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Ricci flow of W 2:2.metrics in four dimensions

Tobias Lamm and Miles Simon

Abstract. In this paper we construct solutions to Ricci—-DeTurck flow in four dimensions on
closed manifolds which are instantaneously smooth but whose initial values g are (possibly)
non-smooth Riemannian metrics whose components in smooth coordinates belong to W22
and satisfy éh < g < ah for some 1 < a < oo and some smooth Riemannian metric 7 on M.
A Ricci flow related solution is constructed whose initial value is isometric in a weak sense to the
initial value of the Ricci—DeTurck solution. Results for a related non-compact setting are also
presented. Various L7 -estimates for Ricci flow, which we require for some of the main results,
are also derived. As an application we present a possible definition of scalar curvature > k
for W2-2-metrics g on closed four manifolds which are bounded in the L>°-sense by %h <
g < ah forsome 1 < a < oo and some smooth Riemannian metric 2z on M.

1. Introduction

In this paper we construct solutions to Ricci flow and Ricci—-DeTurck flow, which are
instantaneously smooth but whose initial values are (possibly) non-smooth Riemann-
ian metrics whose components, in smooth coordinates, belong to certain Sobolev
spaces.

For a given smooth Riemannian manifold (M, &), and an interval I C R, a smooth
family g(¢);es of Riemannian metrics on M is a solution to Ricci—DeTurck /i-flow if

d
5,80 = (", "Vypgii) — g giphPI R kg1 (h) — g g;p P Riggr (h)

1
+ _gabgpq(hvigpahngqb + 2hvagjpthgib
2
— 2"V " Vogiq — 2"V 8pa" Vb gia — 2"Vigpa" Vb giq), (1.1)

in the smooth sense on M x I, where here, and in the rest of the paper, hy refers
to the covariant derivative with respect to 4. A smooth family £(¢);c; of Riemannian
metrics on M is a solution to Ricci flow if

14

o = —2Re(l) (1.2)
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in the smooth sense on M x I. The Ricci flow was first introduced and studied by
R. Hamilton in [15]. Shortly after that, the Ricci—-DeTurck flow was introduced and
studied by D. DeTurck in [11]. Ricci-DeTurck flow and Ricci flow in the smooth set-
ting are closely related: given a Ricci—-DeTurck flow g(¢);e; on a compact manifold
and an S € [ there is a smooth family of diffeomorphisms ®(t): M — M, t € I
with ®(S) = Id such that £(z) = (®(¢))*g(¢) is a smooth solution to Ricci flow. The
diffeomorphisms ®(z) solve the following ordinary differential equation:

%q)a(x’t) = V*(®(x,t),t) forall (x,t) e M" x I, (13)

®d(x,S) = x,

where V¥(y,1) := —gﬂy(gF‘/’éy —T%,) (v, 1).

There are a number of papers on solutions to Ricci—-DeTurck flow and Ricci
flow starting from non-smooth Riemannian metric/distance spaces which immedi-
ately become smooth. Given a non-smooth starting space (M, g¢) or (M, dp), it is
possible in some settings, to find smooth solutions g(#);e(o,7) to (1.1), respectively
£(t)teo,1) to (1.2) defined for some T > 0, where the initial values are achieved in
some weak sense. Here is a non-exhaustive list of papers, where examples of this type
are constructed: [3,8,9,16,17,20,23,27,30-32, 35, 36]. The initial non-smooth data
considered in these papers has certain structure, which when assumed in the smooth
setting, leads to a priori estimates for solutions, which are then used to construct solu-
tions in the class being considered. In some papers this initial structure comes from
geometric conditions, in others from regularity conditions on the initial function space
of the metric components in smooth coordinates. In the second instance, this is usu-
ally in the setting, that one has some C 0_control of the metric. That is, the metric is
close in the L°°-sense to the standard euclidean metric in smooth coordinates:

(1—2)8 < g(0) < (1 + &)8

for a sufficiently small ¢. In the current paper, the structure of the initial metric g(0)
comes from the assumption, in the four-dimensional compact setting, that the com-
ponents in coordinates are in W22 and uniformly bounded from above and below:

1
28 <g0) <cé

for some constant ¢. Closeness of the metric to § is not assumed. With this initial
structure, we show that a solution to Ricci—-DeTurck flow exists. In the non-compact
setting, we further require a uniform local smallness bound on the W2-2-norm and a
global uniform bound from above and below in the L°°-sense, both with respect to a
geometrically controlled background metric. We also investigate the question of how
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the initial values are achieved, in the metric and distance sense, as time goes back to
zero. See Theorem 2.2 in the next section for details.

Using this solution to Ricci—-DeTurck flow, we show without much trouble, that
there is a Ricci flow related solution. The Ricci flow solution is related to the Ricci—
DeTurck solution through a smooth family of isometries (®(7));e(o,7) defined for a
positive time interval, and having the property that ®(S) = Id for some S > 0. The
convergence as time goes back to zero in the distance and metric sense is investig-
ated for this Ricci Flow solution. We require some new estimates on convergence
in the L?-sense for solutions to Ricci flow, in order to show that there is indeed a
limiting weak Riemannian metric, as time approaches to zero. We also show that the
initial metric value of the Ricci flow that is achieved is isometric, in a weak sense, to
the initial value g(0) of the Ricci—DeTurck flow solution. See Theorem 2.3 in the next
section for details.

Section 12 contains an application of the results obtained in the sections preceding
it. We present a possible definition of ‘the scalar curvature of g is bounded from below
by k € R’ for a metric

gewrrnL®

with %h < g < ah for some 1 < a < oo and some smooth Riemannian metric 4 on a
closed manifold M.
We conclude this introduction by noting that there are metrics

g0 € W2"2(M) N L®(M)

on compact n-dimensional manifolds, which satisfy alh <go<ah for some 0 <a < oo
and some smooth fixed Riemannian metric 2 on M, but are not continuous. In partic-

ular,
go € W»*(M) N L™(M)

and %h < go < ah, but gy is not continuous when n = 4. In the example we present
below, there is a point p € M, such that the values %h and ah are achieved by gg
infinitely often for every neighbourhood of p.

Let (M, h) be a smooth compact n-dimensional manifold, U € M open, and
¢:U — ¢(U) = B1(0) be coordinates and = @«h, the push forward of & with ¢
toB;(0). Fore,r > 0,c € R, let

f = fore:B1(0) > R

be the W2"/2(B (0))-function defined by

fx) = r(é(l + e+ sin(c + log(log<|72|)))))
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for x # 0 and f(0) = 0. Then f is bounded from above and from below by

oefer (2]

and the values r and r((2 4 ¢€)/¢) are both achieved infinitely many times on any
neighbourhood of 0 € B;(0), and consequently we see that f is also not continuous.
Now we set

00 = (1= n(x)h(x) + 1(0)g ).
where 7 is a smooth cut-off function 7 € [0, 1] with support in B, /,(0), where
gij ()C) = fei,ri ,Ci (x)Sl] s

where &;,ri,c; € R,i,j €{l,...,n}, &,r; > 0. Then the metric g defined by g =
¢*(@)onU,and g = hon M \ U is a metric on M with g € W2*/2(M) N L®(M),
%h < g < ah forsome 1 < a < oo, and g is not continuous.

2. Main results

The assumptions we make on the smooth background metric are as follows

(M, h) is a smooth, connected, complete manifold without boundary such that
v; := supy, *[*VIRm(h)| < oo forall i € Ny, and
inj(M, h) > iy > 0. 2.1)

Such manifolds always satisfy a local uniform Sobolev inequality: there exist con-
stants 0 < ro(n, h), Cs(n) < oo such that

(n—2)/2
([, rme2an)” " < csm [ p9spa
M M

1/2
(/ f"dh) < Cs(n) / " £17/2 di
M M

for all smooth f whose support is contained in a ball of radius r¢(7, #) > 0. For the
readers’ convenience, we have included a proof in Section B; see Lemma B.1 and
Remark B.2.

Ultimately we would like to construct solutions to (1.1) on four manifolds starting

and

with initial data go which are uniformly bounded from above and below by a multiple
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of h, g is locally in W22, and for which the homogeneous W?22-energy of gq is
uniformly bounded,

EGgo)i= [ (1"Vsol? + "V2gol?) dh < oc.
M
That is, we assume that there exists a > 0 such that
1
—h <go<ah, E(go):= / (1"Vgol? + 1"V2go?) dh < c0.  (2.2)
M

In this setting we show the following theorem.

Theorem 2.1. Let 1 <a < oo and (M*, h) be a four-dimensional smooth Riemannian
manifold satisfying (2.1), and go be a W22 N L*° Riemannian metric, not necessarily
smooth, which satisfies

1
Eh <go <ah (a)
and

[ (190l + 1192g0P) b < .
M

Then for any 0 < e < 1, there exist constants 0 < T = T (go,h,a,e), r =r(go,h,a,¢),
cj =cj(h,a,e) <ooforall j € Ng and a smooth solution (g(t))seo,r] to (1.1), where
g(t) satisfies

1
mh =< g(t) f 40061h, (at)
/B (VECOP + Vg 0P dn < (b:(r))
. Ci
"Vig(-,1)]* < ﬁ (cr)

forall j € No, x € M, forallt € (0,T], where cj(h,a,e) — 0as e\ 0and

/B o (g0 = gOF +1"V(g0 = gO)F +1"V2(g0 = gO)F) dh >0 ast 0

(ds)
sup  |"Vig(-.0)]?t) =0 fort N\ 0, (er)

X€B1(x0)

and for all 2 > R > 1, there exists a V(a, R) > 0 such that
| (VP + Vg0 b
B (x0)

< /B (V8O + Vg0 dh + Via. Ry )
R\X0
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for all xo € M and for all t < T. Furthermore, there exists g9 = €o(go, h, a) such
that if ¢ < g, then the solution is unique in the class of solutions which satisfy (a;),
(bs (7)), (cy), (dy) for the r = r(go, h,a, &) > 0 defined above.

Proof. See Theorem 6.5, the proof is given there. |

Assume (2.1) and (2.2) and that M is four-dimensional. Then forany 1 > ¢ > 0,
we can find an r > 0 such that

1

diswsah sw [ (gl VP ah<e @)
a xeM J By (x)

see Theorem B.3 in Section B for a proof. After scaling 4 and g once, and still calling

the resulting metrics go and 4, we may assume

(M, h) is a smooth, connected, complete manifold without boundary
such that

supy, " VIRm(h)| < oo foralli € Ny,
Yoo supy " VIRm(R)| < So(a),
inj(M, h) > 100, 2.4)

for a small positive constant §g(a) of our choice, in place of the assumptions (2.1),
and the scale invariant condition

1
—h < go <ah
a

and

£
sup / ("Vgol* + 1"V2gol?) dh < &.
xeM JBi(x) 2

is still correct, and hence, using Holder’s inequality, we have

di=gsah sw [ (1VgP + Vi0P)dh < cvE 29
a x€M JBi(x)

Note further, if we assume (2.1), then (2.3) is a stronger assumption than (2.2):
(2.1) and (2.2) imply, for any € > 0, there exists an r > 0 such that (2.3) holds, but
for any given & > 0, there are go and h and r > 0 for which (2.1) and (2.3) hold,
but E(go) := oo.

The main estimates required for the construction of solutions to (1.1) in the W22
setting in this paper are proved in this setting, that is under the assumptions (2.5) (with
c(n)+/¢ replaced by &) and (2.4), and we also prove an existence result in this setting.
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Theorem 2.2. For any 1 < a < oo, there exists a constant £1 = &1(a) > 0 with the
following properties. Let (M *, h) be a smooth four-dimensional Riemannian manifold
which satisfies (2.4). Let go be a Wli;z N L°°-Riemannian metric, not necessarily
smooth, which satisfies

1
Jh=go=ah (a)

/ (I"Vgol* +1"V2go*)dh < & forallx e M, (b)
B>(x)

where € < g1. Then there exist a constant T = T (a, &) > 0 and a smooth solution
(g(1))reo,] to (1.1) such that

1
mh < g(t) < 400ah, (ar)
[ VeenP + Vgt b < 2e (by)
Bi(x)
1 j ha ’
g < 480 (e
forallx e M, t € [0,T], where cj(h,e,a) — 0as e — 0, and
/l; ( )(|go — g +"V(go — g@)* + |"V*(go — g(1))|*) dh — 0
1(x
ast \(Oforallx € M. (ds)

The solution is unique in the class of solutions which satisfy (a;), (by), (c¢), and (d;).
The solution also satisfies the local estimates

sup  |"Vig(-.0)]?t) =0 fort — 0, (er)

X€B1(x0)

and for all 1 < R < 2, there exists a V(a, R) > 0, such that
[ (VetnoP + Vg b
B1(x0)
<[ (VO + VO dh V@ R ()
BR(x0)

forallxo e M,2> R > 1,and forallt <T.
Proof. The theorem follows from Theorem 6.3 and Remark 6.4. |

With a solution of this type at hand, we can without much trouble now construct
a solution to the Ricci flow

(L) ieo,r) = (1)) " g(1))reo,1)
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with £(S) = g(S) and ®(S) = Id for any given fixed S > 0. After some work it
becomes clear, that the Ricci Flow solution has initial starting data corresponding
in some weak isometric sense to the starting data go of the Ricci—-DeTurck flow
solution. More specifically, we show for all p € [1, c0), that there is a weak limit

o = lim,\ £(¢) in the LY -sense and that £ is isometric to go with the help of

a W12 isometry, and that there is a uniform limit do := lim,~o d; for d; := d(g(1)),
where dy can be explicitly calculated from the starting data g¢. These facts, and more
details, are contained in the following theorem.

Theorem 2.3. Let 1 < a < oo, M = M* be a four-dimensional manifold, and g
and h satisfy the assumptions (2.4), (a) and (b) with ¢ < g1, where g1 = g1(a) > 0 is
the constant coming from Theorem 2.2, and let (M, g(t));e(0,T] be the smooth solution
to (1.1) constructed in Theorem 2.2. Then

(i) there exists a constant c(a) and a smooth solution ®: M x (0, T] — M to (1.3)
with ®(T/2) = 1d such that

D(t) := O, t):M > M
is a diffeomorphism, and
dp(@(1)(x), D(s)(x)) = c(a) V]t — ]

forall x € M. The metrics £(t) := (®(t))*g(¢), t € (0, T] solve the Ricci flow equa-
tion. Furthermore, there are well-defined limit maps

®0):M —> M, &0):= th\lg ®d(r), WO):M —> M, WO := tl{l}) W(t),

where W (t) is the inverse of ®(t) and these limits are obtained uniformly on compact
subsets, and ®(0), W(0) are homeomorphisms inverse to one another.

(ii) For the Ricci flow solution £(t) from (1), there is a value
Lo() = lim £(-, ¢
() Hm (.1
well defined up to a set of measure zero, where the limit exists in the Lf;c-sense, for

any p € [1, 00), such that £y is positive definite and in Wlécz and for any xo € M
and0 < s <t < T, we have

1) = tolfy at) < elgoh p.xos.

B (x0)

[l = @)y dew < c(goh poxw)lsl ',
1xXo

[ IVl e < clgo.h pxon?.
B1(x0)
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[ Rm@Pende.n
B1(x0)

t
+/ / |VRm(€)|2(x,s) dl(x,s)ds < c(go,h, p,xo),
0 JBy(s)(x0,1)

sup |[V/Rc(£(1))]?t’T2 =0 ast \ Oforall j € Ny
B (x0)

for a universal constant 6 > 0, where V refers to the gradient with respect to £(t),
c(go, h, p, xo) is a constant depending on go, h, p, xo, but not on t ors.

(iii) The limit maps
P0):M - M, &0):=Ilim P(¢), WO):M —-> M, W(QO) :=lim W()
N\0 \0
from (i) are also obtained in the W];C’p -sense for p € [1, 00). Furthermore, for any
smooth coordinates ¢:U — R" and ¥: V — R" with W(0)(V) CC U, the functions
(Eo)ijOW(O)Z V>R

arein LY forall p € [1,00) and (g0)ap: V — R and (£y)ij: U — R are related by
the identity

(g0)ap = Da(W(0))' Dg(W(0)) ((£o)ijoW(0)),

which holds almost everywhere. In particular, £y is isometric to go almost everywhere
through the map W(0), which is in wl-p forall p € [1, 00).

loc
(iv) We define
di(x.y) =d(@®)(x.y). di(p.q) = dE")(p.q)
forallx,y,p,q € M andt € (0, T). There are well-defined limit metrics
do, 670: MxM — IR{J, do(x,y) = th\% di(x,),
do:=M xM —>R$, do(p.q) = limdi(p.q).
and they satisfy

do(x,y) = do(®(0)(x), D(0)(»)).

That is, (M, 670) and (M, dy) are isometric to one another through the map ©(0).
The metric dy satisfies

do(x,y) :=liminf inf L ,
o(x,y) mir go(¥)

v€Ce x.y

where Cy x y is the space of e-approximative Lebesgue curves between x and y with
respect to go: This space is defined/examined in Definition 8.2.
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Proof. See Theorem 8.3, the proof is given there. |

Remark 2.4. An attempt to construct a Ricci flow solution £(¢) with
®(0)=1d and £(0) = ®(0)*g(0) = g(0),

using similar methods to those we used to construct the Ricci flow solution in The-
orem 2.3, could lead to a non-smooth Ricci flow solution, which does not immediately
become smooth (we say the solution is in a non-smooth gauge), as we now explain.
The solutions g(¢) constructed in Theorem 2.1 are limits of solutions g; (¢) with initial
data g;(0), where g; (0) — g(0) in ngc’z. For M = T*, the four-dimensional torus,
whose circles have radius 10, with & the standard flat metric on T#. Let g;(0) =
@(i)*h, where @(i): T* — T* are diffeomorphisms, equal to the identity outside a
ball B; (0) of radius one (which we identify with the standard euclidean ball of radius
one), and

@(i)|B,(0): B1(0) — ¢(i)(B1(0)) = B1(0)

are uniformly bi-Lipschitz diffeomorphisms,

=71 < )0 — ()] < Blx — 3]

for all x, y € B;(0), with ¢; (0) — V¥ as i — oo in the W3-2-sense. Assume that v is
not smooth. For example, we can take

@) (x) = x(1 + nofi(x))
with

fix) = (2 + sin(log(log(ﬁ))))’

o a small positive constant, and 7 a smooth cut-off function with n = 1 on B;,,(0)
and 7 = 0 on (B3,4(0))¢. Notice that the ¢(i) are uniformly Bi-Lipschitz, as we now
explain. Assume that |x| < |y|. Then
() (xX) — (@) )] = [(x = y) + xn0 fi(x) — ynafi(y)|
= [(x —y) + xo((x) fi(x) = n(¥) fi(¥)) + (x = y)no fi(y)]

> 2 x =yl = 20 xlln(x) — ()] = 201~ | ~olxll i) ~ fi0)]

v

9
1ol — V1= 20lx[[Dun(e)llx — y| = 20]x — y| — o|x[| Dy £i (D) |x — ¥

A%

1
S = yl=olx[[Dy fi(B)lx — yl.
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where b and ¢ are points in the line between x and y and v is a length one vector
pointing in the direction of the line between x and y. A calculation shows us that
! 5 (b))
llog(1//1b12 + 1/1)| (IbI> +1/0)
1
<|cos(...)|—,

]

|Dy fi(D)] = [cos(...)|

which, combined with the fact that |x| < |b|, gives us
o|x[|Dy fi(®)|lx — y| = olx =y,
and hence |
@) x) =] = 1x = yl.

A similar calculation shows us that
lp(D)(x) — @) (¥)| < 4x — y|.

The definition of the ¢(i)’s guarantees that ¢ (i ): B, (0) — R” are smooth bi-Lipschitz
diffeomorphisms whose image lies in B;(0). Furthermore, ¢(i)(¢x) is a continuous
line for ¢ between 0 and 1 lying on the standard line x between 0 and x. Hence,

{p@)(ex) | £ €[0,1]} = {zx | £ € [0, 1]}

This shows that ¢(i): B;(0) — B;(0) is also onto.
Then ¢(i) —  in the W32-sense, with

V(x) =x(1+nof(x), [f(x):= (2 + Sin(1°g<1°g(_)>))

2
||
for x # 0, £(0) := 0, g;(0) — g(0) in the W?-2-sense, but g(0) is not smooth, and
there exists an 1 < a = a(B, K) < oo such that %h < gi(0) <ah. Hence, Theorem 2.1
is applicable and a limit solution

g(t)teo,1) = l_l_i)rg)gi(t)te(o,T)

exists with g(t) — g(0) in the W22-sense as t \, 0. However, the Ricci flow of
2;(0) = g;(0) is £; (t) = £;(0), as the metric g; (0) is flat. Hence, ¢; — £ in the W 2-2-
sense, where £(¢t) = £(0) = g(0) for all ¢ € (0, T). By construction g(0) is non-
smooth. We avoid these non-smooth gauges by choosing ®(S) = Id for some S > 0
in Theorem 2.3.
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In order to prove the relationships of Theorem 2.3, in particular the existence of
the limit £y, we require some new estimates which hold for solutions to Ricci flow of
the type constructed here, and for a more general class. The theorems and lemmata
that we use to prove these estimates are contained in Section 7.

The existence of the weak metric £ is achieved with the following theorem.

Theorem 2.5. Forall p € [2,00) and n € N, there exists an ag(n, p) > 0 such that
the following holds. Let Q2 be a smooth n-dimensional manifold and (2", £())e(0,1]
be a smooth solution to Ricci flow satisfying

/ [Re(£(@)|dL(t) <&, [Re(t(n)] < ; on
Q

forallt € (0,T), where ¢ < agy. Then there exists a unique, positive definite, symmetric
two-tensor Loy € LP such that £(s) — Lo in LP () as s \, 0 where £y, and £~ (s) —
(L) Lin LP(Q) as s \, 0.

Proof. See Theorem 7.1, the proof is given there. |

The proof of the existence of a homeomorphism ®(0) at time zero in Theorem 2.3
can also be applied with no change, to the setting of a Ricci—DeTurck flow coming
out of a C%-metric on an n-dimensional Riemannian manifold, respectively for the
Ricci flow related solution. This fact is stated in the following theorem.

Theorem 2.6. For any n € N, there exists an §o(n) > 0 such that the following holds.
Let (M", h) be a smooth n-dimensional manifold satisfying the assumptions (2.4),
where now 8y = 8¢(n) is a small constant of our choice, and assume g¢ is a C°-
metric satisfying

(1 =do(m)h = go = (1 4 So(m))h.
Let (M, g(t)):e(0.1) be the solution to (1.1), where g(t) — go as t \{ 0 in the C

sense constructed in [30] or [17], and let : M x (0, T) — M be the solution to (1.3),
with ®(-, T/2) = 1d(:). Then there exists a homeomorphism ®(0): M — M such that
() — D(0) locally uniformly, and d(g(t)) — d(g(0)) =: dy locally uniformly and

d(l(t)) — dg locally uniformly as t \ 0, where
do(%.5) = do(P(0)(X). D(0)(F))
forallX,y € M.

Proof. The solutions constructed in [30], respectively [17], satisfy

¢(8p,n)
"Vl +"Vgla(t) < ==



Ricci flow of W2-2-metrics in four dimensions 273

where ¢(8g,n) — 0 as 8o — 0. These facts are required in the proof of Theorem 8.3 (i).
We may now copy and paste the proof of Theorem 8.3 (i) to here, and in doing so we
obtain the existence of a homeomorphism ®(0) which is obtained locally uniformly
as the limit, in the C °-norm, of ®(¢) with t — 0.

Also, the solutions constructed in [30], respectively [17], satisfy g(t) — g(0)
locally uniformly in the C°-norm as t — 0, and hence d(g(t)) — d(g(0)) locally
uniformly, and consequently,

d(L()) = ((1))*(d(g(1))) — do = (P(0))*(do)
locally uniformly. ]

In Section 12 we prove the following theorem (Theorem 2.8), which is an applica-
tion of the above results. Compare the paper [4], where sequences of smooth Riemann-
ian metrics with scalar curvature bounded from below which approach a C°-metric
with respect to the C°-norm are considered. We consider W 2-2-metrics which have
scalar curvature bounded from below in the following weak sense.

