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Homological norms on nonpositively curved manifolds
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Abstract. We relate the Gromov norm on homology classes to the harmonic norm on the
dual cohomology and obtain double sided bounds in terms of the volume and other geometric
quantities of the underlying manifold. Along the way, we provide comparisons to other related
norms and quantities as well.
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1. Introduction and results

The vector space Cp.X;R/ of singular p-chains of a topological space X comes
equipped with a natural choice of basis consisting of the set of all continuous maps
from the p-dimensional Euclidean simplex into X . The `1-norm on Cp.X;R/ asso-
ciated to this basis descends to a semi-norm k�k1 on the singular homologyHp.X;R/
by taking the infimum of the norm within each equivalence class, or more precisely,
we have the following definition.
Definition 1.1. The Gromov norm of a p-homology class ˛ is

k˛k1 WD inf
�X
i

jai j W

�X
i

ai�i

�
D ˛ 2 Hp.X;R/

�
:

This norm was introduced by Thurston [30, Chapter 6], and later generalized by
Gromov [21], and an important special case is the simplicial volume, written kMk, of
a closed oriented connected n-manifoldM which is defined to be kŒM �k1, where ŒM �

is the fundamental class in Hn.M;R/ – the image of a preferred generator in
Hn.M;Z/ under the change of coefficient map. More concretely,

kMk D inf
�X
i

jai j W

�X
i

ai�i

�
D ŒM � 2 Hn.M;R/

�
;

where the infimum is taken over all singular cycles with real coefficients representing
the fundamental class in the top homology group of M . This invariant is multi-
plicative under finite covers, so the definition can be extended to closed connected
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non-orientable manifolds as well. In what follows, we will always assume that our
manifolds are connected.

For a cohomology class ˇ 2 Hp.M;R/ we denote the harmonic norm by kˇkH
and define it to be theL2-norm of the unique harmonic form representing the classˇ in
the de Rham cohomology. Since the harmonic representative minimizes theL2-norm
among all forms, we have the following definition.
Definition 1.2. The harmonic norm of a cohomology class ˇ 2 Hp.M;R/ is

kˇkH WD inf
Œ��Dˇ
k�k2 WD inf

Œ��Dˇ

�Z
M

� ^ ��

�1=2
;

where the infimum is taken over all closed differential forms � representing ˇ.
The infimum is achieved by the harmonic representative ! satisfying �! D 0,
i.e. k!k2 D kˇkH .

For M a closed hyperbolic 3-manifold, Bergeron, Şegün and Venkatesh estab-
lished the following result.
Theorem 1.3 ([2, Proposition 4.2]). For any closed orientable hyperbolic 3-mani-
fold M0 there are constants C1; C2 depending only on M0 such that for any finite
coverM ofM0 and all ˇ 2 H 1.M;R/ with Poincaré dual ˇ� 2 H2.M;R/, we have

C1

vol.M/
kˇ�k1 � kˇkH � C2kˇ

�
k1:

In the same setting, Brock and Dunfield significantly tightened the relationship
between these two norms.
Theorem 1.4 ([5, Theorem 1.2]). For all closed orientable hyperbolic 3-manifoldsM
and all ˇ 2 H 1.M;R/ with Poincaré dual ˇ� 2 H2.M;R/, we have

�

2
p

vol.M/
kˇ�k1 � kˇkH �

5�p
Inj.M/

kˇ�k1:

Remark 1. The above theorems were originally stated in terms of the Thurston
norm kˇkTh, which by a result of Gabai [18, Corollary 6.18] is just half the Gromov
norm kˇ�k1.

In the case of Theorem 1.4, the same authors showed through examples that their
bounds are optimal up to a multiplicative constant on the lower side and optimal
up to a sublinear function of Inj.M/ on the upper side. In particular, they provide
an example of a sequence of hyperbolic 3-manifolds Mi with uniformly bounded
volumes and Inj.Mi /! 0 and ˇi 2 H 1.Mi ;R/ with

kˇikH

kˇ�i k1
� C

p
� log Inj.Mi /

for some constant C > 0.



Vol. 97 (2022) Homological norms on nonpositively curved manifolds 803

The main purpose of our paper is to extend these results to all dimensions and
to well-known classes of nonpositively curved manifolds. In fact, the lower bound
does not even require nonpositive curvature, and it is a consequence of the duality
principle and Gromov’s comass inequality.
Theorem 1.5. Let M be a closed oriented manifold of dimension n normalized so
that Ric � �.n � 1/. If ˇ 2 Hp.M;R/ is any cohomology class, then the Gromov
norm of its Poincaré dual has an upper bound

kˇ�k1 � .n � p/Š.n � 1/
n�p

p
vol.M/ kˇkH :

Remark 2. Distinct from the Poincaré dual, we may define a pairing dual y̌ 2
Hp.M;R/ of a class ˇ 2 Hp.M;R/ to be any element such that .ˇ; y̌/ D 1 and

k y̌k1 D inf
˚
kk1 W  2 Hp.M;R/ with .ˇ; / D 1

	
:

Similarly for ˛ 2 Hp.M;R/, a pairing dual y̨ is defined by .y̨; ˛/ D 1 and

ky̨k1 D inf
˚
kˇk1 W ˇ 2 H

p.M;R/ with .ˇ; ˛/ D 1
	
:

By the Hahn–Banach theorem and properties of the norms (see [1, Proposition F.2.2]),
pairing duals exist (though not necessarily unique). Moreover,

kˇk1 � k y̌k1 D 1 D ky̨k1 � k˛k1

for all ˛ 2 Hp.M;R/ and ˇ 2 Hp.M;R/. This duality principle is essential to the
proof of the above theorem; see Section 4.

