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Boundary singularities in mean curvature flow and total
curvature of minimal surface boundaries
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Abstract. For hypersurfaces moving by standard mean curvature flow with fixed boundary, we
show that if a tangent flow at a boundary singularity is given by a smoothly embedded shrinker,
then the shrinker must be non-orientable. We also show that there is an initially smooth surface
in R3 that develops a boundary singularity for which the shrinker is smoothly embedded (and
therefore non-orientable). Indeed, we show that there is a non-empty open set of such initial
surfaces.

Let � be the largest number with the following property: if M is a minimal surface in R3

bounded by a smooth simple closed curve of total curvature < �, then M is a disk. Examples
show that � < 4� . In this paper, we use mean curvature flow to show that � � 3� . We get a
slightly larger lower bound for orientable surfaces.
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1. Introduction

SupposeM � RnC1 is a compact, smoothly embedded n-manifold with boundary � .
According to [14], there is a standard Brakke flow

t 2 Œ0;1/ 7!M.t/

with (fixed) boundary � and with initial surface M.0/ D M . Furthermore, if � lies
on the boundary of the convex hull of M , then the flow is regular at the boundary
for all times. (See [14, Sections 5.1 and 13.2] for the definitions of Brakke flow with
boundary and standard Brakke flow with boundary. Briefly, standard Brakke flows
are those that are unit-regular – which prevents certain gratuitous vanishing – and
that take their boundaries as mod 2 chains. In particular, triple junction singularities
do not occur in standard Brakke flow.)

In this paper, we explore boundary regularity of such a flow M.�/ without
assuming that � lies on the boundary of the convex hull of M .

In particular, we show that if a shrinker corresponding to a boundary singularity
is smooth and embedded, then it must be non-orientable. We also show that smooth,

https://creativecommons.org/licenses/by/4.0/


670 B. White CMH

non-orientable shrinkers do arise as boundary singularities of certain smooth initial
surfaces in R3. Indeed, we show that there is a non-empty open set of such initial
surfaces; see Theorem 16.

We also apply mean curvature flow to questions in minimal surface theory:

(1) What is the largest number � such that if M is a smooth minimal surface in R3
bounded by a smooth simple closed curve of total curvature < �, then M must
be a disk?

(2) What is the largest number �0 such that if M is an orientable smooth minimal
surface in R3 bounded by a smooth simple closed curve of total curvature < �0,
then M must be a disk?

Examples show that � < 4� . Here, we show (Theorem 17) that � > 3� .
Examples of Almgren–Thurston show that �0�4� . It is conjectured that �0D4� .

We show (Theorem 19) that �0 > .2�/3=2e�1=2 � 3�.1:014/.
For the existence results in this paper, we work with standard Brakke flows of 2-

dimensional surfaces with entropy less than two. Such flows are rather well-behaved:
they are smooth at almost all times, and the shrinkers corresponding to tangent flows
are smoothly embedded and have multiplicity one; see Theorem 9.

2. A Bernstein theorem for orientable boundary shrinkers

Theorem 1. LetM � RnC1 be a smoothly embedded, oriented shrinker bounded by
an .n � 1/-dimensional linear subspace L. Then M is a half-plane.

Proof. We can assume that L D fx W x1 D x2 D 0g. Consider the 1-form

d� D
x1 dx2 � x2 dx1

x21 C x
2
2

on RnC1 n L.
Let C be an oriented closed curve inM nL. The winding number of C about L

is equal to the intersection number of C and M . Since we can move C slightly in
the direction of the unit normal to M to get a curve C 0 disjoint from M , we see that
the winding number of C about L is equal to 0. Thus,Z

C

d� D 0:

Since this holds for any closed curve inM nL, we see that d� is exact onM . Thus,
there is a single-valued function

� WM n L! R
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such that for x 2M n L,

x1 D .x
2
1 C x

2
2/
1=2 cos �.x/;

x2 D .x
2
1 C x

2
2/
1=2 sin �.x/:

Note that �.�/ extends continuously to L.
Let M 0 be a connected component of M .

Claim 1. � jM 0 attains a maximum.

Proof of Claim 1. Let g be the shrinker metric on RnC1. Choose an R large enough
that the g-mean curvature vector of @B.0; R/ points outward. (That is, choose R >
p
2n.)
Let ˛ be the maximum of � on fx 2M 0 W jxj � 3Rg. By rotating, we can assume

that ˛ D 0.
Suppose the claim is not true. Then

† WD fx 2M 0 W 0 < �.x/ < �g

is a non-empty hypersurface in fx2 > 0g whose boundary lies in the hyperplane
fx2 D 0g.

Consider n-dimensional surfaces S in fx W x2 � 0g such that:

(1) @S D @B.0; 2R/ \ fx2 D 0g.

(2) S is rotationally invariant about the x2-axis. That is, if �2O.nC1/ and �.e2/ D
e2, then �.S/ D S .

(3) The regionU bounded byS and B.0; 2R/\fx2 D 0g contains B.0; R/\fx2 � 0g
and is disjoint from †.