Definition 2.7. Let M be a four-dimensional smooth closed manifold and g be a
W2:2_Riemannian metric (positive definite everywhere) and let k € R. Locally the
scalar curvature may be written
R(g) = g/ (3:T ()} — 0, T (@) + T(@)},T (@5 —T(@),T ()5
where :
L)y = Egmk(aigjk +0;8ik — 9k &ij),
and hence R(g) is well defined in the L2?-sense for a W2-2 Riemannian metric. Let

k € R. We say the scalar curvature R(g) is weakly bounded from below by k, such
that R(g) > k, if this is true almost everywhere, for all local smooth coordinates.

Theorem 2.8. Let (M, h) be four-dimensional closed and satisfy (2.4). Assume that
(M, go) is a W?2-metric such that %h < go < ah for some 0o >a > 1andR(go) > k
in the weak sense of Definition 2.71. Then the solution g(t)e(o,T) to the Ricci—-DeTurck
flow, respectively €(t),e(0,T) to the Ricci flow constructed in Theorem 8.3, with initial
value g(0) = go, has R(g(t)) > k and R({(t)) > k forallt € (0, T).

Proof. See Theorem 12.2, the proof is given there. |

Remark 2.9. From this theorem we see that for a metric go € L™ N W22(M*)
with %h < go < ah for some positive constant @ > 0, go has scalar curvature > k
in the weak sense of Definition 2.7 if and only if there exists a sequence of smooth
Riemannian metrics g; o with %h < gi0o < bhforsomel < b < ocoandR(g; o) >k,
and g; 0 — go € W32(M*) as i — oo if and only if the Ricci-DeTurck flow of go
constructed in Theorem 2.1 has R(g(¢)) > k forall t € (0, T).
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3. Outline of the paper

The paper contains twelve sections and four appendices. Section 1 is an introduction
and Section 2 contains statements of the main results, and this section gives an outline
of the paper.

In Section 4 we prove a priori C! and L*-estimates for smooth solutions to the
Ricci—-DeTurck flow. The L°°-estimates we are concerned with in this paper take the
form %h < g < bh for some constant 1 < b < oo, for the fixed background metric #,
which is used to define the Ricci-DeTurck flow in (1.1). In particular, we show in
Theorem 4.2, that smooth compact solutions which a priori have small local W?2-2-
energy along the flow and satisfy an initial L°°-estimate must also satisfy L°° and
C !-estimates along the flow. In the non-compact setting, we require further that the
smooth solution satisfies a regularity condition in order to obtain the same result; see
Theorem 4.2.

In Section 5 we prove various local estimates for integral quantities, assuming our
solution satisfies an L> bound and has small local W?2-2-energy; see Theorem 5.1.
This also leads to estimates on the convergence as time goes back to zero of the
solution, as explained in, for example, Theorem 5.8 and Corollary 5.7.

Section 6 uses the a priori estimates of the previous sections with well-known
existence theory for parabolic equations to show that solutions in the classes con-
sidered in those sections exist, even when the initial data is non-smooth. That is,
solutions to Ricci—DeTurck flow exist, if the initial metric is locally in W22 and has
small local initial energy and satisfies an L°° bound with respect to /. The solutions
obtained continue to have small local energy and satisfy an L bound.

In Section 7 estimates are proved for solutions to Ricci flow in a setting which
includes the class of Ricci flows we construct using the Ricci—DeTurck flow of Sec-
tion 6. In particular, it is shown in the setting of Section 7, that a weak initial value of
the Ricci flow exists.

In Section 8 a Ricci flow is constructed from the Ricci-DeTurck flow of Section 6
and in Theorem 8.3, the relationship between the two solutions is investigated. In par-
ticular, relations between the distance and the weak Riemannian metrics at time zero,
as well as the convergence properties as time goes to zero are stated. Further neces-
sary lemmata, theorems, etc., which we require to prove this theorem are contained in
Sections 7, 9, and 10.

Section 9 is concerned with convergence properties of Riemannian metrics in
certain Sobolev spaces, and Section 10 is concerned with a definition of distance,
respectively convergence properties of distances, for Riemannian metrics defined in
certain Sobolev spaces. Theorem 11.2 proves uniqueness of the Ricci—-DeTurck solu-
tions in a class which includes the class of solutions that are constructed in this paper.
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In Section 12 we present an application for W22 N L>°-metrics with scalar curv-
ature bounded from below in the weak sense.

Sections A-D are technical appendices containing certain estimates, statements,
the calculation/verification of which, are not included in the other sections of the
paper, in order to facilitate reading.

Section A contains a short time existence result for Ricci—-DeTurck flow, using the
method of W.-X. Shi.

In Section B we state and prove some facts about Sobolev inequalities and norms
thereof adapted to the setting of the paper.

Section C contains estimates for ordinary differential equations which are required
at many points in the paper.

Section D contains statements which compare pointwise norms and L?”-norms of
different Riemannian metrics. The estimates contained in the statements are also used
at many points in the paper.

4. L°°- and C l-estimates of the Ricci-DeTurck flow

In this section we derive an a priori L time independent bound on the evolving
metric g, and show that the gradient thereof is bounded by 1/+/ under the a priori
assumptions that: we have an L bound alh < go < ah at time zero, the W22 norm
of the solution restricted to balls of radius one are small, and the time interval being
considered has small length, where here the notion of small depends on n and a.

As a first lemma, we show that if we already have an L°° and a time dependent
gradient bound, then all other derivatives may be estimated.

Lemma 4.1. Let (M, h) be n-dimensional and satisfy (2.4) and g(-,t)ejo,1y, T <1
be a smooth family of metrics which solves (1.1) and satisfies the a priori bounds

1 b
~h=<g(t)<ah, sup |"VglP(x.1) < ., 4.1)
a xXeEM t
forallt € [0,T) and some 1 < a,b < oco. Then for alli € N, there exist constants

N; = Nj(a,b,n,h) such that
. N:
sup "V g?(x.1) < ¢ 4.2)
xeM t

forallt € 0,T).

Proof. We start with the case i = 2. Let g(-,);¢[o0,7), T < 1 be a solution to (1.1)
which satisfies (4.1). Let N € N be large (to be determined in the proof) and assume
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that (4.2) does not hold. That is, for N := N,, there existsa0 <y < T and an xo € M
such that
ho2, 2 N
|"V=g|*(x0,%0) > R
0

Define g(x,t) := cg(x,t/c) and l;(y) = ch(y) for a ¢ > 0 to be chosen. Then
g(t) solves the h -flow for ¢ € [0, T'c) and we have the scaling relations

"V g2 1) = Vg (v, -).
Cc

By choosing ¢ = ~/N /+/V1,, we get a solution § which has

~ ~ ~ b ~
h=g@=ah swp ["VEP(n) <= 'V (o, VN/V) 2V
xeM

Q| =

forall ¢ € [0,9c] = [0, v/ N/ V]. This implies

b b

- <—F———=c¢
r - /N/V =10

fort € (-10+ /N/V,/N/V]forany e > 0aslongas N = N(b,V,n,¢) is chosen
large enough. In that which follows, we use once again g to denote the solution g
and / to denote /. That is, we have a smooth solution g(z) tefo,v N7 Of the Ricci—
DeTurck flow with

"VEP@) <

1
—h <g(t) <ah, sup|"Vg[*(x,1)<e, [|"V2g|%(xo, VN/V)=V
a xEM

forallt € (=10 + /N/V,/N/V]. As shown in [28], the evolution for |"V"g|? is
given by
9 h
—|rym 2 1
Vg, )
= g" (. )"V g P(x 1) = 287 (2. ) (V" V" g 1YV g (x 1)
+ Z (th‘g(x,t)*hvkzg(x,t)*---

0<kyk2,....km2<m+1,
k1 ko <m—+2

ok MR g (1), IV g % P(W) k. iy in (X.1)). (43)
where

P(h)kl,...,km+2 ()C, t)
= P(W)ky,..Jop s (x.1)(g. & . Rm(h), "VRm(h). ...."V"Rm(h))
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is a polynomial in the terms appearing in the brackets, and
9NV T = g RS sz g T BT

fora (0 m) tensor T. We have | P (h)|?(x,t) < c(a,m,n) since without loss of gener-
ality, the norm of the curvature of / (after scaling) and all its derivatives up to order m
are bounded by a constant (see (2.4)). In particular, for m = 1, we obtain

0 ..
o Vel (e.0) = g7 (e, ) V'V (x, 1)
< 28" (x.0)("Vi"Vg."V;"Vg)y(x.1)
+ Y e« VR g(x, 1)« PR g (x, 1) % "V g % P(h)kykyks (1)

0<ky,k2,k3<2,
k1+ka+k3<3

< —2g7 (x,0)("V;"Vg,"V"Vg)(x,1)

+c(n,a)"Vg|(I"VZg|"Vg| + |"VZg| + |"Vg|® + ["Vg* + |"Vg| + c(n,a)).
“4.4)

Here c(n, a) denotes a constant which may change from line to line but only depends
on n and a. Combinations of constants involving b, a, n multiplied by ¢ shall some-
times be written as ¢. In what follows, we restrict ourselves to the region

t e (=104 /N/V, /NJV].

Using
sup ["Vg|(x.1) <e <1
xeM

forallz € (-10+ \/N/V,/N/V]and 1h < g < ah, we get
P g
o Vel (e.0) = g (e, )" V"V P, 1)
2
=< —Elhvzglz(x, 1) + c(n,a)el(|"Vgle + |"Vg| + 36 + c(n. a))
292,02 ho?
< a| Vgl“(x,t) + c(n,a)e|"Vog| + c(n,a)e
1
< ——["V?g]P(x, 1) + c(n,a)e
a
in view of Young’s inequality. Similarly, we estimate
3 - 2
"Vl = g7 ()" VTV Px,n) < =~ VigP?

+ > IR e xR g (1) PV gk Pk (1)

0<ky,k2,k3,k4<3,
ki+otks<4
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2
< 21"Vl + c(n.a)"Vg| 1"V (" Vel + c(n.a))
+ "Vl (1"V2g| + "V + |"Vg| + c(n.a)
+ ["Vgl("Vgl® + ["Vg2 + "Vel + c(n.a)) + c(n.0))
2
= ="V + c(n,a)/" Vgl (I"Vgle(n, a) + ["Vgl? + c(n,a))
1
< — "V +cn.a)"Vig| + cn.a)" Vgl
a
1
< —— "3 + cn,a)"V?g|? + c(n,a), 4.5)
a

where we have used Young’s inequality a number of times. Combining these two
evolution inequalities, we see that f = (|*Vg|? + 1)(|"V?g|?) satisfies

%f —g""v?
< 'Vl 4 o'Vl
+("vgP + 1)(—é|hv3g|2 +c(n, )"Vl + c(n.a))
— 28"V ("Ve P + 1)V, (I"V2g )
<5 Vgl — LV e, a (1 4+ MVEP) (1 + 19%T)
+c(n.a)|"Vg|"V2g " Vg

for the ¢ that we are considering.
Now using once again that sup,. 5, |"Vg|(x,?) < &, which is true by assumption,
we see that

D F - < (/4 /7 +cln.a).

Standard techniques (cut-off function and a Bernstein-type argument; see [29] or [30])
now show that f < c¢j(n,a) att = \/N/V, which implies that

"V2g* < c1(n.a)
att = /N/V and this contradicts the estimate
"V2g|*(xo, N/ V) = V

if V.= max(100c¢y (n,a), r(h,m)), where r(h,m) is chosen large so that the curvature
of h and all of its covariant derivatives up to order m = 2 are bounded by one after
scaling (which was used in the proof).
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For the readers’ convenience, we explain the Bernstein-type argument in more
detail. By translating in time, we may assume that the time /N/V corresponds to
time 10 and the time /N/V — 10 corresponds to time zero. We multiply f by a
cut-off function 7 in space (with support in a Ball B;(y) ball around any point yq)
and such that |"V7|?/n < C. Next we consider a point (xg, fo) € B1(0) x [0, 10]
where 7 f achieves its positive maximum (assuming f is not identically zero). The
point x¢ must be in the interior of B;(0), since the support of 7 is contained in B;(0),
and 79 must be larger than zero, since tnf = 0 for ¢t = 0, and hence, by calculating
at (xo, tp), we obtain

9
0<—(¢
= 5, @fm
y 1 ij
< g/ n) = 20— 287 Vi /) Vi
: a
— (tf)g""Vin + te(m.a)yn + fn

1 nf)? 2890Vt fn)hv; hyp|2
E__(nf) _ 2gY"Vitfn) ;n+c(n’a)tf| U
da nt n n
t
+c(n,a)% +c(n,a)+ fn
1 (ntf)? t
< L0y cna,
4a nt nt

where we used that #V; ( f7)(xo. fo) = 0 and Young’s inequality. Multiplying by 7,
we see that

1
@(ﬂff)z(x(),to) —c(n,a)(tn) f(xo,t0) < c(n,a),
and hence
S (xo0, t0)n(x0. to)to < C(n,a)n(xo, to)to,
which implies f(xg, %) < c(n,a).
Next we assume by induction that for i > 2,

N,
sup |thg|2(x,t) <2
xeM tm

forallm <i,t € [0,T), and we want to show that there exists a constant N; 41, so
that

. N;
hgi+1 2 i+1
sup |"V x,t) < —
sup | glm0x. 1) =~
for all # € [0, T). Again we argue by contradiction. For this we assume that there is
a large constant N (to be determined later) and xo € M, respectively 0 <ty < T, so
that
"Vitlg[*(xo.10) > N/t5™".
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Using the same scaling argument as above, we can arrange that we obtain a solution g
of the A#-flow so that

1
—h < g <abh,
a
sup ["V™g2(x,t) <e Vre (=104 TYN/V, TYN/V], m<i,
xXeM
|hvi+1g|2(X(), H—l/N/V) > V.

As before, respectively as in the paper of Shi (proof of [29, Lemma 4.2]), we now
obtain

0 ; ; - 1 ; )
5"V gP < g IVEIV g — VIt clin.a)
and
0 i . . 1 )
e Vl-l—l 2 ~ jkhvz hvl-l—l 2_ - hvl+2 2
m glm =g/ "Vl 8" =5 gl
+c(i,n,a)|"Vitlg|? + ¢(i,n, a)
forallr € (=10 + "*/N/V, "*i/N/V]. The first estimates
"VelP(.0) + ["V2e (1) < ¢/t
simplify the calculation for general i > 2; see (4.3). Calculating as before, we thus
obtain for f := |"Vi*tlg|2(1 + |*Vig|?) that
; 1
00 f =g (Vi) = =/ +elin.a)
: a
forall t € (=10 + "*{/N/V, "*{/N/V], and we obtain the same contradiction as
before. ]

Now we show that if we have L°-control on our initial metric and the L?-norm
of the gradient and the second gradient of g remain locally, uniformly small, then we
have an estimate on the L°°-norm of the evolving metric (and its inverse) and a time
dependent gradient estimate.

Theorem 4.2. Forevery 1 <a € R, n € N, there exist (small) eg(a,n), S1(a,n) >0
such that the following holds. Let gy be smooth and satisfy

1
~h < go < ah, (4.6)
a

where (M, h) is an n -dimensional manifold satisfying (2.4), and assume that we have
a smooth solution g to (1.1) on [0, T, which satisfies

/B (Va4 Py 0 dn < @7)
1(x
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forall x € M and forallt € [0, T], where T < 1. We also assume

sup |"Vgl> +1"V2g? + |"V3g)? + F + ¢ < o0,
M x[0,T]

where ¢(x,t) := g (x,t)hi;(x) and F(x,t) := g;(x,t)h" (x). Then

1
——h < g(t) <20nah, 4.8)
20na
1
sup |"Vg?(x.1) < = 4.9)
xeM f

forallt < Si(n,a).

Remark 4.3. The functions ¢(x,7) := g (x,1)h;;(x) and F(x,1) := gij (x,1)h" (x)
are both well-defined smooth functions. The assumption that

sup ["Vgl? +|"V2gl? + "V3gP + F + ¢ < o0 (4.10)
M x[0,T]
is always satisfied on a compact manifold due to smoothness and compactness.
We will use this result in the proof of Theorem 6.1 and in that situation this con-
dition is satisfied.

Proof. We may replace the condition (4.7), by the scale invariant condition
/ (I"Vgl" + |"V2g|"/?) dh < & 4.11)
B1(x)

for all x € M and for all ¢ € [0, T] in view of Lemma B.1 (v), after replacing c¢(n)eg
by &¢. Let

§=46(n,a) = <1

1
(an)100

(we are assuming n > 2). Let

S1= sup{s e[0,T]| ;h < g(t) <20nah, sup |"Vg|?(x,1) < é hold on [O,S]}.
20na xeM t

We have S > 0 due to the inequality (4.10) and the fact that g satisfies (1.1). Next

we want to show that S; can be bounded from below by a constant depending only

onn and a.

For this we argue by contradiction and we assume that S is extremely small, so
that if we rescale the background metric 7 by 1/S;, then the resulting Riemannian
manifold is as close to the standard euclidean space R” on balls as large as we like
in the C*-norm (k € N chosen as we please) in geodesic coordinates, due to the
conditions on &, as we explained at the beginning of the paper.
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Let us now scale g and & via g(x,t) = cg(x,t/c), i = ch with ¢ = 1/8; > 1.
We denote g and h once again by g, respectively 4. We have for the rescaled solution
that

1 =81 =sup{s €[0,7) | (4.8) and (4.9) hold on [0, 5]}

and (4.11) still holds, and hence, (4.7) holds, in view of Holder’s inequality, after
replacing ¢ (n)eg by 9. Due to the definition of S ( = 1), the smoothness of all metrics
and (4.10), we see that

1 )
h < g <20nah, sup |th|2(x,t) < -
20na xeM t

for all ¢ € [0, 1], and there must exist a point xo € M with either

(@) g(xo,D(v,v) < lolnah(xo)(v, v) = 101na for some 4 length one vector v, or

(b) g(x0,1)(v,v) > 10nah(v,v) = 10na for some h length one vector v, or
© ["Vgl(xo.1) > 5,
otherwise, using the smoothness of g and (4.10), we get a contradiction to the defini-
tion of S1 = 1.
We rule out the case (c) first. We argue by contradiction and by the smooth-

ness Lemma 4.1, we know that |*Vg|?(-, 1) > §/4 on a ball of radius R(n, a,8) =
R(n,a) > 0 around x¢, and hence

M (R0, )

oz [ ("gPo.D)dh) =
B (x0)
which leads to a contradiction if g = £¢(n, a) is chosen small enough. Note that here
we used that the manifold is very close to the euclidean space. This contradiction
shows that (c) does not occur.
Now we rule out (a) and (b). Note that in our case

3
/ 0(3.0)dh(y) < / na dh(y) < Souna, (“4.12)
B (%) B (%) 2
respectively,
3
/ F(y,0)dh(y) < / nadh(y) < -wpna, (4.13)
B (%) B (%) 2

where we have used the initial conditions (4.6). From the evolution equation for g,
we have

0

9 pdh<c@m.a) / ("VgP + "Vg| + Rm(h)]) dh
0t Jp,(x) Bi(x)

< Cs(n)c(n,a)(e9)*'™,
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0

— Fdh < c(n,a)/ (I"Vgl* + |"V?g| + Rm(h)|) dh
01 JB,(x) Bi(x)

< Cs(n)c(n,a)(e0)*'™,

and thus

(/ o(x, 1)dh(x)) =< / o dh + Cs(n)c(n,a)(e0)*"
B (x0) B1(x0)

< (3/2)wynra + c(n,a)(gg)?™

< 2a),,na(/ F(x,1) dh(x))
B1(x0)
< / Fodh + c(n,a)(g0)*'"
B (x0)
< (3/2)wpna + c(n,a)(g0)*'" < 2wpna

if e9(n, a) is sufficiently small. Here we used the initial conditions (4.12) and (4.13)
freely, and the Holder and Sobolev inequalities to obtain

/ (YRR 4 192 di < Csmen.en”
Bi(x

In particular, there must be a point yo in By (xg) with ¢(y¢, 1) < 4na and a point y;
in By (xg) with F(y1, 1) < 4na. First, we consider ¢. At yo we choose a basis so that
hij(yo) = &;; and g;;(yo, 1) = A;6;; is diagonal. Then we see that ¢(yo, 1) < 4na
implies that

Ai > —

foreachi € 1,...,n, and hence
1
g(yo, 1) > ina h(yo)-
na

Using the fact that |"Vg| < § and that (M, h) is very close to the standard R”,
in particular, |F(h)j. « (X)| < no in geodesic coordinates on a ball of radius 10 centred
at xg, where 79 is as small as we like, we get

|0igkil <8+ o(no,a,n)

with o(no,a,n) — 0 as no — 0. Hence, without loss of generality, o (1o, a,n) <6,

that is
2

dign| <26 = ———
|9i gt < (@n)i00
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on Bj(xp) in geodesic coordinates (for /). This combined with g(yg, 1) > ﬁh(yo),
and the fact that (1 — 19)d;; < h;; < (1 4 no)8;; (with no as small as we like) leads

to
1 4 1
gij(y. 1) > (— —)hij ) > %hij 6]

dna  (an)'00

for all y € B;1(xg), which contradicts the fact that

1 1
1 — = .
g0, D(v.) < o= h(x0)(v.v) = 7o

Hence, (a) does not occur. The argument to show that (b) does not occur is essentially
the same. ]

5. Preservation of smallness of the W 2-2-energy and W 22-continuity
of g in time

In this section we consider smooth four-dimensional solutions to the Ricci-DeTurck
flow which satisfy %h < g(t) < ah for some uniform constant a and our fixed back-
ground metric 4, and whose initial W2-2-energy is locally small. Under these assump-
tions, we prove an estimate on the growth of the local W 2-2-energy, which shows that
this smallness is preserved under the flow, if the time interval being considered is
small enough. We see in Theorems 5.6 and 5.8, that these estimates also imply estim-
ates on the modulus of continuity of the local L? and W?2-energy of a solution,
respectively limits of smooth solutions to (1.1).

Theorem 5.1. Let (M, h) be four-dimensional and satisfy (2.4). For all 0 < a € R,
there exists a § = §(a) > 0 such that for any smooth solution g € C*°(M x [0, T))
of the Ricci—-DeTurck flow with

1
sup / ("Ve(. 0 + "V2g(.1)?)dh <8, ~h() < g(-t) < ah(;)
xeM JBi(x) a

for all t € [0, T), the following holds: For every 1/2 < Ry < Ry < 2, there exists
V(Ry, Ry,a) > 0 such that

/ ("Vg(.0OP + 'V2g(.0)?) dh
BRy(xo
< [ (Vg (- 0)P + [*V2g(.0)P) dh + V(Ro. Ry )t
BR, (x0)

forany xo € M and forallt € [0,T).
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Remark 5.2. The condition

sup [ (I"Ve(.O + "V2g(.0)*) dh < 8
xeM JBi(x)

means we restrict to the class of solutions which stay locally small in W?2-2, Later we
will see that this is not a restriction for the solutions that we construct, starting with
initial data which is locally sufficiently small in W22, as they do indeed satisfy this
condition.

Remark 5.3. The constant V(Rg, Ry,a) — oo for Ry " R;.

Corollary 5.4. Let (M, h) be four-dimensional and satisfy (2.4). For all0 < b € R,
there exists a § = §(b) > 0 and universal constant coy > 0 such that the following holds.
For every € > 0, there exists an S; = S2(b, &) > 0 such thatif g € C*°(M x [0,T))
is a smooth solution to the Ricci—-DeTurck flow with initial data gy which satisfies

1
sup / ("Ve(.0P +"V2g(.0)P) dh <8, S h() < g(1) < bh()
xeM JBi(x)

forallt €[0,T), and for some xg € M, we have
[ Vel +1"vg) dn < e
B> (x0)

Then \
[ (9tor + v2gt0R)an < e
B (x0) 2

forallt €10,82) N[0, T).

