1/, there exists

ı0 D ı0.N / > 0

with the following property. Let .X; d;m/ be an RCD�.�ı;N / space for some
ı 2 Œ0; ı0/ and assume that for some x0 2 X it holds that

dmGH
�
BX
ı�1
.x0/; B

RbNc

ı�1

�
0bN c

��
� ı:

Then there exists a Borel subset U" � B1.xx/ such that
(1) m.B1.x0/ n U"/ � ";
(2) U" is .1C "/ bi-Lipschitz to a subset of RbN c;
(3) For all x 2 U" and for all r 2 .0; 1� such that BXr .x/ � BX1 .x/, we have

dmGH
�
BXr .x/; B

RbNc
r

�
0bN c

��
� "r:

In particular, for any x 2 U" and for any tangent cone .Y; dY ;mY / at x, we have

dmGH
�
BY1 .x/; B

RbNc
1

�
0bN c

��
� ":

The third property is contained in the proof of [38, Theorem 6.8]. Thanks to the
constancy of the dimension of RCD�.K;N / spaces proved by Brué–Semola [6], the
following holds.
Corollary 5.3. For every N 2 .1;1/, there exists

ı0 D ı0.N / > 0

with the following property. Let .X; d;m/ be an RCD�.�ı;N / space for some
ı 2 Œ0; ı0/ and assume that for some x0 2 X , the following holds:

dGH
�
BX
ı�1
.x0/; B

RbNc

ı�1

�
0bN c

��
� ı: (5.1)

Then the essential dimension of X is equal to bN c and .X; d;m/ is bN c-rectifiable
as a metric measure space.

Proof. By the definition of the dimension of RCD spaces, we know that there exists
a unique n 2 N, with n � bN c, such that the n-th regular stratum Rn has positive
measure. Therefore, by definition of Rn for m-a.e. x 2 X , tangent cones at x are
unique and equal to the Euclidean space .Rn; dRn ;L

n/. Now assume by contradiction
that n < bN c. Because of Theorem 5.2, (5.1) implies the existence of a set U"
satisfying properties (1) to (3), with m.U"/ > 0. As a consequence, there exists
x 2 U" with unique tangent cone equal to Rn. Property (3) then implies that the unit
ball in Rn is "-GH-close to the unit ball in RbN c, which is impossible for n < bN c
and " > 0 sufficiently small. Therefore, bN c is the essential dimension of .X; d;m/
and .X; d;m/ is bN c-rectifiable as a metric measure space.
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The combination of Corollary 5.3 and Theorem 4.1 yields the following result.
Corollary 5.4. For any " 2 .0; 1/ and N 2 .1;1/, there exists

ı.";N / > 0

with the following property. If .X; d;m/ is an RCD�.�ı;N / space with

b1.X/ D bN c and diam.X/ D 1;

then the covering space . xX; d xX ;m xX / has essential dimension equal to bN c and it is
bN c-rectifiable as a metric measure space.

Proof. Fix " 2 .0; 1/ and let ˇ > 0 be as in Theorem 4.1. Let �.";N / be given in
Corollary 5.3 and set "1 D �.";N /. Then by Theorem 4.1, there exists

ı1."1; N / > 0

such that for any ı 2 .0; ı1."1; N /� and for any RCD�.�ı2ˇ ; N / space .X; d;m/
with b1.X/ D bN c and diam.X/ D 1, there exists xx 2 xX such that

dmGH
�
B
xX

"�1
1

.xx/; BRbNc

"�1
1

�
0bN c

��
� "1:

As a consequence, . xX; d xX ;m xX / satisfies the assumptions of Corollary 5.3, thus it
has essential dimension equal to bN c and it is bN c-rectifiable as a metric measure
space. It suffices then to choose ı.";N / D ı1."1; N /1=2ˇ .

We are now in position to prove Theorem 5.1.