Choose a surface S that minimizes g-area with among all such surfaces. Then S is
smooth, g-minimal, and g-stable.

The restriction thatS be rotationally invariant ensures thatS is smooth; otherwise,
S might have an n � 7-dimensional singular set. If the smoothness is not clear, note
that the rotational symmetry implies that the quotient set˚�

j.x1; 0; x3; : : : ; xnC1/j; x2
�
W x 2 S

	
is a curve; that curve must be a geodesic with respect to a certain Riemannian metric
on .0;1/ � R.

According to [3, Proposition 5], S is flat with respect to the Euclidean metric.
(One lets k !1 in the statement of that proposition.) But that is impossible since
S n @S � fx2 > 0g and since @S is an .n � 1/-sphere in fx2 D 0g. This completes
the proof of the claim.
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By Claim 1 and the strong maximum principle, � is constant on M 0. Thus M 0
is a half-plane with boundary L. Consequently, M is a union of such half-planes.
Since M is embedded, it is a single half-plane.

Remark. The proof of Theorem 1 was inspired by the proof of Theorem 11.1 in the
Hardt–Simon boundary regularity paper [6].

3. A Bernstein theorem for orientable boundary shrinkers with singularities

In this section, we extend Theorem 1 to possibly singular shrinkers. The proof is not
longer, but it does use more machinery. This section is not used in the rest of the
paper.

Theorem 2. LetM � RnC1 be a shrinker bounded by an .n�1/-dimensional linear
subspace L. Suppose that

Hn�1.singM/ D 0 (1)

and that the regular part
regM WDM n singM

is orientable. Then M is a half-plane.

By definition, regM is a smooth, properly embedded manifold-with-boundary in
RnC1 n .singM/, the boundary being L n singM .

Proof. As in the proof of Theorem 1, we assume thatL is the subspace fx1Dx2D0g.
As in that proof, there is a smooth function

� W regM ! R

such that

x1 D .x
2
1 C x

2
2/
1=2 cos �.x/;

x2 D .x
2
1 C x

2
2/
1=2 sin �.x/:

Claim 2. Let H be the half-space ax1 C bx2 > 0, where a and b are not both zero.
Then reg.M/ \H is connected.

This is stated for shrinkers without boundary in [4, Corollary 3.12]. But the same
proof gives Claim 2.

Let M 0 be a connected component of reg.M/. Thus, �.M 0/ is an interval.
First, we claim that I has length at most � . For if not, by rotating we can assume

that
inf
M 0
� < 0
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and that
sup
M 0

� > �:

But then fx 2 M 0 W �.x/ 2 .��; 0/g and fx 2 M 0 W �.x/ 2 .�; 2�/g are non-empty
and lie in different components of M 0 \ fx2 < 0g, contradicting Claim 2.

Next, we claim that M 0 is a half-plane. For suppose not, then � jM 0 does not
attain a maximum or a minimum by the strong maximum principle. Thus, the interval
I D �.M 0/ is an open interval of length at most � . By rotating, we can assume that

�.M 0/ D .�˛; ˛/

for some ˛ with 0 < ˛ � �=2. Now rotate M 0 by � about L to get M 00. Then
M � WDM 0 [M 00 is an embedded shrinker without boundary. Furthermore,

reg.M �/ \ fx2 > 0g

is not connected, which is impossible by Claim 2 (applied to M �).
We have shown that each component of reg.M/ is a half-plane bounded by L.

By (1), there can be at most one such half-plane.

4. Basic properties of entropy and total curvature

Suppose that � is an .m � 1/-dimensional submanifold of Rn and that v 2 Rn. We
define the cone C�;v and the exterior cone E�;v over � with vertex v by

C�;v D
˚
v C s.x � v/ W x 2 �; s 2 Œ0;1/

	
;

E�;v D
˚
v C s.x � v/ W x 2 �; s 2 Œ1;1/

	
:

We will also use C�;v and E�;v to denote the corresponding Radon measures
on Rn (counting multiplicity). Thus,

C�;vf D

Z
p2Rn

f .p/H0
˚
.x; s/ 2 � � Œ0;1/ W v C s.x � v/ D p

	
dHmp;

E�;vf D

Z
p2Rn

f .p/H0
˚
.x; s/ 2 � � Œ1;1/ W v C s.x � v/ D p

	
dHmp:

Now C�;v and E�;v depend continuously on v for v 2 Rn n � . However, the
dependence is not continuous at v 2 � . For suppose vi … � converges to v 2 � .
Then, after passing to a subsequence, C�;vi

converges to the union of C�;v and a
half-plane bounded by Tan.�; v/, and similarly for E�;vi

.
Consequently,

v 2 Rn 7!
C�;vB.v; r/
!mrm

C
1

2
1�.v/ (2)
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is continuous in v. (Since C�;v is conical, the quantity (2) is independent of r .) Here
1�.�/ is the characteristic function (or indicator function) of � .