On the other hand, having an upper bound like Theorem 1.4 will provide positivity
of the Gromov norm on corresponding non-trivial classes. In nonpositively curved
manifolds, such results are only known in certain degrees and in certain cases such as
the negatively curved manifolds, higher rank locally symmetric ones, and rank one
manifolds with Rick < 0. We show in all these cases:
Theorem 1.6. Let n � 3. There is a constant C.n/ > 0, with the following property.
Let M be a closed oriented nonpositively curved manifold of dimension n, and
for 0 � p � n � 2, let ˇ 2 Hp.M;R/ be any cohomology class. Denote by
ˇ� 2 Hn�p.M;R/ the Poincaré dual of ˇ.
(a) If M has maximum sectional curvature �a2 with a > 0, then

kˇkH � C.n/b
.n�1/=2
p ap�n max

�
1;

1

.a Inj.M//1=2

�
kˇ�k1;

where bp > 0 is given by

�b2p D

(
.n � 1/�1.lower bound of Ricci curvature/ p � 1;

lower bound of the curvature operator p � 2:
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(b) If M is locally symmetric of real rank r � 2 normalized to have sectional
curvatures �1�K � 0, whose universal cover has no direct factor of R, H2,
SL.3;R/=SO.3/, Sp.2;R/=U.2/, G22=SO.4/, or SL.4;R/=SO.4/, and p �
n � 2 � srk. zM/, then

kˇkH � C.n/max
�
1;

1

.Inj.M//r=2

�
kˇ�k1:

(c) If M is geometric rank one satisfying RickC1 < 0 for some k � bn
4
c, then there

exists a constant C. zM/ that depends only on zM such that when p � n � 4k,

kˇkH � C. zM/max
�
1;

1

Inj.M/k=2

�
kˇ�k1:

In the statement of the above theorem, the definition of the splitting rank, srk, and
k-Ricci curvature, Rick , are as follows.
Definition 1.7. LetX be any symmetric space without compact factors, the splitting
rank of X is

srk.X/ D maxfdim.Y �R/ j where Y �R � X is totally geodesicg:

This number is explicitly computed in [31, Table 1] for all irreducible symmetric
spaces. For example, ifX D SL.m;R/=SO.m/, then srk.X/ D dim.X/� rank.X/,
and if X D SL.m;C/=SO.m/, then srk.X/ D dim.X/ � 2 rank.X/.
Definition 1.8. For u; v 2 TxM , the k-Ricci tensor is defined to be

Rick.u; v/ D sup
V�TxM
dimVDk

TrR.u; �; v; �/jV ;

where R.u; �; v; �/jV is the restriction of the curvature tensor to V �V , thus the trace
is with respect to any orthonormal basis of V . We set Rick D supv2T 1M Rick.v; v/.
Remark 3. The range of p in Theorem 1.6 (a) is sharp as the Gromov norm of any
1-class is zero. It is almost sharp in case (b) due to a recent construction of the
second author [32], which shows that there is a non-trivial homology class with zero
Gromov norm at degree srk. zM/.

We also note that for a Riemannian manifold with sectional curvatures between
�b2 � K � 0, then by Proposition 3.8 of [4], we have bp � .3C 2n

3
/b. So up to

constants depending only on dimension, we may replace bp by b everywhere.
In the case when the injectivity radius is large we obtain a better bound, in most

cases exponentially decaying in the injectivity radius, but for a restricted range of p.
Theorem 1.9. Let n � 3. There is a constant C.n/ > 0, with the following property.
Let M be a closed oriented nonpositively curved manifold of dimension n, and
for 0 � p � n � 2, let ˇ 2 Hp.M;R/ be any cohomology class. Denote by
ˇ� 2 Hn�p.M;R/ the Poincaré dual of ˇ.
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(a) If M has sectional curvatures in Œ�b2;�1� and p < .n� 1/=2b, and Inj.M/ >

1C ln.2/=..n � 1/ � 2pb/, then

kˇkH �
C.n/
p
bp

n � 1 � 2pb
e�..n�1/=2�pb/ Inj.M/

kˇ�k1:

Moreover, if b ¤ 1 and p is a non-negative integer such that p D .n � 1/=2b

and Inj.M/ > 2, then

kˇkH � C.n/.Inj.M//�1=2kˇ�k1:

(b) If M is locally symmetric of real rank r � 2 whose universal cover has
no direct factor of R, H2, SL.3;R/=SO.3/, Sp.2;R/=U.2/, G22=SO.4/, or
SL.4;R/=SO.4/, normalized to have �1 � K � 0 with Ricci curvature bound
Ric � �ı2g and p < ı=2, then

kˇkH �
C.n/p
ı � 2p

e�.ı=2�p/ Inj.M/
kˇ�k1:

(c) If M is geometric rank one satisfying �b2 � K, Ric < �ı2b2, RickC1 < 0 for
some k � bn

4
c, 0 < p � minfn�4k; ı=2g and Inj.M/ > 1Cp log.2/=.ı�2p/,

then there exists a constant C. zM/ that depends only on zM such that

kˇkH � C. zM/e�.ı=2�p/b Inj.M/
kˇ�k1:

Remarks 4. In the case when n D 3, p D 1 and M is hyperbolic, part (a) of
Theorems 1.6 and 1.9 recover the estimate in Theorem 1.4 up to uniform multiplicative
constants. However, their numerical constants are sharper on both sides.

The irreducible symmetric spaces arising in part (b) of Theorem 1.9 are Einstein
with explicit Ricci constant �ı2 D � tr .adv/2 for any self-adjoint v in the Lie-
algebra g with unit norm, with respect to the curvature normalized metric; see
e.g. [17, Section 2.14] for details.

In the same setting, as explained in [5, Section 5], an equivalent form of
Theorem 2 of [24] states that for any closed oriented irreducible 3-manifold M
and any ˇ2H 1.M IR/,

2�kˇ�k1 D inf
g
ks.g/kHgkˇkHg ;

where the inf is over all Riemannian metrics g on M with scalar curvature s.g/ and
harmonic norm k�kHg . Theorems 1.5, 1.6 and 1.9 thus provide bounds of how close
to and how far from the above infimum general negatively curved metrics on M can
become.
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In [21], Gromov showed that if Ric � �.n � 1/ then for all ˛ 2 Hp.M;R/ and
ˇ 2 Hp.M;R/, we have

k˛k1 � pŠ.n � 1/
p mass.˛/; comassˇ � pŠ.n � 1/pkˇk1;

and if the sectional curvatures of M satisfy K � �a2 with a > 0, then

mass.˛/ �
�a�p

.p � 1/Š
k˛k1; kˇk1 �

�a�p

.p � 1/Š
comass.ˇ/:

It follows immediately from the above remarks that we obtain equivalences for the
other norms in this context. Specifically, we may replace kˇ�k1 by the quantities
k y̌�k�11 , comass. y̌�/�1 or mass.ˇ�/ in Theorems 1.5, 1.6 and 1.9. However, the
constants change by a multiplicative constant in n, bp and a; see the definition of
comass in Section 2.

When passing to a finite cover, neither volume nor injectivity radius of a manifold
decreases. Thus our theorems immediately generalize the result of Bergeron, Şegün
and Venkatesh.

