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Corrigendum and addendum to Appendix A of “Fractal
geometry of the complement of Lagrange spectrum in Markov
spectrum”

Luke Jeffreys, Carlos Matheus, Carlos Gustavo Moreira, and
Clément Rieutord

Abstract. This erratum corrects the statement and proof of Corollary A.4 of [Comment. Math.
Helv. 95, 593-633 (2020)].

1. Introduction

In [1, Section A.1, Appendix A], the description
Jj1 = )LO(ﬁl2212332221233*222123322212333215) = 3.70969985975042. ..

of the right endpoint of the largest interval J containing C contains a typo. In fact,
[1, Propositions A.1, A.2, and A.3] are correct, and hence the interval (jo, j1) con-
taining C whose left endpoint is jo = A¢(33*22212) = 3.70969985967967 . .. and
the right endpoint is j is certainly disjoint from L. On the other hand, the claim in [1,
Corollary A.4] that (jo, j1) is the largest interval J containing C with J N L = @ is
not correct because the quantity j; does not belong to L (contrary to what is claimed
right before [1, Corollary A.4]). Fortunately, this mistake in [1, Corollary A.4] is not
hard to fix (see below) and, more importantly, it does not affect the other portions
of [1].

In the sequel, we correct the statement and proof of [1, Corollary A.4] in Section 2
below by giving an exact description j{ of the right endpoint of the largest interval J
containing C with J N L = @. Also, we take the opportunity to make a complement
to [1, Appendix A] (which can be thought as a sort of extra subsection (Section A.4)
of [1, Appendix A]) by showing in Section 3 below that the local dimension of L
near j; is one.
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2. Corrections to the statement and proof of [1, Corollary A.4]

Let

i = A0(2112212332221233%22212332221233222122121111112)
= 3.70969985975153 . ..

Note that j; < j, are real numbers whose first 11 decimals coincide.
We affirm that the correct version of [1, Corollary A.4] is as follows.

Corollary 2.1. The largest interval J containing C, which is disjoint from L, is
J = (jo. J1)-

The proof of this statement starts with the following refinement of [1, Proposi-
tion A.2].

Proposition 2.2. If m(a) = Ao(a) < 3.70969986 and a contains
12212332221233%222123322212,
then m(a) = jj.
Proof. By [, Lemma 3.1 (i), (ii)], we have
Ao(a) = 19(2112212332221233*22212332221233 . ..).
By [1, Lemmas 3.11 (xxvi), 3.13 (xxxiii), 4.1 (xxxvii), and 3.1 (i)], we deduce that
Ao(a) = 19(2112212332221233*2221233222123322212....).
Since we are assuming that m(a) = A¢(a) and

A7(...12212332221233%22212332221233222121 ...) = 3.70969985996
> 3.70969985985 > A¢(2112212332221233*22212332221233222121 ...),

we get that
Ao(a) = lo(ﬁ12212332221233*22212332221233222122 ce )
Similarly, since m(a) = A¢(a) and

A7(...12212332221233%222123322212332221222...) = 3.70969985979
> 3.709699859752 > 10(2112212332221233*222123322212332...),
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we obtain that
Ao(a) = Ao(2112212332221233*222123322212332221221 ....).
Again, since m(a) = Ag(a) and

A7(...12212332221233%2221233222123322212211...) = 3.709699859765
> 3.709699859752 > 10(2112212332221233*222123322212332...),

we derive that
Ao(a) = 1o(2112212332221233*2221233222123322212212....).
Analogously, since m(a) = Ag(a) and

A7(...12212332221233%22212332221233222122122....) = 3.709699859753
> 3.709699859752 > 10(2112212332221233*222123322212332...),

we get that

Ao(a) = 10(2112212332221233*22212332221233222122121 ...)
> 20(2112212332221233*222123322212332221221211....).