We define the vision number vis.�/ of � to be the supremum of the quantity (2)
over v 2 Rn. If � is compact, then the supremum is attained by a v in the convex
hull of � .

Remark 3. Because the quantity (2) depends continuously on v, we have

sup
v

�
C�;vB.v; r/
!mrm

C
1

2
1�.v/

�
D sup
v…�

�
C�;vB.v; r/
!mrm

C
1

2
1�.v/

�
D sup
v…�

C�;vB.v; r/
!mrm

� sup
v

C�;vB.v; r/
!mrm

� sup
v

�
C�;vB.v; r/
!mrm

C
1

2
1�.v/

�
:

Since the first and last expressions are the same, in fact equality holds. Thus, in
the definition of vision number, it does not matter whether or not we include the
term 1

2
1�.p/.

Definition 4. IfM is a Radon measure on Rn and if� is a smooth .m�1/-dimensional
manifold in Rn, then the entropy of the pair .M; �/ is

e.M I�/ D sup
v2Rn;�>0

.M CEv;�/ v;�;

where

 v;�.x/ D
1

.4��/m=2
exp

�
�
jx � vj2

4�

�
:

Theorem 5 ([14, Theorem 8.1]). Suppose that

t 2 I 7!M.t/

is a Brakke flow with boundary � in Rn. Then e.M.t/I�/ is a decreasing function
of t .

Theorem 6. Suppose that � is a smooth .m � 1/-dimensional manifold in Rn and
that t 2 ŒT0; T � 7!M.t/ is an m-dimensional Brakke flow with boundary � . Then,

e.M.t/I�/ �
area.M.T0//

.4�.t � T0//m=2
C vis.�/:

Proof. This is an immediate consequence of [14, Corollary 7.3].
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Corollary 7. In Theorem 6, if M.�/ is an ancient flow and if the area of M.t/ is
bounded above as t ! �1, then

e.M.t/I�/ � vis.�/:

Theorem 8 ([5, Theorem 1.1]). Suppose that � is a simple closed curve in Rn. Then

vis.�/ �
1

2�
tc.�/;

where tc.�/ is the total curvature of � . Equality holds if and only if � is a convex
planar curve.
Theorem 9. Suppose that � is a smooth, simple closed curve in Rn. Suppose that

.a;1/ 2 R 7!M.t/

is a standard Brakke flow with boundary � such that

A WD sup
t2.a;1/

area.M.t// D lim
t!a

area.M.t// <1;

and that
sup
t
e.M.t/I�/ < 2:

Then:
(1) At each spacetime point, each tangent flow is given by a smooth, multiplicity 1

shrinker.
(2) The flow M.�/ is regular at almost all times.
(3) If n D 3, then for each tangent flow at a boundary singularity, the corresponding

shrinker is non-orientable.
(4) Every sequence of times tending to1 has a subsequence t .i/ for whichM.t.i//

converges smoothly to an embedded minimal surface.
(5) As t !1, M.t/ converges smoothly to an embedded minimal surface M.1/.
(6) If a D �1, then as t ! �1,M.t/ converges smoothly to an embedded minimal

surface M.�1/.

Proof. See Appendix A for the proofs of assertions (1) and (2). In particular,
Lemmas 20 and 21 give assertion (1), and Proposition 23 gives assertion (2).

In assertion (3), the non-orientability of† follows immediately from assertion (1)
and Theorem 1.

To prove assertion (4), suppose t .i/!1. By passing to a subsequence, we may
assume that the flows

t 7!M.t.i/C t /
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converge to a standard limit Brakke flow

t 2 R 7!M 0.t/

with boundary � . (This is by the compactness theory for standard Brakke flows with
boundary; see Theorems 10.2 and 13.1 and Definition 13.2 in [14].) Since the area
ofM 0.t/ is independent of t (it is equal to limt!1 area.M.t//), it follows thatM 0.t/
is a stationary integral varifold V independent of t . By assertion (2) applied to the
flow M 0.�/, the surface M 0.t/ is smoothly embedded for almost all t . Thus, V is
smoothly embedded.

The uniqueness in assertion (5) follows from assertion (4) and from the Lojasiewicz–
Simon inequality [11, Theorem 3]; see Theorem 29 below.

The proof of assertion (6) is the same as the proof of assertion (5).

5. A general existence theorem for eternal flows

In the following two theorems, F is a set of C 1 compact manifolds-with-boundary
in R3 with the following property: if M 2 F and if M 0 is isotopic to M , then
M 0 2 F . For example, F might be the set of non-orientable surfaces, or the set of
genus-one orientable surfaces, etc.
Theorem 10. Suppose that� is a smooth, simple closed curve in R3 of total curvature
at most 4� . Suppose that � bounds a minimal surface in F and that � is a smooth
limit of curves �i such that �i does not bound a minimal surface in F .

Then there is an eternal standard Brakke flow

t 2 R 7!M 0.t/

with boundary � such that:
(i) supt e.M 0.t/I�/ < 1

2�
tc.�/ � 2.