Proof of Corollary 5.4. Theorem 5.1 implies
| (et + PVgeoP) b
B (x0)
< f (I"Ve(, 0P +["V?g(., 0)]) dh + V(Ro, Ry, bt
B> (x0)
3
<e+V(1,2,b)t < 58

fort <e/2V(1,2,b) =: S>. ]

Before proving Theorem 5.1, we need a version of the Gagliardo—Nirenberg in-
equality.
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Lemma 5.5. Let (M, h) be four-dimensional and satisfy (2.4), 1/2 < Rg < Ry <2,
g be a smooth metric on M satisfying ég <h<ag xeM, and ne C>(Bpr,(xo)) be
a standard cut-off function which is equal to 1 on Br,(x) and equal to zero outside
of B(R,+Ry)/2(X0). We choose n so that /i € C*°(BRg, (x)) with |"Vn| < c¢(R1, Ro)
for some constant c(R1, Ry). Then there exists a C = C(a, Ry, R1) anda B = B(a)
such that

1/2
[rerepans ([ peran)
M BR](x)

X (/ (Bn*|"V3g|* + C|"V?g]?) dh)
Bpr,(x)
1/2
[ el an < B( / |hv2g|2dh) ( [ n4IhV3g|2dh)
M Br, (x) Bg, (x)
1/2
+ c(/ "Vg|? dh) (/ (I"V2g> + |"Vg[?) dh)
B, (x) Bpr, (x)

3/2
+c(/ |hV2g|2dh) .
BRI()C)

Proof of Lemma 5.5. In the following C refers to a constant which depends on a, Ry,
R, and B refers to a constant which only depends on a. Both constants may vary from
line to line, but continue to be denoted by C respectively B. Using Holder’s inequality
and the Sobolev inequality applied to the function f = 72|"V2g|, we obtain

1/2 1/2
/ n4|hv2g|3 dh < (/ |hv2g|2 dh) (/ nS|hv2g|4 d]’l)
M Bg, (x) M

1/2
5(/ |"v2g|2dh) (/ (Bn4|hV3g|2+Cn2|hV2gI2)dh), 5.1)
BRl(x) BRl(x)

which is the first estimate. For the second estimate, we integrate by parts with respect
to one of the covariant derivatives #V and use Holder’s inequality, to get

/M n*|"Vgl®dh < B /M (n4IgIIthI4IhV2gI + Cn3|g||thl5) dh

2/3 1/3 1/3
sB(/ n4|”Vg|6dh) ((/ n4IhV2gl3dh) +c(/ nIth|3dh) )
M M M
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which implies

/ *Vgl6 dh < B / PVl dh + C / n"Vgl? dh
M M M

1/2 1/2
< B/ n*"V2g | dh + c(/ |th|2dh) (/ (ﬁ|th|)4dh) :
M BRry) M

Using (5.1) to estimate the first term of the right-hand side of this inequality, and the
Sobolev inequality, applied to the function /7 |"Vg| to estimate the second term, we
conclude

/ 7"V gl® dh
M

1/2 1/2
§B/ n4|hV2g|3dh+C(/ |th|2dh) (/ (ﬁ|th|)4dh)
M BRl(x) M
1/2
fB( | |hv2g|2dh) ( / (n“|hv3g|2+6|hv2g|2)dh)
BR, (x) By (x)

1/2
wo([ - pvepan) ([ (VP ver)an).
BR](x) BR](x)

as required. Note, without loss of generality, we have |hVﬁ | < Cy (n = 4); if not,
replace 1 by n?. n

In the following proof, C will once again be a constant which may change from
line to line and depends on a, Ry, Ry, and B denotes a constant which can change
from line to line but only depends on a.

Proof of Theorem 5.1. Using equation (4.4) and Young’s inequality, we see that
O hg, 2 ho2 g 12 o 2 hg2, 2
= 1"Vel® =gV Vi ["Vg|* + —|"V7g|
ot - a
< BI"Vg|(I"V2g|I"Vg| + |"V2g| + "Vg? + "Vg? + "Vg| + 1)
1
< Z|hV2g|2 + B(|"vgl* +1). (5.2)

Integration by parts (once) and Young’s inequality yields

‘/M n4gijhvi2j|hvg|2 dh

IA

B/ n4|th|2|hv2g|dh+C/ P*Vell"V2g| dh.
M M
1

2o | a1Vl [ Vel + 1) an 53
aJm M

IA
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for n a standard cut-off function as in Lemma 5.5. Multiplying the above differential
inequality (5.2) with n*, integrating and using the inequality (5.3), we get

ad 2
([ rrvepan) 2 [ g an
M aJm
1

< —[ r]4|hV2g|2dh+C[ P (|"Vgl|* + 1) dh
2a Iy M

1 2
o [ veranc([ (vl v+ an)
2a Ju BR, (x0)

IA

where we used the Sobolev inequality applied to the function f = /7 |"Vg|, and
|}‘V«/ﬁ|2 = |"Vn|?/4n < C in the last step. Absorbing the first term on the right-
hand side into the left-hand side and integrating from O to S, we conclude

/ n*"Vgl?(-.S)dh < [ "V go|? dh + CS(§ + 1)
M M

forall S € [0, T].
Now we turn to the corresponding estimate for the second derivatives. Recall-
ing (4.5) and using Young’s inequality, we see that

D2 (x0) — g8 TV 4 2P
< BI"V2g|(I"Vgl(" Vel + 1) + I"V2e| (" Vgl + ["Vel? + ['Veg| + 1)
+ ["Vgl("Vgl® + ["Vg? + "Vl + 1) + 1)
< 5 "V + B(!V%P + 'V + Vgl + 'Vl + 1)

holds. As above, we note that integration by parts (once) followed by applications of
Young’s inequality yields

‘ / n“g"f(x,z)”v?,|hv2g|2(x,z)dh'
M
<B /M 1V gl["V2g] "V dh + C /M PIVgl Vg di

4
n
< [ TPV + Byt tVel Vg ah+ C [ g2Vl dn
M =d M

4
n
< [ TV + Bif VRl + Byt Vl® 4 OVl ah.
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Multiplying the differential inequality for |*V2g|? again with n*, integrating and
using the above two estimates, we obtain

ad 1
([ w5z an)+ 5 [ e an
t\Jm aJm
=< / Bn*("V2gP + ["Vg|®) dh + C(/"V?g* + |"Vg|* + 1) dh.
BR,

Using the estimates from Lemma 5.5, and the assumption, with this estimate, we see
that this implies

9 1
e / n4|hv2g|2 + _/ n4|hv3g|2 dh
ot \Ju 4a Jym
3/2
< c/ (|hv2g|2 +|"vg|* + 1) + c(/ |hV2g|2dh)
BR1 BRl(x)
1/2
+ c(/ |hvg|2dh) (/ |"V2g|? + |hvg|2dh)
Bg, Bg,
1/2
+ B(/ |hv2g|2dh) (/ n4|hV3g|2dh)
BRl(x) BRl

< c(/ "V2g|? + |"Vg|* + 1dh)
BR1

2
+ C(/ "V2g|> + |"Vg|* + ldh) + BS§ n*/"V3g|? dh,
BRl BRl

and hence

3 1
—([ n4|"V2g|2dh) - —/ n*hV3g|2dh < C(6 + 1)
0t \Jm 8a Jm

if B(a)d < 1/10a. Integration in time from 0 to S gives
/ n*"V2g|2(-, S)dh < / 1*"V2gol? dh + CS(§ + 1)2,
M M
as required. ]

Lemma 5.6. Let (M, h) be n-dimensional and satisfy (2.4), g be a smooth solution
to(1.1)on M x (0, T], T <1 and assume that there exist 0 < a € R, § € R, so that

1
—h < g(t) < ah,
a

xeM

Sup/ "Vg(.0)?dh <8 Vite(0T],
By

Ko := sup |[Rm(h)| < 1.
xeEM
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Then there exists a B = B(n, a) such that

/ 2(+1) — g(.5)[2 dh < B(S + Kot — 51,
B (x)

/ g 1) — g ()P dh < BGS + Kot — s,
Bi(x)

/ 8GO = |gC.s) dh
B (x)

< B8 + Ko)|t — s/,

/ e ) - |g—‘(-,s>|2dh' < B + Kol —s|
B (x)

forall x € M, forallt,s € (0, T], and forall x € M.

Corollary 5.7. Let (M, h) be n-dimensional and satisfy (2.4), g be a smooth solution
to(1.1)yon M x[0,T], T <1, and assume that there exist 0 < a € R, § € R, so that

1
_h = g(al) = ah7
a

sup/ "Veg(.0Pdh <8 Viel0.T),
xeM J B

Ko := sup |[Rm(h)| < 1.
xeM

Then there exists a B = B(n, a) such that

/ 2(-1) — g~ 0) 2 dh < BG + Ko)lt.
B (x)

/ g7 1) — g (02 dh < BG + Ko)lt.
Bi(x)

/B I8COR =g ORdh| < BG + Ko
1(x

'/ lg7 .01 = 1g7" (. 0)]> dh| < B(8 + Ko)t
B1(x)

forallt € [0,T] and forall x € M.

Proof of Corollary 5.7. For any sequence t; — 0 and any x € M, we have
[l =gl dh < BG+ Dl —1l
B (x)

Letting i — oo implies the first estimate view of the smoothness of the solution. The

other estimates follow with an almost identical argument. |
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Proof of Lemma 5.6. We calculate for a standard cut-off function n with n = 1 on
Bi(x), and n = 0 on (B, (x))¢, and |"Vy|? < ¢(n)|y| that

a — n.,a
5(8 s [ gt —g(',s>|2dh)
M

. L
_ o Boax /M 1 T (5 (0)s = 8 (8 Ot — §()ir)
—B(n,a)e‘B(""‘)’/ nlg(.t) — g(.s)>dh
M
—Bn,a i j 8
= B0 [ a0 (g 000t ~ g(5)er)
M t
~ B(n.a)e B0 / nlg ) — gC.s)P dh
M
= ¢~ Blnay /M 20h* Il L (g(1), h)ij (g()k1 — g(s)xs dB)
~ B(n.a)e™ B0 / Mg ) — gC.s)P dh
M
< e BOD B g /B (V0P + Kot Vo))
> (x

+ e_B(”’“)tB(n,a) / n|g(, [) — g(, S)|2 dh
M

— B(n,a)e” BO-t /M nlg(.1) — g(.5)>dh
< e BB a) (8 + Ko),

where £(g(?), h);; is the right-hand side of the equation (1.1), and we used integration
by parts, with respect to #V, in the second to last step, and a covering of B (x) by ¢(n)
balls of radius one in the last step. Integrating from s to ¢ implies the first estimate.
Also,

0 ( _ _ _
(e [ g =g eopan)
t M
—B(a J ij ij
— o~ Bnax /M 1 hihii (1) = g(9)") (g1 —g()*") dh
—B(n,a)e_B("’a)t/ g ¢.t) =g (.9 dh
M
—Bn.,a i il _iv ‘wa
_ o Blnax /M 20h 1 g g g (o (g (M — g (o)) dh

~ B(n. a)e~ B0 /M Mg (.0) — g~ (.s)P dh
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— o Ba) / 20htk Rt gt IV (g (1), )pw (g1 — g()¥") dh
M
— B(n,a)e Bt [M ng ' ¢.t) —g (. 5)*dh

< e B0t By q) ( )(|”Vg(r)|2 + Ko + "Vg(s)|?) dh
B> (x

+ e—B(n,a)tB(n’a)/ 77|g_1("t) — g—l(.,s)|2 dh
M

— B(n,a)e Ba) /M ng 'C¢.t) —g (9> dh

< e BB a) (8 + Ko).

Integrating from s to ¢ implies the second estimate. Also,

a —_ n.,a
E(e BG. )‘/ nlg(-,t)lzdh)
M

o ..
= ¢~B0ax / na hEh ()i g (ks dh — Be B0 / ng (.01 dh
M 0t M

LD
=e—3(”’“)’/ 2h* R =g (1)ij g () dh—Be_B(”’“)’/ nlg.0)|* dh
» a1 M
=e—B(”=“)’/ 20hi*hI L (g (1), h)ij g (ks dh
M
~ B 200 [ gl dh
M

< e_B(”’“)’B(n,a)/ (I"Vg(0)|* + Ko) dh
B> (x)

+ Be BBy, q) /M nlg(.0)|> dh — Be™ Bt /M nlg(.0)* dh

< e BrD B a)(§ + Ko).

where we used integration by parts in the second to last step. Integrating from s to ¢
implies the third estimate. The fourth estimate follows similarly. ]

The previous lemma showed us that solutions which are smooth on M x [0, T'] and
whose W 2-energy is bounded on balls of radius one by §, and which are uniformly
(independent of time) equivalent to 4, éh < g(t) < ah, converge strongly in the L>-
norm back to g¢ as time goes to zero, and the rate of convergence depends only on a, n
and §. If we only assume that the solution is smooth on M x (0, T'), then the previous
lemma shows us that the solution is Cauchy in the L2 (B (x))-norm in time, and hence

there exists a well-defined L2

ioc limit, go attime = 0 on M.
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In the four-dimensional setting, the assumption that the solution is bounded in
W?22(B;(x)) for all x € M means that there must be a sequence of times ¢;, such
that g(#;) converge weakly in H := W??2(B;(x)) back to gg € H (the details are

given in the proof of Theorem 5.8). The estimates of Lemma 5.5, show us that in fact
2,2
oc

whose initial data converge locally strongly in W22, as is explained in the following

the convergence is also strong in W2’ if the solution is a limit of smooth solutions,

theorem. Note that this is precisely the situation which we study in the next section.

Theorem 5.8. Forall 0 < a € R, there exists § = 6(a) so that the following holds. Let
(M, h) be four-dimensional and satisfy (2.4) and (M, g(t), p):eo,1] be the smooth
limit, on compact subsets of M x (0, T], of (M, g(i)(t), pi)|te0,1] as i — o0 of a
sequence of smooth solutions g (i) to (1.1) defined on M x [0, T| which satisfy

< g()6.0) <ah,  sup / (") OP + 'V2g()(.0)2) dh < §
xeM JB|(x)

for all t € [0, T]. Assume further that the initial data g(i)(-, 0) converge strongly
locally in ngc’z to some gqg € Wlfc’z asi — oo, that is

g@)(0) — gollw2.2x) — 0

for all compact sets K C M asi — oo. Then, g(t) — go as t \{ 0 locally strongly
in the W22-norm, that is

/ gC.1) — 2o dh + / (gt — g0 r) dh
B (x) B1(x)
+ / PV2(g (1) = go(DI2C. 1) dh = 0
B (x)

ast \y O forany x € M.

Proof. The solutions g(i) defined on M x [0, T'] are smooth and satisfy the hypo-
theses of Theorem 5.1. Without loss of generality 7 < 1. Hence, the conclusions of
that theorem hold and we get

/B ( )(Ith(i)(wt)lerIhVZg(i)(nt)lz)dh
S/B ( )(Ith(i)(-,O)lvaIhvzg(i)(-,o)lz)thrV(Ro,Rl,a)t

for any xo € M and for all ¢ € [0, T'). The third estimate of Corollary 5.7 implies
additionally for any xo € M and all ¢ € [0, T') (remembering T < 1),

/ g() 0P dh < / 1g() (.0 dh + V(Ro. Ry.a)t.
BRry (x0) BR, (x0)
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Letting i — oo for fixed ¢ € (0, T"), and using that the solution converges smoothly
locally away from ¢t = 0 and in the ngc’z—norm at time zero, we see that the limit
solution also satisfies

/ ("Vg 0P + "V2g (1) + g (1)) dh
BRry(x0)
< / ("Vgol? + ["V2gol? + |gol?) dh + V(Ro. Rica)t  (5.4)
BR, (x0)

for any xo € M, forall ¢t € (0, T), that is
2 2
”g(l)||W2~2(BRO(xo)) = ||g0||W2~2(BR1 (x0)) + V(RO’ Ry, a)t

for any xo € M, forall ¢t € (0, T), where

T sy = [, (TR + VTP + V2T )

BRy(x0)

for any zero-two tensor defined on Bg,(xo) whose components are in W22, Further-
more, we have

/ 18(t) — gol? dh — 0
B (x0)

for t \( 0 in view of Corollary 5.7, and the fact that g(i)(0) — go as i — o0 in
the ngc’z—norm.

Fixing xo € M and Ry := 1, we define the Hilbert space H := W22(B;(x¢)) to
be the space of zero-two tensors whose components are in W2-2(B(xo)) and whose

scalar product is defined by
(T, S)u ::/ (T, S)p + ("VT,"VS), + ("V2T,"V2S), dh.
B (x0)

Using this notation, we may write (5.4) as
(g([)’ g(t))H = ”gO”%VZ,Z(BRI (x0)) + V(R()v Ry, a)t (5.5

for all t € (0, T) and for any 2 > R; > Ry = 1. We are going to show that every
sequence (g(#;))ien with #; \( 0 contains a strongly converging subsequence with
limit g in H . This then clearly implies that g(s) — go in H as s ~\ 0 since otherwise
we can find a sequence #; — 0, and a § > 0 such that

lg(t) — golla > 6.

and hence no subsequence of g(¢;) will converge to g¢ in H, which would be a con-
tradiction.
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Now to the details. For any sequence of times 0 < #; — 0 as i — oo, there exists
a subsequence, g(#;;) =: gi; of g(#;) such that g;;, — z as j — oo forsome z € H,
in view of the definition of a Hilbert space and weak convergence.

But g;; must then converge strongly to z in L?(B1(x0)), and hence z = gg. Setting
rj := t;; this means we have g(r;) — go strongly in L?(B;(xg)) and g(rj) — go
weakly in H . It remains to show that g(r;) — go strongly in H = W?2:2(B;(xo)) for
all xo € M.

Assume that this is not true for some xo € M. Then we can find a subsequence
Sk :=Tri;, k € N of (ri)ken and a § > 0 such that

g (sk) — gollfy =8> 0
for all k € N. But then

8 < (g(sk) — go.8(sk) — 8o)H
= (g(sx). g(sk))H + (g0, go)H — 2(g (k). go)H
= llg(so) 7 + lgolF — 2(g(st). go)m

for all k € N, and hence, using (5.5), we have
) =< ||g0||%/[/2,2(BR1(x0)) + ”g()”%-] - Z(g(Sk), gO)H + V(l’ Rl’a)sk'

Since go in W22(B,(x¢)) (here we use the covering argument from Lemma B.1),
there must exista 1 < R; < 2 such that

”gOH%/VZ.Z(BRl(xO)) =< ”gO”%-I + g’
and hence we obtain
8
8 = 2lgolF —2(g(sk). go)ur + 5 + V(1 Ri a)s

for this choice of R; independent of k € N. Letting k — 0o, we obtain a contradiction,
since

2llgollF —2(g(sk). g0)ar — O

as k — oo. n

6. Existence and regularity

In this section we prove the main results for the Ricci—-DeTurck flow of data which is
initially W22,
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Theorem 6.1. Let 1 < a < oo and (M, h) be four-dimensional and satisfy (2.4). Then
there exists a constant &1 = €1(a) > 0 with the following properties. Assume gy is a
smooth Riemannian metric on M which is uniformly bounded in ngc’z N L in the
following sense:

1

Zh < go < ah, (a)

/ (I"Vgol* +1"V2go*)dh < & forallx e M, (b)
B>(x)

where ¢ < g1(a), and g¢ satisfies

sup |" V' go|* < oo
M

foralli € N. Then there exists constants T = T(a,&) > 0 and ¢; = cj(a, h) > 0,
and a smooth solution (g(t)):e[o,r] to (1.1) with g(-,0) = go(-) such that

1
mh < g(t) < 400ah, (ar)

/ (I"Vg(,0)]* + "V2g(.1)?)dh < 2¢ forallx e M, t €[0,T], (b,
Bi(x

cjla,h)

i of. (2
Vgl < 2

(ct)
and
hyxj 2
sup |"V/g(t)|” < o0
M

forall j € N and forallt € [0,T].

Proof. Using the existence theory for parabolic equations, for example the method of
Shi (see [29, Sections 3 and 4], which in turn uses [19, Theorem 7.1, Section VII]),
we see that we have a solution to (1.1) for a short time [0, V] for some V > 0 and
SUPaf [0, V] |"V7g|? < oo forall j € N;see Theorem A.1.

We assume, without loss of generality, that

)] 80(61,4)
< — =
e1(a) < 1 1

where g¢ is the constant from Theorem 4.2. Let
S = sup{t € [0, V]| (b;) holds for ¢ < §},

where S > 0 due to smoothness (and boundedness of covariant derivatives of g). We

have | |
"Ve(.1)| < - and ——h < g(t) < 80ah,
t 80a
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fort < min(§, S1(4,a)), in view of Theorem 4.2, where S;(4, a) is the constant from
that theorem. Hence, for such ¢ < min(S;(4, @), S ), we have

N;(80a,1,4,h)

"VigC. P = =

in view of Lemma 4.1.
Also, using Corollary 5.4 with b = 80a, we can improve the estimate (b;) to

3
/ (I"Vg|* + |"Vg|?)dh < e < 2e,
B (x) 2

for t <min(S;(4,a), S, S>(b = 80a,¢)), where S, (b, ) > 0 is the constant from that
corollary, since 2¢ < 2¢&1(a) < &9, and without loss of generality, 9 < § = §(80a),
where § is the constant appearing in that corollary. Hence,

S > min(S;(4,a),V, S»(b = 80a, ¢)),

and (a;), (b;), and (c;) hold for t < min(S1(4,a),V, S>(b = 80a, &)), with ¢; = 2,
¢i = N;j(80a, 1,4,h) foralli € N,i > 2. Applying Theorem A.l and repeating this
argument as often as necessary, we may extend this solution to a smooth solution
g(t)zepo,) satisfying (a;), (b;), and (c,) fort < T := min(S(4,a), S2(b = 80a, ¢)).
The estimates
sup "V/ig|? < o0
Mx[0,V]

for all j € N and (c;) guarantee that

sup |"V/g|? < 0
M x[0,T]

forall j € N. |

Remark 6.2. In the proof of Theorem 6.1, we obtained
3
| (9senP + PVsenR) an < S
Bi(x) 2
forallx €e M,t € [0,T], and
! hg(t) < 80ah
80a 50 =

fort € [0, T']. We will use these facts in the proof of the next theorem.
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Theorem 6.3. Let (M, h) be four-dimensional and satisfy (2.4) and co > a > 1.

. 2,2 . . . . . .
Assume go is a W,.>” N L Riemannian metric, not necessarily smooth, which satis-

fies (a) and (b), where ¢ < &1(2a)/2 and & is the constant from Theorem 6.1.
Then there exists a constant S = S(a, ) > 0 and a smooth solution (g(t))e(o,s]
to (1.1), where g(t) satisfies (a;), (by), and (c;) forall x € M, forall t € (0, S], and

/ ( (180 — P +1"V(go — g + 1"VZ(g0 — g()P) dh >0 (dy)

ast \ 0 forall x € M. The solution is unique in the class of solutions satisfying (a;),
(by), (cy), and (d;). The solution also satisfies the local estimates

sup |thg(-,t)|2tj -0 fort >0 (er)

x€B1(xp)

/ ("Vg(.DP + "'V2g(.0)?) dh
B (x0)
< /B (Vg0 + Vo) dh -+ Ve, Ry )
R\X0

forallxo € M,2 > R > 1, forallt < T, and for some constant 0 < V(a, R) < oo.