Proof of Theorem 5.1. Let xpW xX ! X be the covering map and denote by RbN c. xX/

the bN c-th regular set of xX . Recall that

m xX

�
xX nRbN c. xX/

�
D 0:

Let B xXr .xx/ be a sufficiently small ball in xX such that

xpj
B
xX
r .xx/
WB
xX
r .xx/! BXr

�
xp.xx/

�
is an isomorphism of metric measure spaces. Since for m xX -a.e. xx0 2 B xXr .xx/ the
tangent cone is unique and equal to RbN c, the same is true for m-a.e. x0 2 BXr . xp.xx//,
and thus the regular set RbN c of X has positive m-measure. Therefore, .X; d;m/
has essential dimension equal to bN c and it is bN c-rectifiable as a metric measure
space. In particular,

m� H bN c:

If N is an integer, then m � HN and .X; d;m/ is a compact weakly non-
collapsed RCD�.�ı;N / space. Corollary 1.3 in [33] ensures that for any compact
weakly non-collapsed RCD�.�ı;N / space, there exists c > 0 such that

m D cHN ;

thus concluding the proof.
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6. Proof of Theorem 1.2, second and third claims

Now we are in position to conclude the proof of Theorem 1.2. Given a sequence of
RCD�.�Ki ; N / spaces .Xi ; di ;mi / with Ki < 0 tending to zero, diam.Xi / D 1

and b1.Xi / D bN c, the proof consists in applying the results of equivariant pointed
Gromov–Hausdorff convergence as in Section 2.2 to the sequence . xXi ; di ; xxi / and
subgroups � 0i as in Lemma 3.2, in order to obtain equivariant convergence (up to a
subsequence) to .Rb; dRb ; 0;Z

b/. Then we will conclude that the quotients xXi=� 0i
mGH-converge to a flat torus, which, by applying Theorem 2.18, will imply that for
large i the quotients are bi-Hölder homeomorphic to this torus. In the last step we
show that

xXi=�
0
i D Xi :

We start with the following lemma.
Lemma 6.1. Let .Xi ; di ; xi ; �i / 2 M

p
eq be a sequence of spaces that converge in

the equivariant pGH sense to .X1; d1; x1; �1/ 2 M
p
eq . Assume �i is an abelian

group for each i 2 N. Then �1 is an abelian group as well.

Proof. Given arbitrary 11; 12 2 �1, we will show that they commute. By
hypothesis, there exist "i -equivariant pGH approximations .fi ; �i ;  i /:

fi WB
X1

"�1
i

.x1/! Xi ; �i W�1."
�1
i /! �i ;  i W�i ."

�1
i /! �1;

satisfying the conditions of Definition 2.2 and so that "i ! 0.
Take an arbitrary point z1 2 X1. By the triangle inequality and for i large

enough such that z1; 11z1; 1112z1 2 BX1
"�1
i

.x1/ and 1112 2 �1."�1i /,
we get

di
�
fi .1112z1/; �i .11/�i .12/fi .z1/

�
� di

�
fi .1112z1/; �i .11/fi .12z1/

�
C di

�
�i .11/fi .12z1/; �i .11/�i .12/fi .z1/

�
:

Applying (4) of Definition 2.2 and that �i .11/ is an isometry, we see that each
term in the right-hand side of the previous inequality is bounded above by "i . We
conclude that

di
�
fi .1112z1/; �i .11/�i .12/fi .z1/

�
� 2"i :

The same estimate holds reversing the roles of 11 and 12, that is:

di
�
fi .1211z1/; �i .12/�i .11/fi .z1/

�
� 2"i :

By the triangle inequality and using that �i is abelian, so that

�i .12/�i .11/ D �i .11/�i .12/;
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we get
di
�
fi .1112z1/; fi .1211z1/

�
� 4"i :

From (3) of Definition 2.2, we also haveˇ̌
d1
�
1112z1; 1211z1

�
� di

�
fi .1112z1/; fi .1211z1/

�ˇ̌
< "i :

Therefore, when taking the limit as i !1, we obtain

d1
�
1112z1; 1211z1

�
D 0:

Since z1 2 X1 is an arbitrary point, we conclude that 11 and 12 commute.