Corollary 1.10. For any closed oriented manifold M0 of dimension n � 3 and
integer p satisfying the hypotheses of Theorems 1.5 and 1.6, there exists constantsC1
and C2 depending only on M0 such that for any finite cover M of M0 and all
ˇ 2 Hp.M;R/ with Poincaré dual ˇ� 2 Hn�p.M;R/, we have

C1p
vol.M/

kˇ�k1 � kˇkH � C2kˇ
�
k1:

We structure our paper as follows. In Section 2, we establish an upper bound on
the comass of the harmonic form by its harmonic norm in terms of the injectivity
radius. This uses the Margulis lemma together with a Moser type inequality for a
certain elliptic equation. In Section 3, we use the straightening method to relate the
harmonic norm and the comass with the Gromov norm of the Poincaré dual. As a
result, we prove our Theorems 1.6 and 1.9. The latter theorem also employs the more
refined elliptic estimates from [15]. In Section 4, we use the duality principle to prove
Theorem 1.5. And lastly in Section 5, we give an alternative approach to Section 2,
relating the comass and the harmonic norm with other geometric quantities such as
the Sobolev constants, isoperimetric type constants and others.

Dictionary of notations. Throughout this paper, all manifolds are oriented. We den-
ote by � D ıd C dı the Hodge Laplacian. We present here a short summary of
our notations. Apart from the self-evident ones, and those already defined, these
definitions will mostly be explained in Section 2 and 5.
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k�kH harmonic norm on Hp.M;R/

k�k1 `1-norm on Hp.M;R/

k�k1 Gromov norm on Hp.M;R/
comass supremum of j�j1
j�j2 pointwise `2-norm
j�j1 pointwise `1-norm
ˇ� Poincaré dual of ˇ
˛,  homology classes
ˇ, ' cohomology classes
�, � differential forms
! an harmonic form
C0 L1-Sobolev constant
C1 isoperimetric type constant
�1 smallest positive eigenvalue for Laplacian
h Cheeger constant
Cs L2-Sobolev constant
dM diameter of M
Inj injectivity radius
Rick k-Ricci
bp , Kp curvature operator (lower) bounds
a, b sectional curvature bounds
srk splitting rank

Table 1. Dictionary of notations.

Acknowledgements. We would like to thank Zhichao Wang for pointing out that the
pointwise `2-norm might not be smooth at the points where it is zero. We especially
thank one of the anonymous referees for noting a mistake in the first version in the case
of large injectivity radius, and for suggesting the idea of using the sharp estimates of
Di Cerbo and Stern. The second author also thanks the Department of Mathematics
at Indiana University and Max Plank Institute for Mathematics for their hospitality
while this work was completed.

2. Comparing harmonic norm with comass

2.1. Pointwise `2-norm and `1-norm. For manifolds, the singular cohomology is
isomorphic to the de Rham cohomology. Denote�p.M/ the space of differential p-
forms on M . For any point x 2 M , choose linearly independent local sections
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fe1; : : : ; eng of TM over a neighborhood of x that form an orthonormal basis
of TxM , and let fe�1 ; : : : ; e�ng be the canonical dual sections on T �M over the
same neighborhood. For any � 2 �p.M/, � can be locally expressed as

� D
X

i1<i2<���<ip

ai1i2:::ip e
�
i1
^ e�i2 ^ � � � ^ e

�
ip
:

We define the pointwise `2-norm at x by

j�j2.x/ D

� X
i1<i2<���<ip

a2i1i2:::ip .x/

�1=2
:

Note that the definition is independent of the choice of local sections, provided they
are orthonormal at x, and it is easy to check that

j�j22.x/ D
� ^ ��

d vol
.x/:

Thus, if ! is a harmonic form representing ˛, then

k˛kH D

�Z
M

j!j22 d vol
�1=2

D L2-norm of j!j2:

Similarly, we define the pointwise `1-norm

j�j1.x/ D supf�x.e1; : : : ; ep/ W fe1; : : : ; epg is an orthonormal frame of TxM g;

and for � 2 �p.M/, we define

comass� D sup
x2M

�
j�j1.x/

�
:

For a class ˛ 2 Hp.M;R/, define

comass.˛/ D inffcomass.�/ W � 2 �p.M/; Œ�� D ˛g:

It is not difficult to see that the pointwise `2,`1-norm are equivalent up to a
constant.
Lemma 2.1. If � 2 �p.M/ is a differential p-form on an n-dimensional closed
Riemannian manifold M , then

j�j1.x/ � j�j2.x/ �

 
n

p

!1=2
j�j1.x/:

Thus,

comass.�/ � sup j�j2 �

 
n

p

!1=2
comass.�/:
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Proof. Suppose at x, � evaluates to its supremum on the orthonormal p-frame
fe1; : : : ; epg, we extend the set to an orthonormal n-frame fe1; : : : ; ep; : : : ; eng, and
write � (at the point x) as

�x D
X

i1<i2<���<ip

ai1i2:::ip e
�
i1
^ e�i2 ^ � � � ^ e

�
ip
:

By assumption, a12:::pDj�j1.x/ and jai1i2:::ip j�j�j1.x/ for all i1 < i2 < � � � < ip ,
so we obtain

j�j1.x/ D a12:::p �

� X
i1<i2<���<ip

a2i1i2:::ip

�1=2

D j�j2.x/ �

 
n

p

!1=2
j�j1.x/:

2.2. Relating harmonic norm with comass. Given a closed Riemannian manifold M,
we define Kp for any integer p � 0 to be

Kp D

8̂<̂
:
0 p D 0;

.n � 1/�1.lower bound of Ricci curvature/ p D 1;

lower bound of the curvature operator p � 2;

(1)

where the curvature operator is viewed as the linear extension of the curvature tensor
to all of ƒ2.TxM/ as opposed to the subset [v;w2TxMv ^ w. We recall from
Theorem 1.6 the definition of bp . In particular, if M is nonpositively curved, then
�b2p � Kp � 0.

We will use the following lemma.
Lemma 2.2 (cf. [27, Lemma 8]). Let M be a closed Riemannian manifold of dim-
ension n, and ! be a harmonic p-form. If the function f is the square pointwise
`2-norm j!j22.x/, then

�f � �f;

where � D �2p.n � p/Kp � 0.