(ii) M 0.t/ converges smoothly as t ! �1 to a minimal surface M 0.�1/ in F .
(iii) M 0.�1/ has the least area among all minimal surfaces of type F bounded

by � .
(iv) M 0.t/ converges smoothly as t ! 1 to a minimal surface M 0.1/ that is not

in F .

Proof. The set of minimal surfaces in F bounded by � is compact (by Theorem 25),
so there is a surface M that attains the least area A among all such surfaces.

Note that t 2 R 7!M is a standard Brakke flow, so

e.M I�/ � vis.�/ <
1

2�
tc.�/ � 2

by Corollary 7 and Theorem 8.
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For each i , let Mi be a surface diffeomorphic to M and bounded by �i such
that Mi converges smoothly to M as i ! 1. Then e.Mi I�i / ! e.M I�/, so by
passing to a subsequence, we can assume that

e.Mi I�i / < 2:

for all i .
Let

t 2 Œ0;1/ 7!Mi .t/

be a standard Brakke flow with boundary �i and with initial surface Mi .0/ DMi .
Of course,

sup
t
e.Mi .t/I�i / D e.Mi I�i / < 2; (3)

and
sup
t

area.Mi .t// D area.Mi .0// D area.Mi /! areaM D A: (4)

As t ! 1, we can assume, by passing to a subsequence, that the flow Mi .�/

converges to a standard Brakke flowM.�/ withM.0/ DM . SinceM is smooth and
minimal, the only such flow is the constant flow M.t/ �M .

As t !1, Mi .t/ converges smoothly to an embedded minimal surface Mi .1/

(by (3) and Theorem 9). By hypothesis on �i , the surface Mi .1/ is not in the
collection F . Thus for all sufficiently large t , Mi .t/ is not in F .

Since Mi .0/ is in F and since Mi .t/ is not in F for large t , we see that there
must be singularities in the flow. Let Ti be the first singular time. Since the flow
t 7!Mi .t/ converges to the constant flow t 7!M , we see that

Ti !1:

By passing to a subsequence, we can assume that the time-shifted flows

t 2 Œ�Ti ;1/ 7!M 0i .t/ WDMi .Ti C t /

converge to an eternal standard Brakke flow

t 2 R 7!M 0.t/

with boundary � . By Corollary 7 and Theorem 8, the flow satisfies the entropy
bound (i).

By Theorem 9, there is a c 2 .0;1/ such that

M 0.t/ is smooth for jt j > c; (5)
M 0.t/ converges smoothly to a minimal surface M 0.�1/ as t ! �1, and (6)
M 0.t/ converges smoothly to a minimal surface M 0.1/ as t !1: (7)
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By choice of Ti ,M 0i .t/ in F for t < 0. By local regularity [13],M 0i .t/ converges
smoothly toM 0.t/ for t < �c. ThusM 0.t/ is in F for t < �c, and henceM 0.�1/
is in F .

Since 0 is a singular time of the flow M 0i .�/, it follows (again by local regular-
ity [13]) that 0 is a singular time of the flow M 0.�/. Hence, the flow M 0.�/ is not
constant, so

area.M 0.1// < area.M 0.�1// � A: (8)

Since A is the least area of any minimal F -type surface bounded by � , it follows
that areaM 0.�1/ D A and that M 0.1/ is not of type F .

Theorem 11. Suppose that the family F does not include disk-type surfaces. Suppose
there is a smooth simple closed curve �0 of total curvature < 4� that bounds a
minimal surface of type F . Then there is a curve � such that tc.�/ � tc.�0/ and
such that � satisfies the hypotheses of Theorem 10.

Proof. By Theorem 28, there is a smooth one-parameter family

s 2 Œ0; 1� 7! �s

of simple closed curves (starting from the given curve �0) for which �1 is a round
circle and for which each curve has total curvature � tc.�0/.

Let S be the set of s 2 Œ0; 1� such that �s bounds a minimal surface of type F .
By Theorem 25, S is closed. And S is non-empty since 0 2 S . Thus, S has a

maximum ys. Note that ys < 1. Hence �ys bounds a minimal surface of type F , and �ys
is a smooth limit of the curves �s , s > ys, that do not bound minimal surfaces of
type F .

6. Generalized Möbius strips

Suppose that M � R3 is a smoothly embedded, compact surface with exactly one
boundary component. More generally, we can allow M to have self-intersections
and singularities, provided they occur away from the boundary. That is, we only
require that @M is a smooth, simple closed curve and thatM is a smoothly embedded
manifold-with-boundary (the boundary being @M ) near @M .

Although M may not be orientable, we can choose an orientation for @M . Now
push @M slightly into M to get another smooth embedded curve C . For example,
if " > 0 is sufficiently small, we can let

C D fp 2M W dist.p; @M/ D "g:

We let �.M/ be the linking number of @M and C . This can be defined in various
(equivalent) ways. For example, let† be a compact oriented surface (not necessarily
embedded) with boundary @M . By perturbing † slightly, we can assume that C
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intersects † transversely. Then �.M/ is the intersection number (in R3 n @M ) of C
and †. Alternatively, we can let † be a compact oriented surface with boundary C .
Then �.M/ is the intersection number of @M and † in R3 n C .

