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1. Introduction

Let w be a real quadratic irrationality, so a root of an equation

ax2 C bx C c D 0 .a; b; c 2 Z; .a; b; c/ D 1/

with positive non-square discriminant D D b2 � 4ac. Let Q be the quadratic
form Œa; b; c�. The geodesic SQ in the upper half plane H joining w and its Galois
conjugate is given by the equation

ajzj2 C b Re z C c D 0 .z 2 H /:

We orientate SQ counterclockwise if a > 0 and clockwise if a < 0. There is an
infinite cyclic group �Q in SL.2;Z/, corresponding to the group of totally positive
units in Q.

p
D/, that preserves Q, and hence SQ. The smallest positive unit in

Q.
p
D/ is given by " D .t C u

p
D/=2, where .t; u/ is the smallest positive integral

solution to Pell’s equation t2 �Du2 D 4. The induced geodesic CQ D �QnSQ on
the modular surface is closed, primitive, positively-oriented with length

length.CQ/ D
Z
CQ

p
D

Q.z; 1/
dz D 2 log ":
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Here .
p
D=Q.z; 1// dz is the hyperbolic arc length on SQ. As usual, we denote

by j.z/ the modular function for SL.2;Z/ introduced by Klein as an invariant of
elliptic curves. The group �Q preserves j.z/.

p
D=Q.z; 1// dz, and so we can con-

sider the integral Z
CQ

j.z/

p
D

Q.z; 1/
dz

and define the ‘value’ (also called cycle integral) of j at w, as the complex number:

j.w/ D j.Q/ WD
1

2 log "

Z
CQ

j.z/

p
D

Q.z; 1/
dz: (1.1)

Note that the integral above is SL.2;Z/-invariant.
Cycle integrals have been related to mock modular forms [10], to modular

knots [12] and to class numbers of real quadratic fields [13]. Moreover, cycle
integrals of the Klein invariant j share several analogies with singular moduli (the
values of the j -function at imaginary quadratic irrationalities) when both are gathered
in ‘traces’ (see [9–11,18]). By analogy to the traces of singular moduli we define

TrD j WD
X

j.wQ/;

where the sum is over SL.2;Z/-classes of indefinite binary quadratic forms Q of
fundamental discriminant D > 0. The asymptotic distribution of the traces was
studied in [8], and [9, 18] for negative and positive discriminants, respectively. As
fundamental discriminants D !C1, it was shown in [9, 18] that

TrD.j /
TrD.1/

! 720: (1.2)

Here 720 is an ‘average’ value of the j function. The individual values remain very
much unknown. In [4], we gave the first bounds for the real parts of the values j.w/
(in fact, j could be replaced by any modular function f which is real valued on the
geodesic arc fei� W �=3 � � � 2�=3g). We showed that

Re.j.w// � 744

(we recall that 744 is the constant term in the Fourier expansion of j ). For quadratic
irrationalities w satisfying a ‘quite strong’ diophantine condition, we proved that

Re.j.w// � j
�
1C
p
5

2

�
� 706:3248:

These bounds are optimal and were conjectured earlier by Kaneko in [14] based on
numerical evidence. The imaginary parts of j.w/ are conjectured to lie in .�1; 1/,
but to our knowledge nothing is known yet.
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The values j.w/ are particularly interesting at Markov irrationalities w. Markov
irrationalities are important in diophantine approximation and in the search of positive
minima of indefinite binary quadratic forms. They are structured on a tree called the
Markov–Hurwitz tree and there is a very rich theory attached to them in the interplay
of number theory, diophantine approximation, hyperbolic geometry, dynamics and
graph theory. Kaneko published in [14] the first numerical data on values j.w/ at
Markov irrationalities, together with some conjectures based on his data. Namely, he
conjectured that each j.w/ is between the values of j at two Markov irrationalities
that lie above w on the tree. We call these two irrationalities the predecessors of
w and we call this property ‘interlacing property’. In [3], we proved that for every
branch of the tree, the interlacing property holds after some level that depends on the
branch. One can think of that result as a ‘local’ asymptotic interlacing property (an
asymptotic property that holds for each branch).

In this paper we prove the ‘global’ asymptotic interlacing property, namely:
Theorem 1. Let w D wn be a Markov irrationality and n be the level of w in the
Markov–Hurwitz tree. There is a unique path on the Markov–Hurwitz tree that ends
withwn; letwn�1 be the Markov irrationality abovewn on the path, andwn0�1 be the
Markov irrationality above the last irrationality where the path turns. There exists
an integer n0 such that, if n > n0, then j.wn/ lies between j.wn�1/ and j.wn0�1/.

The irrationalities wn�1 and wn0�1 are the ‘predecessors’ of wn in Theorem 1.
The interlacing property is expected to hold for n � 2, hence we expect the bounds:

706:32481 � j..1C
p
5/=2/ � Re.j.w// � j.

p
2/ � 709:8929;

�0:26703 : : : � Im.j.w// � 0:26703 : : : :

By making explicit most of the estimations in Theorem 1, we obtain:
Theorem 2. Let w be a Markov irrationality and n be the level of w in the Markov–
Hurwitz tree. We have that

681:50081 � Re.j.w// � 742:03641 as n!1;
�0:93637 � Im.j.w// � 0:67396 as n!1:

Although the bounds in Theorem 2 are not optimal, they are the first lower bounds
for the real parts of the values j.w/ at Markov irrationalities and the first bounds for
the imaginary parts that we have until now.

One reason why we obtained only a ‘local’ interlacing property in [3] is that we
lacked of a convenient order on the tree. A new key approach here is to order the
Markov–Hurwitz tree by Farey fractions (which can probably be more exploited in the
future). We also exploit more accurately the diophantine properties of the Markov–
Hurwitz tree as well as its relations with the Farey tree, and use an asymptotic formula
from [19] on Markov numbers. The arguments used in this paper apply to any modular
function f which is real valued on the geodesic arc fei� W �=3 � � � 2�=3g. The
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values (7.4), (10.2), and (10.3) will change when we replace j by f , and so will the
subsequent calculations.