Proof. By Bochner’s formula,

1

2
�
�
j!j22

�
D h�!;!i � jr!j2 � F.!/; (2)

where � D dı C ıd is the Hodge Laplacian and F.!/ � p.n � p/Kpj!j22 by [19,
p. 264]. Since ! is harmonic, we obtain from equation (2) that

�f � 2
�
�jr!j2 � p.n � p/Kpf

�
� �f; (3)

where � D �2p.n � p/Kp .
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Remark 5. Note that the pointwise `2-norm j!j2.x/ is not necessarily differentiable
at points where it is zero, but its square is always a smooth function.

The Margulis lemma states that for any complete simply connected n-dimensional
Riemannian manifold X , with sectional curvatures �b2 � KX � 0, there are
constants N 2 N and " > 0, depending only on b and n, such that for any discrete
group of isometries � < Isom.X/, and any x 2 X , the group �" generated by

f 2 � W d.x; x/ < "g

has a finite index nilpotent subgroup of index at most N . The largest value of " for a
given b and n is called the Margulis constant � D �.b; n/. Moreover, ifM D X=�
is a compact manifold then by [20], �� has a normal crystallographic subgroup †�
of index at most N which preserves and acts cocompactly on a totally geodesic flat
submanifoldA Š Rk � X . IfX is negatively curved then �� is infinite cyclic andA
is a geodesic.

Define the thin/thick decomposition of M D Mthin [Mthick to be that given by
the disjoint subsets,

Mthin D fx 2M W Inj.x/ < �g and Mthick D fx 2M W Inj.x/ � �g:

If M is compact and negatively curved then Mthin is diffeomorphic to a finite
disjoint union of copies of the product of an .n � 1/-disk with a closed geodesic
corresponding to A (possibly together with some twisted product components if M
is non-orientable) andN.n; b/ D 1 for b > 0. Even for non-flat closed nonpositively
curved M , we may have Mthin DM , as is the case for some graph manifolds.

The following lemma indicates a useful scale to apply to subsequent results.
Lemma 2.3. Suppose X is an n-dimensional Hadamard manifold with n > 1 and
Margulis constant � and � < Isom.X/ is a cocompact discrete group of isometries.
Set M D X=� and let " D minfInj.M/; �=2g, and B D B.x; �=2/ � X be a
metric ball of radius �=2 centered at some point x 2 X . If

D D fy 2 X W d.x; y/ � d.x; y/ for all  2 �g

is the Dirichlet fundamental domain of � , centered at x, then in each case we have
(a) If X is negatively curved then #f 2 � W D \ B ¤ ;g � �=";
(b) If X has Rick < 0, then #f 2 � W D \ B ¤ ;g � C.�="/k�1;
(c) IfX is a rank k > 1 symmetric space then #f 2 � W D\B ¤ ;g � C.�="/k;
(d) If X is any Hadamard space, then #f 2 � W D \ B ¤ ;g � C.�="/n,
where in each case C is a constant only depending on n.

Proof. We may assume " D Inj.M/ < �=2, otherwise B � D and the left-hand
side in each case is 1 while the right-hand side in each case is at least 2. Similarly,
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we may assume Inj.x/ � �=2, otherwise again B � D. Hence, B � zMthin, where
zMthin � X is preimage of Mthin under the covering map.

The elements  2 � which translate x 2 B a distance less than the diameter �
ofB lie in ��. Hence, we can estimate the number of translates ofD that intersectB
as follows:

#f 2 � j D \ B ¤ ;g D #f 2 �� j D�� \ B ¤ ;g
� N � #f� 2 †� j �D†� \ B ¤ ;g;

where D�� and D†� denote the Dirichlet fundamental domains centered at x
associated with the groups �� and †�, respectively. (Recall †� < �� of index at
most N .) In particular, it can at most be N times the number of translates of a
†�-fundamental domain that intersect B .

Moreover, recall that for any flat A � X on which †� acts cocompactly and for
any y 2 A and x 2 X , d.y; y/ � d.x; x/ holds for all  2 †� by nonpositive
curvature and since†� stabilizes the flat A. Hence, the number of points in the orbit
of x 2 B lying in B is no more than the number of points in the orbit of y 2 A
in B.y; �=2/\A. Since the translation length of each  2 � is at least 2", there can
be at most C.n/.�="/k †�-orbit points in B , where k is the rank of †� which is
the dimension of A. Here C.n/ a priori depends on the crystallographic group †�,
but this lattice density constant (for any shortest translation length ") is universally
bounded from above for each n.

In each of the cases of the lemma we observe that the dimension ofA is at most 1,
k � 1, k, and n, respectively. The constant C in the lemma is C.n/N , where N
is the index of †�. Moreover, when KX < 0, both N D 1 and C.n/ D 1 since
�� Š Z.

Lastly, we will need the following Moser type inequality which represents one of
the two directions needed for the Harnack inequality for solutions to general parabolic
operators.
Theorem 2.4 ([29, Theorem 5.1]). Let M be a complete Riemannian manifold of
dimension n. If for any x 2 M and r > 0, the Ricci curvatures restricted to the
ball B.x; 2r/ satisfy Ric � �.n � 1/K, then for any u 2 C1.B.x; r// satisfying
�u � �u for some � � 0, we have

sup
B.x;r=2/

u � C1.1C �r
2/1Cn=2

eC2
p
.n�1/Kr

vol.B.x; r//
ujB.x;r/1;

where C1 and C2 are constants only depending on the dimension n.

Proof. This is a special case of [29, Theorem 5.1] of Saloff-Coste applied to the
restricted setting of the elliptic operator L D � � � I for � � 0, instead of the full
parabolic setting. In the notation of [29], we are specifically setting m D 1, A D I,
X D 0 D Y, b D ��, ˇ D �, Q D .0; r2/ � B.x; r/, p D 1, and ı D 1=2.
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It follows that ˛ D � D 1. Finally, we have integrated out the time factor .0; r2/
in kf jQk2.

Now we are ready to relate the comass of a harmonic form with its harmonic
norm. (Recall the definition of bp from Theorem 1.6 (a), and note Remark 3.)
Theorem 2.5. Let n � 2. There exists a constant C.n/ such that if M is any n-
dimensional closed nonpositively curved Riemannian manifold and! is any harmonic
p-form, then

comass.!/ � C.n/max
�
bn=2p ;

b
.n�`/=2
p

Inj.M/`=2

�
k!k2;

where
(a) if M is negatively curved, then ` D 1,
(b) if M has Rick < 0, then ` D k � 1,
(c) if M is locally a rank k > 1 symmetric space, then ` D k, and
(d) in all other cases ` D n.