We are now ready to prove the key result of this section, which directly gives the
second claim of Theorem 1.2 by a standard compactness/contradiction argument.
Proposition 6.2. LetN2.1;1/and let .Xi ; di ;mi /be a sequence of RCD�.�Ki ; N /
spaces with

b1.Xi / D bN c; diam.Xi / D 1;

and Ki > 0 such that Ki # 0. Fix some xxi 2 xXi and let � 0i be as in Lemma 3.2,
for k D 3. Then any Gromov–Hausdorff limit of X 0i D xXi=�

0
i is isometric to an

bN c-dimensional flat torus.
Remark 6.2.1. In Proposition 6.2 we require diam.Xi / D 1 instead of the bound
Ki diam.Xi /2 # 0. To show that the latter condition is not enough, consider a
sequence Xi of manifolds with

Ki D i and diam.Xi / D i�1:

Then Ki diam.Xi /2 # 0, but any GH limit of this sequence collapses due to
diam.Xi /! 0. We could also consider manifolds Xi with

Ki D i
�3 and diam.Xi / D i;

then Ki diam.Xi /2 # 0 and any GH-converging subsequence has a limit space with
infinite diameter. Hence, it is necessary to have two sided uniform bounds on
diam.Xi / and for simplicity we set them equal to 1.

Proof of Proposition 6.2. Set b WD bN c D b1.Xi /. For simplicity of notation, we
will not relabel subsequences. By Theorem 4.1 and Remark 4.1.1, the sequence
. xXi ; d xXi ; xxi / converges in the pointed Gromov–Hausdorff sense to�

Rb; dRb ; 0
b
�
:

By Gromov’s Compactness theorem and stability of the RCD�.0;N / condition, there
exists an RCD�.0;N / space .X; dX ;mX / with

diam.X/ D 1
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such that Xi ! X in the mGH sense, up to a subsequence. From Remark 3.2.3,
we know that for any i 2 N, the groups � 0i given by Lemma 3.2 are closed.
Thus, by Theorem 2.4, there exist a group of isometries of Rb , � 01, and
a subsequence . xXi ; d xXi ; xxi ; �

0
i / that converges in the equivariant pointed Gromov–

Hausdorff sense to �
Rb; dRb ; 0

b; � 01
�
:

Moreover, Rb is the universal cover of X , and � 01 is contained in the corresponding
group of deck transformations.

We will show that Rb=� 01 is a flat torus. To this aim, we prove that � 01 is iso-
morphic to Zb .

Step 1. We claim that

dRb .1y1; y1/ � 1 for all y1 2 Rb and for all 1 2 � 01; 1 ¤ id: (6.1)

Let .fi ; �i ;  i / be equivariant "i -pGH approximations, "i ! 0 as in Definition 2.2:

fi WB
Rb

"�1
i

.0b/! xXi ; �i W�
0
1."

�1
i /! � 0i  i W�

0
i ."
�1
i /! � 01:

To prove (6.1), we first show that the claim holds for all non-trivial i 2 � 0i and
all yi 2 xXi , i 2 N. Then a convergence argument will show that the claim holds.

Since diam.Xi / D 1 for all i 2 N and yi 2 xXi , there exists  2 � 0i such that

d xXi . xxi ; yi / � 1:

Moreover, by Lemma 3.2 for any  0 2 � 0i n fidg, we have

3 < d xXi .
0
xxi ; xxi /:

Then, by the triangle inequality, we have

3 < d xXi .
0
xxi ; xxi /

D d xXi .
0 xxi ;  xxi /

� d xXi .
0 xxi ; 

0yi /C d xXi .
0yi ; yi /C d xXi .yi ;  xxi /

� 2C d xXi .
0yi ; yi /:

Therefore,

d xXi .
0yi ; yi / > 1 for all  0 2 � 0i n fidg and yi 2 xXi : (6.2)