Proof. Let R > 0 be given, and n: M — [0, 1] € R be a smooth cut-off function as in
Lemma B.1 (iv): n = 1 on Br(xo), 7 = 0on M \ (Bcr(x0)), |"V2y| + [FVy2/n <
C/R? on M (here n = 4), |"Vin|? < ¢;(h) for all i € N. We mollify the metric go
everywhere locally, to obtain a metric g, g, which is smooth, and then define

go,r() == n()&,r() + (1 = n(Nh().

We choose the mollification fine enough to ensure that go g(-) — go in W22(B,(0))
for all » > 0 fixed as R — oo and so that (a) and (b) still hold for go,g up to a
factor 10/9, for all R > 0 sufficiently large. That is, we have

9 10
—h < < —ah A
IOah_gO’R_ 9k (@)

/ (|hvgo,R|2 +1"V2go.r
B> (x)

10 ~
%)dh < —e forallx € M. (b)
9

Furthermore, go,g = & outside of Bcr(xo), and so

sup "V go r|* < 00
M

forall j € N.

Theorem 6.1, with a replaced by (10/9)a and ¢ by 10/9, and Remark 6.2, guar-
antee the existence of a solution (gg(f))sefo,r] With T = T'(a, &) > 0to (1.1) satisfy-
ing (a;), (by), and (c,) forall x € M, forall t € [0, T'], with gg(0) = go,r. Note that the
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constants ¢; ((10/9)a, k) of (c;) do not depend on R. Hence, there exists a limit solu-
tion (M, g(t)se(o,1 (in the C5S-sense on M x (0, T')), by taking the sequence of radii
R(i) =i — oo, which satisfies (a;), (b;) and (c;) for all x € M, for all ¢ € (0, T].
Theorem 5.1 applied to each gg(;) implies (f;), and Theorem 5.8 implies (d,), for
the limit solution g(#);e(o,7]- Note without loss of generality, that &1 (2a) from The-
orem 6.1 is less than §(400a)/c(a, n), where § is the constant from Theorem 5.1, and
c(a,n) is a large constant of our choice. Hence, without loss of generality, the scale
invariant condition

1/2 §(400
(/ |”Vg(-,t>|4dh) + / V2 o2 an < 240D 6y
Bi(x) Bi(x)

c(a,n)

holds for all x € M, for all ¢ € (0, T], in view of Lemma B.1 (v). Forany x € M, we
claim that

sup (t["Vg(-,)?) = 0 ast \ 0.
B (x)

Assume that this is not the case for some x € M. Then we obtain a sequence of points
yi € Bi(x) S Mand0 <t; - O0for j € N, j — ooandanr > 0 such that

ti1"Veg(y. )P =r > 0.

Taking a subsequence we see that y; — y € M, and hence
[ (el + '92gol) dh 0
By yi7 )
as j — oo. Scale the solution to time 1, that is, we define
~ 1 ~ 1 1
gj('vt) = _g("tjl)’ h]() = _h()v gj,0 = —&o-
Iy tj lj

Now, we have
" Vg (yj. D> =r >0 and / ( )(|th_i,o|4 +1"V?gj0l?) dh — 0
B> (y;

as j — oo, and

mhj () < gj(-.t) <400ah;(-)

for all + where the solution is defined. Theorem 5.1, and the fact that (6.1) also holds
for the scaled solutions, now implies that

thg- LD+ hf'Vzg- S D?dh; -0
J J J
By (y;
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as j — oo, and

mh]() < gj(-,l) < 400ah,-(-)

for all # where the solution is defined.
But these estimates combined with (c;) then imply that

" VEg; (v D> >0

for all k € N as j — oo, which is a contradiction. To see this, one can write all
quantities in geodesic coordinates with respect to the metric /; centred at y;. The
estimate

sup (tj "Vig(, t)|2) -0 ast (0
B1(x)

for the other j € N follow from an almost identical argument. That is (e;) also holds.
The uniqueness of the solution in the class of solutions satisfying (a;), (bs), (c;),
and (d;) follows immediately from Theorem 11.2. ]

Remark 6.4. In fact, the constants c; (1, a) in (c;) of Theorem 6.3 can be replaced by
cj(h,a,e) where cj(h,a,e) - 0as e — 0.

Assume g;(f)se(0,7(1/i,a)] are solutions obtained in Theorem 6.3 with & in (b,)
given by ¢ = 1/i, and assume

"V (xi, t) = ;5 >0
i
forat; € (0,T(1/i,a)] for some o > 0. From Theorem B.1 (v), we have
1
[ Vsl + gl <2
Bi(x) l

for all r € (0, T(1/i,a)]. Scaling the solutions by g;(¢) := %gi (tt;), we obtain a
smooth solution defined on (0, 1] which satisfies

Mg DI? <¢
for all j € N in view of (c;), and

N N oA 1
V& (i, D> =« and /B oo VBC DI IHVEC D) diy () < 27
1(x

for all x € M, where we denote the scaled metric %h by /;. But this means

hivIig (.12 =0
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forall j € N asi — 0, as can be seen by writing all quantities in geodesic coordinates
with respect to /; at x;. This contradicts |*i Vg; (x;, 1)|* > a > 0 for all i € N. Hence,

ci1(a,h) =ci(h,a,&) >0

as ¢ — 0. An almost identical argument shows that c; (%, a) in (c;) of Theorem 6.3
can be replaced by ¢ (h,a, €), where ¢; (h,a,e) - 0ase — 0.

In the case that the energy is bounded uniformly, then a scaling argument leads
to the setting of the previous theorem, and hence we may find a solution to equa-
tion (1.1) for a short time, which satisfies the conclusions of the previous theorems,
for any ¢ > 0, if we shorten the length of the time interval.

Theorem 6.5. Let (M, h) be four-dimensional and satisfy (2.1), and 1 < a < o0,
and go be a W22 N L Riemannian metric, not necessarily smooth, which satis-

fies (a) and
[ (190l + 1192g0P) i < .
M

Then for any € > 0, there exists a constant T = T(go,a,&) >0,a C = C(go,a, ) and
a smooth solution (g(t))seco,1] to (1.1), such that after scaling the solution and the
background metric h once, (a;), (by), (¢;), (d;), (e;), and (f;) hold, and (g()):e(o0,1]
is the unique solution in the class of solutions satisfying the conditions (a;), (by), (c;),
(d¢). The constants c; (h,a) in (c;) can be replaced by cj (h,a, &) where cj(h,a,&) — 0
ase — 0

Remark 6.6. In this setting, we cannot expect
[ (1950 + PV2gP) dh < o0
M

for any ¢t > 0 as Example 6.7 below shows.

Proof. As explained in the introduction, by scaling the initial data gy and the back-
ground metric & once, we can guarantee that the new initial data and background
metric, which we also call go and 4, satisfy (a) and (b), where ¢ < ¢1(2a)/2 and &;
is the constant from Theorem 6.1, and that / satisfies (2.4). Using Theorem 6.3, we
obtain a solution g(¢), t > 0, ¢t € [0, T] which satisfies (a;), (b;), (c;), (ds), (er),
and (f;). The uniqueness of the solution in the class of solutions satisfying (a;), (b;),
(c), and (d;) follows immediately from Theorem 11.2. The fact that the c;(h, a)
in (c;) can be replaced by c;(h, a, €), where ¢;(h,a,e) — 0 as ¢ — 0, follows from
Remark 6.4. ]

Example 6.7. Let n = 2 and g¢ be a smooth metric on

C1(0) := {(x1.x2) € R? | max(|x1]. |x2]) < 1}
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such that
(I1-e)=<go=<(+¢eb, 0<e<kl1l, and go=25onCi(0)\ Cyi/2(0),

and so that the curvature of g is a constant o1 > 0 on Cy, (0), for two small constants
01,0, > 0, where § is the standard metric on R2. We extend this metric to all of R2
through symmetry,

go(x) = go(x 4+ p) forall p € Z* = {(z1.22) | z1.22 € Z},
and in doing so obtain a smooth Riemannian metric go on R? satisfying
(I1-#)8 =< go = (1+¢)d.

with ¥ ¥go = go forany p € Z?, where ¥, (x) = x + p.
Let Ti2 refer to the standard 2-torus whose circles have radius i € N. Then

T :=R?/T ().
where
ray:= {Ty:R2 — R? | y € Z?, where Ty(x) = x + iy forall x € Rz}.

That is,
T? = {[x] | x € Rz},

where [x] = [z] if and only if T(x) = z for some T € I'(i). We give T} the unique
metric go(i) such that 7*(go(i)) = g9, where 7: R? — Ti2 is the standard projection
w(x) = [x].

From the work of Shi [29], there exists a unique smooth solution

(T7. g(i)(t))reqo,r]
to (1.1) with h = go(i), g(i)(0) = go(i),

sup |"V7 g(i)(t)* < ¢;j(go)
t€[0,T]

forall j € N,and all ¢t € [0, T], and
(1—2¢)go(i) < g(i)(1) =< (1 +2¢)go(i)

forallt € [0, T].
Defining ¢p: T? — T by ¢p([x]) = [p + x], where p € Z?, we see that

¢, (g0(i)) = go(i)
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by construction, and hence it is an isometry with respect to go(i). Setting
g()(@) := (gp)™(g()(@)),

we see that it is also a solution to (1.1), with g(i)(0) = go(i) and & = g (7). Unique-
ness of such solutions, which can be seen by applying the maximum principle to the
function

f('a t) = |g1 ('7 t) - g2('ﬂ t)|27
shows us that (¢,)*g(i)(t) = g(i)(t) forall ¢t € [0, T].
Taking a subsequence and then a limit i — co, we obtain a solution g(¢) to (1.1)
with £(0) = go.

sup |"V7g()]* < ¢j(go) < o0
t€l0,T]

forall j € N and all ¢ € [0, T], and such that
(Wp)*g(t) =g(t), Y,h=h,

where ¥,(x) = x + p and p € Z?. Furthermore, |"VJgo| =0 forall j €N, since
go = h.

Using a Taylor expansion in time for g(¢), and the fact that g(¢) is a smooth
solution to (1.1) with g(0) = h, we see that

9 3 0
g(x.1) = h(x) + 2g(x.0)-1 + (Eg)g(x,s) 2

for some s € (0,1). Notice that %g(x, 0) =0 for x € C4/5(0) \ C3/4(0) because there,
g(x,0) = h(x) = § and § has zero curvature. Hence,

g(x,t) =8 = 0(t?)
for small ¢ for x € C4/5(0) \ C5/4(0), and
gii (y.1) — hii (y) = =203t + O(1?)

for y = 0, for where 0;; = c(n)o, > 0.

If "V g(t) = 0 holds for all ¢ € [0, P) then, for all t € (0, P) with P > 0 small
enough, we would have g(¢) = h on C4/5(0) \ C3/4(0) and g(y,t) —h(y) # 0 at
y = 0. But taking any two vectors v, w at a point p in C4/5(0) \ C3/4(0), we have

g(p.0)(w, w) = h(p)(v, w).

Parallel transporting the vectors along a geodesic (with respect to &) from p to 0, we
would have

0 0
8—g(y(r),t)(v(r), w(r)) = 0= —h(y(r))(v(r), w(r)),
r or
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and hence
g(0,0)(v(r), w(r)) = h(0)(v(r), w(r)).

Since the vectors were arbitrary, we see g(0,¢) = h(0) for all ¢ € [0, P); a contradic-
tion.
By smoothness of the solution, there exists an s; > 0 such that

/CI(O)(I”Vg(r)I2 +"V2g(1)?) dh > s, > 0
for some ¢ > 0. Using the isometry v,,, we see that this means
/CI(IJ)(I"Vg(t)I2 +1"V2g(0)?) dh = s, > 0
for all p € Z?, and hence
fM(Ith(t)l2 +1"V2g(0)?) dh = oo

for this . To obtain an example in R” with n € N, n > 2, we simply take

>

OZE:gO@SRk

on R¥*+2 = R”, where 8y« is the standard metric on R¥.

7. Ricci flow estimates

The results of the previous sections are in the setting of the Ricci—DeTurck flow. As
mentioned at the beginning of the paper, in certain settings, for example the closed
smooth setting, there is a Ricci flow related solution, which can be written as

£(1) = (p)"g (1),

where ¢;: M — M, t € [0, T], or possibly only ¢ € (0, T], is a smooth family of
diffeomorphisms, and g(#);¢[o,T) is a solution to Ricci-DeTurck flow. We say in this
case, that the Ricci flow solution £(¢) comes from the Ricci—-DeTurck solution g(¢),
and we call £(¢) a Ricci flow related solution to g(t).

In the next section we construct and analyse the behaviour of solutions £(¢) com-
ing from a Ricci—-DeTurck solution g(¢) constructed in the previous sections. In order
to do this, we require various estimates for solutions to local Ricci flows. The state-
ments and proofs thereof are contained in this section. The results of this section are
written in a local setting assuming various geometric bounds, which we know will
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hold if the local Ricci flow solution comes from a Ricci—-DeTurck flow solution con-
structed in the previous sections of this paper. However, it is not necessary to assume
that the local Ricci flow solutions we consider are constructed in this manner.

Theorem 7.1. For all p € [2,00), there exists ag = ag(p,n) > 0 such that the fol-
lowing holds. Let Q be a smooth n-dimensional manifold and (2", £(t))e0,1] be a
smooth solution to Ricci flow satisfying

/ Re(E)Idea) <6 [Re(t@)| < on© 7.1)
Q

for all t € (0, T], where ¢ < ap. Then there exist §(n, p, €), c(n, p) > 0, with the
property that §(n, p,eg) — 0 as ¢ — 0, such that

[ 160~ €y dt0 < 800, pooyl s, (12)
[ €)™ = @) 17 d0) < 800, pooyle = 13)
forallt,s € (0,T] with s < t. Furthermore,
[ 166012y a€) < ctn. p(Vol(@. ) + I =) (7.4)
167 601 48 < et p (VoI ) + I ) .5)

3/4

/ [€(r) = €(5) ) dL(1) < c(n, p)(VOl(2,£(1)) + 1) ™" |r — 5|4, (7.6)
Q

3/4

/Q €)™ = (€)M, d L) < e p)(Vol(Q.£(1)) + 1) *|r —s|* (1.7)

forallr,s,t € (0,T] withr,s <t.

Remark 7.2. This theorem is true for any smooth Ricci flow satisfying (7.1). Com-
pleteness, compactness, volume bounds, Sobolev inequalities, are not assumed.

Proof. We write v := £(s), and £ for £(¢), for t € (s, T], and Rc for Rc(€(¢)), and for
o) = [ 10 = L)1, at,
we calculate
Sh) = 5 / 10) w12, (o)

aa / Elkejm(gl] — v,])(zkm — Ukm))p/2 dl



T. Lamm and M. Simon 306

:[ —R(O)[¢ —v)?
Q
+ 210 027 O RO (b = i) e = Vi)

+ 205475 07 Re(0) 52 (i — vij) (Lhom — Vim)
— 20 47MRe(0) i (Liem — Viem) — 20°%07™ (€57 — vij)Regm (0))

< cm)p [Q (IRelele — vI? + [Relele — v]2 ") €

c(n)pe - -
t)p h(t)—i—C(n)P/Q|R0|é/p(|RC|§p 1)/P|£_v|f 1) dt

C(nt)psh(t) + c(n)P/ (IRele + [Relele —v]7) de
Q

- c(n)pe
t

h(t) 4+ c(n)pe

for some c(n) > 1 depending only on n. Hence, the function f(¢) = h(s + t) also
satisfies
Bo Bo

0
gf(t)f S+Zf(l‘)+/3057f(f)+,30

forallz € (0, T — 5], where B¢y := c(n) pe. The assumptions on ¢ guarantee that

1
Po=cln)pe = 5.

and hence, using the ODE Lemma C.2, we see that f(¢) <28t forallt € (0,7 — s].
In particular, we obtain

h(t) = f(t —5) < 2Po(t —5) = c(n) pe(t —5)

forall ¢ € (s, T], that is (7.2) holds.
The estimate (7.3) is proved in an almost identical way. For

y0 = [ 1€ =g, dt,

we calculate

0

e Z_l— —lpdﬁ
- /Q ety
/ CR@OW — v
Q

+ 21t =0 P (2RO (€7 — )€ — vk

0
5)’(1‘)

— 20k Re(£) jn (€ — vy (LM — em)
+ 2051 Ljm P LT IRC(E) pg (£ — vF™)
+ 2033l (€7 — V)R (L) g 4P ™) d €
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= C(W( / IRe(O)]€" = v + [Re(@) ] —v 127! dg)

C(”)p“"f ! — _llfd£+c(n)l7/ Re(@)]el¢ " —v 77" de
2
< Mm) + c(n) pao

< —ﬂ(’f“) + Bo.

The inequality (7.3) now follows as before from Lemma C.2. The inequalities (7.4),
(7.5), (7.6) and (7.7) follow from the Holder and triangle inequalities, as we now
show. First, we show (7.4):

[ty de = [ je - + ol aew
< cnp) [ 166) = €Ol at0) +ctr.p) [ eI, a)
<c(n, p)|t —s| + c(n, p) Vol(2, £(1)).
Similarly,
L1 6ty aew = [ 16716 = 0+ o, atw
< cnp) [ 10710 = Ol a0 + et p) [ 16 01 de)
<c(n, p)|t —s| + c(n, p) Vol(2, £(2)).

Thus, we see that (7.4) and (7.5) hold. To show (7.6) and (7.7) hold, we will use the
estimates of Section D, which show that certain general inequalities hold which relate
the L?-norms of a tensor taken with respect to different metrics.

For any two tensor T = T;;, using Corollary D.2, we have

, 1/2
[ttt < o [ 1o o)
4 e v o)™ de v
t
<([miigyaew) ([ eons )

= ctn.p)( [ 160 k)

)1/2
1/4 1/4
X (/Q |T|§é) d(f(s)) (/ £~ 1(s)|2'(/t2) dﬁ(t)) . (7.8)
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For T = (£(r) — £(s)) in (7.8), we obtain

, 1/2
[ 160 = €61y 480 = 0. p) ( | i, de(z))

1/4 1/4
<( [ 1o - iy aee) ([ 1ot o ao)

< c(n. p)(Vol(R. £(t)) + 1)/ *r — 5|/

in view of the estimates (7.2), (7.4), and (7.5). For any two tensor N = N, using
Corollary D.2, we have

, 1/2
[ Wiz at < con ([ 120, at)

1/4 1/4
x(/Q|N|zé)d€(s)) (/Q |£(z)|;7{s2)de(z))

1/2
—conp)( [ 101G at)

1/4 1/4
x([Q|N|;}(’;)d5(s)) (/Q |€_1(s)|2’(/t§d€(t)) . (19

For N = ({71(r) — £71(s)) in (7.9), we obtain

, 1/2
—1 —1 —1
[1ete - (s)u’(,)dﬁ(r)sc(n,p)(/g ¢ (s)ug)de(z))

1/4 1/4
x( [ |e—1<s>—e—1(r)|2(’;)d6(s)) ([, |e—1<s)|z{,§d6(r))

< c(n, p)(Vol(R, £(1)) + l)3/4|r — 5|4

in view of the estimates (7.3), (7.4), and (7.5). That is, the inequalities (7.6) and (7.7)
hold. ]

The previous theorems show that, for p € [2, 00) and n € N, a solution
(€2, £(1)) e(0,1]

which satisfies the conditions of the lemma, that is
I3
[ Retcaplatn = wma Reteon = S one
Q

forall t € (0, T], where ¢ < a9 = ao(n, p), must have a uniquely well-defined start-
ing value £y € L?(2) which is a symmetric two tensor, whose inverse exists almost
everywhere.



Ricci flow of W2-2-metrics in four dimensions 309

Corollary 7.3. Forall p € [2,00) andn € N, there exists ag(n, p) > 0 such that the
following holds. Let Q be a smooth n-dimensional manifold and (2", £(t));e(0,1] be
a smooth solution to Ricci flow satisfying

/ Re(EeNldL@) e [Re(@(t)] < = on @
Q

forallt € (0, T), where ¢ < ag. Then there exists a unique two tensor £y € L? such
that £(s) — Lo in LP () as s \{ 0, where £y is positive definite (except for a measure
zero set), and £71(s) — (Lo) ™ in LP(Q) as s \, 0.

Proof. From (7.6) and (7.7), we see that £(s)se(0,7] and £71(s) se(o,7] are Cauchy with
respect to s in L27 (2, £(t)) for fixed t > 0, if ¢ < ag(2p, n) is chosen small enough,
where £ is as in the statement of Theorem 7.1, so there exists £g, 7o € L2P(2,£(t))
such that £(s) — £o and £7'(s) — rg as s \ 0 in the L??-norm. Furthermore,

8 = C* () (s),
and so for || - [|La = || - [[La(@,¢(r)) for some fixed ¢ > 0, we have

1875 = Co)jird lliLe = 1167 (s)Lxc () — (Lo)jacr* Lo
= [ (s) = r§) i (s) — i ((Lo) ke — Lixc ()|
< @*(s) = riYVEGr )L + 178 ((Lo)jk — i () ILr
< 1€%(s) = ré*ll2n 1€ ) 220 + 1768 120 €0 ke — £ (9) | 20

—0

as s \, 0 in view of (7.4), (7.5), (7.6), and (7.7). Hence, ro = (£o)~! almost every-
where. At points x in the set of measure zero, where £(0)(x) is degenerate, we replace
£(0)(x) by £(¢)(x) for a fixed ¢ > 0. The convergence result still holds, but now £(0)
is positive definite everywhere. ]

Theorem 7.4. For any A > 0, there exist ay, B, S > 0 such that the following holds.
Let (M*,£())¢e0.1) be a smooth four-dimensional solution to the Ricci flow, with
By1)(x0,10) € M, T < 1, satisfying a uniform Sobolev inequality for all t € (0, T},

1/2
( / |f|4dz(z)) < A( / V12 dt) + / |f|2de<z>)
By(ry(x0,2) By (x0,2) By (ry(x0,2)

for any f compactly contained in By)(xo,2) for any t € (0, T], where V refers to
the covariant derivative with respect to £(t). We further assume

/ IRm(E(t))? de(r) + f IRm(£(2))| d (1) < e,
By(1)(x0,2) By(1)(x0,2) (7.10)

IRe(£())] + |VRe(£(t)P/? < % on By(s)(x0,2)
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forallt,s € (0, T]. Then, we have
/ V(60) — £ B dLGt) < It — 51 (7.11)
Bty (x0,1/2)

forallt,s € (0, T] N (0, S], with s < t, where V refers to the covariant derivative
with respect to £(t).