Moreover, since m(a) = Ag(a) and

A7(...12212332221233%2221233222123322212212112...) = 3.70969985975183
> 3.70969985975181 > 1¢(2112212332221233*222123322212332...),

we obtain that

Ao(a) = Ao(2112212332221233*2221233222123322212212111...)
> A0(2112212332221233*22212332221233222122121111...).

Finally, since m(a) = A¢(a) and

A7(...12212332221233%222123322212332221221211112...)
= 3.70969985975156 > 3.7096998597515581
> 20(2112212332221233%22212332221233222...),

we conclude that

Ao(a) = Ao(2112212332221233*222123322212332221221211111...)
> 20(2112212332221233*22212332221233222122121111112) = J1is

thanks to [1, Lemma 3.1 (i)]. ]
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Once we get the previous statement, we can refine [1, Proposition A.3] as follows.
Proposition 2.3. The open interval J = (jo, j;) containing C is disjoint from L.

Proof. The argument follows the same lines as the (short) proof in the original art-
icle [1] after replacing [1, Proposition A.2] by Proposition 2.2 above. [

At this point, we can deduce Corollary 2.1 above from the previous proposition
by noticing that j{ € L because, for any B, 8 € {1,2,3}N, we have

max }Aj(ﬁT12212332221233*2221233222123322212212111115)
je{=17,7,14

< 3.709699859751525 < j,
so that j{ is the limit of Markov values of periodic words with periods of the form

21...2112212332221233%22212332221233222122121111112...12
—_—— —_——

n times n times

forn € N.

3. Local dimension of L near j;

Corollary 3.1. We have
Ve>0, HDM N(j{,j| +¢)=HDLN(j{j+¢) =1
Proof. As we said right after Proposition 2.3 above, one has that j| is equal to

lim Ao(21...2112212332221233%22212332221233222122121111112....12).
n—o00o N—— N——
n times n times

By continuity of the function A¢, given £ > 0, we can find ny € N such that, for all
n=ngand B, 0 € {1,2}N, one has

Ao(07 (21)"12212332221233%222123322212332221221211111(12)" 5)
€ [ji. ji + o).
Moreover, as it was also said right after Proposition 2.3 above, we have
max A; (BT (21)"12212332221233*222123322212332221221211111 (12)”,5)

je{=7,7,14}
< 3.709699859751525 < j,

for any ﬂ,,g e {1,2,3}N.
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Therefore,

Ao(6T (21)"12212332221233*22212332221233222122121111 1(12)"5)

= m(QT(21)”12212332221233*222123322212332221221211111(12)”5)
elLCM,

since, if 6 = (a;,a,,...) and 6 = (b1, b7, ...), then
AO(QT(ZI)”12212332221233*222123322212332221221211111(12)”5)

is the limit (when m — oo) of Markov values of periodic words with periods of the
form

Admdm—1 - - -

...a1(21)"12212332221233%222123322212332221221211111(12)"b1b3 . . . by
Let us define the following sets:

Ko={[3:2,2,2,1,2,3,3,2,2,2,1,2,3,3,2,2,2,1,2,2, 1,2, 1, 1, 1, 1, 1, (12)", ],
g e{1,2N),
Ky=1{[0:3,2,1,2,2,2,3,3,2,1,2,2,1,(12)",6],6 € {1,2}"}.

The previous discussion implies that
Kn+ Ky CLOGLLJ{ +8) C MO Gl J{ +e).
whenever n = ngy. Note that K, and K » are two regular Cantor sets diffeomorphic to
C(2) = {[0;ay.az,...].an € {1,2},Vn € N},

which is a non-essentially affine regular Cantor set of class €2 (see [2, Proposition 1])
with HD(C(2)) > 0.5. In particular,

HD(K,) = HD(K,) = HD(C(2)) > 1/2.
It follows from the dimension formula from [3] that
HD(K, + K,) = min{1, HD(K,) + HD(K,)} = 1,

so that
HD(M N0 (ji,j| +&) = HD(LN (i, j +¢) =1 u
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