We began by choosing an orientation for @M , but the resulting value of �.M/

does not depend on that choice, since reversing the orientation of @M also reverses
the orientations of C and of †, thus leaving the value of �.M/ the same.

Of course, ifM is smoothly embedded and orientable, then �.M/ D 0, since we
can let† be the portion ofM bounded by C . Note that† is an oriented surface with
boundary C and that† is disjoint from @M , so the linking number of C and @M is 0.

Proposition 12. IfM is a smoothly embedded Möbius strip, then �.M/ ¤ 0. Indeed,
�.M/=2 is an odd integer.

Proof. Let S be an embedded, orientation-reversing path in the interior of M . Note
that we can perturb S slightly to get a curve S 0 that intersects M transversely and in
exactly one point. Thus the mod 2 linking number of @M and S is 1, and therefore
the integer linking number of @M and S (whichever way we orient those curves) is
an odd integer.

Now push @M into M to get an embedded curve C as in the definition of �.M/.
Then C is homologous inM n @M (and therefore in R3 n @M ) to S traversed twice,
so �.M/, the linking number of @M and C , is equal to the twice the linking number
of @M and S .

Definition 13. A generalized Möbius strip in R3 is a smoothly embedded, compact
(not necessarily connected) surfaceM in R3 such that @M has exactly one component,
and such that �.M/ is non-zero.

Every generalized Möbius strip is non-orientable, but not every non-orientable
surface in R3 is a generalized Möbius strip. For example, if we attach a handle to a
flat disk to make a non-orientable surfaceM (topologically a Klein bottle with a disk
removed), then �.M/ D 0.

Note that if a generalized Möbius strip in Euclidean space is a minimal surface,
then it has no components without boundary and thus must be connected.

Lemma 14. Suppose � is a smooth, simple closed curve in R3, suppose t 2 Œa; b� 7!
M.t/ is a Brakke flow with boundary � such that a and b are regular times, and
suppose the flow has no boundary singularities. Then t 2 Œa; b� 7! �.M.t// is
constant. In particular, M.a/ is a generalized Möbius strip if and only if M.b/ is a
generalized Möbius strip.

Proof. The lemma is true because �.M.t// only depends on the behavior ofM.t/ in
an arbitrarily small neighborhood of the boundary.
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Theorem 15. Let �gm be the infimum of the total curvature tc.�/ among smooth,
simple closed curves � in R3 that bound generalized minimal Möbius strips. Then

�gm < 4�: (9)

If �gm < � < 4� , then there exists a smooth, simple closed curve � in R3 of total
curvature < � and an eternal standard Brakke flow t 2 R 7!M.t/ with boundary �
such that:

(1) supt e.M.t/I�/ <
tc.�/
2�

.

(2) M.t/ converges smoothly as t ! �1 to a generalized Möbius strip M.�1/.

(3) The surfaceM.�1/ has the least area of any minimal, generalized Möbius strip
bounded by � .

(4) M.t/ converges smoothly as t ! 1 to a minimal surface M.1/ that is not a
generalized Möbius strip.

Furthermore, such a flow must have a boundary singularity, and the shrinker †
corresponding to a tangent flow at any such boundary singularity is a smoothly
embedded, non-orientable surface with straight line boundary.

Proof. By [5, Section 5], there is a smooth, simple closed curve of total curvature <
4� such that the curve bounds a minimal Möbius strip. Thus, �gm < 4� .

By Theorem 11, there exists a curve � and an eternal standard Brakke flowM.�/

with boundary � and having properties (1)–(4). (One lets F be the family of all
generalized Möbius strips.)

By Lemma 14, there must be a boundary singularity. By Theorem 9, the tangent
flow must have the indicated properties.

7. Boundary singularities are unavoidable

Theorem 16. Let C be the set of smoothly embedded surfaces M in R3 such that:

(i) the boundary curve � has total curvature less than 4� ,

(ii) the entropy e.M I�/ is less than 2, and

(iii) any standard Brakke flow with boundary � and with initial surface M must
develop a boundary singularity for which the corresponding shrinker is a
smoothly embedded, multiplicity-one, non-orientable surface with straight line
boundary.

Then C has non-empty interior.

Proof. Let � and
t 2 R 7!M.t/
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be as in Theorem 15. Let T be a regular time at which M.T / is a smoothly em-
bedded generalized Möbius strip. (For example, T could be any time before the first
singularity.) We will show that M.T / lies in the interior of C .

By time translation, we can assume that T D 0. LetMi be a sequence of surfaces
that converge smoothly toM.0/. Let �iD@Mi . Let t 2 Œ0;1/ 7!Mi .t/ be a standard
Brakke flow with boundary �i and with initial surface Mi .0/ DMi .