Proof. Set xf .x/ D j!j2.x/ and let f W zM ! R be the lift of xf to zM . Choose
x0 2 zM to be a point where

f .x0/ D sup
x2 zM

f .x/ D comass.!/:

We set u D f 2, a smooth function on zM .
By Lemma 2.2, we have that u is a subsolution of the operator �� � I, where �

is the Laplacian of zM and � D �2p.n � p/Kp � 0. Since RicM � �.n � 1/b2p ,
by Theorem 2.4 applied to u D f 2, and taking the square root on both sides, for any
r > 0, we have

sup
B.x0;r=2/

f � C1.1C �r
2/
1
2C

n
4
eC2
p
.n�1/bpr

vol.B.x0; r//1=2
f jB.x0;r/2;

where C1 and C2 only depend on n.
We note that the ratio of the right-hand side with k!k2 grows exponentially in r

for large r , since in that case

kf jB.x0;r/
k2

vol.B.x0; r//1=2
� k!k2:

On the other hand, at least when sup f � k xf k2, the estimate is likewise poor for
small r since then

kf jB.x0;r/
k2

vol.B.x0; r//1=2
� f .x0/:
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However, for r D �=2, where � is the Margulis constant, the term

C.r; bp; n/ D C1.1C �r
2/
1
2C

n
4
eC2
p
.n�1/bpr

vol.B.x0; r//1=2

depends only on bp and n since � does. Moreover, varying bp by scaling the metric
implies that 2r D � D C3=bp , where C3 depends only on n and p. Recalling that

�r2 D �2p.n � p/Kp
C3

4b2p
;

we obtain C.r; bp; n/ D C4bn=2p for some C4 depending only on n and p.
Lemma 2.3 states that B.x; �=2/ is contained in a union of at most C5.�="/`, for

each case of `, fundamental domains D � zM of M , where " D minfInj.M/; �=2g

and C5 depends only on n. Hence,

comass.!/ � C4bn=2p kf jB.x;�=2/
k2 � C4b

n=2
p

q
C5.�="/`kf jD

k2

D C4b
n=2
p

p
C5.�="/

`=2
k!k2:

The statement of the theorem follows from��
"

�`=2
� max

�
2`=2;

�
C3

bp Inj.M/

�`=2�
and that p � n.

3. Producing lower bounds on the Gromov norm by simplex straightening

The idea of simplex straightening was first developed by Gromov [21] and
Thurston [30] in negative curvatures as a tool for obtaining lower bounds on the
Gromov norm (also see [22]). This method has been extended by many authors in
different contexts including higher rank symmetric spaces [23, 25, 26, 31], certain
nonpositively curved manifolds [12, 13] and others [28]. Below we give a brief
overview on some of these results.

We begin with the definition of a straightening.
Definition 3.1 (cf. [25]). Let zM be the universal cover of a connected n-dimensional
manifold M . We denote by � the fundamental group of M , and by C�. zM/ the real
singular chain complex of zM . Equivalently, Ck. zM/ is the free R-module generated
by C 0.�k; zM/, the set of singular k-simplices in zM , where �k is equipped with
some fixed Riemannian metric. We say a collection of maps

stk WC
0.�k; zM/! C 0.�k; zM/

is a straightening if it satisfies the following conditions:
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(a) the maps stk are �-equivariant,
(b) the maps st� induce a chain map st�WC�. zM;R/ ! C�. zM;R/ that is �-equi-

variantly chain homotopic to the identity,
(c) the image of stn lies in C 1.�n; zM/, that is, the top dimensional straightened

simplices are C 1. (Hence, all the straightened k-simplices are C 1.)
In addition, if all the straightened k-simplices have uniformly bounded volume, we
say the straightening is k-bounded.

WhenM is negatively curved, Gromov and Thurston used the “geodesic straight-
ening” and showed it is k-bounded for k � 2. More specifically, given any k-simplex
with ordered vertices fv0; v1; : : : ; vkg, we connect vk with stk�1.fv0; v1; : : : ; vk�1g/
by geodesics with the obvious parametrization, where stk�1.fv0; v1; : : : ; vk�1g/ is
the inductively defined straightened .k�1/-simplex. This geodesic coning procedure
defines a straightening that has explicit volume control on each straightened simplex.

When M is higher rank locally symmetric, Lafont and Schmidt [25] defined
the “barycentric straightening.” Using this procedure and a previous estimate of
Connell and Farb [10, 11], they showed that apart from a few exceptional cases, all
top dimensional straightened simplices have uniformly bounded volume. This has
been extended to all k-simplices when k � srk.X/C2 in [26,31], where the splitting
rank, denoted by srk.X/, is defined to be the maximal dimension among all totally
geodesic submanifolds inX that split off a direct R-factor; see explicitly [31, Table 1].
The idea of barycentric straightening is based on the barycenter method originally
developed by Besson, Courtois, and Gallot [3].

When M is a nonpositively curved rank one manifold, the barycentric straight-
ening is also well defined. If the manifold satisfies additional curvature conditions,
then the straightening is also k-bounded when k is large enough. We summarize the
above discussion into the following proposition.
Theorem 3.2. Let M be a closed nonpositively curved manifold of dimension n.
(a) ([21]) If M has sectional curvatures K � �a2 with a > 0, then the geodesic

straightening is k-bounded for k � 2. Moreover, the volume of the straightened
simplices satisfy

vol.stk.f // �
�a�k

.k � 1/Š
8f 2 C 0.�k; zM/; k � 2:

(b) ([26, 31]) If M is higher rank locally symmetric whose universal cover zM
has no direct factor of R, H2, SL.3;R/=SO.3/, Sp.2;R/=U.2/, G22=SO.4/,
and SL.4;R/=SO.4/, then the barycentric straightening is k-bounded for
k � srk. zM/C 2.