Proof. We first prove that the space-time integral of | VRc|? can be locally, uniformly
bounded in the setting we are considering. This estimate shall in turn be used to
prove the L2 gradient estimate (7.11). In the following c refers to a universal con-
stant independent of the solution. Let n: M — R™ be a Perelman cut-off function,
with n(-, 1) = ™" on By()(xo. 1) and 7(-.1) = 0on M — Byy(x0.3). 20 < Mgy,
|Vn|? < cn with (see [33, Section 7] for details of the construction). Then, using the
Sobolev inequality, Holder’s inequality, and the fact that

[ PORPOd0) <@
By(t)(x0,2)
we see that
0
5 | e nRmP . ato)
tJm
ad 0
_ 2( 9 2 20 2y 2 2
= [ (R (5507) + 7 - (RomP) = P RIRm ) 1)
< / (IRMPAG) + 72 A(Rm[) — 207 VRm]? + o [Rm[?) d (1)

n(Rm * VRm, V), — 20*| VRm|? + cn?|Rm|?) d€(z)

I
g\;

IA

/ (=n*IVRm|? + ¢[Rm|* + cn*[Rm|?) d£(1)
Be(z)(xo,Z)
/ (=5 IVRmP? — J[[V@Rm)? — [Vy2[Rm]? — 29(RmYVoy, VRm)]
By(1)(x0,2)
+ ¢|Rm|? + cn2|Rm|3) di(r)
1
soct [ (VORI + c(rfRm]? R} 20
By(r)(x0,2) 4

1
<arc— / L orm2 dew)
By (x0,2) 4

1/2 1/2
+C([ |77Rm|4 d((t)) (/ |Rm|2d€(t))
By(r)(x0,2) By(r)(x0,2)
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1
e+ (cAyar—1) / IV (iRm) [ (1)
4 Byr)(x0,2)

1
<are -1 [ IV ORm)? d (1)
8 By (x0,2)

if 1 is small enough. Hence, integrating from s to ¢, we see that
t
/ / [VRm|?(r)dx dr < c/ n*|Rm|?(-,s) + ajct < a;c (7.12)
Ky Bg(,-)(xo,l) M

with ajc < 1, without loss of generality. We now turn to the proof of the integral
gradient estimate, (7.11). This is similar to the L?-estimate obtained for £(¢) in (7.1),
but uses the space-time L? bound on the gradient of the Ricci curvature (7.12) that
we just derived, instead of the bound on the Riemannian curvature. In the following,
| - | refers to | - (), and Rc to Re(€(¢)). Defining Q2 := By (xo, 1/2), we see that
Q C By)(x0,1) forall r € (0,79) if o < 1 in view of [33, Corollary 3.3] and the fact
that the condition (7.10) holds. Differentiating the function

10 i= [ 1900 = o) at
for s <t < ty, and using Young’s inequality, we get
ad ad
S f0) =5 /Q V(L) = £5)) 3y dL(0)
< /Q(CIRCIIV(Z(I) —L())[* + 2(VRe, V(L(1) — £(5)))eqry) dL(t)
+ C/Q [6(r) — £(s)[|VRe[|V(£(r) — £(s))[ d£(1)

cq

- O+ C/ [VRe|[V(E(r) — £(s))| d €(r)
Q

IA

+ C/Q [€(t) — £(s)IIVRe[|[V(L(r) — £(s)) dL(2)

coq

IA

o+ s S [ RePac
t oy Q

t—s

1/2
+c(/ |e(r>—as)|2|VRc|“/3dar>) @™ F(1))?
Q

coq

IA

t—s
coq

o) + <@ —s)/ |VRc| d£() —I—c/ 10(t) — £(s)|?|VRe|*/3 d4(r)
o1 Q Q

IA

o) + <@ —s)/ IVRe|? d (1)
r—s aq Q

1/3 2/3
+ c(/ [€(t) —Z(s)|6dé(t)) (/ |VRc|2d€(t))
Q
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2/3
< f(z)+i(z—s)/ |VRc|2d€(t)+c(t—s)1/3(/|VRc|2d€(t))
t—s o1 Q
< f(z)+i(t—s)1/3(/ |VRc|2d£(t)+1),
r—s oy Q
since

/ () — €(s))° < et — )
Q

for sufficiently small oy, in view of Theorem 7.1, and (f — s) < (t — s)'/3, for t <

s < T < 1. Hence,
(05

ad
S0 = f0) + Z0)

t—s
for ap := cay, and

Z(t) := ca; '(t — s)1/3(/ |VRe(t)|> d (1) + 1)
Q
fort < S(n,a1) < 1.Hence, F(t) := f(t +s) fort € (0, S — s) then satisfies
d (0%) ~
—F —F Z
—F(1) = “2F(0) + Z(0),

where
Z(r) = ca;1r1/3(/ |VRe(E(s + r)) > dl(s +r) + 1),
Q

forr € (0, T — s). Thus, for o, < 1/6, we obtain

F([)StaZ/t Z(r)dl"
0

ro2

t
= caz_lt”/ rl/3-e (/ |[VRc(U(r + )2 de(r + s) + 1) dr
0 Q
t
< ca; 't* |VRe((r + $))?dLl(r +s)dr + 1
2 0o \Ja

= ca; '™ (/sm /Q |VRe(U(r)|> de(r) dr + 1)

s+t
<ct® (az_l / / |VRe(E(r))|> de(r) dr + 1)
s By(ry(x0,1)

< ct*?

fort € (0, S — s) in view of Lemma C.1, and the fact that inequality (7.12) holds.
That is,
J@) sclt —s)*
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fort € (s, S). By choosing 8 = a5, /2, we obtain
fv>=1L|ku>—e@»&mdea>5(z—sﬂ

fort € (s, S), as required. ]

8. The Ricci flow related solution

In the sections before Section 7, we constructed a solution g(#);e(o,7] to the Ricci—
DeTurck flow coming out of W22 initial data gy on a four-dimensional manifold,
and we proved estimates for such solutions. In this section we construct a Ricci flow
related solution £(f);e(o,7] coming from the Ricci-DeTurck flow solution constructed
in the sections preceding Section 7. We show in the setting we are considering, that
the Ricci flow related solution £(¢) converges back to some starting value £ locally in
the W1-2-norm, as ¢t — 0. We shall see that the tensor £ is non-negative definite, up to
a set of measure zero. Note that since go and £y are only defined up to a measure zero,
we can arbitrarily change distance induced by g¢ respectively by £y by changing go,
respectively £g, on a set of measure zero, if we try and use the usual definition of
distance with respect to a Riemannian metric, as the following example shows.

Example 8.1. Let g, 4 be smooth Riemannian metricson M = B;(0) CR"”,r > 0
small so that B, (0,r) € B1(0) and x # y,x,y € By(0,r/4), and let

y:[0, 1] = B1(0)

be a smooth length minimising geodesic with respect to 2 from x to y. We define a
new metric g, which is the same as g except on the line . On y we define g(y(s)) =
b2h(y(s)) forall s € [0, 1], for some b € R, b > 0.

The metric g is still a well-defined Riemannian metric, with

BB NS
for some N > 0, N € R, in view of the smoothness of g and the definition of g. This
ensures then that g;; is a Borel-measurable function, since g;; is smooth and g = g
almost everywhere. Using the fact that %8 < g < N§ for some N > 0, we see then
that g is in L? for any p € (0, o0].

We also have, for any piecewise smooth o [0, 1] — B;(0) with o (0) # o(1) that
gijoo: I — R is Borel measurable, since both g;; and o are, and

1

w2l = 8ijoo = N?8;j.
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since this is true for g;;. This means £: [0, 1] — R,

€)= /8 (05350 (9)9507 5)

is a well-defined L!-function, and

1
Lz(0) = /O V&1 (0(5)8507 (5)3507 (s) dis

satisfies :
0< NL&(U) < Lgz(0) < NLs(0) < 00

for all such o.
If we define

d@)(p.q):=_inf Lg(o)

for all p,q € M, where B, , refers to the space of continuous, piecewise smooth
curves between p and ¢ in M = B;(0), then we see that (B;(0), d(g)) is a well-
defined metric space, that is, d(g) is symmetric, satisfies the triangle inequality, and
d(g)(p,q) = 0forall p,q € M with equality if and only if p = ¢. Furthermore,

d(@)(x,y) < Lg(y)(x,y) = Lpp(x,y) = bd(h)(x,y) <d(g)(x,y)
if b > 0 is chosen small enough, and hence

d(g)(x.y) <d(g)(x.y)

if b > 0 is chosen small enough. That is, if we use the usual definition for distance
with respect to a Riemannian metric, distance can change if we change the Riemann-
ian metric on a set of measure zero.

In particular, this example shows that we cannot be sure that

d(g@))(x,y) = d(go)(x, y)

everywhere, as t \( 0, in the case that we have a family of smooth metrics g(¢) which
convergences in the L!-sense (or another weak sense) to a go € L', if we define d(go)
in the usual way,

d(go)(x,y) = inf Lg,(y),
0€By y

where By, is the set of smooth curves going from x to y. If go is bounded from
above and below by a smooth metric, we can change g on a smooth curve between
two given points x and y (as in the example above), so that d(g(¢))(x, y) does not
converge to d(go)(x, ¥), but we still have g(¢) — go in L' ast \ 0.
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Nevertheless, we will see for solutions g(¢) to the Ricci—DeTurck flow constructed
in the previous sections, that d(g(¢))(x, y) does converge to some metric do(x, y) as
t \ 0, where d is defined in a similar fashion to the usual definition of d(g¢). How-
ever, it is necessary to restrict further the class of admissible curves By , between x
and y to the class C; x,, of so-called e-approximative Lebesgue curves between x
and y, and then to take a limit inferior as ¢ — 0 of the lengths.

Definition 8.2. We give two definitions.

(i) For p € [1,00), we say g is an L?-metric, if the following holds. Let g be a
Riemannian metric, such that g (x): Tx M x Tx M — R is defined, symmetric, positive-
definite for all x € M, and locally, writing

~ i~ i ad
8ij (%) 1= g()| 7 (x), = (x)
0; d;
for any smooth coordinates
o:U > U)=UCR", Gp:U—>R
isin L?(0) for all v € R”, where v is any fixed length one (with respect to §) vector
in R”, and gy (x) := gij (x)v 7.
(ii) For x,y € M, we define the set C; x , (g) of e-approximative Lebesgue curves

with respect to g from x to y in M to be the set of paths y: [a, b] = M, which can be
written as the union of finitely many so-called parametrised Lebesgue lines

vitlai-1,ai]l = M,
wherei € {1,...,N},ap =a,ay =b,y =y1 Uy, Uys U...Uyn. Thatis,
y(s) :=yi(s)
if s € [a;—1,a;], and

dp(x,y1(a)) + dp(y1(ar). y2(ar)) + dp(y2(az). y3(az))
+ - +dp(yn—1(an-1), yn(an-1)) +dp(yn (D), y) < &,

and a parametrised Lebesgue line is defined as follows: A parametrised Lebesgue line
for an L'-metric g on M, is a smooth curve £: [b, c] — M with |b —c| < 1/4, such
that there exist smooth coordinates ¢: Q2 — ¢(2) = B;(0) for some p € M, such that
£([b, c]) € Q2 and the curve o := @ol: [b, c] — B1(0) in these coordinates is a line in
the direction e, with speed one,

b+c)

> e1 +se1, o) =—-k, o(c)=k,

o(s) =—
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where k = (¢ — b)/2, and for f(s) := /g11(0(s)), we have

feL'(b,c]) and /C o) ds — tim J1y0) mdx’
b a

—0 wn_lan—l

where here Ty (o) refers to an «-tubular neighbourhood of o with respect to 8,

To(0) = {sel +av | v =1,{v,e;) =0,5 € (_(C;b)’ (c;b))}.

Note that if g is smooth, then

fTa(o') vV g1 (x)dx

c

always holds. Also, an e-approximative Lebesgue curve y is the union of finitely

smooth curves, but may itself be discontinuous, and hence non-smooth.

In the setting that a Riemannian metric is L°° (or weaker), there are various
notions of distance and convergence of distance which may be defined — and there
are many papers in this area investigating the properties thereof — their relation to one
another and to the underlying measures. For one overview, as well as independent
results and proofs thereof, we refer to the paper [5]. Further notions and convergence
results may be found in the papers [1,2, 6, 12, 18,22], as well as the works cited in
these papers. Earlier works can be found in [7]. In our setting it is sufficient to define
distance by considering the class of e-approximative Lebesgue curves instead of the
class of piecewise smooth curves or continuous curves, and then to take the lim inf as
& — 0 of the lengths; see Theorem 8.3 (iv) below.

Theorem 8.3. Let (M, h) be a smooth four-dimensional Riemannian manifold sat-
isfying (2.4), 1 < a < oo and gy satisfy the assumptions of Theorem 6.3, and let
(M, g(t))ieo,ry T < 1 be the smooth solution to (1.1) appearing in the conclusions
of Theorem 6.3. Then

(i) there exists a constant c(a) and a smooth solution ®: M x (0,T] — M to (1.3)
with ®(T/2) = 1d such that

D(t) := O, t):M > M
is a diffeomorphism, and

dp(@(1)(x), (s)(x)) < c(a.m) /|t —s|
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forall x € M. The metrics £(t) := (P(t))*g(¢t), t € (0, T] solve the Ricci flow equa-
tion. Furthermore, there are well-defined limit maps

OO):M — M, &0):= Jim (1),

WO): M — M, W(0):= Jim W(t),

where W (t) is the inverse of ®(t) and these limits are obtained uniformly on compact
subsets, and ©(0), W(0) are homeomorphisms inverse to another.

(ii) For the Ricci flow solution £(t) from (i), there is a value £o(-) = limy\ £(-, 1)
well defined up to a set of measure zero, where the limit exists in the L?-sense, for
any p € [1,00), such that, £y is positive definite, and in Wi;cz and for any yo € M
and 0 < s < t, we have

[ 1)~ ol dt0) < c(go. b 3o
B1(yo)
[ 1) = €l 4t < elgoh poolll
By (yo)
[ Vel dt® < cgo.hp o
B1(y0))

t
/ |Rm(€)|2(x,t)d€(x,t)—|—// |VRm(€)|2(x,s)d€(x,s)ds
B1(yo) 0 JBy(s)(os1)

<c(go.h, p,yo)

sup |[VIRc(£(1)]?t/T2 = 0 ast \ O forall j € N,
B1(yo)

where 0 > 0 is a universal constant, c(go, h, p, yo) is a constant depending upon gy,
h, p, yo, but not on t, and V refers to the gradient with respect to £(t).

(iii) The limit maps
P0):M - M, &) := lim O(r),
'\

WO): M — M. W(0):= lim W()

from (1) are also obtained in the Wléép -sense for p € [1, 00). Furthermore, for any
smooth coordinates :U — R" and .V — R", and open sets U CCU andV CCV

with W(s)(V) CC U and ®(s)(U) CC V foralls € [0, T],for some0 < T < T, the
functions

(Lo)ijoW(0): V — R

are in Lf:)cfor all p € [1,00), and

(g0)ap:V — R and (Lo)ij: W(O)(V) — R
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are related by the identity
(80)ap = Da(W(0))' Dg(W(0))’ ((Lo)i;oW(0)

on V. In particular, £y is isometric to gy almost everywhere through the map W(0)
which is in Wl’p,for all p € [1, 00).

loc
(iv) We define d;, = d(g(t)) and d; = d(l(t)) = O(t)*d;. There are well-defined

limit metrics
do.do: M x M — R;r, do(x,y) = 11\211 de(x,y),
AN
570 =MxM — Rar, jo(p,q) = li\r‘n jt(p,q),
AN
and they satisfy

do(x, y) = do(@(0)(x), D(0)(»)).

That is, (M, 070) and (M, dy) are isometric to one another through the map ®(0).
The metric dy satisfies

d = liminf inf L ,
o(x,y) 1?1\151 J/Gg:,x,y go(¥)

where Cq xy is the space of Lebesgue curves between x and y with respect to go.

Proof. (i) Forr € (0,T), we define y,: M x (0, T] — M to be the solution to

0
SV (D) = V0.0, () = .

where
) 9
V(y.t):=g"(If(g) — F(h)f‘j)(y,t)ébc—k(y) Vy e M,t€(0,T).

The fundamental theorem of time dependent flows (see [21, Theorem 9.4.8]) tells us
that the ¥, (-, s): M — M are smooth diffeomorphisms for all , s € (0, T], and that
Yo, (Weo (P, 1), 8) = Yy (p, s) for all 1o, t1, s € (0, T'], and in particular, that

Vi, (Vi (. 11), 20) = 1d()

for all tg, t; € (0, T']. We shall use these facts freely in the following.
The maps ®(s), W(s): M — M are defined by

O(s)(x) 1= Y¥rj2(x,s) and W(s)(x) := ¥s(x,.T/2)
fors € (0,T],and ®, W: M x (0, T] — M are defined by

P(x,s) = P(s)(x) and W(x,s) = W(s)(x)
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for s € (0, T]. From the fact that ¥, (¥4, (-, 1), o) = Id(-), we have
W(s)o®(s)() = ¥s(P(s)(). T/2) = ¥s(¥r/2(-, ), T/2) =1d()

for all s € (0, T]. Defining
£(s) := (P(5))"g(s)

for s € (0, T'], we obtain a smooth solution to Ricci flow with £(T/2) = g(T/2).
We define ©(0) by

P(0)(x) := Jiglo P(si)(x) = sliino Yt 2(x, 50),
and W(0): M — M by
W(0)(x) := tgiglo W(t)(x) = t}i{‘no Vi, (x,T/2).

In the following we show that these limits exist, and are independent of the sequences
ti \¢ 0and s; N\ O chosen. We have

d
El//T/z(x,l) W [V(¥r/a(x,t), )] < %

due to the fact that |?Vg|? < ¢/¢. Hence,

dh(q)(S)(X), q)(l)(X)) = dh(l//T/z(va)v 1//T/2(X, t))
< 2|\t — /5| <2ey/]t — s

for all ¢, s € (0, T'], which shows that ®(0): M — M is obtained uniformly and is
well defined:

dp(@0)(x), Yr/2(x, 1)) = dp(P(0)(x), D(1)(x)) < eVt

forallx e M.
We now turn to the construction and properties of W. We can estimate

dh(l/ft,- (X,S),x) =< 8\/}

forall s € (¢;, T/2] and for all x € M, in view of the fact that |%(Wt; (x,8))|n <e&/+/s.
In particular, writing everything with respect to fixed coordinates ¢, where

99 101
—8§<h<-—38 and |Dh|*+|D?*h]*><¢
100 100
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on a large ball of radius 1000 and centre point x, we have ¥y, (x, s), ¥y, (x, 5) stays in
this ball. We write x, &, ... for ¢(x), ¢« (h), ... For s > so := max(t;,t;), we have

|Wt,‘(x’s) - sz(x75)| = Wti(x,s) —X| + |X - Wl‘j(x?s)l
< 4ea/s.

We also have for such s,

0

ghp‘[j (X,S) - wtj (x,s)|2
= |wt,‘ (X,S) - 1/ft, (x75)||V(Wt,~ (X,S),S) - V(wtj (X,S),S)|
< 2[DV(m. $)||¥s; (x.5) = Yy, (x.9)

<cla) sup (|"V2g|+|"Vgl* + )y, (x.5) — ¥y, (x.5)|
y€B1000(x)

s?wuw—%umﬁ

where m is some value lying on the line between ¥y, (x, s) and V¥, (x, 5) in the euc-
lidean ball B1¢gg(x). Here we used |h Vg’ |?t/ <ewhent is sufficiently small. Hence,

writing f(s) := |¥y, (x,5) — ¥s; (x, 5)|*> we have
ad €
YO0
s s
for s > max(#;,¢;) = so, which implies 8—3S(s_sf(s)) < 0, and hence

f(s) = 5°((s0)~° f(50))

forall s € [so = max(t;,1;), T/2]. But f2(so) = |1 (x,50) — ¥y, (x,50)|* < 16&%s0
from the above estimate, and so we get

(50)7° f(s0) < (s0)*2es0 < 26(50)' ™* = 2e(max(t;,1;))' ¢ — 0
as max(tj,t;) — 0, and hence
() = ¥, (x.8) =Yg, (x.9)
< 2sfe(max(t;, ;)" 7F < 2T%e(max(t;, 1)) ™ — 0 (8.1)

asti,t; — 0, for all s € (max(t;,t;), T/2], for all x € M. This shows, (¥, (x,5))ieN
with #; \( 0is Cauchy, and hence lim;,\ o ¥; (x, s) exists for all s € (0, T']. In partic-
ular,
W(0)(x) := lim ¥, (x, T/2) = lim W(¢)(x)
\0 N0
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is well defined, and achieved uniformly,
dp(W(0)(x), W()(x)) = lim dy (Y5 (x. T/2). Y1 (x. T/2))
< V2T 2e(1) 72 - 0
for t N\ 0, in view of (8.1).

We show now that ©(0) is the inverse of W(0). ®(0) and W(0) are continuous, by
construction, and are the uniform limits of continuous functions,

sup dp(P(0)(2). ¥7/2(2.1i)) > 0 asi — o0
zeM

and

sup dp(W(0)(x), ¥4, (x,T/2)) - 0 asi — oo.
xeM

For x € M, for any o > 0if i is large enough, we have
dp (@) (W(0)(x)), D(0) (¥, (x,T/2))) < 0.
and

dp(®(0)(2), Y7/2(2, 1)) <0
for all z € M. This implies

dp(P0)(W(0)(x)), x)
< dp(PO)(W(0)(x)). PO) (Y, (x. T/2))) + dn(P(0) (Y, (x. T/2)). x)
= dp(O)(W(0)(x)), ®(0) (¥, (x, T/2)))
+ dp (PO) (Y, (x. T/2)), Y12y, (x. T/2).1:))

< 20.

Hence, ®(0)(W(0)(x)) = x,as x € M and o > 0 were arbitrary. Similarly, for z € M,
for any o0 > 0if i is large enough, we have

dp(W(0)(D(0)(2)), W(O0)(Y7/2(2,4:))) < o
and
dh(W(O)(x)v wt,‘ (X, T/2)) =0

for all x € M, and hence

dn(W(0)(®(0)(2)). 2)
< dp(W(0)(®(0)(2)). W(O0)(Y7/2(2. 1;))) + dp(W(O0)(¥7/2(2. 1;)). 2)
= dp(W(0)(2(0)(2)), W) (Y7/2(z, 1))
+ dp(W(O)(Wr)2(2, 1)), Y1, (Ury2(z, 1), T/2))

< 20.
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Hence, W(0)(®(0)(z)) = z forall z € M, as z € M and o > 0 were arbitrary. That
is, W(0) is the inverse of ®(0).
We further have that

D(s5)(B1—e(x0)) S P(0)(B1-¢/4(%0))
for all s = s(&) > 0 small enough, as we now explain, where
Xo = W(0)od(s)(xp): W(0)od(s) — Id
uniformly as s N\ 0, as was shown above. This means
W(0)o®(s)(B1-¢(x0)) S Bi—3¢/4(x0) S Bi—g/4(Xo)

for s small enough, and hence taking ®(0) of both sides, the claim follows. This is (i).