The paper is organized as follows. In the next two sections, we quickly review
the main key points of Markov’s theory and other related facts that will be useful.
Concretely, in Section 2, we introduce Markov numbers and Markov irrationalities.
In Section 3, we introduce the Markov–Hurwitz and the Farey trees as well as
some of their properties and interrelations. In Section 4, we give an asymptotic
formula for log " in terms of the Farey tree by using Zagier’s asymptotic formula for
Markov numbers in [19]. In Section 5, we write the values j.w/ in terms of cycles of
certain reduced binary quadratic forms, usually known as ‘simple forms’ after Zagier.
Simple forms can be written themselves in terms of cycles of quadratic irrationalities
produced by a certain continued fraction algorithm. We work with the cycles of
continued fraction expansions in Sections 6 and 7 to obtain a ‘local’ formula for
.2 log "/j.w/ that depends on two neighbours of w on the Markov–Hurwitz tree (the
two predecessors ofw). In Section 8, we deduce a ‘global’ formula for .2 log "/j.w/
from the local formula obtained in Section 7. We prove Theorem 1 in Section 9
using the global formula from Section 8 and the asymptotic formula for log " given
in Section 4. We prove Theorem 2 in Section 10. We give some numerical data in
the appendix.

2. Markov’s theory

Markov’s work (1880) [16, 17] establishes very beautiful connections between
positive integral minima for indefinite binary quadratic forms and the Lagrange–
Hurwitz problem in diophantine approximation. The Lagrange–Hurwitz problem
consists in describing the Lagrange constants

L.x/ D
�
lim inf
q!1

qkqxk
�
;

wherex runs through the real numbers and k�k denotes the distance to a closest integer.
The quantity L.x/ provides a ‘measure’ of how well x can be approximated by the
rationals. For almost all x 2 R we have L.x/ D 0, and when L.x/ > 0 we call x
badly approximable. A well known theorem of Hurwitz states that L.x/ < 1=

p
5.

The Lagrange spectrum Ł WD fL.x/�1gx2R � Œ
p
5;1� is structured in three

parts: Ł \ Œ
p
5; 3/ is discrete with 3 as the only accumulation point, Ł \ .3; F � is

fractal, where F � 4:528 is Freiman’s constant, and Ł \ .F;1� is continuous.
Markov discovered that on the interval .0; 3/ the Lagrange spectrum and the

spectrum M of integral minima

M.Q/ D

p
D

inf
.x;y/2Z2; .x;y/¤.0;0/

jQ.x; y/j
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of binary quadratic forms

Q.x; y/ D Ax2 C Bxy C Cy2 .A;B; C 2 R/

with positive discriminant D D B2 � 4AC , are the same.
The unifying thread is the diophantine equation

a2 C b2 C c2 D 3abc .a; b; c 2 N/; (2.1)

and its integer solutions. The integer solutions .a; b; c/ are obtained by starting with
.1; 1; 1/, .1; 1; 2/, .2; 1; 5/ and then proceeding recursively going from .a; b; c/ to
the new triples obtained by Vieta involutions .c; b; 3bc � a/ and .a; c; 3ac � b/.
Markov numbers are the greatest coordinates of each solution .a; b; c/. They form
the Markov sequence

fcig
1
iD1 D f1; 2; 5; 13; 29; 34; 89; 169; 194; : : :g: (2.2)

(We count multiplicities if the unicity conjecture is false.) To each Markov number c,
there is associated a Markov irrationality

w D
3c � 2k C

p
9c2 � 4

2c
;

where k is an integer that satisfies ak � b .mod c/, 0 � k < c, and .a; b; c/ is a
solution to (2.1) with c maximal. The quadratic w is a root of the Markov form

Q.x; y/ D cx2 C .3c � 2k/xy C .` � 3k/y2;

where ` D .k2 C 1/=c 2 Z. Then

M.Q/ D L.w/�1 D
p
9 � 4=c2:

Moreover,
M \ .0; 3/ D Ł \ .0; 3/ D

nq
9 � 4=c2i

o
i�1

and any x 2 R with L.x/�1 2 .0; 3/ or any Q with M.Q/ 2 .0; 3/ is GL.2;Z/-
equivalent to a Markov quadratic or a Markov form, respectively.

3. Trees related to Markov’s theory

3.1. The Markov–Hurwitz tree. The solutions of the diophantine equation (2.1)
inherit a tree structure with two bifurcations from the two Vieta involutions described
earlier; see Figure 1.

Naturally, we can consider the parallel tree of Markov irrationalities, where each
vertex is a quadratic irrationality that corresponds to a Markov number. What
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.1; 1; 1/ .1; 1; 2/

.2; 1; 5/

.5; 1; 13/

.13; 1; 34/ .5; 13; 194/

.2; 5; 29/

.29; 5; 433/ .2; 29; 169/

Figure 1. The Markov tree.

is more interesting is that each Markov irrationality can be constructed from two
predecessors on the tree by a simple conjunction operation on the continued fraction
expansions. A formal description of the procedure using ‘C’ continued fraction
expansions can be found in [5]. It will be more convenient for us to work with the ‘�’
continued fraction since it corresponds to transformations by the modular group
(whereas the ‘C’ continued fraction corresponds to transformations by GL.2;Z/). It
was observed in [3] that roughly the same conjunction operation works with the ‘�’
continued fraction. We denote by

.a1; a2; a3; : : :/ D a1 �
1

a2 �
1

a3�
1

:::

the ‘�’ continued fraction expansion, with ai 2 Z and ai � 2 for i � 2.
We define the conjunction operation of two periods as

.a1; : : : ; ar/ˇ .b1; : : : ; bs/ D .a1; : : : ; ar ; b1; : : : ; bs/: (3.1)

Each Markov irrationality not on the most left branch is the result of the conjunction
operation of two predecessors: its immediate predecessor on the same branch and
the immediate predecessor of the tip of the branch. We call the right predecessor the
one on the right of w on the tree, and the left predecessor the one on the left. With
this terminology, w is the result of the conjunction operation of the right predecessor
with the left predecessor. For example,

.2; 4; .2; 3; 4/2/ D .2; 4; 2; 3; 4/ˇ .2; 3; 4/I

the right and left predecessors are .2; 4; 2; 3; 4/ and .2; 3; 4/, respectively. On the
leftmost branch, the Markov irrationality at level n is .2; 3n; 4/. We call .3/ the left
predecessor and .2; 3n�1; 4/ the right predecessor.
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.3/ .2; 4/

.2; 3; 4/

.2; 32; 4/

.2; 33; 4/

: : : : : :

.2; 3; 4; 2; 32; 4/

: : : : : :

.2; 4; 2; 3; 4/

.2; 4; .2; 3; 4/2/

: : : : : :

..2; 4/2; 2; 3; 4/

: : : : : :

Figure 2. The Markov–Hurwitz tree MH .