(c) ([12]) If M is geometric rank one with RiclC1 < 0 for some l � bn
4
c, then the

barycentric straightening is k-bounded for k � 4l .
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Now we illustrate how the straightening gives a lower bound on the Gromov norm.
Theorem 3.3. Let M be a closed nonpositively curved manifold of dimension n,
and ! be the harmonic representative of ˇ 2 Hp.M;R/, where p � n � 2. Denote
ˇ� 2 Hn�p.M;R/ the Poincaré dual of ˇ.
(a) If M is negatively curved and has sectional curvatures K � �a2 with a > 0,

then
k!k22 �

�ap�n

.n � p � 1/Š
comass.!/kˇ�k1:

(b) IfM is higher rank locally symmetric whose universal cover has no direct factor
of R, H2, SL.3;R/=SO.3/, Sp.2;R/=U.2/, G22=SO.4/, and SL.4;R/=SO.4/,
and p � n � 2 � srk. zM/, then there exists a constant C. zM/ that depends only
on zM such that

k!k22 � C.
zM/ comass.!/kˇ�k1:

(c) If M is geometric rank one satisfying RickC1 < 0 for some k � bn
4
c, and

p � n � 4k, then there exists a constant C. zM/ that depends only on zM such
that

k!k22 � C.
zM/ comass.!/kˇ�k1:

Proof. (a) By definition, the square of the harmonic norm is given by

k!k22 D

Z
M

! ^ �! D

Z
ˇ�

�!;

where ˇ� 2 Hn�p.M;R/ denotes the Poincaré dual of ˇ. Suppose
P
i ai�i is a

chain that represents ˇ�, since the straightening is �-equivariant it descents to M ,
and by using (b) of Definition 3.1 we can replace each �i by geodesically straightened
simplices stn�p.�i / so thatZ

ˇ�

�! D

Z
Œ
P
i ai�i �

�! D

Z
Œ
P
i ai st.�i /�

�!:

By lifting to the universal cover zM , we haveZ
Œ
P
i ai st.�i /�

�! �
X
i

jai j
ˇ̌̌Z
st.�i /

�!
ˇ̌̌
�

X
i

jai j comass.�!/ vol.st. z�i //:

By (a) of Theorem 3.2 together with the fact comass.�!/ D comass.!/, we obtainX
i

jai j comass.�!/ vol.st. z�i // �
�ap�n

.n � p � 1/Š
comass.!/

�X
i

jai j

�
:

Finally, by taking the infimum among all chains representing ˇ�, and combining the
above inequalities, we conclude

k!k22 �
�ap�n

.n � p � 1/Š
comass.!/kˇ�k1:
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(b) and (c) follows similarly by simply replacing geodesic straightening with
barycentric straightening, and (a) of Theorem 3.2 with (b) and (c).

Combining Theorem 2.5 with Theorem 3.3 directly yields Theorem 1.6.
Next we consider the small injectivity radius case. For this, we employ the sharp

estimates of Di Cerbo and Stern ([15]). We summarize their results into the form we
will use below.
Theorem 3.4 ([15, Theorems 39, 87 and 96]). Let n � 3. There is a constant
C.n/ > 0, with the following property. Let M be a closed oriented nonpositively
curved manifold of dimension n, and for 0 � p � n � 2, let ! be any harmonic
differential p-form on M .
(a) If M has curvatures in Œ�b2;�1� with b � 1, p < .n � 1/=2b, and Inj.M/ >

1C .ln.2/=..n � 1/ � 2pb//, then for any x 2M ,Z
B1.x/

j!j22 d vol �
C.n/b

n � 1 � 2pb
e�..n�1/�2pb/ Inj.M/

k!k2
L2.M;g/

:

Moreover, if b ¤ 1 and p is a non-negative integer such that p D .n � 1/=2b

and Inj.M/ > 2, thenZ
B1.x/

j!j22 d vol � C.n/e2b.Inj.M//�1k!k2
L2.M;g/

:

(b) If n > 5, M has curvatures �1 � K � 0, �Ric � ı2g, p < ı=2 and
Inj.M/ > 1C .p log.2/=.ı � 2p//, then for any x 2M ,Z

B1.x/

j!j22 d vol �
C.n/

ı � 2p
e�.ı�2p/ Inj.M/

k!k2
L2.M;g/

:

Proof. The two cases in part (a) correspond to Theorems 87 and 96 of [15],
respectively, with the choices k D p, � D 1, � D Inj.M/, " D b � 1. (Note
that under the hypotheses e�.���/.n�1�2pb/ � 1=2.) This is a similar statement to
Theorem 23 of [16].

For part (b) we employ Theorem 39 of [15] with � D 0, � D 1, � D Inj.M/, and
see the last line of the proof of Theorem 39 regarding why we can choose their r0 to
be1 in the � D 0 case. We also renormalize for arbitrary curvature bounds, simplify
the expressions with dependent constants by adding in the appropriate multiple of
the integral over B1.x/ to both sides of the inequalities.

Before we prove Theorem 1.9 we will need the following lemma.
Lemma 3.5. For any of the symmetric spaces zM in case (b) of Theorem 1.9, scaled
to have sectional curvatures �1 � K � 0, if the Ricci curvature is bounded by
�Ric � ı2g, then jı

2

k
� n � 2 � srk. zM/:
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Proof. According to the definition of zM , there exists a unit tangent vectorv 2 T 1o zM at
some point o 2 zM and a totally geodesic submanifold Y �R � zM where v is tangent
to the R-direction such that dim.Y �R/ D srk. zM/. We compute the Ricci curvature
in direction v with respect to a specific orthonormal frame fe1; : : : ; ek; ekC1; : : : ; eng
such that e1 D v, e2; : : : ; ek 2 ToY and ekC1; : : : ; en 2 .ToY /?, wherek D srk. zM/:

Ric.v/ D
nX
iD1

hR.v; ei /ei ; vi D

kX
iD1

hR.v; ei /ei ; vi C

nX
iDkC1

hR.v; ei /ei ; vi

� 0C .n � k/ � .�1/

D �.n � srk. zM//;

where the inequality uses the sectional curvature bound together with the fact that
Y � R is a totally geodesic Riemannian product. Thus, we have ı2 � �Ric.v/ �
n � srk. zM/, and it follows that

ı �

q
n � srk. zM/: (1)

Note that the following inequality holdsq
n � srk. zM/

2
� n � 2 � srk. zM/;

provided srk. zM/ � n� 3, hence the lemma follows in this case. If srk. zM/ D n� 2,
then inequality (1) implies that ı �

p
2, so the inequality also holds. In the remaining

cases, srk. zM/ D n would imply that zM has an R-factor, and srk. zM/ D n� 1 would
imply zM has an H2-factor, which are excluded by the assumption.

Proof of Theorem 1.9. Set f .x/ D j!j2.x/ and set u D f 2. Choose x0 2 zM to be
a point where f .x0/ D supx2 zM f .x/ D comass.!/.