Note that

sup
t
e.Mi .t/I�i / D .e.Mi .0/I�i /! e.M.0/I�/ < 2: (10)

Consequently, Mi .t/ converges smoothly as t ! 1 to an embedded minimal
surface Mi .1/. By passing to a subsequence, we can assume (see Theorem 25)
that Mi .1/ converges smoothly to a minimal surface M 0 bounded by � . Now,

area.M 0/ D lim
i

area.Mi .1// � lim
i

areaMi .0/ D areaM.0/ < area.M.�1//:

SinceM.�1/ achieves the least area of minimal generalized Möbius strips bounded
by� , it follows thatM 0 is not a generalized Möbius strip, and hence neither isMi .1/

for i large. For each such i ,Mi .t/ is not a generalized Möbius strip for all sufficiently
large t .

Thus, for all sufficiently large i ,

Mi .0/ is a generalized Möbius strip, and (11)
Mi .t/ is not a generalized Möbius strip for all sufficiently large t . (12)

By (11), (12), and Lemma 14, Mi .�/ must have a boundary singularity. By (10)
and Theorem 9, the corresponding shrinker must be smoothly embedded and non-
orientable, and must have multiplicity one.

8. The three pi theorem

Theorem 17. Suppose that � 0 is a smoothly embedded, simple closed curve in R3
and that � 0 bounds a smooth minimal surface that is not a disk. Then, tc.� 0/ > 3� .

Proof. We may assume that tc.� 0/ < 4� .
By Theorem 11 (applied to the family F of non-disk surfaces), there is a smooth,

simple closed curve � with
tc.�/ � tc.� 0/

and a there is a standard Brakke flow t 2 R 7! M.t/ with boundary � for which
M.�1/ is not a disk and M.1/ is a disk.

Thus, the flow must have at least one singularity. Consider the shrinker † corre-
sponding to a tangent flow at the first singular time T .
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If the singularity is a boundary singularity, e.M.�/I�/ > 3
2

by Theorem 18 below.
Now suppose the singularity is an interior singularity. Since M.t/ is connected

and with non-empty boundary for t < T , we see that † is non-compact. By [2,
Corollary 1.2], the entropy of † is greater than or equal to the entropy

�1 D .2�=e/
1=2
Š 1:52

of a round cylinder.
Thus, in either case (boundary singularity or interior singularity),

e.M.T /I�/ �
3

2
:

On the other hand,

e.M.T /I�/ �
tc.�/
2�

:

Thus,
tc.�/
2�

>
3

2
;

so
tc.� 0/ � tc.�/ > 3�:

Theorem 18. Let † � RnC1 be a smooth, non-orientable shrinker whose boundary
is an .n � 1/-dimensional linear subspace L. Then

e.†IL/ >
3

2
:

Proof. Rotate† by � aboutL to get†0. ThenM WD †[†0 is a smoothly immersed
shrinker without boundary. Since it is non-orientable, it must have a point p of
self-intersection. Thus the entropy of M is � 2. In fact, the entropy must be > 2,
since otherwiseM would be a cone centered at p. SinceM is smooth, that meansM
would be planar, which is impossible since it is non-orientable.

Thus,Z
†

1

.4�/1=2
e�jxj

2=4 dx D
1

2

Z
M

1

.4�/1=2
e�jxj

2=4 dx D
1

2
e.M/ > 1;

where e.M/ WD e.M I ;/ is the entropy of M , so

e.†IL/ �
1

2
C

Z
†

1

.4�/1=2
e�jxj

2=4 dx >
3

2
:
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9. Oriented surfaces

We can improve Theorem 17 slightly in the case of oriented surfaces.

Theorem 19. Suppose that � 0 is a smoothly embedded, simple closed curve in R3
and that � 0 bounds a smooth, oriented minimal surface that is not a disk. Then

tc.� 0/ > 2��1;

where �1 D .2�=e/1=2 is the entropy of S1 � R:

This is a slight improvement over the 3� in Theorem 17 because

2��1

3�
D 1:01356 : : : :

It is conjectured that Theorem 19 holds with 4� in place of 2��1. The constant 4�
would be sharp since (by work of Almgren–Thurston [1] or the simplified version by
Hubbard [8]), for every " > 0 and g, there is a smooth simple closed curve of total
curvature< 4�C " that bounds no embedded minimal surface of genus� g. Such a
curve bounds immersed minimal surfaces (the Douglas solutions) of each genus� g,
and an embedded minimal surface (the least area integral current) of genus > g; see
the discussion in the introduction of [5].

Proof of Theorem 19. We may suppose that tc.� 0/ < 4� .
Let F be the family of connected, oriented surfaces of genus� 1. By Theorem 11,

there is smooth simple closed curve � with

tc.�/ � tc.� 0/

and a standard Brakke flow
t 2 R 7!M.t/

with boundary � such thatM.1/ is a smooth disk and such thatM.�1/ is smooth,
orientable minimal surface that is not a disk.

