Corrigendum and addendum to Appendix A of "Fractal geometry of the complement of Lagrange spectrum in Markov spectrum"

Luke Jeffreys, Carlos Matheus, Carlos Gustavo Moreira, and Clément Rieutord

Abstract. This erratum corrects the statement and proof of Corollary A.4 of [Comment. Math. Helv. 95, 593–633 (2020)].

1. Introduction

In [1, Section A.1, Appendix A], the description

$$j_1 = \lambda_0(\overline{21}12212332221233^*22212332221233321\overline{12}) = 3.70969985975042...$$

of the right endpoint of the largest interval J containing C contains a typo. In fact, [1, Propositions A.1, A.2, and A.3] are correct, and hence the interval (j_0, j_1) containing C whose left endpoint is $j_0 = \lambda_0(\overline{33*22212}) = 3.70969985967967...$ and the right endpoint is j_1 is certainly disjoint from L. On the other hand, the claim in [1, Corollary A.4] that (j_0, j_1) is the *largest* interval J containing C with $J \cap L = \emptyset$ is not correct because the quantity j_1 does *not* belong to L (contrary to what is claimed right before [1, Corollary A.4]). Fortunately, this mistake in [1, Corollary A.4] is not hard to fix (see below) and, more importantly, it does not affect the other portions of [1].

In the sequel, we correct the statement and proof of [1, Corollary A.4] in Section 2 below by giving an exact description j'_1 of the right endpoint of the largest interval J containing C with $J \cap L = \emptyset$. Also, we take the opportunity to make a complement to [1, Appendix A] (which can be thought as a sort of extra subsection (Section A.4) of [1, Appendix A]) by showing in Section 3 below that the local dimension of L near j'_1 is one.

2. Corrections to the statement and proof of [1, Corollary A.4]

Let

$$j_1' = \lambda_0(\overline{21}12212332221233^*222123322212332221221211111\overline{12})$$

= 3.70969985975153...

Note that $j_1 < j'_1$ are real numbers whose first 11 decimals coincide.

We affirm that the correct version of [1, Corollary A.4] is as follows.

Corollary 2.1. The largest interval J containing C, which is disjoint from L, is

$$J = (j_0, j_1').$$

The proof of this statement starts with the following refinement of [1, Proposition A.2].

Proposition 2.2. *If* $m(a) = \lambda_0(a) < 3.70969986$ *and a contains*

12212332221233*222123322212.

then $m(a) \ge j_1'$.

Proof. By [1, Lemma 3.1 (i), (ii)], we have

$$\lambda_0(a) \ge \lambda_0(\overline{21}12212332221233^*22212332221233...).$$

By [1, Lemmas 3.11 (xxvi), 3.13 (xxxiii), 4.1 (xxxvii), and 3.1 (i)], we deduce that

$$\lambda_0(a) \ge \lambda_0(\overline{21}12212332221233^*2221233222123322212...).$$

Since we are assuming that $m(a) = \lambda_0(a)$ and

$$\lambda_7(\dots 12212332221233^*22212332221233222121\dots) \geqslant 3.70969985996$$

 $> 3.70969985985 \geqslant \lambda_0(\overline{21}12212332221233^*22212332221233222121\dots),$

we get that

$$\lambda_0(a) \ge \lambda_0(\overline{21}12212332221233^*22212332221233222122...).$$

Similarly, since $m(a) = \lambda_0(a)$ and

$$\lambda_7(\dots 12212332221233^*222123322212332221222\dots) \ge 3.70969985979$$

> $3.709699859752 \ge \lambda_0(\overline{21}12212332221233^*222123322212332\dots),$

we obtain that

$$\lambda_0(a) \ge \lambda_0(\overline{21}12212332221233^*222123322212332221221...).$$

Again, since $m(a) = \lambda_0(a)$ and

$$\lambda_7(\dots 12212332221233^*222123322212211\dots) \ge 3.709699859765$$

> $3.709699859752 \ge \lambda_0(\overline{21}12212332221233^*222123322212332\dots)$.