By Lemma 2.2 we have that u is a subsolution of the operator � � � I, where �
is the Laplacian of zM . Since in all cases RicM � �.n � 1/b2p , we may first apply
Theorem 2.4 to u D f 2 with r D 1 to obtain

comass.!/2 D sup
x2M

j!j22.x/ � C.bp; n; p/

Z
B1.x0/

j!j22.x/ d vol :

For case (a) we rescale the metric to have an upper curvature bound of �1 instead
of �a2. Under this curvature assumption and the stated Ricci curvature bounds, we
may apply Theorem 3.4 in each case to obtain the bound on comass.!/ analogous to
Theorem 2.5 in each case.

For case (b) we apply Lemma 3.5 to obtain the stated bounds on p also imply
p � n � 2 � srk. zM/. We also observe that in case (b) all of the symmetric spaces
have dimension at least six. Finally, applying Theorem 3.3 completes the result.
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4. Producing upper bounds on the Gromov norm

Consider the set of all singular p-simplices †p D f� W �p ! M g, a cochain
c 2 Cp.M;R/ has a natural `1-norm,

kck1 WD sup
�2†p

jc.�/j:

Thus for cohomology class ˛ 2 Hp.M;R/, the `1-norm is defined to be

k˛k1 WD inf
˚
kck1 W c 2 C

p.M;R/; ıc D 0; Œc� D ˛
	
:

Note that by definition k˛k1 can take infinite values, and we say ˛ is bounded
if k˛k1 is finite, or equivalently, ˛ has a bounded representative.

In the theory of bounded cohomology, the `1-norm on the cohomology is
considered dual to the `1-norm on the homology. In particular, surjectivity of the
comparison map on top dimension is equivalent to the non-vanishing of the simplicial
volume. More generally, we have duality principle
Proposition 4.1 ([21], [1, Proposition F.2.2]). For any ˛ 2 Hk.M;R/, the Gromov
norm satisfies

k˛k1 D
1

inffk'k1 j .'; ˛/ D 1; ' 2 H k.M;R/g
:

Therefore, in order to produce an upper bound on the Gromov norm, it is
equivalent to obtain a lower bound on the `1-norm of certain cohomology classes.
It is shown that whenever the manifold has Ricci curvatures bounded from below, the
`1-norm always bounds the comass.
Lemma 4.2 ([21, Corollary, p. 244]). Let M be a complete Riemannian manifold of
dimension n with Ric � �.n � 1/, then for any ' 2 Hp.M;R/, we have

comass .'/ � pŠ.n � 1/pk'k1:

Remark 6. In [21], Gromov used a different normalization, namely Ric��1=.n � 1/,
but since comass.'/ scales by .n� 1/p when the metric is scaled down by n� 1, and
k'k1 stays the same, the resulting inequality has an additional factor of .n � 1/p .
In a recent preprint of Campagnolo and the second author [7], the above inequality
is further sharpened by an additional factor of 1=pp=2, hence the upper bound of
Theorem 1.5 can be improved accordingly by a factor of 1=.n � p/.n�p/=2.

Thus combining the above two results, we prove Theorem 1.5.
Theorem 4.3. Let M be a closed manifold of dimension n with Ric � �.n � 1/,
and ! be the harmonic representative of ˇ 2 Hp.M;R/, then the Gromov norm of
the Poincaré dual of ˇ has an upper bound

kˇ�k1 � .n � p/Š.n � 1/
n�p
k!k2

p
vol.M/:



Vol. 97 (2022) Homological norms on nonpositively curved manifolds 819

Proof. Let ' 2 Hn�p.M;R/ be any class such that .'; ˇ�/ D 1 and � be any
.n � p/-form representing ', then we have

1 D .ˇ�; '/ D

Z
ˇ�

' D

Z
M

! ^ � � comass .�/
Z
M

j!j1.x/ d vol.x/:

By taking the infimum of comass on all � representing ', we get

1 � comass .'/
Z
M

j!j1.x/ d vol.x/:

Apply Lemma 2.1 and the Cauchy–Schwarz inequality, to further obtain

1 � comass .'/
Z
M

j!j2.x/ d vol.x/ � comass .'/k!k2
p

vol.M/:

Applying Lemma 4.2, we have

1 � .n � p/Š.n � 1/n�pk'k1k!k2
p

vol.M/:

Finally, we take the infimum of k'k1 over all ' satisfying .'; ˇ�/ D 1, and apply
Proposition 4.1 to get

kˇ�k1 � .n � p/Š.n � 1/
n�p
k!k2

p
vol.M/:

5. Alternative approach

In Section 2, we compared the comass of a harmonic p-form with its L2-norm in
terms of the injectivity radius of the manifold. We can also relate them by other
geometric invariants such as the Sobolev constant. Such relation follows from a
general theorem of Li.

5.1. Li’s theorem. LetKp be the constant defined in equation (1). In our case,Kp
is always nonpositive but may be less than the lower Ricci bound. We let V be the
volume of M and let CS denote the Sobolev constant which will be defined in the
next subsection. We will also relate it to other geometric quantities such as diameter,
Cheeger’s isoperimetric constant, and the bottom of the spectrum of the Laplacian.
Theorem 5.1 ([27, Theorem 7]). There exists a constant C.n/ depending only on n
such that if � is a �-eigenform for the Hodge Laplacian on a closed manifold M of
dimension n � 3 and � ¤ p.n � p/Kp , then

C.n/

�
� � p.n � p/Kp

CS

�n=2
exp

�
C.n/CS

V 2=n.� � p.n � p/Kp/

�
k�k22 �

�
supj�j2

�2
:

Moreover, if � D p.n� p/Kp , then � D 0 D Kp and j�j2 is pointwise constant. In
particular, k�k22 D V.supj�j2/2.
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For our purpose, we only need to apply Li’s theorem in the case of harmonic
p-forms, that is, � D 0.
Corollary 5.2. If M is a closed manifold of dimension n � 3, then there exists a
constant C.n/ depending only on n such that for any harmonic p-form ! with 1 �
p � n � 1,

comass.!/ �
p
Qk!k2;

where Q is given by

Q D C.n/

�
�p.n � p/Kp

CS

�n=2
exp

�
C.n/CS

�p.n � p/KpV 2=n

�
if Kp ¤ 0, or

Q D V if Kp D 0:

Proof. Combine Lemma 2.1 with Theorem 5.1.