Now let 1 2 � 01 n fidg and y1 2 Rb . For i large enough, 1y1; y1 2 � 01."�1i /
and then by (3) of Definition 2.2 it holds that

dRb .1y1; y1/ > �"i C d xXi
�
fi .1y1/; fi .y1/

�
: (6.3)
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By (4) of Definition 2.2, we also have

d xXi
�
fi .1y1/; �i .1/fi .y1/

�
< "i : (6.4)

Combining (6.3), the triangle inequality and (6.4), we get

dRb .1y1; y1/

> �"i C d xXi
�
fi .y1/; �i .1/fi .y1/

�
� d xXi

�
fi .1y1/; �i .1/fi .y1/

�
> d xXi

�
fi .y1/; �i .1/fi .y1/

�
� 2"i : (6.5)

If we show that �i .1/ ¤ id, then we have that

d xXi
�
�i .1/fi .y1/; fi .y1/

�
> 1

and by passing to the limit we will be able to conclude the proof of the claim. We are
going to prove that

d xXi
�
�i .1/fi .y1/; fi .y1/

�
> 0;

so that �i .1/ ¤ id. By the triangle inequality, arguing as in (6.3) and using (6.4),
we get

d xXi
�
fi .y1/; �i .1/fi .y1/

�
� d xXi

�
fi .y1/; fi .1y1/

�
� d xXi

�
fi .1y1/; �i .1/fi .y1/

�
� dRb .y1; 1y1/ � 2"i : (6.6)

Since by hypothesis 1 is a non-trivial isometry and elements in the deck
transformations do not fix points, we have

dRb .y1; 1y1/ > 0:

Thus, by (6.6) for sufficiently large i , we have

d xXi
�
fi .y1/; �i .1/fi .y1/

�
> 0:

This shows that �i .1/ is non-trivial, and thus

d xXi
�
fi .y1/; �i .1/fi .y1/

�
> 1:

Therefore, as i !1, inequality (6.5) implies the claim (6.1).

Step 2. We show that � 01 Š Zb .
From Lemma 3.2, we know that

� 0i Š Z
b:

Let fij gbjD1 be a set of generators for � 0i .
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By the Arzelá–Ascoli theorem, there exists a subsequence . xXik ; d xXik ; xxik ; �
0
ik
/

and corresponding subsequences of isometries

fik1g
1
kD1; : : : ; fikbg

1
kD1

that converge to 11; : : : ; 1b 2 � 01, respectively. We are going to show that
f1j g

b
jD1 are independent generators of � 01 and that they have infinite order.

To simplify notation consider that the whole sequence converges. Given 12� 01,
notice that �i .1/ ! 1 in the Arzelá–Ascoli sense. Indeed, for all z 2 Rb and
zi 2 xXi such that d xXi .fi .z/; zi / ! 0, by using the triangle inequality and (4) in
Definition 2.2, and since �i .1/ is an isometry, we have

d xXi
�
�i .1/zi ; fi .1z/

�
� d xXi

�
�i .1/zi ; �i .1/fi .z/

�
C d xXi

�
�i .1/fi .z/; fi .1z/

�
� d xXi

�
zi ; fi .z/

�
C "i ! 0:

Moreover, for any 1 2 � 01, there exist s1; : : : sb 2 Z such that

�i .1/ D 
s1
i1 � � � 

sb
ib
:

Then we know that the left-hand side of the previous equation converges to 1, while
the right-hand side converges to  s111 � � � 

sb
1b

. Thus, any 1 2 � 01 can be written as
a composition of elements in f1j gbjD1.

We next show that f1j gbjD1 are independent and have infinite order. Let
.s1; : : : ; sb/ 2 Zb n f.0; : : : ; 0/g. We claim that


s1
11 � � � 

sb
1b
¤ id:

From the previous arguments, we know that


s1
i1 � � � 

sb
ib
! 

s1
11 � � � 

sb
1b

as i !1:

Since fij gbjD1 are independent generators of� 0i Š Z
b , we have that  s1i1 � � � 

sb
ib
¤ id.