(ii) Let yo € M and p € [0, 00), and ¢ < ag(p,n = 4) be the constant from The-
orem 7.1, Corollary 7.3, and assume also that ¢ < a1(4, Cs(4)), where a1(n, A) is
the constant from Theorem 7.4 withn = 4 and A = Cg(4), and Cg(n) is the Sobolev
constant from Theorem B.1. The construction of our solution, see Theorem 6.1, The-
orem 6.3 and the Tensor Sobolev inequality, Theorem B.1 (v) guarantee that, without
loss of generality,

L ( )(I"Vg(t)I“ +1"V2g (1)) dh < §*(a)

for all x € M and §(a) is the constant from Corollary 5.4. We also have, without loss
of generality,

|hv3g|213 + |hv2g|2t2 + |hvg|ZZ < 82
on Bygo(yo) fort € (0, T) in view of (e;), and hence
€

[Rm(g())] + [#OVRm[>/? < -

8.2)

on Bago(yo) for ¢t € (0, T), after reducing the time interval if necessary.
By choosing Ry = R1(y9, go) > 0 small enough, we can guarantee that

£
[ ("Vgol* + ["V2gol?) dh <
Bp, (x0) 2

for all x¢ in the compact set B1gg(yo) in view of Lemma B.3. By scaling once, we
have for all such x that

&
/ (I"Vgol® + "V2gol?) dh < =,
Bg (x0) 2
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and
/B (VRO £ V0P dh < 5@
20(X

for all x € M and all x¢ in B1go(y0), which implies
[ (Ve +1'V2e0)P) ah < @
Bao(x)

for all x € M, in view of Holder’s inequality and the fact that §(a) is, without loss of
generality, less than Vol (B2o(x)) for all x € M. Using Corollary 5.4, we see

/ ("V2g ()P + ["Vg)P) dh < ¢
B4 (xp)

for all x¢ in Bigo(yo), and hence using the fact that, without loss of generality,
[IRm(h)| < e, we have

/B RmO) ) dge) =2+
4 (x0

for all + < T, after reducing the time interval if necessary. This estimate with (8.2)
show that the Ricci flow related solution £ restricted to = B4(xg) for any such xq
satisfies all the conditions of Theorem 7.1, Corollary 7.3 and Theorem 7.4 (after scal-
ing once more by a factor 5), and hence the estimates obtained there hold. These
estimates change at most by a factor when we scale the solution back to the original
solution, the constant depending on the scaling factor, & and xo, go and p. These
scaled estimates are (ii) for the given p. As p € [0, co) was arbitrary, (ii) holds.
(iii) From the definition of ¢, in local coordinates, we have

£ (5)(x) = D; @ (s)(x) D; D (5)(x) gap (5)(D() (),
8ap (5)(D(5)(x)) = D W' (s)(D(s)(x)) Dp W (5)(D(5)(x))ij (x, 9),
8ap (9)(¥) = Da W' (5)(0) Dg W (5)(0)Li; (W(5)(1), ),

where we have chosen smooth coordinates as in the statement of the claim of (iii)
of this theorem, y € V, x € U. Notice that g(t) — g(0) and g(t)~! — g(0)~! in
the Lf;c—sense for all p € [1, 00), in view of Corollary 5.7. Hence, we may apply
Theorem 9.1, and we see that (iii) holds.
(iv) For x, y € M, we define
do(x,y) :=liminf inf L ,
o(x,y) := limin yat g0(¥)

where Cg x, is the space of e-approximative Lebesgue curves with respect to go join-
ing x and y, defined in Definition 8.2.
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Let x,y € Br/c(a)(X0), Where Bgc(q)(Xo) is the ball with respect to &, for some
fixed xo € M, where c(a) is a large constant to be determined in the proof. Since
g0 € W?2(Byr(xp)), we know from Lemma B.3 that for any o > 0, there exists
r(o, R,a) > 0 such that

/ ("V2go + ["Vigol*) dh < o*
B2r(2)

for all z € Br(xp).
Scaling go and & once, by the same large constant K, and still calling the new
scaled metrics go, /1, and the new radius «/E R will still be denoted by R, we have

/ ("V2go + ["Vgol*) dh < o*
B>(z)

for all z € Br(xp) and, without loss of generality,

4
sup Z "VIRm(h)| < o*.
M

i=1

Hence, using Corollary 5.4, Holder’s inequality and Lemma B.1 (v),

4
[ (Vs@P + Vs ah <o, Y PV RmG) <o
B2 (2) i=1 (8.3)

1 1 C(jva)
—h < g(t) < 400ah, |"Vig@r) < —L—
2005 = 8(0) = 400ah, "V g(®)] = — 5.

forall j € N, for all z € Br(xp), and for all 0 < ¢ < §,(400a, o), and after scaling
once more by 1/28, for all ¢ € (0, 2].
We first show that
do(x,y) < ligri)iglfdt(x, ¥). (8.4)

Let & > 0 be given. Taking any 0 < ¢ < &% and scaling by g(s) = % g(st), and denoting

the new radius by R, that is

O
R=—R,

NG

~ 1 1
h = _h’ g = = ’
; 8o tgo

and

we see, in view of (8.3), that we obtain a new solution g(s), s € [0, 2], such that

1

h < g(s) < 400ah,
200q"" = 8(8) = 400a

fg ( )(I”Vzg(s)ﬁ +1"Vg(s)|*) dh < 20,
2(z

. 4

i c(j,a) o o .

"VIg(s)| < — Y I'ViRmh)| <o, VgD < c(j.a.0)
i=1
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forallj e N, forall z € BR(xo) and for all s < 1, where c(] a,0) - 0foro — 0,
where B (m) refers to a ball of radius m with respect to h. For later use, note that
R>1 /€2. Let y be a length minimising geodesic between x and y with respect
to g(1). Writing g(1) in geodesic coordinates at any z € B 2(xX0) on a ball of radius
one, we have

(1 - a(o.a)) < §(1) < (1 + la(@.a)])§ on B1o(0).

1
mh < gk =< 400ah fors € [0,2],

where a(0,a) — 0as o — 0.

In the following, any constant ¢ (o, @) with ¢(o,a) — 0 as ¢ — 0 shall be denoted
by a(o, a), although it may differ from the one just defined, and (o, @) is not neces-
sarily larger than zero.

We can break y up into N pieces

V1= )’|[0,1]’ Y2 = V|[1,2], YN—1 = Vl[N—z,N—1]7 YN = V|[N—1,B]

each with length one with respect to g(1), except for the last piece which has length
less than or equal to one. Due to

we have N < c(a)ﬁ. After rotating once, we may assume that any length one piece
of y, going from y(i) to y(i + 1),i € {0,2,..., N — 2}, in geodesic coordinates, with
respect to g(1) centred at z = y(i + 1/2) lies in B(0), and is (in these coordinates)
the line segment
11 —
v: [—5, E] — B2(0), v(s) = se;.

We ignore the last piece of y for the moment.
Using Corollary 5.7 and [Rm(%)| < o, we have

/ 18(1) — Bol? dh < 201
By (0)

forall ¢ < 1, and hence

18— g0l < a(o,a).
B1(0)

Let ¢ > 0 be given. Using Lemma 10.2 we see, by choosing 6 = o(¢) > 0 small
enough, that there exists an x € B?~1(0) such that 1/g11(0) (-, x):[-1/2,1/2] — R" is
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measurable, £:[—1/2,1/2] — R”, £(t) = (¢, x) is a Lebesgue line between (—1/2, x)
and (1/2, x), and

/11//22 V&1 (0)(s,x)ds < 1+e=(1+e)ds((—1/2,x),(1/2,x))
< (1 +26)dg(y ((—1/2. ). (1/2..).
which tells us for the original curve y|[o, 1], that there exist Lebesgue curves
vit[i —1,i] = Bg(xo)
foralli € {1,..., N — 1} with respect to g(0) such that
dp(vi(i = 1),y(i = 1)) <c(a)e and dp(v; (i), y(0)) < c(a)e,

and
Lg,(vi) = (1 + &)dgy(y(i — 1. y(@))
foralli € {1,..., N — 1}. The curves v; are the curves £ constructed above. Adding
up all the curve segments, we have
N-2
> d3(0i(0). vi41 (1)) < Nec(a) < Ree(a).
i=1
and hence
N-2
> dpi(i).vig1 (i) + di(x,v1(0)) + di(y. vy—1 (N — 1)) < Rec(a) + 2,
i=1

and also

N-1
D Lg, (i) < (1 + )dpy(x. y(N = 1)) < (1 + &)dgry(x. )
i=1
as y was a length minimising, with respect to g(1), geodesic between x and y. Scaling
back the solution we had at the beginning of this proof of this claim, (8.4), that is
defining g(s) = ¢ g(s%), for the r we chose there, we see at time ¢ that
N-1
D Lgyi) < (1 + &)dg((x. y)
i=1
and
N-2
D dn(i(i), vig1 () + di(x,v1(0) + dp(y, vv-1 (N — 1))

i=1
< Rec(a) + 2/t < Rec(a) + 2¢
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in view of the choice of t < ¢*. That is, v = UlNz_ll v; is an Rc(a)e-approximative
Lebesgue curve and Lg,(v) < (1 + &)d;(x, y). Hence,

inf Leo(y) = (1 4+e)d:i(x,y)

)’ECRC(a)a,x.y

forallt < T(e,a, go,x,y, R, h), and this shows

RTI . < fim
do(x, y) = liminf yelcri,y Lgo(y) < liminfd;(x, y)
forall x,y e M.

Now we show that

do(x,y) :=liminf inf Lg,(y) > limsupd,(x,y)
e—~>0 yeCex.y AN

for all x, y € M. From the definition of C, x ,, y € C; x,y, may be written as y =
U,N=1 yi, Where each y;:[a;, b;]— M is a parametrised Lebesgue line. Leto': [¢;, d; ] —
B, (x) be one of the segments y; written in smooth coordinates, so that o(¢) = te;.
Since the coordinates are smooth, and Wh < g(t) <400ah, we see that there exists
a constant C depending possibly on the coordinates and a, such that C5 <h<C$é
and %5 < g(t) < C§ in these coordinates.

Using Corollary 5.7 and [Rm(%)| < ¢ < 1, we see that we have

/ lg(e.1) — go(x)[2 dx < ci
B> (0)

with respect to these coordinates for all # < 1 for some constant ¢ = ¢(C).
Using Lemma 10.1, we see that for all ¢ > 0, there exists a zp > 0 such that

d;
Lio(@)i= [ VsOn.0) = (1= 0d(g) (o). (@)
for all ¢ € (0, 7p) in these coordinates. That is,

Lgo(vi) = (1 —&)d(g () (vi(a:), yi(by)).

Hence, estimating on each Lebesgue line y; in this way, we see (setting Yy +1(an+1)
:= y) that, there exists s¢ such that

Lgo(y) = Z(l — &)d; (vi(ai). vi (b))

N N
Z (1 —&)d (yi (@), vi+1(@i+1)) = Y di(vi(bi), vis1(@i+1))

i=1
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N N
> (A —&)di(yia), vi+1(@i+1) — ¢ Y_ dn(yi(bi), yir1(ait1))
1 i=1

v

1 —e)di(y1(a1), yn+1(an+1) = y) —ce
1 —e)d(x,y)—2ce

v

fort € (0, s¢). That is, for fixed x, y € M, we have

do(x,y) = limsupd,(x, y),
t\0

in view of the definition of dy and the fact that & > 0 was arbitrarily chosen in the
argument above. Combining the lower and upper bound proved for dy(x, y), we have

do(x,y) := liminf inf L = lim d,(x. y).
o(x,y) imin yeg;x’y 20 () ,{% 1(x,y)

as claimed.
The property do = lim,\ o d; now follows easily from the definitions and the fact
that ®(¢) converges uniformly to ®(0) as ¢ \ 0:

do(x, ) := do(@(0)(x), D(0)(»))

= d(®(0)(x), D(0)(»)) + &(x, y. 1)

< () di((0)(x), D(t)(y))
+ (5) di(D(1)(). DO)(y)) + &(x, y.1)

< (=) di(@O)(x), D)) + () di (D(1)(x), Do(x))
+ (5) di(D(1)(), DO0)(»)) + &(x, y.1)

< (=) di( @) (x), D)) + (—) c(n,a)dp(D(t)(x), D(0)(x))
+ (5) (. @)dp(@()(y)., PO)()) + &(x. y. 1)

= dy(x, ) + (=) c(n,@)dp(D(1)(x), D(0)(x))
+ (5) (. @)dp (@) (y). PO)(»)) + &(x, y. 1),

where e(x, y,t) — 0 fort X\ 0. d.h. gt(x, y) — c?o(x, y) forz N\ 0. [

9. Metric convergence in Sobolev spaces

Theorem 9.1. Let (M, h) be a four-dimensional Riemannian manifold satisfying (2.4).
We assume that there are continuous maps W(0), ®(0): M — M inverse to one
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another such that for all compact sets K C M,

sup dp(P(r)(x), ®(0)(x)) >0 asr — 0,
xeK

sullz dy(W(r)(y), WO0)(y)) >0 asr — 0,
ye

where ®, W: M x (0,T) — M are smooth maps such that W(s): M — M, ®(s) are
smooth diffeomorphisms inverse to one another for all s € (0,T).

Let £(5)se0,1), 8(8)seo,1) be smooth families of Riemannian metrics isometric
to one another through the smooth maps ®(s) and W(s):

U(s) = D(s)"(g(s)).  g(s) = W(s)"E(s).

Assume that we have chosen smooth coordinates ¢: U — R" and y:V — R”, and
open sets U CC U and V. .CC V with W(s)(17) cc U and @(s)(ﬁ) CC V forall
s €[0,S], W(s)(V) cC U forall s €0,S] for some 0 < S < T. That is, in these
coordinates, we have

Li; (5)(x) = D ®%(5)(x)D; PP (5)(x) gap () (P(5)(x)),
8ap (5)(D(5)(x)) = Da W (s)(D(5)(x))Dg W/ (s)(D(s)(x))Lij (x,5),  (9.1)
8ap(5)(y) = Da W' ()(») Dg W7 (s)(»)Li; (W(s)(y), 5)

forx € U, y € V. Assume further, that there exist Riemannian metrics £(0) and g(0)
whose inverse exists almost everywhere, so that g(0), £(0), g=1(0),£71(0) € LE _ for
all p € [1, 00) such that
(i) L(s) = £0),£71(s) — £71(0), g(s) — g(0), g7 (s) > g7'(0) as s — 0
locally in L? forall p € [1, 00),
(ii) for any compact set K € M, for all s € (0,T), p € [1, 00), there exists a
constant ¢(K, h, p) such that |[€(s)|lw12x) + 18 Iw1.4x) < c(K,h, p),
(iii) there is a constant a > 1 such that %h <g(s) <ahforalls € (0,T).
Then, D ®(s) is bounded in L? (U) and DW(s) is bounded in L? (V') uniformly inde-
pendent of s € (0, T). Furthermore, ®(s) — ®(0) and W(s) — W(0) locally in WP
forany p € [1,00), £(0)oW(0) is in LY for all p € [1,00), and £(0) and gq are iso-

loc
metric to one another through the map W(0) which is in Wlic’p ,forall p € [1, 00),

(80)ap = Da(W(0))' Dg(W(0))! ((£o)ijoW(0))

on V in the LP-sense for all p € [1, 00).
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Proof. We consider in the following only s € (0, .S). The first identity of (9.1) implies:
h¥ (x)i (5)(x) = BV (x) D; @ (5)(x) D; D (5)(x) gp () (P(5) (x))
> =T (1) D@ (5)(1)D; B (5) (s (B(6) ().

and hence using the fact that 1%/ ¢;; (s) is locally uniformly bounded in L? independ-

ent of s, we see that D ®(s) is locally uniformly bounded in L7, that is independent
of s, for any p € [1, 00):

/ﬁ |17 (x) D; (®(5))%(x) D (D(5))? (x) g (B(5)(x))|? dip(x) < e(p,...) < 00,

where ¢(p, . ..) is a constant depending on p, U, a, {, h. Constants which only depend
on p, (7, 17, 0, v, O, W,a,0,h, g, ', h~!, g7!, and importantly do not depend on s
shall be denoted by c(p, .. .), although the value may differ from line to line. In view
of the uniform convergence of ®(s) and W(s) we may assume, by choosing geodesic
coordinates with respect to s around m and ®(0)(m) without loss of generality, that

U =B,(m)=:B and V = B,(®(0)(m)) =: B,
so that %50,/3 < haﬂ < 25043 on 17 and %5,']' < hij < 28ij on [7, and
B = Bz(m) € W(s)(B) € B = B;(m)
for s sufficiently small. With respect to these coordinates, we have
n
[ X ipiet e dx < c(....
i,a=1

for s sufficiently small. Using the third identity of (9.1) and these coordinates, we see
that

n

/ﬁ ( 3 (Dawi(s)(y»z)pdy

a,i=1

- /B 6% Dy W (5)(») D W (5)(3)8i5 17 dy
<e(p...) /B 1198 (3) D W (8)(0) D W (5) (9 sy (W(s) (). 9)I7 dy
= c(p-) [ IDWOI iy 0)

<c(p....) /B I DWE) w501+ BOW () 25 o () d

[in view of (D.1) of Theorem D.1]
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=c(p....) /B 11 24g ()17 () (1 + |1l oW(9)) () dy
1/2 .
< et [ gap 6 P dy) ( [+ mi e 0) dy)

1/2
e+ ( [z ewoma) )

1/2

1/2
= ¢(p... .>(1 + ( / R[22, 0W () () | DWS) [ () DB(s)oW(s) ]| () dy) )
[since DW(s) - D®(s)oW(s) = ID]

1/2
<cp. 1+ iz, @IDeG @) )

( W (s)(B)S By (m)
<c(p,--.)

since (£)~!, g and D ®(s) are bounded locally in L? independently of s, for s suffi-
ciently small, and we have used the transformation formula, and the notation || 4| to
represent det(A).

We also have

[E |D(g50®(s))|** (x) dx
< / |D(g50®(s)[* (x) dx
W(s)(B)

=/ _1((Dgs)o®($)(x) - DD(s)(x)[*~* dx
W(s)(B)

1/q 1/r
5(/ A(|Dgs|o<1>(s))“—8/2(x>dx) (/ A|D<1>(s)|’<4—8>(x)dx)
W(s)(B) W(s)(B)
where ¢ = (4— (¢/2))/(4— ), r = 1/(1 = (1/g))]

1/q
<c(p(e),..)) (/W( . |Dgs|* %20 ®(s)(x) dx)
=c(p(e),...)
1/q
X (/ | Dgs* " 20®(s)(x) - | DW(s)o®(s)(x) ||| DD(s)(x)] dX)
W(s)(B)
[since I = D(W(s)o®(s)) = (DW(s)oD(s)) - DD(s)]

1/q
— c(p©)...) ( [B Dy () [ DW(s)() dy)



T. Lamm and M. Simon 332

1/qv 1/qu
< c(p(e)...) ( fB Dy () dy) ( fB | DW )] dy)

[wherev =4/(4—¢/2),u =1/(1 —1/v)]
=c(p(e)....)

for sufficiently small s > 0, where c(p(e), ...) is independent of s, and 2 > ¢ > 0 is
arbitrary, since Dg is bounded in L* due to the assumptions, and DW(s) is bounded
uniformly in every L? for every fixed p, and we used

1/r
(/ - |D®(s)|"“ 9 (x) dx) <c(p,s,...).
W(s)(B)

Hence, for any sequence #; > 0 with t; — 0 as i — oo, we can find a subsequence s;
with s; \( 0 such that (g, )0 ®(s;) converges strongly in L? to some Zyg on B for
all p as s; goes to zero, in view of the Sobolev embedding theorems (see, for example,
[14, Theorem 7.26]). Also, Z satisfies

1
@ Sap < Zop < C(a)dyp

on B since %80(,3 < hag(-) < 2848 On @(s)(B) € V and alh < g(s) <ah.

For a sequence 0 < s; \ 0, we write g(i)=g(s;), P(i)=D(s;), and £(i) :=£(s;7).
Using (9.1), we see

88 = £(i)™* (x) Ds (1) (x) D,y B ()P (x)g (i)apo@(i) (x),
and hence

0= £(i)"* (x) Ds ()*(x) D ®(i)P (x)g (i )p oD (i ) (x)
— () () Ds@(j)* (x) Dy ®()P (x)8(/)apo® () (x)
=L05°(X)Zap (x)(DSCI>(i)“(x)D,d>(i)/3(x)
— Dy ®(j)*(x) D, () (x)) + err(i. j)(x)
= |D®(i) — DR(j)7, 7 (x) + err(i, j)(x),

where err(Z, j) is an error term which goes to 0 in the L?-sense, on B for any p €
[2,00) as i, ] — 00, and hence, using (D.2) of Theorem D.1, we see

| 1006 = DO()IZs ) dx
< c(p...) [ 1DOG) = DOG)IF () dx

<clp) [ (14 16R)P@IDOG) ~ DOG)IE, ,x)dx
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1/2

1/2
e L0+ 16R) w0 ax) ([ 1D060) - Do 0 ax)

1/2
— c(p... .)( é(err(i,j))“(xwx) ,
where

/~ lerr(i, j)[*? — 0
B

asi, j — oo. Thatis, D®(i)| 5 is Cauchy in L?(B). Since ®(i) — ®(0) in locally,
uniformly, and hence locally in L? for any p < oo, we see ®(i) — ®(0) in W2 (B)
asi — oo. In fact, ®(s) — ®(0) in WL-P(B) as s \ 0. If this were not the case, then
we could find a sequence of times #; — 0 such that

| D) — ¢(0)|W1,p(§) >0 >0.

Repeating the above argument, we see that a subsequence ®(s;) of ®(¢;) converges
to ®(0) in W17 (B), which contradicts

| (1) — cID(O)|W1.p(1§) >0 >0.

We now show that a subsequence of £,,0W(t;) converges in L? locally for any
sequence #; \( 0. For 0 < 4§ < 3, we have (where here the norm | - | refers to the
euclidean norm)

/A |D(L,oW(5)[1 dy
B
- / (DLW (s) DW(s)|"+ dy
< /A |DL 2 oW (s) dy + /A [IDW(s)|" dy
B B
with v = 1/(1— (1/g)), g = (1 + 28)/(1 + §)]
< /A |DE) oW (s)dy + c(v(é),...)
B
- /E(wm”z‘*oms))||Dd>(s)oW(s)|| IDWE) dy + (6. ..)

=/ DM dx || DD(s)| + c(v(8),...)
W(s)(B)
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5/ ) |D£|1+45dx+/ _IDO(s)|1? dx + c(v(8),...)
W(s)(B) W(s)(B)

[with p = 1/(1 = (1/9)).q = (1 + 48)/(1 + 28)]
< c((d)....).

where c(v(§), .. .) is independent of s. Hence, a subsequence (s;);en of (#;)ieN satis-
fies £k (s;)oW(s;) — Rjk in L*® (B) for some R € L*(B) from the Sobolev embed-
ding theorems (see, for example, [ 14, Theorem 7.26]). In particular, £; (s; ) oW (s;) —
R almost everywhere on B.

On the other hand, the transformation formula for smooth diffeomorphisms shows
us that

[ 16w dy = [ oW IDOG W OIDW )] dy
~ [ jripec)] dx
W(s)(B)
<c(p....)
in view of Holder’s theorem, since £5 and D ®(s) are uniformly bounded in L? (B) for
all p € [1, 00). This shows us that £(s;)oW(s;) — R in LP(§) for all p € [1, 00) and

that R € L?(B). Similarly, £(s;) " YoW(s;) — R™! with R~V in L? for all p € [1, c0)
after taking a subsequence

|D(Y (s)oW(5))|' 0 = [£* (5)€7! () DLyes (s)oW(s)|' 2,

and hence a subsequence of £/ (s )o W (sx) converges in L*® to some HY/ in L*®.
We also have

/A oW (s)[? dy = / oW (s)[7 | DD(s) oW (s)| DW(s)]| dy
B B

- / 1P D) dix
W(s)(B)

=c(p...).

and so €9 (s, )oW(sy,) — HY in L?(B) for all p € [1, 00), where (sg,)ren is a
subsequence of (sg)ren- We also have

85 = 7% (51, )oW (si, ) iem (si,)oW (si,) = H7* Ry

in Lp(é), and hence almost everywhere, and hence H is the inverse of R almost
everywhere. After changing the function H on a set of measure zero, H is the inverse
of R everywhere.
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Using (9.1), we see
8y = g7 (n) () Da W (5)(y) Dp W () (9)Lij (W(5)(y). 5),
and writing W(k) := W(s;, ), g(k) := g(si;), ..., we have

0= g(k)P*(y) Da W' (k)(y)Dg W (k) (y)L(Kk)i; (W(k)(y))
— gWP*(Y)Da W (1)) D W (1) (»)L(1)i; (W(T)(y))
= g(0)P* (V) (D W (k) () D W (k)(y) — Da W (1) () D W/ (1) (1) Rij ()
+err(k,l)(y)
= |DW(k) — DW()I} gy + err(k, 1),

where err(k,l) — 0 in LP(E) for all p € [1, c0). Hence, using (D.1) of Theorem D.1,
we have

[ 10w = DWW dy < c(p...) [ IDWE) = DY, dy

<c(p...) / IDW (k) — DW()[2hy ) (1 + |h[Z) dy

1/2
<c(p,.. (/ |DW (k) — DW(Z)lg(O)R )

1/2
=c(p,,,.)(/§ |err(k,l)|4pdy) )

and hence W (k) is Cauchy in W12 (ﬁ), and hence converges. Here we used that

/A h* d
B

is bounded, which follows from the fact that R~! = H € L4 forall ¢ € [1, 00). Using
a similar argument to the one we used for ®, we see that W(s) — W(0) in W -7 (E ) as
s \{ 0, i.e., that the convergence W(t;) — W(0) in W1:? (§) holds for all sequences
0<t; = 0.

We saw that £(s)oW(s) converges in LP(E) for all p € [1,00) as s \ 0. We
would like to further show that the limit function is £(0)oW(0).