3.2. The Farey tree. There is a natural parametrisation of Markov numbers by Farey
fractions which goes back to Frobenius [1]. The Farey tree is constructed by following
a very similar procedure as described in Section 3.1 for the Markov–Hurwitz tree.
We start with 0=1, 1=2 and 1=3, and construct each following fraction from the two
predecessors a=b, c=d that are in the same position as in the Markov–Hurwitz tree
(a=b is the right predecessor and c=d is the left predecessor) by taking the Farey
median

a

b
�
c

d
D
aC c

b C d
:

Hence, each vertex of the tree is a Farey fraction p=q that is in correspondence with
a Markov quadratic w D w.p=q/ and a Markov number c D m.p=q/. We denote
the Farey tree by F .

By the construction of the Markov–Hurwitz and the Farey trees, the denominators
in F correspond to the lengths of the periods of the continued fractions that occupy
the same corresponding position in MH .

The operation giving the denominators in the Farey tree corresponds to the well
known Euclidean algorithm which, starting with .0; 1; 1/, gives from a triple .s; t; u/
two new triples .s; u; s C u/ and .t; u; t C u/, thus obtaining all solutions to the
equation

s C t D u; 0 � s � t � u; .s; t/ D 1: (3.2)

The denominators in the Farey tree are the maximum terms of the solutions .s; t; u/.

4. Asymptotic formula for log " in terms of Farey denominators

We order the denominators of the Farey fractions in F as real increasing numbers
.qn/n�1. If two Farey fractions p=q, p0=q0 satisfy q D q0, then we write q D qn,
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0

1

1

2

1

3

1

4

1

5

2

7

2

5

3

8

3

7

Figure 3. The Farey tree F .

q0 D qm with n < m if m.p
q
/ < m.p0=q0/. Hence, we obtain a sequence:

q1 D 1; q2 D 2; q3 D 3; q4 D 4; q5 D 5; q6 D 5; : : : (4.1)

that is in bĳective correspondence with the sequence of Markov numbers (2.2).
The number of denominators qn less than x (with multiplicity) is given by

#fqn � xgn�1 D #f.s; t; u/ solution to (3.2) W u � xg D 1C
1

2

X
u�x

'.u/;

where ' is the Euler function. From the asymptotic formula

1C
1

2

X
u�x

'.u/ �
3

2�2
x2;

it follows that

qn � �

r
2

3
n: (4.2)

Let w D w.p=q/ be a Markov irrationality and p=q be its corresponding Farey
fraction. Set q D qn, where qn is a Farey denominator ordered as in (4.1), so that
m.p=q/ D cn. The discriminant of w is 9c2n � 4, so Pell’s equation is

t2 � .9c2n � 4/u
2
D 4;

with .3cn; 1/ being the smallest positive solution. Thus, we have

" D
3cn C

p
9c2n � 4

2
:
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By a result of Zagier [19], we have that

cn � e
p
n=C ; (4.3)

where C � 0:18071704711507. Using (4.2), we have

cn � e
qn
�

p
3=2C : (4.4)

Hence,

log " �
p
3

p
2C�

qn C log 3: (4.5)

5. Simple forms and continued fractions

Any indefinite binary quadratic form Œa; b; c� is SL.2;Z/-equivalent to one satisfying

a > 0 > c: (5.1)

There is a finite number of forms satisfying (5.1) with fixed discriminant. Such
forms are commonly called ‘simple’ after Zagier [21] and play an important role in
the theory of rational periods and period functions of modular forms (see [2,6,15,20]).

It is shown in [7] that all simple forms SL.2;Z/ equivalent to a form Œa; b; c� are
obtained by applying iteratively the following continued fraction algorithm. Let w
be the period in the ‘�’ continued fraction expansion of the root

�b C
p
b2 � 4ac

2a
I

we define

w.1/ D w � 1; w.kC1/ D

(
w.k/ � 1 D

�
1 �1
0 1

��
w.k/

�
if w.k/ � 1;

w.k/

1�w.k/
D
�
1 0
�1 1

��
w.k/

�
otherwise:

(5.2)

This algorithm is cyclic because the continued fraction of w is purely periodic;
we denote by ` D `w the length of the cycle, so that w.`C1/ D w.1/. The cycle
w.1/; : : : ; w.`/ corresponds to the cycle of simple forms in the SL.2;Z/-equivalence
class of the quadratic form Œa; b; c�.