Hence, from (6.2) it follows that

1 < d xXi
�

s1
i1 � � � 

sb
ib
fi .z/; fi .z/

�
! dRb .

s1
11 � � � 

sb
1b

z; z
�

for all z 2 Rb ,

and thus  s111 � � � 
sb
1b
¤ id.

In conclusion, by the fundamental theorem of finitely generated abelian groups,
we infer that

� 01 Š Z
b:

Thus, Rb=� 01 is a b-dimensional flat torus. The proposition follows by Theorem 2.5.
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Corollary 6.3. For all N 2 N, N > 1, there exists

".N / > 0

with the following property. Let .X; d;HN / be a compact RCD�.K;N / space with

K diam2.X/ > �".N / and b1.X/ D N:

ThenX 0 WD xX=� 0 is bi-Hölder homeomorphic to anN -dimensional flat torus, where� 0
is given by Lemma 3.2 for k D 3.

Proof. Suppose by contradiction that there is no such ".N / > 0. Then there exists a
sequence of compact RCD�.K;N / spaces .Xi ; di ;HN / with

Ki diam2.Xi / > �"i ; b1.Xi / D N;

and "i ! 0 such that none of the Xi is bi-Hölder homeomorphic to a flat torus of
dimension N . Consider the rescaled spaces�

X 0i ; d
0
i ;H

N
�
WD
�
Xi ; diam.Xi /�1di ;HN

�
:

Clearly, X 0i has diameter equal to 1 and it is an RCD�.Ki diam2.Xi ; di /; N / space
with

b1.X 0i / D N:

Thus, we can apply Proposition 6.2 and infer that any GH limit is a flat torus TN .
Moreover, from Theorem 2.17 (i), we have that .X 0i ; d

0
i ;H

N / converges in the
mGH sense to .TN ; dTN ;H

N /. For i large enough so that

dmGH
�
X 0i ;T

N
�
� "

�
TN

�
;

we can apply Theorem 2.18 and get that X 0i is bi-Hölder homeomorphic to TN .
When scaling back to the original metric, the same conclusion holds. This is a
contradiction.

We can now conclude the proof of the main theorem.

Proof of the third claim of Theorem 1.2, i.e. when N 2 N. IfN D1, the claim holds
trivially (see Remark 2.7.1); thus, we can assume N � 2 without loss of generality.

From Corollary 6.3, we know that . xX; d xX / is locally (on arbitrarily large
compact subsets) bi-Hölder homeomorphic to RN (thus, in particular, it has the
integral homology of a point) and m xX is a constant multiple of the N -dimensional
Hausdorff measure HN . By construction, we also know that the abelianised revised
fundamental group

� WD x�1.X/=H
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acts by deck transformations on xX WD zX=H and thatX D xX=� . Thus, summarising,
we have that

. xX; d xX / is a topological manifold with the integral homology of
a point and the action of � on xX has no fixed points.

(6.7)

In order to prove that .X; d/ is bi-Hölder homeomorphic to a flat torus and that m is
a constant multiple of HN , it is enough to prove that � Š ZN . Since � is a finitely
generated abelian group (recall Proposition 2.25), it is sufficient to show that � has
no subgroup isomorphic to Z=pZ with p prime. This follows from (6.7): indeed,
from Smith theory (see, for instance, [5, Chapter 3]), if Z=pZ, with p prime, acts
on a topological manifold with the modp homology of a point then the set of fixed
points is non-empty.

A. Some basic properties of mGH approximations

For the reader’s convenience, in this appendix we recall some well-known properties
of mGH approximations used in the paper.
Proposition A.1 (Restriction of mGH approximations). Fix K 2 R, N 2 .1;1/
and V > 0. Then there exists a constant

C D C.K;N; V / > 0

with the following properties. Let .X; dX ;mX / and .Y; dY ;mY / be CD�.K;N /
spaces. Assume that

V �1 � mX .B
X
R .x// � V

and that there exists an "-mGH approximation

�WBXR .x/! BYR .y/ with �.x/ D y:

Let r 2 .0; "/ and y0 2 Y with

dY .y0; y/ � R � r C 2";

so that BYr .y0/ � BYR .y/, and thus we can choose x0 2 BXR .x/ such that

dY
�
�.x0/; y0

�
< " (A.1)

and BXr .x0/ � BXR .x/. Then the function 'WBXr .x0/! BYr .y
0/ given by

'.z/ D

8̂<̂
:
�.z/ if �.z/ 2 BYr .y0/;
w for some w 2 @BYr .y0/ with
dY .w; �.z// D dY .BYr .y

0/; �.z// otherwise;
(A.2)

is a C"-mGH approximation.
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Proof. Before calculating the distortion of ' we see that for all z 2 BXr .x0/, we have

dY
�
'.z/; �.z/

�
� 2": (A.3)

Indeed, for any z 2 BXr .x0/, using that � is an "-GH approximation and the definition
of x0 in (A.1), we get

dY
�
�.z/; y0

�
� dY

�
�.z/; �.x0/

�
C dY

�
�.x0/; y0

�
� dX .z; x0/C 2" < r C 2":

Hence, if �.z/ … BYr .y0/, then dY .'.z/; �.z// � 2". The other case is trivial.

Step 1. Control of the distortion of '.
Let z; z0 2 BXr .x0/ such that '.z/ D w and '.z0/ D w0. Then by (A.3) and using

that � is an "-GH-approximation, we get

dY
�
'.z/; '.z0/

�
� dY

�
w; �.z/

�
C dY

�
�.z/; �.z0/

�
C dY

�
�.z0/; w0

�
� 2"C fdX .z; z0/C "g C 2"

� 5"C dX .z; z0/:

In a similar way, we can get

dX .z; z0/ � 5"C dY
�
'.z/; '.z0/

�
:

So, dist.'/ � 5".

Step 2. Almost surjectivity of '.
Next, we show that for any w 2 BYr .y0/, there exists z0 2 BXr .x0/ such that

dY
�
w; '.z0/

�
� 7":

Letw 2 BYr .y0/. SinceBYr .y0/ � BYR .y/ and � is an "-GH approximation, there
exists z 2 BXR .x/ such that

dY
�
w; �.z/

�
� ":

If z 2 BXr .x0/, we set z0 D z. By (A.3), we get

dY
�
'.z0/; w

�
� dY

�
'.z0/; �.z0/

�
C dY

�
�.z0/; w

�
� 2"C " D 3":

If z … BXr .x0/, let z0 2 @BXr .x0/ be a closest point to z. Then, by (A.3) and using
that � is an "-GH approximation, we get

dY
�
'.z0/; w

�
� dY

�
'.z0/; �.z0/

�
C dY

�
�.z0/; �.z/

�
C dY

�
�.z/; w

�
� 2"C fdX .z0; z/C "g C ":
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We next estimate dX .z0; z/. For this, by the definition of z0 it is enough to estimate
dX .z; x0/. We have

dX .z; x0/ � dY
�
�.z/; �.x0/

�
C "

�
˚
dY
�
�.z/; w

�
C dY .w; y0/C dY

�
y0; �.x0/

�	
C "

� f"C r C "g C " D 3"C r:

Thus, dX .z0; z/ � 3" and dY .'.z0/; w/ � 7".

Step 3. Control of the measure distortion.
Using that � is an "-GH approximation and the definition (A.2) of ', it is clear

that
' � � on Br�2".x/: (A.4)

From the Bishop–Gromov volume comparison, we have that there exists
xC D xC.K;N; V / > 0

such that
mX

�
BXr .x/ n B

X
r�2".x/

�
� xC.K;N; V / ": (A.5)

The combination of (A.4) and (A.5) with the fact that � is an "-GH approximation
gives, together with steps 1 and 2, that � is a C"-GH approximation for some

C D C.K;N; V / > 0;

which concludes the proof.