Using the change of variable formula for smooth diffeomorphisms, we see for the
same coordinates from above, for any B,(y¢) CC B and any cut-off smooth non-
negative function 7 with support in B,_2.(y¢) that

/ LsoW(s)-ndy
By (y0)

:/B ( )es"W(S)"?Oq’(S)OW(S)-||D<I>(s)||oW(s)||DW(s)|| dy
r—2e\0o
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_ / ty - 7o®(s) - [ D(s)|| dx
W(s)(Byr—2:(y0))

Lo - no®(0) - | DP(0)| dx + err(s)

/W(S)(Br_gm(ﬂ)))

for any § <'s, where err(s) — 0in L as s \ 0 since D®(s) - DP(0) in L{ and
®(s) — P(0) uniformly as s \( 0 and &5 — o in L as s \ 0, and nod(s) has
compact support in W(s)(Br—2¢(y0)) € W(8)(Br—¢/4(yo)) for s, § sufficiently small.
Observe that ®(0), W(0) are homeomorphisms which are continuous representatives
of Wlsc’p -functions with p > n, and so they both satisfy the Lusin N -property (see [25,

Corollary B]), and hence the change of area formula is valid for ®(0) and W(0)
(see [24, Proposition 1.1]):

/ Lo - no®(0) - || DD(0) || dx + err(s)
W(8)(Br73/4(y0))

/ LooW(0) - ndy + err(s) — / LooW(0) - ndy
P0)(W(8)(Br—s/4(¥0))) B,

as s \ 0. As this is true for any continuous 7 and ball B, (y) of this type, we see that

L(s)oW(s) — R = £LyoW(0)

almost everywhere and in LY , since £(s)oW(s) converges in LY for s \ 0, for all
p € [l,00),

/ nl(s)oW(s)dy — / nRdy = / n€(0)oW(0) dy,
and hence

/ 1(R — £(0)oW(0)) dy = 0

for all non-negative cut-off functions of this type. Hence, using the fundamental
lemma of the calculus of variations, we have,

R — £(0)oW(0) = 0

in L1 (§), and hence R = £(0)oW(0) almost everywhere in B, (y¢). Returning to the
last identity in (9.1), we see that

g(0)qp = Da W' (0)Dg W/ (0)L;;(0)oW(0)

almost everywhere and in the L”-sense.
An almost identical argument shows that g, (s)o®(s) converges to gqg(0)o®(0)
in L?, as we now explain. Let C = W(0)(B,(y9)) and 5 a cut-off function with
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compact support in W(0)(B;—4:(y0)). Then n = 0 outside of W(s)(B;—2:(y0)) and
W(0)(Br—4:(y0)) € W(s)(Br—2:(y0)) for sufficiently small s > 0. Hence,

/ g(5)o®(s)y dx = / ¢(5)o®(s)7 dx
C W(0)(Br—4¢(y0))

/ g(5)0®(s)n dx
W(S)(Br—Zs (YO))

[ g(5)o®(s) - oW (s)od(s) - [[DW(s)[[oP(s)[| D D(s)[| dx
W(s)(Br—2¢(»0))

_ / g(s) - noW(s) - | DW(s)|| dy
B, _>:(yo

— [ W@ [DWO ] dy +errls)
By _2:(y0)

/ 4(0)o®(0) - ndx + err(s) — / ¢(0)o®(0) dx
W(O)(Br—Zg(.VO)) C

as s \, 0, where we have once again used that the change of variables formula is valid
for ®(0) and W(0). Hence, since g(s)o®(s) — Z in L?

loc» W€ have

2(5)o®(s) > Z = g(0)od(0)

in LP(C) as s N\ 0 for all p € [1, 00), in view of the fundamental lemma of the
calculus of variations. Hence,

g(5)o®(s) — g(0)od(0)
inL?

loc 38 5 N\ O forall p € [, 00). Returning to the first identity in (9.1), we see that
this implies

L (0)(x) = D;i % (0)(x) D; D (0)(x)gap (0)(P(0)(x))

almost everywhere and in the L?-sense. ]

10. Distance convergence in Sobolev spaces

Lemma 10.1. In the following Blr‘ (0) is a k-dimensional ball of radius r > 0 in R¥
and middle point 0. Let ¢ > 1 and g:B%(0) x [0, 1] = R™" be a family of non-
negative two-tensors, such that

o

2

80O ~ g dz < e %5 <g(t) < c8

forallt € [0,1), where g(t) are smooth for all t > 0 and g(0) is in L?.
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Let o:[—1,1] — B5(0), o(s) = se; be a Lebesgue line with respect to g(0), that
is, the function

Ve0)11(,):[-1,1] x BY~1(0) € B5(0) — RS

is measurable,
Vg(0)11(s,0): B} 1(0) — RS
is measurable,

Ve(0)11(s,): BT (0) —» RY

is measurable for almost all s € [—1, 1],
Ve (. x):[-1,1] > Ry

is measurable for almost all x € B?~1(0), and

/ VO 01ds = Jim ——— f /B 1 VEOTG ) dxds
= lim ——— / vg0)11(2)dz,

a—0 a)n 1al’l 1

where dx is an (n — 1)-dimensional Lebesgue measure, and dz is an n-dimensional
Lebesgue measure,

To(o) := {o(s) + B0, v) |se[-1,1,veR" |v|=1B8€cR,|B| < a}

is an o tubular neighbourhood of o, w,—1a" ' is the (Lebesgue) (n — 1)-dimensional
volume of

Tu(o(s)) := {a(s) + B0, v) [veR" ! |v=18€cR,|B| < a}.

Then, for all ¢ > 0, there exists a ty > 0 such that

1
Lgy(0) := /_1 VE0)11(5,0) = (1 — &) d(g (@) (o (=1),a(1))

Sforallt € (0,1p).

Proof. We calculate

_[ _ et VEO0) dy
L) = | Va@u01ds = 2D LT - R

ety (VEO D) = VEO () + Ve () dy
- Vol(Bf,~1(0))

— R(a)
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- Jyetn) —1VEO 1) = Ve + Ve (y)dy R
- Vol(B2~1(0)) ~ k@)

[using |v/a — vb| < v/|a — b| fora,b € R*]

= Jreruio V1O G) =DM + Ve () dy
- Vol(By 1 (0))

(fyer, ) 18110 — O ()2 dy)'"

- Vol (B2~ (0))
fyeTa(o) g(H11(y)dy
Vol(B1(0)) R(@)

—2ctY*(Vol (B2~ (0)))3/* N JeeBr1(0) f_ll Vet)i1(s,x)dsdx

— R()

(2Vol(By " (0)))/*

- Vol(B2~1(0)) Vol(By~1(0)) @
—ct/4 Jremp~10) Ls(0x) dx
= (Vol(B1—1(0)))1/4 Vol(B;~1(0)) ~
ct 1/4

e + inf Lo (0y) — R(c
VOIBETONF ey 2@~ R@)

>
~ (Vol(By~1(0))) /4

+ inf{d;((—1,x),(1,x)) | x € B271(0)} — R(), (10.1)

where R(«) is independent of ¢ and R(w) — 0 as « \( 0, and oy: [—a,a] — R" is
0x(s) = (s, x). Now using the equivalence of g(¢) to § with the constant ¢, we see
that

inf{d; ((—1.x). (L.x)) | x € BE~1(0)}

> dt((—l,O),(l,O))— sup d;((—l,O),(—l,X))— sup dt((l,O),(l,X))
xeBL1(0) xeBL1(0)

= dt((_l’o)v (1’0)) - CIOll

independently of ¢, and hence choosing ¢ = «2%0"

see that

and o = «/(e) small enough, we

Lg() (0) = (1 - E)dt((_l’ O)v (1’ O))

in view of (10.1), and the fact that

dy((~1,0),(1,0)) % -0

(since g(t) > %8). [
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Lemma 10.2. For all ¢ > 0, there exists a« > 0 such that if g is an L*-metric on
B1(0) € R”, the standard ball of radius one and middle point 0 in R”, with

/ g -8 <a.
B (0)

then there exists an x € B?~1(0) such that

e[ 2)

is measurable, 0:[—1/2,1/2] - R", 0(t) = x + eyt is a Lebesgue line between
(—1/2,x) and (1/2, x) and

[ Vet =1+ e=ds((-2x). (3.0)) +e

1/2 2’

Proof. Fubini’s theorem tells us that the function
1/2
FERO SR fw= [ VenGds

is well defined for almost all x € B;‘/_‘ll
by f, and the function

FEL=-RE fo= [ VenGonds
Bi7a ()
is well defined for almost all s € [—1/2, 1/2] and defines an L!-function, and

Aw©ﬂmw=/méw VoG dxds

(0) and defines an L!-function, also denoted

1/4 —1/2 JBY 4 (0)
1/2
-/ Venbmdsdx = [ Ve @) d-.
BY(0) J—1/2 B (0)x[~1/2,1/2]
This also implies that almost every x € [B%i’/_“l (0) is a Lebesgue point of f, that is
Jop—1o [ f0) = f(x)| dy
— 0
Wp_1r"1
as r N\ 0 for almost every x € [B;‘/;l (0) (see [13, Corollary 1, Section 1.7]), and as a
consequence
Jer—10 SO dy
O f()
Wp—17
as r \ 0 for almost every x € IB%’I’/_41 (0). That is, almost every curve

Uy [—1/2,1/2] = B1(0), vx(s) := (s, x)

for x € IB%’I‘/_41 (0) is a parametrised Lebesgue line.
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We wish to estimate the measure m of the set Z C B}, /4 1(0) of x € BT, /4 1(0) such

that
1/2
[ JenG.x ds
~1/2

is well defined and for which
1/2

Vgu(s,x)ds > 1+a,
—1/2

where @ := (o)1/8 (— 0 as @ — 0). We will see that m < a(n)a'/8. Using | /a — v/b|

< /|la —b|fora,b € RT, we see that

1/2
a>/ / |g11(s,x)—1|2dsdx
B 1(0) _

1/4

1/2

/ / lg11(s, x)—1|) ds dx
B (0) J-1/2
1/2

/ / |vg11(s,x) — 1|*ds dx
BY3(0)
4
(fB7/41(0) f—l/z |V/g11(s,x) — 1] ds dx)

(Vol(B 7 (0) x [-1/2.1/2]))’

1/2 4
= e, (/B" 1(0)/ [vVg11(s,x) — 1|dsdx)

1/4 —1/2

1/2 4
- (] (G- sl x)
1/4 -
1/2 4
Z%(/ I/ (\/gn(s,x)—l)dsldx)
1 1/2 4
= (L1, Vet = ar)
1/2
=%(// \/gll(sxds—ldx)

1 1
—>(/z°“’x) Z " @

m* < C(”)O‘ c(n)a 12,

which implies

that is,
m = in—l(z) < (c(n))1/4a1/8 < a1/20
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for o < 1/(c(n))*. For & > 0 given, we now choose o = 1907 5o that m < &". But
then
£ 1z n B (0)) > 0.

Otherwise, £"~1(Z¢ NB2~1(0)) = 0, that is, £"~1(Z N B"~1(0)) = wy—1£", and
as a consequence

" >m =" Z)> LN ZNB"(0) = wy—16",

which is a contradiction.
Using this, with the fact that for almost every x € B”~1(0) the curve

Uy [—1/2,1/2] = B1(0), vx(s) := (s, x)

is a parametrised Lebesgue line, we see that it is possible to choose an x € B”~1(0)
such that

1/2
/ VeO) (s, x)ds <1+a =148 <145
~1/2

and so that v, is a parametrised Lebesgue line, as claimed. |

11. Uniqueness

Lemma 11.1 (L2-lemma, cf. proof of [10, Lemma 6.1]). Let M be n-dimensional
and g1, g2 be two smooth solutions on M x [0, T] to the h-Ricci—-DeTurck flow, and
let

- 1 . 1
=g —g, (%= E(g‘fb + g8, (= 3 gt — g4b).

Then the quantity |€|i satisfies the evolution equation:
d ~ ~
EW = LPIV VP =2 VEE 4+ 0k L5 VP (g1 + £2)
bl kL gy %"V x"Vg +0x gyt %L x"Vg %"V g,
+lx gyt x gyt * "V« g, +lxgyt x gyt « "V g, %"V
+ €% 0% gy *Rm(h) + € % £ % (g2)"" * Rm(h), (11.1)

where T * S refers to contractions of the tensors T and S involving h™! and
2 ij 1,k
|Z|g,h = gl]h shvrzikvzjsr

for a zero-three tensor Z.
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Proof. The formula was proved in [10] for the case that # = § is the standard metric
on a euclidean ball B;(0), and hence the curvature Rm(#) = 0. We carry out a similar
argument to the one given there, explaining why the term arising from the curvature
Rm(%) in the evolution equation of |£|? in this setting can be written as

€% 0% g1« Rm(h) + £ % € x (g2)~" * Rm(h).
‘We then have

0
ot

= gi""Va"Vpg1 + g7 * g7 " Vg1 x "V

— (&))" (g1)iph?? Rjxg1(h) — (g1)* (81)jph? Rixgi (h)
— g3V, "V gy — g5 % g5 x 'V gy % "V g,

+ (22) 1 (22)iph?9 Rjkgi (h) + (22)%' (22) ;5P Rikg (h)

= S+ VAV 4 S (68— Vet g2)

+ (g — g ) kT x Vg kMg + g3 k(g7 — g3 ) x "V x"Vgy
+ gy kg xRV + gyt x gy kY gy MV,

— O hP9 (g1)ip Rikgr (D) — T 19 (g1)jp Rjkqr (h)

— (g2)" i phP9 Rjtgr (h) + (2)¥1€;phP Ry g1 (),

which we can write as

a ~ ~
o 0= TNV + EPRY MV (g1 + g2)
gy «"Vg x"Vg + g5t 15"V x"Vg,
+ert gy w VeV g x gyt 1V gy % VL

+ 0% g1 * Rm(h) + £ % (g2)~ ! * Rm(h).

The formula now follows from this equality, combined with the facts that

a%wi = 2(@, a%e)h, 2,298 1y, v 0), = 198 v, vy e)? - 2|hvz|§7’h. .

Using the previous evolution equation for the difference between two solutions of
the h-Ricci—-DeTurck flow, we are now able to show that the solution constructed in
Theorem 6.1 is unique among all solutions satisfying (a;), (b;), and (c;) with ¢ suf-
ficiently small. The proof below slightly resembles the argument used by Struwe to
prove a uniqueness result for the harmonic map flow in two dimensions, see the argu-
ment given in the proof of uniqueness in the proof of [34, Theorem 6.6, Chapter I1I].
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Theorem 11.2. Let M be four-dimensional and g(t), 0 <t < S, be a solution of the
h-Ricci—DeTurck flow with initial condition gy € W22 N w ke satisfying (a) and (b).

loc loc

Assume additionally that g(t) satisfies the estimates (a;), (b;), (c;), and (d;) from
Theorem 6.3 for all 0 <t < S. Then there exists a time Ty,x = Thnax(n,a) € (0, 5),
so that the solution is unique for all 0 < t < Tiyax-

Proof. We let g1, g» be two solutions and as above we let [ = g1 — g,. Next we
multiply (11.1) with n*, where 7 is a cut-off function which is equal to one on B /2(x)
and zero outside of B3/4(x), and integrating by parts, with respect to hv, and using
Young’s and Holder’s inequalities, we obtain the estimate

o [ a2 [ ptrvie,
M M K

<c [ PP+ peaminei) + [ g,

o\ 1/2 1/2
wo([atarin) ([ v+ wr)
M Bi(x)
o\ 1/2 1/2
wo([ i) ([ v + o)
M M
k€ [ (4 R).
M
where the term 2 fM n |th|2 is the second term, up to a change of sign, appearing

on the right-hand side of equatlon (11.1). Using the Sobolev embedding theorem (see
Theorem B.1) and the assumption (b;), it follows that

1/2
/ |"v2<g1+g2)|2+(f 774|”V(g1+gz)l4) <ce
Bi(x) M

Using the estimate |IA| < C|!| and again the Sobolev inequality, we conclude

R 1/2
(/ n4(lll4+lll4)) <c [ (rip+up)
M B (x)
and hence

o [ aftu+ [ atviR, < [ GEnPSTEYI+ enl T i)
M M ’ M
vCVe [ (IP Py v [ atE TR, ar2)
M

B1(x)
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We will estimate the first two terms appearing on the right-hand side of (11.2). In
preparation thereof, we first note that from (b,), we also have

o\ 12
([ n*(1"VI* + |th|4)) <Ce.
M

The first term [y, n*(n|!| |hV7| |"V1|) on the right-hand side of (11.2) we estimate as
follows:

- 1 ~
/n4|z||hv1||hv1|s—/ PPV +Cf PRV
M 4 Jm th M

1 1/2 _\1/2
3 |t ([ oatue) ([ are
4 Jm ; M M

1
—/ n* "V +C(/ |th|2+|l|2)Cs. (11.3)
4Jm b B (x)

The second term [, |hVn|n3|7||l||th| of (11.2) is estimated as follows:
- - 1/2 1/2
[ et < ([ aiene) ([ Fvaere)
M M M
5 1/2 1/4
<c( [ aamevud) ([ i)
M M

< c(/ 11? + Ith|2)(s)1/4. (11.4)
Bi(x)

Using (11.3) and (11.4), we can estimate the left-hand side of (11.2) by
o [ atue+ [ wtpvie,
M M ’

EC(/ |l|2+|”vz|2)<e>1/4+0/ e
M M

IA

IA

and hence

1
8tf |17+ —/ n*|"VI? < c/ 2 +Ce hvi2.
M ca Jm Bi(x) B (x)

After integrating in time, we obtain for every x € M,

1 t
/ 1112(t) + —/ / "Vi2ds
By /2(x) ca Jo JBy,»(x)

t t
< C/ / |l|2(s)ds+C(e)1/4/ / 1"V1|? ds. (11.5)
0 JBi(x) 0 JBi(x)
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Next we let 1 > o > 0 be arbitrary, and we conclude from Corollary 5.7 that

sup / I112(1) < o
xeM JB(x)

for every 0 <t < Co, where C is a constant only depending on n and a. In the
following we let T,x be the smallest time, so that

sup / |l|2(TmaX) =o0.
xeM JBi(x)

For any x € M, we can cover the ball By(x) by finitely many balls By, (x;),
1 <i <N = N(h) (see Section B). We conclude from (11.5) that for t < Tjax,

/ I (z)+—// Lk
B (x) B (x)
t
< Nsup(C/ / |1|2(z)+c¢§/ / |hv1|2)
] By/2(x;) 0 JBi/2(x;)

<CNt0+CN£1/4sup/ / 1"V,
Bi(x;)

and hence

p(/ |1|(z)+—// |hv1|2)
xeM B (x) B (x)

<CNto + CNe'/* sup// "vi?
xeM JO JBj(x)

1 1 !
< CNto + = sup (/ |I|2(l)+—/ / |th|2)
2 xem \JB, (%) ca Jo JByx)

if ¢ > 0 is sufficiently small. Hence,

sup (/ 1| (z)+—/ / |hv1|2) <2CNig <2
x€M \JB;(x) B (x) 2

for all 0 <t < 1/4CN, which implies that Ti,,x > 1/4CN, and since 0 > 0 was
arbitrary this finishes the proof of the theorem. ]

12. An application
Here we present an application for W?2:2 N L>-metrics on four-dimensional mani-

folds in the setting that scalar curvature is weakly bounded from below. For the case
that the metric is C° we refer to the paper of [4] for related results.
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Definition 12.1. Let M be a four-dimensional smooth closed manifold and g be a
W22 N L*°-Riemannian metric (positive definite everywhere), such that g, g~ ! € L®
and let k € R. Locally the scalar curvature may be written

R(g) = ¢/*(8; T ()} — 0, T}, T}, Th — T4, T5),

where

1
(g} = Egmk(aigjk +0;8ik — 9k &ij),

and hence R(g) is well defined in the L2-sense for a W2>2 Riemannian metric. Let
k €R. We say the scalar curvature R(g) is weakly bounded from below by k, R(g) >k,
if this is true almost everywhere, for all local smooth coordinates.

Theorem 12.2. Let (M, h) be four-dimensional closed and satisfy (2.4). Assume that
(M, go) is a W?2-metric such that alh < go < ah for some 0o > a > 1 and R(gy) >
k in the weak sense of Definition 12.1. Then the solution g(t):e,T) to the Ricci—

DeTurck flow, respectively £(t)eo,T) to the Ricci flow constructed in Theorem 8.3,
with initial value g(0) = go, has R(g(t)) > k and R(£(¢t)) > k forallt € (0,T).

Proof. The solution g(¢) to Ricci—-DeTurck flow constructed in the main theorem is
smooth for all ¢+ > 0 and satisfies g(t) — go in the W?-2-sense and mh <g) <
400ah for all z € (0, T). Hence, R(g(7)) — R(go) as ¢ \, 0 in the L2 -sense, and in

the pointwise sense almost everywhere, where R(gy) is the L? quantity defined above

2
loc

convergence of the sequence almost everywhere). This means (R(g(¢)) + k)—- — 0 in
the L2-sense as ¢ \ 0, and hence

-sense to an L2

(convergence of a sequence of functions in the L ioc

-function implies

o(0) = /M R(g(1) + ) dg(t) = /M RE()) + k)2 de) — 0

ast \ 0.
The integrand V(¢) := (R(£(¢)) + k)? is differentiable in space and time for all

t > 0 and this yields that ¢ is differentiable in time for all # > 0. The derivative of V'
is zero for all (x,¢) € M x (0, T) with R({)(x,t) + k > 0.
By Sard’s theorem (see [26, Section 2]), we know, for almost all k, that the sets

{xeM|R(x,g())+k <0}

have smooth boundary for almost every ¢ > 0. Sard’s theorem applied once to R yields
that
Wy :={(x,t) e M x(0,T) | R(x,t) = —k}
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is smooth for almost all k¥ € R, and then Sard’s theorem applied to Wy: Wy — R,
Wy (x,t) =t (for such k) yields that

{x e M |R(x,t) = —k}

is smooth for almost all ¢ € (0, T"). Let Z C R denote the set of such k£ € R. For such
k € Z, we define

Up(t) := {x € M | R(x,g(t)) + k <0}

ift € (0,T) is a time such that {x € M | R(x, g(¢)) + k < 0} has smooth boundary,
and we define
U(t) =0

for all other ¢ € (0, T'). Using the fundamental theorem of calculus for 0 < #; < 5,
we compute

Y (t2) — ¥ (t1) = e ¥ 2¢(ty) — e 1 p(t1)

_ /:%/ eV (2) de(r) de

= /" / V(f) R(D)V(r) — kV(r)) di(r)dt
= /’ / e—kr 2—(—R(T) —k)(-R(t) — k) — R(z) + k)zR(r)) At dt
Uy (v) at
—/2/ ke *"V(r)dl(r)dt
Uk ()
N / /U © (2000 (R(7) + K))R(7) + k) + 4(R(2) + k) [Re(7)[?
—/ / e FTR(r) + k) dl(r)dr
nn JUg
5] e ) t L
+k/ /Uk(r)e (R(x) + k) k/t1 /Uk(r)e V(r)de(t)dt
/ /U o (2040 (R(1) + k) R(7) + k)

—/Q/ e M R(1) + k) de(r)dr
Uk (v)

[since (R(7) + k)(t) < 0 on Ug(z) and V = (R(7) + k)?]
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:/tz e—’“/ “2IVRE()) + k)|? dl(r) dt
131 Ui ()
+ / S ke f (R(2) + k)0 (v(£(2)), VR(z) + k)) do(z) dt
t AUk (7)
2 —kt 3
+/t1 /;]k(r)e (IR(r) + k)-P)dl(r)dx
_ /tZ/ 2 *FVR() + k)P db(x) d
1 JUk(v)

2 —kt 3
+/t1 /sz@e (R() + k)_|?) dt(z) d

1

123 i
_ _n,—kt 2 —kt 3
= /z 2e /M|V(R(T)+k)_| dﬁ(r)dt-i—/tl e /M|(R(r)+k)_|

15 1/2
< —A(M,h) / e—’“( / |(R(r)+k)_|4d€(r)) dt
t M

1§) 1/2 1/2
+/t1 e_k’(/M|(R(r)+k)_|4d£(r)) (/M|(R(r)+k)_|2d€(r)) dt

15 1/2
< / e—kr(—A(M>+A(M)/2)(/ |(R(z)+k)_|4d£(r)) dt
t M

1
[for sufficiently small #,]
<0,

where we have used the Sobolev inequality and A(M ) is the Sobolev constant, and
we used that

/M (R(x) + k)2 dl(r) < A(M)/2

for T < 1, and ¢, sufficiently small, since
f |(R(t) + k)_|?de(t) > 0= / |(R(t) + k)_|*>dg(t) — 0
M M

as t \, 0. Hence, since ¥/ (0) = 0, ¥(¢) = O for all € [0, T). That is, R(£(1)) > k
for all ¢ € (0, T) in the smooth sense. R(g(¢)) > k for all ¢ € (0, T) follows from the
fact that (M, £(¢)) and (M, g(t)) are isometric to one another. For general k € R, we
can take a sequence (k;)jen Withk; — k and k; € Z. ]

Remark 12.3. From this theorem we see that for a metric go € L™ N W22(M*)
with %h < go < ah for some positive constant a > 0: go has scalar curvature > k
in the weak sense of Definition 12.1 if and only if there exists a sequence of smooth
Riemannian metrics g; o with })h < gio < bhforsomel < b < ocoandR(g; o) >k,
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and g; 0 — go € W>2(M*) if and only if the Ricci-DeTurck flow of g¢ constructed
in Theorem 6.5 has R(g(¢)) > k for all ¢ € (0, T'). In particular, we do not need to
change the constant form k to k — 1/i after the first implication (= ).