The value j.w/ is written in terms of the cycle (5.2) when w is a Markov ir-
rationality in [3, Lemma 4.1] and whenw is an arbitrary quadratic irrationality in [4].
More concretely, in terms of simple forms, we have the following lemma.
Lemma 5.1. For any real quadratic irrationality w, we have

j.w/ D
1

2 log "

Z e2�i=3

e�i=3
j.z/

X
Œa;b;c� simple
Œa;b;c�2A

p
D

az2 C bz C c
dz; (5.3)

where A is the SL.2;Z/-equivalence class of w and D its discriminant.
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If w has a purely periodic ‘�’ continued fraction expansion, we can write (5.3)
as follows:

j.w/ D
1

2 log "

Z 2�=3

�=3

j.ei� /iei�
`wX
kD1

�
1

ei� � w.k/
�

1

ei� � zw.k/

�
d�; (5.4)

where w.k/ are defined in (5.2) and zw.k/ are the Galois conjugates of w.k/. Each
term w.k/ is of the form

w.k/ D .a0; a1; : : : ; an/ D a0 �
1

.a1; : : : ; an/
.1 � a0 � an � 1/:

It is a well known fact (see, for example, [21]) that the conjugate of 1=.a1; : : : ; an/
is .an; : : : ; a1/, and hence

zw.k/ D �.an � a0; an�1; an�2; : : : ; a1; an/:

If w is a Markov irrationality, then the structure of the Markov–Hurwitz tree implies
that

3

8
D .1; 2; 3; 2/ � w.k/ � .3; 2; 4; 2/ D

29

12
; (5.5)

�
21

8
D �.3; 3; 3/ � zw.k/ � �.1; 2; 3/ D �

2

5
: (5.6)

6. Strategy for the proof of Theorem 1

Letw be a Markov irrationality on the n-th level of the Markov–Hurwitz tree, the first
level corresponding to the Markov irrationality .2; 3; 4/. Let v be the ‘immediate’
predecessor of w, which is on the same branch as w. Then we have one of the
following two configurations:

v

w

v

w

Let u D .a1; : : : ; as/ be the other predecessor of w as explained in Section 3.1. In
the second configuration, u is the right predecessor of w and v. Then let .b/ D
.b1; : : : ; bt / be the left predecessor of u. We have v D .ur ; b/ for some r � 1 and
w D .urC1; b/. In the first configuration, u is the left predecessor of w and v. If w
is not on the most left branch of the tree, then we let .b/ D .b1; : : : ; bt / be the right
predecessor of u, so that v D .b; ur/ for some r � 1 and w D .b; urC1/. The cycles
are the same if we consider .ur ; b/ and .urC1; b/, and we will refer to these two
situations as ‘case 1’. Note that in this case, rs > n.
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The situation where w is on the most left branch of the tree will be ‘case 2’. In
this case, u D .3/, v D .2; 3r ; 4/ for some r � 1 and w D .2; 3rC1; 4/. Note that in
this case, r D n � 1 and

`u D 2; `v D 2r C 4; `w D `u C `v D 2.r C 1/C 4:

Let
J.w/ WD .2 log "/j.w/:

In the next section, we will write J.w/ as

J.w/ D J.u/C J.v/C ıw ; (6.1)

where ıw is the error term that we will explicitly bound in terms of n. We see the
identity (6.1) as a ‘local’ formula for J.w/ on the Markov–Hurwitz tree. We will
deduce a recursive formula for J.w/ and qn in Section 8 (see (8.7) and (8.9)–(8.11))
that we see as a ‘global’ formula and that will give the global interlacing property in
Section 9.

In order to obtain the local formula (6.1), we will compare the cycle of w in the
algorithm (5.2) with the cycles of u and v and their J values in Section 7.1. In
Sections 7.2–7.4, we bound the error term ıw .

7. Local formula for .2 log "/j.w/

7.1. Comparing cycles of w; u; v. We will compare the cycle of w in the algo-
rithm (5.2) with the cycles of u and v. We define a sum Su and a sum Sv that contain
all the terms in the cycle of u and v respectively. The definitions of Su and Sv are
different for case 1 and case 2. In case 1, the sum Su below compares the first terms
w.1/; : : : ; w.`u/ and the conjugates zw.r`uC1/; : : : ; zw..rC1/`u/ with the cycle of u and
conjugates, while the sum Sv compares the remaining terms with the cycle of v and
conjugates.

Case 1. We define

Su.�/ D

`uX
kD1

1

ei� � w.k/
�

1

ei� � u.k/
C

`uX
kD1

1

ei� � zu.k/
�

1

ei� � zw.r`uCk/
;

Sv.�/ D

`vX
kD1

1

ei� � w.kC`u/
�

1

ei� � v.k/
C

r`uX
kD1

1

ei� � zv.k/
�

1

ei� � zw.k/

C

`vX
kDr`uC1

1

ei� � zv.k/
�

1

ei� � zw.`uCk/
:

In case 2 we arrange the terms u.k/; v.k/; w.k/ and the conjugates in a somewhat
different way.
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Case 2. We define

Su.�/ D

2X
kD1

1

ei� � w.1Ck/
�

1

ei� � u.k/
C

2X
kD1

1

ei� � zu.k/
�

1

ei� � zw.1C2rCk/
;

Sv.�/ D
1

ei� � w.1/
�

1

ei� � v.1/
C

4C2rX
kD2

1

ei� � w.2Ck/
�

1

ei� � v.k/

C

1C2rX
kD1

1

ei� � zv.k/
�

1

ei� � zw.k/
C

4C2rX
kD2C2r

1

ei� � zv.k/
�

1

ei� � zw.2Ck/
:

Using (5.4), we have that

J.w/ � J.u/ � J.v/ D

Z 2�=3

�=3

j.ei� /iei�
�
Su.�/C Sv.�/

�
d�: (7.1)

Our next goal is to bound the integral in (7.1); we will give bounds for the real and
imaginary parts. For ˛ 2 fu; vg, let

"˛.�/ D cos � Im.S˛.�//C sin � Re.S˛.�//;
"0˛.�/ D cos � Re.S˛.�// � sin � Im.S˛.�//:

The real and imaginary parts of the integral in (7.1) are respectively

Re.7:1/ D �
Z 2�=3

�=3

j.ei� /."u.�/C "v.�// d�; (7.2)

Im.7:1/ D
Z 2�=3

�=3

j.ei� /."0u.�/C "
0
v.�// d�: (7.3)

Our goal is to bound (7.2) and (7.3). It will be useful to define the following real
functions with three variables .x; y; �/ 2 R2 � Œ�

3
; 2�
3
�:

g.x; y; �/

D
1

x � y

�
cos � Im

�
1

ei� � x
�

1

ei� � y

�
C sin � Re

�
1

ei� � x
�

1

ei� � y

��
;

g0.x; y; �/

D
1

x � y

�
cos � Re

�
1

ei� � x
�

1

ei� � y

�
� sin � Im

�
1

ei� � x
�

1

ei� � y

��
:

Note that
1

ei� � x
�

1

ei� � y

D
.x � y/

�
Re..ei� � x/.ei� � y// � i Im..ei� � x/.ei� � y//

�
j.ei� � x/.ei� � y/j2

: (7.4)
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We have that

Re..ei� � x/.ei� � y// D cos2 � � sin2 � � cos �.x C y/C xy;

Im..ei� � x/.ei� � y// D 2 sin � cos � � sin �.x C y/;

so

g.x; y; �/ D �
sin �.1 � xy/

..cos � � x/2 C sin2 �/..cos � � y/2 C sin2 �/
; (7.5)

g0.x; y; �/ D
�x � y C cos �.1C xy/

..cos � � x/2 C sin2 �/..cos � � y/2 C sin2 �/
: (7.6)

For x; y satisfying (5.5), one can easily compute

�1:26964 � g.x; y; �/ � 0:354112;

�1:10636 � g0.x; y; �/ � �0:07222:
(7.7)

For x; y bounded as in (5.6), we have

�1:25946 � g.x; y; �/ � 0:354112;

0:04705 � g0.x; y; �/ � 1:10636:
(7.8)

The following lemma (see [3, Lemma 2.1] for a proof) will also be useful.
Lemma 7.1. If the ‘�’ continued fraction expansions of two Markov quadratics u
and v coincide in the first r partial quotients, then

ju � vj � 10

�
2

1C
p
5

�2.r�1/
:

Let

b.x/ D 10

�
2

1C
p
5

�2.x�1/
be the bound of Lemma 7.1. Note that

1X
kDk0

b.k/ � 10

�
2

1C
p
5

�2k0�3
: (7.9)

7.2. Bounds for "u; "0
u.

Case 1. We write "u using the function g.x; y; �/:

"u.�/ D

`uX
kD1

.w.k/ � u.k//g.w.k/; u.k/; �/

C

`uX
kD1

.zu.k/ � zw.r`uCk//g.zu.k/; zw.r`uCk/; �/:
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We have a similar expression for "0u.�/ replacing g by g0. We apply Lemma 7.1 to
bound jw.k/ � u.k/j and jzu.k/ � zw.r`uCk/j and use (7.7) and (7.8) to bound the rest.

In the first sum of "u.�/, the first a1 � 1 terms w.k/ and u.k/ share the same
first rs C s partial quotients, the next a2 � 1 terms share the first rs C s � 1 partial
quotients, etc., and the last as � 1 terms coincide in at least the first rs C 1 partial
quotients.

In the second sum "u.�/, we have a similar reversed situation, where the first
a1 � 1 terms zw.r`uCk/ and zu.k/ share the same first rsC 1 partial quotients, the next
a2 � 1 terms share the same rs C 2 first partial quotients, etc., and the last as � 1
terms share the same rs C s partial quotients.

Using Lemma 7.1, (7.7), (7.8) and that ak � 1 � 3 for k D 1; : : : ; s, we have

j"u.�/j � 3.1:26964C 1:25946/

sX
kD1

b.rs C k/;

j"0u.�/j � 1:10636 � 6

sX
kD1

b.rs C k/:

Case 2. We proceed analogously to case 1. The two terms in each sum of Su share
the same first r C 1 partial quotients. By Lemma 7.1, for k D 1; 2, we have

jw.1Ck/ � u.k/j; j zw.kC1C2r/ � zu.k/j � b.r C 1/: (7.10)

Using (7.7), (7.8) and (7.10), we have that

j"u.�/j � 2 � 2:5291 b.r C 1/; j"
0
u.�/j � 4 � 1:10636 b.r C 1/:

7.3. Bounds for "v; "0
v. We bound "v; "0v in a similar way to "u; "0u.

Case 1. In the first sum of Sv , the first a1�1 termsw.`uCk/ and v.k/ coincide in the
first 2rs C t partial quotients, the next a2 � 1 terms share the same first 2rs C t � 1
partial quotients, etc., and the last bt � 1 terms coincide in the first rs C 1 partial
quotients.

In the second sum of Sv , the first a1 � 1 terms zw.k/ and zv.k/ share the same first
rs C t C 1 partial quotients, the next a2 � 1 terms coincide in the first rs C t C 2
partial quotients, etc., and the last as � 1 terms coincide in the first 2rs C t partial
quotients.

In the third sum of Sv , the first b1 � 1 terms zv.k/ and zw.`uCk/ coincide in the
first rsC 1 partial quotients, the next b2 � 1 terms coincide in the first rsC 2 partial
quotients, etc., and the last bt � 1 partial quotients coincide in the first rsC t partial
quotients.
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Using again Lemma 7.1, (7.7), (7.8) and that ak � 1 � 3, bj � 1 � 3 for
k 2 f1; : : : ; sg ; j 2 f1; : : : ; tg, we have

j"v.�/j � 3 � 2:5291

rsCtX
kD1

b.rs C k/; j"0v.�/j � 1:10636 � 6

rsCtX
kD1

b.rs C k/:

Case 2. The terms w.1/ and v.1/ share the first same r C 1 partial quotients. In the
first sum of Sv , the first two terms coincide in 2r C 2 partial quotients, each next
two terms coincide in 2r C 1; : : : ; r C 3 partial quotients, and the last three terms
coincide in 2C r partial quotients. In the second sum, the first terms share the same
1C r first partial quotients, and each next block of two terms zw.k/; zv.k/ coincide in
2C r , 3C r , etc., 2C 2r first partial quotients. In the third sum, the terms coincide
in r C 1 partial quotients.