Thus, the flow must have a singularity. Consider the shrinker† corresponding to
a singularity at the first singular time T . SinceM.t/ is orientable for t < T , † must
be orientable. Thus, the singularity is an interior singularity (by Theorem 9.)

As in the proof of Theorem 17, the entropy of † is greater than or equal to the
entropy �1 of a cylinder, and thus

�1 � e.M.T /I�/ <
tc.�/
2�

:
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A. Regularity and compactness

Lemma 20. Suppose that † is a 2-dimensional integral varifold in Rn, that

t 2 .�1; 0/ 7! jt j1=2† (13)

is a standard Brakke flow without boundary, and that † has entropy < 2. Then † is
a smoothly embedded surface.

Proof. First, we prove that

if † is a cone, then it is a multiplicity-one plane. (14)

If † is a cone, it must be a stationary cone, so its intersection with the unit sphere is
a geodesic network. Since the entropy is < 2, each geodesic arc occurs with multi-
plicity 1. Also, at each vertex of the network, 3 or fewer arcs meet. But 3 arcs cannot
meet at a point because the flow is standard and therefore has no triple junctions.

Thus, there are no vertices. That is, †\ @B consists of disjoint, multiplicity-one
geodesics. Because the entropy is < 2, there can only be one such geodesic. Thus,
† is a multiplicity-one plane. This proves (14).

In the general case, note that † is a stationary integral varifold for the shrinker
metric on Rn. Let C be a tangent cone to † at a point p. Then

t 2 .�1; 0/ 7! C D jt j1=2C

is a tangent flow to the flow (13) at the spacetime point .p;�1/. By (14), C is a
multiplicity-one plane. Hence, (by Allard regularity) p is a regular point of †.

Lemma 21. Suppose that † is a 2-dimensional integral varifold in Rn, that

t 2 .�1; 0/ 7! jt j1=2† (15)

is a standard Brakke flow with boundary L, where L is a straight line through the
origin, and that e.†IL/ < 2 (see Definition 4). Then † is a smoothly embedded
manifold with boundary L.

Proof. First, we prove that

if † is a cone, then it is a multiplicity-one half-plane. (16)

Note that if† is a cone, then†\@B is a geodesic network. Each geodesic arc occurs
with multiplicity 1. Exactly as in the proof of Lemma 20, there can be no vertices of
the network, except the two points of L \ @B.

Thus,†\ @B consists of j geodesic semicircles with endpoints L\ @B, together
with k geodesic circles (for some integers j and k). Consequently, † consists
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of j half-planes (each with boundary L) together with k planes. The extended
entropy of † is .j=2/C k C 1=2, so

j C 1

2
C k < 2; (17)

and therefore j < 3. By standardness, the mod 2 boundary of † is L, so j is odd.
Thus, j D 1. By (17), k D 0. This proves (16).

Now we consider the general case. Exactly as in Lemma 20, † is smooth and
embedded except perhaps along L. Let C be a tangent cone to † at a point p 2 L.
Then

t 2 .�1; 0/ 7! C D jt j1=2C

is a tangent flow to the flow (15) at the spacetime point .p;�1/, soC is a multiplicity-
one half-plane by (16). Thus, p is a regular point of † by Allard regularity.

Corollary 22. Let † be as in Lemma 21. If † is invariant under translations in
some direction, then † is a half-plane.

Proof. The direction of translational invariance would have to be L. Let P be the
tangent half-plane to † at 0. Then P and † are g-minimal surfaces that are tangent
along L (where g is the shrinker metric). Thus, P and † coincide.

Proposition 23. Suppose that � is a smoothly embedded curve in Rn and suppose
that

t 2 I 7!M.t/

is a standard Brakke flow with boundary � satisfying the entropy bound

e.M.t/I�/ < 2 for all t :

Then the set of singular times has measure 0.

Proof. Let† be the shrinker for the tangent flow at a singularity. Then† is smoothly
embedded, so if it had a direction of translational invariance, then by Corollary 22, the
singularity would not be at a boundary point. Thus,†would be a cylinder. Regularity
at almost all times follows from the standard stratification theory [12].

Remark 24. From the proof, we see that we do not really need to assume that the
surfaces have entropy < 2; it is enough to assume that all the tangent flows have
entropy < 2.

Theorem 25. Suppose that� is a smooth, simple closed curve in Rn of total curvature
� 4� and that �i converges smoothly to � . Suppose that Mi is a smooth embedded
minimal surface bounded by �i . Then, after passing to a subsequence,Mi converges
smoothly to a minimal surface bounded by � .
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Proof. This is not hard to prove by minimal surface techniques (using extended
monotonicity [5, Theorem 9.1] and arguments analogous to the proofs of Lemmas 20
and 21). Here we prove it using mean curvature flow since we have already established
all the necessary ingredients.