A. Short-time existence of smooth bounded data

We present here a standard existence result for Ricci—-DeTurck flows with smooth
bounded initial data, based on the method of Shi [29].

Theorem A.1. Let (M, h) be n-dimensional and satisfy (2.4). We assume there are
constants 1 <a <ooand0 <c; < oo forall j € N, and go is a smooth metric on M

satisfying

—h < go < ah, Sllp|hngo| < ¢ <oo.
a M

Then there exists a smooth solution (M, g(t)) to (1.1) for some T >0, and

R t€f0,7]
constants bj(go, h, S) < oo forall S < T such that

sup "Vig(-,1)] < bj(g0,h,S) < oo

forallt €0, S].

Proof. We will construct a short time solution to (1.1), that is

0
5781 = g° (" "Vygi1) — g giphPI Rk qi(h) — g g;p P9 Rigeqr (h)

1
+ 58871 ("Vigpa"Vigan + 2"Vagip" Vagin — 2" Vag;p" Vigiq
- 2hngpahvbgiq - zhvigpahvbngI),
= g ("Va"Vpgij) + (g7" * g * Rm(h) * h);j

+(g 7 xgT x"Vgx"Vg); (A
with g(0) = go. The method is essentially the one given in [29], with some minor
modifications.

We choose radii R(i) — oo such that B; = Bg(;)(p) have smooth boundary, and

M = J72, B;. For fixed R = R(i) > 1, we modify go to go,r = ngo + (1 —n)h,
where 1 is a smooth cut-off function with n = 0 outside of Bg/»(p) and n =1

on Br/a(p), |"Vkr;|2 < c(k,h) (see Theorem B.1 (iv) for the existence of 7). We
still have

. 1
sAulpl”V’go,Rl <¢j(cr,...,cj,h,n,a) < oo, Zh < gor < ah (A.2)
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for some constants 0 < ¢j(c1,...,cj,h,n,a) < oo, which do not depend on R. Equa-
tion (A.1) is strictly parabolic and % and go, g are smooth, and so we obtain a smooth
solution g g (#);e[o,1) to the Dirichlet problem associated to (A.1) with gr(0) = go,r
and

grR()aBr(p) = (80,R)|0BR(p) = Nl3BR(p)

foraT = T(BR, go,r, 1) > 0 using the methods of [29, Sections 3 and 4] (which in
turn uses [19, Theorem 7.1, Section VII]). Using the argument of [29, Lemma 3.1],
we see that as long as a smooth solution exists and |gr(¢) — go,r |i < é&(go,a,h), then

1 .
—h < gr(t) <2ah, sup |"V/gr(t)| <r(R,gor.h, j,S) < oo
2a Br(p)

for all # < § for constants 7 (R, go,r. 1, j, S) < co. On the other hand, as long as
lgr(t) — go.rl} < (g0.a.h) <1,

we have (write g(¢) for gg(¢) and go for go,g for ease of reading):

%Ig(t) —gol; = "V Vi)lg() — gol} — 2" Vel ,
+ 207 W g4 (", " Vyg0)ik ((1) — 20)j1
+ 207 W (g(1) — go)ix (g ™" * g * Rm(h) * )i
+hT R (g(t) — go)ik("Vg # "Vg x g7 x g7
< g ("V"Vp)lg(t) — gol” — "Vgl2 , + (@, a.n),

where ¢, is the constant defined above in (A.2), and is independent of R. Hence,
|gr(t) — go,r> < c(C2.a,n)t < e(go.a.h)

remains true for ¢ < T .= e(go,a,h)/c(¢a,a,n) in view of the maximum principle.
Hence, we may extend the solution smoothly to time T := &(go, h)/c(¢2,a,n) < 1.
As long as

Igr(?) — go.r|7 < (g0, a. h),

we also have, using the arguments of [29, Lemmata 4.1 and 4.2] and the fact that
supyy |hvi go,r| < ¢j < oo for constants ¢; which do not depend on R, interior estim-
ates
sup  |"V"gr|? < by =c(m.¢y,....¢ma, S, h)
B (x0)x[0,S]
for all xg € Bg/19(p) and for all S < T. Building the limit of the solutions gg(;) as

i — 00, after taking a subsequence if necessary, we obtain a smooth solution g (1), €[0.7]
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to (A.1) with g(0) = go, in view of the theorem of Arzela—Ascoli and the fact that
R(i) — oo asi — oo, satisfying

sup ["V7"g|? < by
M x[0,S]

forall § < f, as required. [ ]

B. Geometry lemmata

Lemma B.1. Let (M", h) satisfy (2.4), (M, h) is a smooth, connected, complete
Riemannian manifold, without boundary, satisfying

sup|"VIRm(h)| < 00 foralli € N,

M

4
. (B.1)
> " sup® "V IRm(R)| < So(n). inj(M.h) = 100,

i=0

where 8o (n) is a sufficiently small constant. Then there exist constants Cg(n) > 0 and
a constant co(n) such that:

(i) for any f which is smooth and whose support has diameter less than 4,

(n—2)/n
(/ fan/0=2) dh) < Cs(n)/ "V f?dh
. M

1/2
(/ f”dh) < Cs(n) / " £ 12 dh,
M M

(i) there exists a co(n) such that any ball B;(x) of radius 2 can be covered by
co(n) balls,

and

(B1/2(yi)2.

(iii) there exists a covering of M, (B1(x;)){,, by balls of M such that for any
i eN,
H{J € N |xj € Ba(xi)} < co(n),

where #C denotes the number of elements in the set C, and is defined to be infinity
if C has infinitely many elements,

@iv) for every R > 1, xo € M, there exists a cut-off function n: M — [0, 1] C R
such that 1 =1 on Br(xo), 1 =0 on M \ (Bcr(xo)). "V + "Vl /n <
C(n)/R? on M, and |"V*n| < c(k,h) on M forallk € N,
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(v) letting € > 0 be given, and T a smooth zero two tensor satisfying
/ |hVT|n/2 + |hV2T|n/2 <s
B1(x)

forall x € M. Then

1/2
( / |”VT|") < cm)Csne.
B (x)

Remark B.2. If the conditions (B.1) are replaced by

sup”|"ViIRm(h)| < oo foralli € No, inj(M,h) > 0,
M

then scaled versions of the statements (i)—(v) hold, as we now explain. If we scale
h by a large constant c(4), we obtain a new metric which satisfies B.1, and hence
(1)—(v) hold for this new metric. Scaling back, we obtained scaled versions of the
statements (i)—(v). For example, part one of (i) would be replaced by: there exists
an rg > 0, such that

(n—2)/n
(/ fan/ =) dh) < Cs(n)/ "V f?dh
. M

for any f, which is smooth and whose support has diameter less than ry.

Proof. We can always find local geodesic coordinates for any py € M on the ball
Bso(po) such that in these coordinates %8 <h< %5 if 8¢(n) is sufficiently small.
This implies that the first two statements hold in these coordinates, and hence on the
manifold.

The third statement is proved as follows. First we construct a maximal set of dis-
joint balls (By2(x;));2, for M, maximal in the sense that any ball By/,(p) for an
arbitrary p € M must intersect one of these balls. This construction is carried out as

follows: first choose disjoint balls

Bij2(x1), ..., Bij2(Xn(w))

with centres in Br(po), such that any newly chosen ball By,>(y) with y € Br(po)
intersects one of the balls By/»(x1), ..., Bi/2(X,(r))- In the next step, choose balls

Bi/2(xp(R)), .- B1j2(Xn2R))-

with centres in Bag(po) such that the collection Bj/2(x1), ..., Bi/2(X,2R)), is dis-
joint, and any newly chosen ball B;/,(y) with y € Bag(po) intersects one of the balls
Bi/2(x1), ..., B1j2(xn2r))- Continuing in this way, we obtain a collection of disjoint
balls (B1/2(x;))72,, which are maximal.
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This then implies that (B; (x;))$2, covers M:if y € M satisfies y ¢ | ;= B1(x;),
then
Bi)2(y) N Byja(xi) =0

for all i € N, which contradicts the maximality, and hence
o0
y el Bix).
i=1

In geodesic coordinates ¢: Bso(x;) — Bs((0), there can be at most ¢ (n) euclidean
balls B1/4(5c'k(j))jc.1=(;'), @(xk(j)) = Xk(;)» which are disjoint, and contained in B4 (0).
Hence, there are at most ¢ (n) points, (X j))jlz(;’),
and this implies (iii).

Statement (iv) is proved with the help of an exhaustion function. For R > 1 given,
let n(x) :=7(f(x)/R), for a smooth cut-off function 7: R — [0, 1] € R with (x) =1
for |x| < 1 and 7(x) = O for |x| > 2, where f: M — R* is a smooth so-called
exhaustion function, satisfying

1

C(n)
the existence of which is, for example, guaranteed by Shi [28, Theorem 3.6]. By

which are contained in Bzg(x;),

d(x,x0) < f(x) < %(d(X,xo) +1), |"Vfl<Cm), ["V2f]<Cm),

slightly modifying f on geodesic balls of radius 1, we can also achieve
"VEfI < Clk.h).

Differentiating n we see that

hv 2
ﬂ + |hV277|
n
1 (|"Vij?o f - - C(n)
< ﬁ(—ﬁo ISP PVl £ F 14 e SV S ) < S
as, without loss of generality,
hx7312
| V~n| <
n

for some universal constant c. Similarly, |*V¥y|2 < ¢(k, h). This finishes (iv).

We now prove (v). Let n: M — R be a smooth cut-off function with n = 1 on
Bi(x) and n = 0O outside of B4/3(x), and B{(x1),..., Bi(X¢yn)) a covering of B (x),
which exists in view of (ii). Then using Kato’s and Young’s inequalities, we see

1/2 1/2
(/ |”VT|") < (/ (I”VTln)") <cs [ PPV
Bi(x) B> (x) B (x)

< c(n)Cs/ 2B T2 4 2 b2l
> (x
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co(n)

> 2c(n)CS/ lav A EEN A v e
Bi(x;)

IA

i=1

Csc(n)co(ne,

IA

as required. |

Lemma B.3. Let (M", h) be a smooth, connected, complete Riemannian manifold,
without boundary, satisfying

3
v(3) = Zsjl‘llph|hViRm(h)| <00 forall inj(M,h) > iy > 0,

i=1

and let go be in W22 and satisfy

loc
1
—h < go < ah.
a

Then for any ¢ > 0, R > 1,x9 € M, there exists an ry such that

sup / (|hvgo|n + |hV2go|n/2) <e.
Br1 (x)

x€BR(x0)

In the case that
[ (9ol +1'9g0l"?) < oo,
M

then for any € > 0, there exists an ry such that

sup [ ("ol + ["V2go"2) <.
x€M J By (x)

Proof. As the conclusion is a scale invariant conclusion, it suffices to prove it after
scaling g¢ and /1 by the same constant. We scale gy and /4 once so that % satisfies (2.4),
hence the statements Lemma B.1 (i)—(v) hold for the new metrics, which we also
denote by g¢ and 4.

Using the covering from (iii), we consider only those x; with x; € Bog(x¢), i =
1,...,C(n, R), and cut-off functions n;: M — [0, 1] € R with supp(n;) < B% (xi),

ni = 1on By(x;), |"Vn;i|? < c(n)n;, we see using the Sobolev inequality

C(n,R)

1/2 0 1/2 1/2
ar) = (X[ evar) = ([ ver)
(/sz(xo) Z B1(x;) Z B1(x;)

i=1 i=1
C(n,R) C(n,R)

< Z (/M(ﬂi|th0|)n)l/2§ Z /M|hv(77i|hvg0|)|n/2

i=1 i=1



T. Lamm and M. Simon 356

C(n,R)
=) /Mc(a,n)|’le|"/2|tho|"/2+c<n,a)|m|"/2|”v2go|"/2

i=1
C(n,R)
scoa) Y [ PVgl 4PVl
B

i=1 2(x;)
C(n)
=c(n.a) )y /M A2 (I"V ol + [MV2 go"/?)

i=1
C(n,R)

= c(n.a) /M( 3 sz(xi>)(|tho|"/2 gl

i=1

< c(n,a)co(n)(/ "Vgo"? + |hV2g0|”/2) = K(n,a, R, xq) < 00,
B> r(x0)

where we used

Z XBo(x) () = col(n)

i=1
in the last inequality, which follows from (iii).
We claim: For any ¢ > 0 there exists r = r(g) > 0 such that

/ "V gol” +/ Vg0l < &
B (x) Br(x)

for all x € Bg(xp), as we now show.
Assume there are points x; € Br(xg), i € N and radii r(i) > 0, r(i) = 0 as
I — 00, such that

"V gol" + |"V2go|"/? > e.
B, iy (x;)

Taking a subsequence, we see that x; — x as i — 00, and hence
e
[ ivgl + v < 2
Bo(x) 2
for o > 0 small enough. In view of the fact that
[ Vel Vg < oo
BrR(xg)

we have

fi =18, " Veol" + "V?go|"? < g == "Vgo|" + |"V2go|"/2,
J
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isin Ly, f; — 0 almost everywhere as j — oo, and

/ g < oo
B> r(x0)
implies
hv n th n/2 __ 3 0
I*Vgol" + ["V=gol"* = fi —
XBy ;)

B> r(x0)

in view of the dominated convergence theorem. But for i large enough,
Br(i)(xi) C Bo(x)’

which leads to a contradiction. Hence, there exists an r > 0 such that
| Vel + 1"Vl <o
r(x

for all x € Br(xp).
In the case that

[ (ol +1'9g0l"?) < oo,
M

choose R > 0 so that
/ ("Vsol" + "V2go["?) < Z.
(Br/10(x0)) 2
This implies
€
[ Vel + V) < §
Bo(x) 2

for all x € (Br/2(x0)) and for any 0 < o < 1. Repeating the argument above, we
find a 0 > 0 such that

&
/ (|tho|n + |hvzgo|n/2) < 3
B (x)

for all x € (Bg(xp)). Hence,

&
/ (|tho|n + |hvzgo|n/2) < 3
Bs(x)

for all x € M, as required. [ ]
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C. Estimates for ordinary differential equations
Lemma C.1. Lete < 1and f:[0,T] — Ry, Z:(0,1] — R{ be smooth, and satisfy
d e
FO =0, - f() = 2f(0) + Z().
Then

f(t) <% lim ' Z6)

to—)() to Ss

ds.

Proof. Note that F(t) := t~¢ f(¢) satisfies

%F(t) <—et7'7Ff(t) + t_‘9§f(t) +1t7Z(t) <t7°Z@). (C.1)

Using that f is smooth, and hence f(t) < Ct for small ¢ > 0 and some constant C,
we see
Fit)<Ct™*t 50

as t N\ 0. Integrating (C.1) from ¢y > 0 to ¢, we see

t t
i:) ds — lim / Z(s) ds
N t

&€
t0—>0 0 S

F(t) < F(t) +/

to

as tp \ 0, and hence, from the definition of F (),

f(t) <t® lim ' Z6) ds. [

t0—>0 to S‘E

Lemma C.2. Lete < land f:[0,T] — R(‘)F , be smooth, and satisfy

ad €
f(0) =0, Ef(l)f;f(t)-l—(?.

Then c
f(t) = —t.
1—¢
Proof. For Z(s) = ¢, we have
v Z(s re
lim () ds = lim —ds=c 1=,
10—>0 J, 8¢ 100 Jz, ¢ —&
and so , ;
Z(s c c
t? lim / st =¢® lim —ds = t. m
100 Jy, 8% 100 J;, 5© 1—¢
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D. Metric norm comparisons

We compare the norms of tensor with respect to different metrics.

Theorem D.1. Let

C=)ijen,ny &= &ij)ijett,nys "= (hap)aget,..ny> Uap)a,Bell,...n}

be positive definite symmetric matrices and

O~ = ijettmy (@7 =@Dijettm
()7 = 0o pettymy. W) = @P)opet,..m
the inverses thereof. Let S =(S})i.ett,..nyp T=(Tij)i jett,mp N=(N"); jeq1,...n}
be matrices in R"*". Then the following estimates hold:
IS7e = hP()SLSHL; < c)ISI; (1 +1€3), (D.1)
ISIhe < c@ISI (1 + [ulz). (D.2)

where |€|§ = gijgklﬁikﬁjl = |g_1|% and |u|fZ = h"‘yhﬂyuaﬂuw = |h712, and

T2 = g g/ T} Tia < c()|TZIL12,
INI2 = gugiNY N¥ < cm)IN[Igl?.

det(g)
det(£)

<lglf.

where |g|2 = (€705 g1 g)1).
Proof. We regard g, { as positive definite symmetric linear maps from V' ® V to R,
where V' = R” and A, u as positive definite symmetric linear maps from Y ® Y to R
for another copy of Y := R”. Then
gl VeV >R, huY®Y —>R,
gei v/ ey) =viv/ gy, Lw'e,wej) = ww g,
h(z“ea,zﬂeﬁ) = z"‘zﬂhaﬂ, u(z“ea,zﬁeﬁ) = z"‘zﬂuaﬁ,
and we regard S, 7', and N as linear maps

S:Y*xV >R, T:VxV >R, N:V¥*xV* SR, S(wge® v'e;) = S¥wav’.

From the theory of tensors, [S|2 ,, [S|2,, [€7'2, T2, det(g)/ det(¢), |N?,
|g|§, etc. are all quantities which are independent of coordinates. If (€;);e(1,....n}»
(Ca)aei1,... n} are bases, and

~ ~

Cij =L(€;.,€), 8ij =g(@.¢), hog =h(q,ep), tUap =u(ey,ep)
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with inverses given by o, gy, h*B 1%P  then the quantities defined above as |S |§ PR
S12,,|T|?, det(g)/ det(£), [£~1|? calculated using
u,l g

gijv ’g‘ij’ }7(1,3’ ﬁlxﬂv i{aﬂ’ ﬁaﬁzl]’ le’ ”fl]’

L

1
o
in place of

gl]’ gljy h(xﬂa haﬁa Zl]a Kl]a Ej7 S(lxa
then the result is the same; see, for example, [15].

We can always choose a basis for ¥ such that 1,8 = 848, g = ro0ep and a basis

for V such that g;; = A;6;;, Zij = 0;6;;. That is, without loss of generality, we have
haﬁ = 5043, Ugp = ra8aﬂ and 8ij = Ai(gij, Eij = O'l'(gij. Then

) 11 " 11005
IT|g = rrTz’jTij = Z ———=T; T
iy .

ij=1 i,j=1 L

ceon( s Ilnn)( w %)

i,je{l,...,n} Oi O
n n 2
11 o
<eon( X o onm) (%)
—~ 0;0j — A
i,j=1 i=1 "1
= cm)|T1}g" g tirt;1) = cn)|TIFICI2

and

- i A . MAj
INTe = ( > ’\i/\jN”N”) = ( > O'in_l—]_NUN’J)

0; O
ij=1 ij=1 t

L Al
fc(n)( sup am,—N”N”)( sup —’2>
i,j€{1,...,n}

" L "oA2

< 3 aonint ) (3%
[0

i,j=1 i=1 1

= c(n)|N2(gij gl /") = c(n)|N ?|g|2.
Similarly,

det(g) _ AMAz.. . Ay . A1 An An
det(?) " 0102...0, O}

02 On

A2\ n/2 noA2\"/2
<(so )< (X5) <
ie{l...n} 01‘2 02 t

i=1 "1
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and
. . n . .
S = hP()SESit; = ) SiShoi = Z Sisk A
a,i=1 o, i=1
fc(n)< sup SéSé)L,-) sup %
wi€ll,..n} ie{l,...n} Ai
2
.. o
<c() sup  SLSLA )1+ sup
<aie{1 ..... ny l)( ie{l,..., n}l,z)
" . " 62
§c(n)(z s;s;xi)(l +Z)Tl.2)
ai=1 i=1 "
n 02
= c(n)|S|ig(l +> F) = c()|S[; (1 +1€3).
i=1"1
Similarly,

n

n
TR =B DSaSpliy = 3 SuSa0i = ) ”a(—r Sisio)
o

a,i=1 a,i=1

a€fl,...,n} aie{l,..n} Ta
n n ) ) n
<con( ) ( X sisia) =c<n>( > ISt
a=1 wiz1'® a=1
n
SC(H)(I—FZVQ)ISLM _c(n)(1+|u| )|S|§,£. n
a=1

Corollary D.2. Let T = (T};), respectively N = (N'), be a zero-two, respectively
two-zero, tensor defined on a manifold 2, and g, £-metrics on Q2. Then for all p €
[1, 00) there exists a c(n, p) such that

1/2 1/4 1/4
/Q|T|§dgsc(n,p)(/9 w@l’dg) (/Q|T|;?Pd€) (/Q |g|z/2dg) |

1/2 1/4 1/4
/|N|§dg5c(n,p>(/ |g|§”dg) (/ |N|;f”d6) (/ |g|;?/2dg) .
Q Q Q Q

Proof. In the following, dg/d! is the well-defined function on Q2 given locally by
dg/dl(x) = y/det(g(x))/+/det(I(x)). We have

[Q|T|§dg < c(n,p)/g l0[2|T? dg

1/2 , 1/2
5c(n,p>(/9 wzpdg) (/Q|T|/dg)




and its analog:
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—cop wzpdg)m(/ TR ﬁdﬂ)m
e p)( |g|2P dg)1/2( |T|2}1’ d£)1/4(/ (%>2d5)1/4
( |e|2Pdg)1/2( |T|§”de) (/ Z‘id )1/4

1/2 \ , 1/4
<cnp) [ 10 de |T|/’d6) (/ g2 d ) ,

L|N|gdgsc(n,p)/ g7 IN? dg

1/2
N )
1/2 1/2
NP g

i
1/ ( 1/4 1/4
(i) ([ )
i
i

= ¢(n. p) / 112? dg

N——"

<c(n, p) |g|§1’ dg

1/4 J 1/4
NI*? d¢ /—gd
N[ ) (de ¢
) 1/4 , 1/4
|N|/’de) ([ gl d ) ,

<c(n, p) |g|§" dg

< c(n,p)( g dg

N— N— N
B

which concludes the proof. |
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