Using Lemma 7.1, (7.7), (7.8), we have that

j"v.�/j � 1:26964.b.r C 1/C b.r C 2//

C 2:5291 � 2

rC2X
kD2

b.r C k/C 1:25946 � 4b.r C 1/;

j"0v.�/j � 1:10636

�
5b.r C 1/C b.r C 2/C 4

rC2X
kD2

b.r C k/

�
:

7.4. Conclusion. Recall that we denote by n the level on the tree where the Markov
irrationality w lies. In case 1, using that rs > n, we have

j"u.�/j C j"v.�/j � 151:7460

�
2

1C
p
5

�2nC1
; (7.11)

j"0u.�/j C j"
0
v.�/j � 132:7632

�
2

1C
p
5

�2nC1
: (7.12)

In case 2, using that r D n � 1, we have

j"u.�/j C j"v.�/j

� 113:6564

�
2

1C
p
5

�2.n�1/
C 63:278

�
2

1C
p
5

�2n�1
; (7.13)

j"0u.�/j C j"
0
v.�/j

� 99:5724

�
2

1C
p
5

�2.n�1/
C 55:318

�
2

1C
p
5

�2n�1
: (7.14)

Using (7.11)–(7.14) and thatZ 2�=3

�=3

j.ei� / d� D 753:982;
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we have
J.w/ D J.u/C J.v/C ıw ; (7.15)

with

jRe.ıw/j � 115181:57371
�

2

1C
p
5

�2.n�1/
; (7.16)

j Im.ıw/j � 100853:23866
�

2

1C
p
5

�2.n�1/
: (7.17)

8. Global formula for .2 log "/j.w/

Consider a path on the Markov–Hurwitz tree given by Markov irrationalities w0, w1,
w2, : : : ; wn, n � 2. The quadratic wn is on the n-th level of the tree, the first level
corresponding to w1 D .2; 3; 4/. If wn is on the left half of the tree, w0 D .3/,
otherwise w0 D .2; 4/. Let r1; : : : ; rm be the successive levels where the path turns,
starting from r1 D 1, and let rmC1 D n. For convenience, we set r�1 D 1. We
write qi for the denominator of the Farey fraction associated to wi . If wn is on the
left half of the tree, then q0 D 1, otherwise q0 D 2. We write ıi D ıwi for the error
in (7.15) associated to wi .

It follows from the relation (7.15) applied to J.wn/ that

J.wn/ D J.wn�1/C J.wrm�1/C ın: (8.1)

By the construction of the Farey tree, we also have

qn D qn�1 C qrm�1: (8.2)

If we apply (7.15) recursively to J.wn/; : : : ; J.wrm/ and qn; : : : ; qrm , and if
m � 2, we have

J.wn/ D .n � rm C 1/J.wrm�1/C J.wrm�1�1/C

nX
iDrm

ıi ; (8.3)

qn D .n � rm C 1/qrm�1 C qrm�1�1: (8.4)

If we again apply (7.15) recurrently toJ.wrk�1/; : : : ; J.wrk�1/ and qrk�1; : : : ; qrk�1 ,
then for 3 � k � m, we obtain

J.wrk�1/ D .rk � rk�1/J.wrk�1�1/C J.wrk�2�1/C

rk�1X
iDrk�1

ıi ; (8.5)

qk D .rk � rk�1/qrk�1�1 C qrk�2�1: (8.6)
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Let k0 be a positive constant ‘large enough’ that will indicate a level ‘down
enough’ on the Markov–Hurwitz tree. We will choose a specific value for k0 later.
We denote by k and s the positive integers such that

k0 D rk�1 C s; 1 � s � rk � rk�1:

If m � 2, the recursive formulas (8.5) and (8.3) give�
J.wn/

J.wrm�1/

�
D

�
n � rm C 1 1

1 0

�� mY
iDkC1

�
ri � ri�1 1

1 0

��
�

�
s 1

1 0

��
J.wrk�1�1/

J.wrk�2�1/

�
C

�
ı

ı0

�
(8.7)

where

ı D

nX
iDrm

ıi C

� mX
jDkC1

�j

rj�1X
iDrj�1

ıi

�
C �k

rk�1X
iDk0

ıi (8.8)

and �j is the coefficient of J.wrj�1/ in the recursive formula (8.7) for k � j � m.
If m D 1, then

J.wn/ D .n � k0/J.w0/C J.wk0/C

nX
iDk0�1

ıi : (8.9)

We obtain similar formulas for qn from (8.6) and (8.4): if m � 2, then�
qn

qrm�1

�
D

�
n � rm C 1 1

1 0

�� mY
iDkC1

�
ri � ri�1 1

1 0

���
s 1

1 0

��
qrk�1�1
qrk�2�1

�
;

(8.10)
and if m D 1, then

qn D .n � k0/q0 C qk0 : (8.11)

The coefficients of qrj�1 in (8.10) are the same as the coefficients �j for J.wrj�1/
in (8.7), so for all j � 2, we have

qn � �j qrj�1 (8.12)

and
J.wn/

qn
D
˛nJ.wrk�2�1/C ˇnJ.wrk�1�1/

˛nqrk�2�1 C ˇnqrk�1�1
C

ı

qn
; (8.13)

where ˛n; ˇn are some positive constants given by (8.7) that depend on n, (8.10),
and ı is given by (8.8).
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9. Asymptotic interlacing property

Suppose n > k0. Below we bound ı=qn. We consider first the case when m � 2.
Using (7.16), (8.12) and qrk�1 � 4, we have that

�k

qn

rk�1X
iDk0

jRe.ıi /j �
115181:57371

4

rk�1X
iDk0

�
2

1C
p
5

�2.k�1/
�
115181:57371

4

�
2

1C
p
5

�2k0�3
: (9.1)

Similarly, for j � k C 1, using (8.12) and qrj�1 � rj�1 � k0, we have

1

qn

mX
jDkC1

�j

rj�1X
iDrj�1

jRe.ıi /j �
mX

jDkC1

1

qrj�1

rj�1X
iDrj�1

jRe.ıi /j

�
115181:57371

k0

�
2

1C
p
5

�2k0�1
: (9.2)

By (7.16) and qn > k0, we also have that

jRe.ın/j
qn

�
115181:57371

k0 C 1

�
2

1C
p
5

�2k0
: (9.3)