By the convex hull property of minimal surfaces and the isoperimetric inequality,
the Mi lie in a compact subset of Rn and their areas are uniformly bounded. Thus,
after passing to a subsequence, the Mi converge weakly to a compactly supported
integral varifold M . Note that the standard Brakke flows

t 2 R 7!Mi

with boundary �i converge to the Brakke flow

t 2 R 7!M (18)

with boundary � . Thus, t 2 R 7!M is also standard [14, Theorem 13.1]. By Prop-
osition 23, the flow (18) is smooth at almost all times. Thus,M is smooth. By Allard
regularity, the convergence is smooth.

B. Reducing total curvature

Theorem 26. Let ˛ < 4� . Let C.˛/ be the collection of simple closed, polygonal
curves in Rn with total curvature at most ˛. Then C.˛/ is connected.

Proof. It suffices to show that any curve in C.˛/ can be deformed through curves
in C.˛/ to a triangle.

Let � be a curve in C.˛/. According to Milnor’s theorem [9], we can assume (by
rotating and scaling) that the image of height function

hW x 2 � 7! x � en

is Œ0; 1�, and that for each y 2 .0; 1/, there are exactly two points 1.y/ and 2.y/
of � at which h D y.

We may also assume that h D 1 at exactly 1 point.
Let �.0/ D � , and for t 2 .0; 1/, let �.t/ be � \ fh � tg together with the

segment joining 1.t/ and 2.t/.
The total curvature of �.t/ is a decreasing function of t , so �.t/ 2 C.˛/ for all

t 2 Œ0; 1/. Note that for t close to 1, �.t/ is a triangle.

Lemma 27. Let  W Œ0; 1�! Rn be a smooth simple closed curve. Then there exists
a one-parameter family

t 7! t

such that:
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(1) 0 D  .

(2) 1 is polygonal.

(3) Each t is a piecewise-smooth simple closed curve.

(4) The total curvature of t is a decreasing function of t .

(5) For each t 2 Œ0; 1� and each s 2 Œ0; 1�,

 0t .s�/ � 
0
t .sC/ > 0:

Proof. Let  W Œ0; 1�! � be a smooth parametrization.
Fix a large integer N , and for each t 2 Œ0; 1�, let t W Œ0; 1� ! Rn be the closed

curve formed from  by replacing (for each k D 0; : : : ; N � 1)

 jŒk=N; .k C t /=N �

by the line segment with the same endpoints.
Then 0 D  , the total curvature of t is a decreasing function of t (by [9]),

and 1 is polygonal.
Note also that if N is sufficiently large, then each t will be an embedding.

Theorem 28. Let � be a smooth, simple closed curve of total curvature � ˛ < 4� .
Then � can be deformed among such curves to a planar convex curve.

Proof. If C is a simple closed curve in Rn, let �t .C / be the result of flowing C for
time t by curve-shortening flow. (We assume t > 0 is small enough that the flow is
smooth on the time interval .0; t �.)

By Theorem 26 and Lemma 27, there is a one-parameter family

s 2 Œ0; 2� 7! �s

of simple closed curves such that:
(1) �0 D � .

(2) s 2 Œ0; 1� 7! �s are piecewise smooth curves as in Lemma 27.

(3) �s is polygonal for s 2 Œ1; 2�.

(4) �2 is a triangle.

(5) The total curvature of �s is a decreasing function of s.
Choose " > 0 small enough so that for each s 2 Œ0; 2�, then curve-shortening flow

starting with �s remains smooth and embedded on the time interval .0; "�.
Now deform � D �0 to �".�0/ by

t 2 Œ0; "� 7! �t .�0/:
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Then deform �".�0/ to the plane convex curve �".�2/ by

s 2 Œ0; 2� 7! �".�s/:

Note that we have deformed � to the plane convex curve �".�/ through smooth,
simple closed curves, each of total curvature � ˛. (By [7, Lemma 3.4], curve short-
ening in Rn reduces total curvature.)

C. Unique limits

Theorem 29. Suppose† is anm-dimensional compact, smoothly embedded minimal
surface in Rn with smooth boundary � . Suppose

t 2 I 7!M.t/

is a standard mean curvature flow of m-dimensional surfaces in Rn with fixed
boundary � .
(1) If I D Œ0;1/ and if there is a sequence ti ! 1 such that M.ti / converges

smoothly (with multiplicity 1) to †, then M.t/ converges smoothly as t ! 1
to †.

(2) If I D .�1; 0� and if there is a sequence ti ! �1 such that M.ti / converges
smoothly (with multiplicity 1) to †, then Then M.t/ converges smoothly as
t ! �1 to †.

Proof. If t 2 Œ0;1/ 7!M.t/ is a solution of the renormalized mean curvature flow

.velocity at x/? D H C
x?

2
;

and if there is no boundary, then assertion (1) is proved in [10, Corollary 1.2]. In fact,
the same proof works when M has boundary, when t ! �1, and when the flow
is mean curvature flow rather than renormalized mean curvature flow. (For mean
curvature flow, in the proofs in [10], one should let E be the ordinary area of the
surface and � be the constant function 1.)
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