Remark 7. In Theorem 7 of [27], the appendix shows that C.n/ D D.n/ˇ=.ˇ�1/

where ˇ D n=.n � 2/ and D.n/ is the constant from Lemma 2 of that paper. That
constant is D.n/ D 2˛ , where ˛ D 0 if n D 3 and ˛ D .n � 4/=.n � 2/ for n � 4.
Therefore, in both the above Theorem 5.1 and Corollary 5.2, C.n/ � 1 if n D 3 and
otherwise C.n/ � 2.n2�4n/=2.

5.2. Sobolev constant, Cheeger’s constant and bottom of the spectrum of the
Laplacian. Let C0 be the classicalL1-Sobolev constant for the Sobolev spaceW 1;1

of functions on an n-dimensional closed manifoldM with weak L1 first derivatives,
that is,

C0 D inf
f 2W 1;1

krf kn1
infa2Rkf � ak

n
n=.n�1/

:

This is related to a scale invariant isoperimetric type constant C1:

C1 D inf
N�M

.voln�1.N //n

minfvolM1; volM2g
n�1

;

where the infimum is over all codimension one closed submanifolds N �M whose
complement in M consists of two components M1 and M2. The relation is

C1 � C0 � 2C1: (1)

Another well-known isoperimetric constant is the Cheeger’s constant h, it is defined
in a similar way as

h D inf
N�M

voln�1.N /
minfvolM1; volM2g

:

Hence, it follows that
C1 �

hn vol.M/

2
: (2)
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Moreover, we define CS by

CS D

�
2.n � 1/

n � 2

�2=n
C
2=n
0 :

Lemma 1 of [27] shows

CS � inf
f 2W 1;2

krf k22
kf k2

2n=.n�2/

;

where the right-hand side is the L2 Sobolev constant.
If we denote �1 the smallest positive eigenvalue of the Laplacian onM , then it is

bounded in terms of the Cheeger’s constant h.
Theorem 5.3 ([6, 8]). We have

�1 �
h2

4
(Cheeger’s inequality):

If M n has Ricci lower bound �.n � 1/, then

�1 � 2.n � 1/hC 10h
2 (Buser’s inequality):

We attempt to give an upper bound on the constant Q in Corollary 5.2, in terms
of these geometric quantities. First we observe that the exponential part of Q is
bounded for non-flat nonpositively curved manifolds.
Lemma 5.4. If M is a closed nonpositively curved manifold which is not flat, C.n/
is a constant that depends only on n, and 1 � p � n � 1, then

exp
�

C.n/CS

�p.n � p/KpV 2=n

�
� C.n;Kp/;

where C.n;Kp/ is a constant that only depends on n and Kp .

Proof. Since C.n/ and p only depend on n, and Kp < 0 under the hypotheses,
it suffices to bound CS=V 2=n from above. In what follows, let constn represent a
mutable constant depending only on n. According to the definition CS and inequal-
ity (1),

CS=V
2=n
� constn

�C0
V

�2=n
� constn

�C1
V

�2=n
:

By inequality (2) and Cheeger’s inequality (5.3),�C1
V

�2=n
� constn h2 � constn �1:

By Cheng’s comparison theorem [9, Corollary 2.3],

�1 �
.n � 1/2K

4
C

constn
d2M

;

where �.n � 1/K is the Ricci lower bound of M (hence, K � �Kp).
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Consider a closed Dirichlet fundamental domain D � zM for �1.M/ centered at
some x 2 zM as defined in Lemma 2.3. SinceM is closed and not flat, �1.M/ is not
infra-nilpotent by [20]. Hence, in the generating setS D f 2 �1.M/ W D\D ¤ ;g

there is at least one element  2 S with translation length greater than the Margulis
constant�. Therefore, the diameter ofM satisfies dM � �, and� only depends on n
and bp D

p
�Kp . Therefore, we obtain an upper bound on �1 depending only on n

and Kp . Hence, the same holds for the upper bound of CS=V 2=n, which completes
the proof.

Now contracting all constants in Corollary 5.2 that depend only on n andKp , we
obtain the following corollary.

Corollary 5.5. If M is a closed nonpositively curved manifold of dimension n � 3
which is not flat, then there exists a constant C.n;Kp/ depending only on n and Kp
such that for any harmonic p-form ! representing ˇ 2 Hp.M;R/ with 1 � p �
n � 1, we have

comass.!/ �
C.n;Kp/

C
n=4
S

k!k2:

Thus, in addition, if M and p satisfy any of the following conditions:

(a) If M is negatively curved, and p � n � 2, or

(b) If M is rank r � 2 locally symmetric whose universal cover has no direct factor
of H2, SL.3;R/=SO.3/, Sp.2;R/=U.2/,G22=SO.4/ and SL.4;R/=SO.4/, and
p � n � 2 � srk. zM/, or

(c) If M is geometric rank one satisfying RickC1 < 0 for some k � bn
4
c, and p �

n � 4k,

then there exists a constant C. zM/ that depends only on zM such that

k!k2 �
C. zM/

C
n=4
S

kˇ�k1:

Proof. Combine Lemma 5.4, Corollary 5.2 and Theorem 3.3.

Remark 8. Note that since CS ' C
2=n
0 ' C

2=n
1 up to universal constants, the

inequality in the above corollary can be replaced by

comass.!/ �
C.n;Kp/
p
C 0

k!k2 or comass.!/ �
C.n;Kp/
p
C 1

k!k2;

and also

k!k2 �
C. zM/
p
C 0
kˇ�k1 or k!k2 �

C. zM/
p
C 1
kˇ�k1:
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We end the section by a result of Croke which provides a lower bound on C1 (so
equivalently on C0 and CS ) in terms of the lower bound of Ricci curvature .n�1/K,
upper bound of diameter dM , lower bound of vol.M/ and the dimension n.
Theorem 5.6 ([14, Theorem 13]). For any closed Riemannian manifold with Ricci
curvature bounded below by .n� 1/K, there is a constant C.n/ depending only on n
such that

C1 � C.n/

�
vol.M/R dM

0
.
p
�1=K sinh

p
�Kr/n�1 dr

�nC1
;

where we use the convention that .
p
�1=K sinh

p
�Kr/ is interpreted as r if K D 0

and as
p
1=K sin.Kr/ if K > 0.

This provides an alternative way of relating the Gromov norm with the harmonic
norm in terms of n, Kp , a lower bound on volume and an upper bound on diameter.
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