If m D 1, then qn � nC 2 � k0 C 3, and so

jRe.ı/j
qn

D
1

qn

nX
iDk0�1

jRe.ıi /j �
115181:57371

k0 C 3

�
2

1C
p
5

�2k0�5
: (9.4)

Similar bounds for the imaginary parts can be found by using (7.17). Thus, letting
k0 !1 as n!1, we have

ı

qn
! 0 as n!1: (9.5)

By (8.1) and (8.2), if

Re.J.wrm�1//
qrm�1

�
Re.J.wn�1//

qn�1
;

then
Re.J.wrm�1//

qrm�1
�

Re.J.wn//
qn

�
Re.J.wn�1//

qn�1
as n!1;

and otherwise the inequalities are reversed. The same inequalities for the imaginary
parts hold. By (4.2), we conclude that j.wn/ lies between j.wn�1/ and j.wrm�1/,
and hence Theorem 1 is proved.
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10. Asymptotic bounds for j.w/

By (8.13), we have

Re.J.wrk�1�1//
qrk�1�1

�
˛nJ.wrk�2�1/C ˇnJ.wrk�1�1/

˛nqrk�2�1 C ˇnqrk�1�1

�
Re.J.wrk�2�1//

qrk�2�1
(10.1)

if
Re.J.wrk�2�1//

qrk�2�1
�

Re.J.wrk�1�1//
qrk�1�1

;

otherwise the inequalities are reversed in (10.1). We have similar bounds for the
imaginary parts.

Let us choose k0 D 12. We checked computationally for all ` � 12 that

1251:36168 �
Re.J.w`//

q`
� 1359:5674; (10.2)

�0:4813 �
Im.J.w`//

q`
� 0: (10.3)

By (10.1) and (8.13),

1251:36168C
Re.ı/
qn
�

Re.J.wn//
qn

� 1359:5674C
Re.ı/
qn

;

�0:4813C
Im.ı/
qn
�

Im.J.wn//
qn

�
Im.ı/
qn

:

From the bounds (9.1)–(9.4) with k0 D 12, we obtain

jRe.ı/j
qn

� 1:41173; (10.4)

j Im.ı/j
qn

� 1:23611: (10.5)

By (4.2), (7.16) and (7.17), we have

3206:24623 �
Re.J.wn//
p
n

� 3491:04708 as n!1; (10.6)

�4:40533 �
Im.J.wn//
p
n

� 3:170734 as n!1; (10.7)

and by (4.5),

681:50081 � Re.j.wn// � 742:03641 as n!1; (10.8)
�0:93637 � Im.j.wn// � 0:67396 as n!1: (10.9)
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Remark 10.1. The condition n!1 in (10.6)–(10.9) could be replaced by n � n0
for an explicit value of n0 if the asymptotic relations (4.2) and (4.3) are made explicit.
Then one could compute the values J.wn/, j.wn/ for n < n0, and hence obtain upper
and lower bounds for all n � 1.

Acknowledgements. We thank T. Matsusaka for his comments on the paper.

A. Appendix

The first table below shows the values of J.w.p=q//=q and j.w.p=q// for the first 40
Farey fractions p=q (ordered as real numbers) among all Farey fractions up to the
level 212 D 4096 on the Farey tree. The second table shows the last 40 values. The
programs used for the computations were done in collaboration with Don Zagier.

p=q J.w.p=q//=q j.w.p=q//

0 1359:56741044 706:324813541

1=14 1341:67984291 � 0:122490502636 � I 706:858789119 � 0:0645336432753 � I
1=13 1340:30387617 � 0:131912848914 � I 706:900488474 � 0:0695732206634 � I
2=25 1339:53333481 � 0:137189362590 � I 706:923879686 � 0:0724001664859 � I
1=12 1338:69858166 � 0:142905585739 � I 706:949252302 � 0:0754665750541 � I
3=35 1338:10232944 � 0:146988601101 � I 706:967396097 � 0:0776593436020 � I
2=23 1337:79124132 � 0:149118869986 � I 706:976869216 � 0:0788042174199 � I
3=34 1337:47100355 � 0:151311793837 � I 706:986625824 � 0:0799833523780 � I
1=11 1336:80141549 � 0:155896998255 � I 707:007041981 � 0:0824507472184 � I
4=43 1336:27197388 � 0:159522502181 � I 707:023200307 � 0:0844035587194 � I
3=32 1336:08997833 � 0:160768769155 � I 707:028757860 � 0:0850752157429 � I
5=53 1335:94232156 � 0:161779891418 � I 707:033267994 � 0:0856202872524 � I
2=21 1335:71732077 � 0:163320649151 � I 707:040142609 � 0:0864511175163 � I
5=52 1335:48799304 � 0:164891036840 � I 707:047151949 � 0:0872982300007 � I
3=31 1335:33264200 � 0:165954847856 � I 707:051901658 � 0:0878722552532 � I
4=41 1335:13561141 � 0:167304071583 � I 707:057927362 � 0:0886004905281 � I
1=10 1334:52481658 � 0:171486665136 � I 707:076619003 � 0:0908594653933 � I
5=49 1334:01374406 � 0:174986346915 � I 707:092272845 � 0:0927512885887 � I
4=39 1333:88269983 � 0:175883701217 � I 707:096288695 � 0:0932366184737 � I
7=68 1333:78827089 � 0:176530324170 � I 707:099182986 � 0:0935864040170 � I
3=29 1333:66128026 � 0:177399920555 � I 707:103075992 � 0:0940568878788 � I
8=77 1333:54913268 � 0:178167875804 � I 707:106514624 � 0:0944724589373 � I
5=48 1333:48137685 � 0:178631848767 � I 707:108592428 � 0:0947235689505 � I
7=67 1333:40350822 � 0:179165071426 � I 707:110980627 � 0:0950121914106 � I

Table 1. First 40 values of j.w/ (cont. on next page).
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p=q J.w.p=q//=q j.w.p=q//