Remark A.1.1. Observe that the previous argument also shows that if

�WBXR .x/! BYR .y/

is an "-GH approximation and r < R, the restriction

'WBXr .x/! BYr .y/

defined in (A.2) is a 7"-GH approximation. The dependence of C on K, N and V
comes only in estimating the distortion of the measure.
Proposition A.2 (Product with a Euclidean factor). There exists a universal constant
C > 0 with the following properties. Let .Y; dY ;mY / and .Y 0; dY 0 ;mY 0/ be metric
measure spaces. Let

�W xBYr .y/!
xBY
0

r .y
0/

be an "-mGH approximation with �.y/ D y0 and " 2 .0; 1/. Define

'W xBRk
r .0k/ � xBYr .y/!

xBRk
r .0k/ � xBY

0

r .y
0/

by
'.a; z/ D .a; �.z// for all .a; z/ 2 xBRk

r .0k/ � xBYr .y/:

Then ' is a C"-mGH approximation.
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Proof. We break the proof into two steps.

Step 1. We first show that

'W xBRk
r .0k/ � xBYr .y/!

xBRk
r .0k/ � xBY

0

r .y
0/

is a 3"-GH approximation.
To this aim, note that since � is an "-GH approximation, we haveˇ̌

dRk�Y 0
�
'.a1; z1/; '.a2; z2/

�2
� dRk�Y

�
.a1; z1/; .a2; z2/

�2ˇ̌
D
ˇ̌
d2Y 0

�
�.z1/; �.z2/

�
� d2Y

�
z1; z2

�ˇ̌
� "2 C 2" dY .z1; z2/: (A.6)

In case dY .z1; z2/ � ", by (A.6) and since � is an "-GH approximation, we haveˇ̌
dRk�Y 0

�
'.a1; z1/; '.a2; z2/

�
� dRk�Y

�
.a1; z1/; .a2; z2/

�ˇ̌
D

ˇ̌
dRk�Y 0

�
'.a1; z1/; '.a2; z2/

�2
� dRk�Y

�
.a1; z1/; .a2; z2/

�2ˇ̌
dRk�Y 0

�
'.a1; z1/; '.a2; z2/

�
C dRk�Y

�
.a1; z1/; .a2; z2/

�
�

ˇ̌
d2Y 0

�
�.z1/; �.z2/

�
� d2Y .z1; z2/

ˇ̌
dY 0

�
�.z1/; �.z2/

�
C dY .z1; z2/

�
ˇ̌
dY 0

�
�.z1/; �.z2/

�
� dY .z1; z2/

ˇ̌
� ": (A.7)

If instead dY .z1; z2/ � ", proceeding as in (A.7), we obtainˇ̌
dRk�Y 0

�
'.a1; z1/; '.a2; z2/

�
� dRk�Y

�
.a1; z1/; .a2; z2/

�ˇ̌
�

"2 C 2" dY .z1; z2/
dRk�Y 0

�
'.a1; z1/; '.a2; z2/

�
C dRk�Y

�
.a1; z1/; .a2; z2/

�
�
"2 C 2" dY .z1; z2/

dY .z1; z2/
� 3": (A.8)

Combining (A.7) with (A.8), we obtain the claim.

Step 2. Control of the measure distortion.
In order to obtain the closeness of the measures

']
�
Lk
˝mY x xBRk

r .0k/ � xBYr .y/
�

and Lk
˝mY 0x xBRk

r .0k/ � xBY
0

r .y
0/;

it is enough to notice that for each  1 2 C.Rk/,  2 2 C.Y 0/ withZ
xBRk
r .0k/

 1 dLk
D 1



52 I. Mondello, A. Mondino and R. Perales CMH

it holds thatˇ̌̌̌Z
 1 ˝  2 d']

�
Lk
˝mY x xBRk

r .0k/ � xBYr .y/
�

�

Z
 1 ˝  2 d

�
Lk
˝mY 0x xBRk

r .0k/ � xBY
0

r .y
0/
�ˇ̌̌̌

D

ˇ̌̌̌Z
 2 d']

�
mY x� xBYr .y/

�
�

Z
 2 d

�
mY 0x xBY

0

r .y
0/
�ˇ̌̌̌
;

where we used Fubini–Tonelli’s theorem.
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