2=19 1333:20678745 � 0:180512160249 � I 707:117015286 � 0:0957415017533 � I
7=66 1333:00708607 � 0:181879659509 � I 707:123143307 � 0:0964820951663 � I
5=47 1332:92635572 � 0:182432478358 � I 707:125621143 � 0:0967815506251 � I
8=75 1332:85531302 � 0:182918958946 � I 707:127801902 � 0:0970451031725 � I
3=28 1332:73606276 � 0:183735551361 � I 707:131463014 � 0:0974875617700 � I
7=65 1332:59846631 � 0:184677773378 � I 707:135688236 � 0:0979981950158 � I
4=37 1332:49433927 � 0:185390806256 � I 707:138886314 � 0:0983846943323 � I
5=46 1332:34720323 � 0:186398352714 � I 707:143406240 � 0:0989309436276 � I
1=9 1331:74231064 � 0:190540488152 � I 707:161999257 � 0:101177976749 � I
6=53 1331:21731397 � 0:194135299692 � I 707:178150980 � 0:103129850277 � I
5=44 1331:10992829 � 0:194870602053 � I 707:181456402 � 0:103529297799 � I
9=79 1331:03788473 � 0:195363906168 � I 707:183674280 � 0:103797319799 � I
4=35 1330:94731569 � 0:195984059913 � I 707:186462829 � 0:104134305293 � I
11=96 1330:87278491 � 0:196494394766 � I 707:188757875 � 0:104411652668 � I
7=61 1330:83002135 � 0:196787209845 � I 707:190074826 � 0:104570801246 � I
10=87 1330:78283397 � 0:197110316139 � I 707:191528119 � 0:104746426028 � I

Table 1. First 40 values of j.w/ (cont. from previous page).

p=q J.w.p=q//=q j.w.p=q//

67=144 1256:80214081 � 0:102528424246 � I 709:686203382 � 0:0578953566189 � I
47=101 1256:79136764 � 0:102325397664 � I 709:686610778 � 0:0577812408124 � I
74=159 1256:78161080 � 0:102141524533 � I 709:686979746 � 0:0576778888468 � I
27=58 1256:76462045 � 0:101821331667 � I 709:687622275 � 0:0574979097853 � I
61=131 1256:74399856 � 0:101432700632 � I 709:688402163 � 0:0572794549412 � I
34=73 1256:72761405 � 0:101123925288 � I 709:689021820 � 0:0571058826255 � I
41=88 1256:70322348 � 0:100664271084 � I 709:689944295 � 0:0568474876195 � I
7=15 1256:58452267 � 0:0984272872898 � I 709:694434219 � 0:0555898124674 � I
36=77 1256:44886461 � 0:0958707343734 � I 709:699566670 � 0:0541521589596 � I
29=62 1256:41604412 � 0:0952522135066 � I 709:700808570 � 0:0538042897974 � I
51=109 1256:39285899 � 0:0948152767474 � I 709:701685917 � 0:0535585356735 � I
22=47 1256:36227436 � 0:0942388920864 � I 709:702843321 � 0:0532343345784 � I
59=126 1256:33581623 � 0:0937402736098 � I 709:703844616 � 0:0529538613138 � I
37=79 1256:32007532 � 0:0934436271744 � I 709:704440344 � 0:0527869914925 � I
52=111 1256:30220725 � 0:0931068933828 � I 709:705116596 � 0:0525975662884 � I
15=32 1256:25809547 � 0:0922755818348 � I 709:706786180 � 0:0521298981978 � I
53=113 1256:21476442 � 0:0914589837656 � I 709:708426336 � 0:0516704732988 � I
38=81 1256:19764598 � 0:0911363771209 � I 709:709074332 � 0:0514889627848 � I
61=130 1256:18276611 � 0:0908559574990 � I 709:709637605 � 0:0513311839730 � I

Table 2. Last 40 values of j.w/ (cont. on next page).
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p=q J.w.p=q//=q j.w.p=q//

23=49 1256:15816877 � 0:0903924066955 � I 709:710568762 � 0:0510703571911 � I
54=115 1256:13036308 � 0:0898683927437 � I 709:711621420 � 0:0507754964001 � I
31=66 1256:10971946 � 0:0894793520826 � I 709:712402972 � 0:0505565755912 � I
39=83 1256:08111686 � 0:0889403198412 � I 709:713485890 � 0:0502532388899 � I
8=17 1255:97007146 � 0:0868476064334 � I 709:717690658 � 0:0490754390393 � I
33=70 1255:83840334 � 0:0843662462496 � I 709:722677340 � 0:0476786169351 � I
25=53 1255:79617017 � 0:0835703382661 � I 709:724277078 � 0:0472305134542 � I
42=89 1255:76295307 � 0:0829443432229 � I 709:725535379 � 0:0468780499190 � I
17=36 1255:71405012 � 0:0820227394093 � I 709:727388008 � 0:0463591090605 � I
43=91 1255:66622196 � 0:0811213906246 � I 709:729200069 � 0:0458515317763 � I
26=55 1255:63491625 � 0:0805314168746 � I 709:730386225 � 0:0455192770302 � I
35=74 1255:59641869 � 0:0798059086145 � I 709:731844962 � 0:0451106692538 � I
9=19 1255:48497839 � 0:0777057531246 � I 709:736068162 � 0:0439277065400 � I
28=59 1255:34520582 � 0:0750716597984 � I 709:741366188 � 0:0424436737723 � I
19=40 1255:27881384 � 0:0738204654684 � I 709:743883191 � 0:0417386346705 � I
29=61 1255:21459865 � 0:0726102939033 � I 709:746317939 � 0:0410566358914 � I
10=21 1255:09228401 � 0:0703052052080 � I 709:750956292 � 0:0397573845879 � I
21=44 1254:92271143 � 0:0671095140622 � I 709:757388330 � 0:0379557027688 � I
11=23 1254:76788430 � 0:0641917091029 � I 709:763262682 � 0:0363102351122 � I
12=25 1254:49538854 � 0:0590563723747 � I 709:773605298 � 0:0334131593620 � I
1=2 1251:36168734 709:892890920

Table 2. Last 40 values of j.w/ (cont. from previous page).
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