we derive that

$$\lambda_0(a) \ge \lambda_0(\overline{21}12212332221233^*2221233222123322212212...).$$

Analogously, since $m(a) = \lambda_0(a)$ and

$$\lambda_7(\dots 12212332221233^*22212332221233222122122\dots) \ge 3.709699859753$$

> $3.709699859752 \ge \lambda_0(\overline{21}12212332221233^*222123322212332\dots),$

we get that

$$\lambda_0(a) \ge \lambda_0(\overline{21}12212332221233^*22212332221233222122121...)$$

 $\ge \lambda_0(\overline{21}12212332221233^*222123322212332221221211...).$

Moreover, since $m(a) = \lambda_0(a)$ and

$$\lambda_7(\dots 12212332221233^*222123322212332221212112\dots) \ge 3.70969985975183$$

> $3.70969985975181 \ge \lambda_0(\overline{21}12212332221233^*222123322212332\dots),$

we obtain that

$$\lambda_0(a) \geqslant \lambda_0(\overline{21}12212332221233^*2221233222123322212212111...)$$

 $\geqslant \lambda_0(\overline{21}12212332221233^*2221233222123322212212111...).$

Finally, since $m(a) = \lambda_0(a)$ and

$$\lambda_7(\dots 12212332221233^*222123322212332221221211112\dots)$$

 $\geqslant 3.70969985975156 > 3.7096998597515581$
 $\geqslant \lambda_0(\overline{21}12212332221233^*22212332221233222\dots),$

we conclude that

$$\lambda_0(a) \ge \lambda_0(\overline{21}12212332221233^*222123322212332221221211111...)$$

 $\ge \lambda_0(\overline{21}12212332221233^*222123322212332221221211111\overline{12}) = j_1',$

thanks to [1, Lemma 3.1 (i)].

Once we get the previous statement, we can refine [1, Proposition A.3] as follows.

Proposition 2.3. The open interval $J = (j_0, j'_1)$ containing C is disjoint from L.

Proof. The argument follows the same lines as the (short) proof in the original article [1] after replacing [1, Proposition A.2] by Proposition 2.2 above.

At this point, we can deduce Corollary 2.1 above from the previous proposition by noticing that $j_1' \in L$ because, for any $\beta, \widetilde{\beta} \in \{1, 2, 3\}^{\mathbb{N}}$, we have

$$\max_{j \in \{-7,7,14\}} \lambda_j(\beta^T 12212332221233^* 222123322212332221221211111\widetilde{\beta})$$

$$< 3.709699859751525 < j_1',$$

so that j'_1 is the limit of Markov values of periodic words with periods of the form

$$\underbrace{21...21}_{n \text{ times}} 12212332221233^* 222123322212332221221211111}_{n \text{ times}} \underbrace{12...12}_{n \text{ times}}$$

for $n \in \mathbb{N}$.

3. Local dimension of L near j'_1

Corollary 3.1. We have

$$\forall \varepsilon > 0, \quad HD(M \cap (j_1', j_1' + \varepsilon)) = HD(L \cap (j_1', j_1' + \varepsilon)) = 1.$$

Proof. As we said right after Proposition 2.3 above, one has that j'_1 is equal to

$$\lim_{n \to \infty} \lambda_0(\underbrace{21 \dots 21}_{n \text{ times}} 12212332221233^* 222123322212332221221211111}_{n \text{ times}} \underbrace{12 \dots 12}_{n \text{ times}}).$$

By continuity of the function λ_0 , given $\varepsilon > 0$, we can find $n_0 \in \mathbb{N}$ such that, for all $n \ge n_0$ and $\theta, \tilde{\theta} \in \{1, 2\}^{\mathbb{N}}$, one has

$$\lambda_0(\theta^T(21)^n 12212332221233^* 222123322212332221221211111(12)^n \widetilde{\theta})$$

 $\in [j'_1, j'_1 + \varepsilon).$

Moreover, as it was also said right after Proposition 2.3 above, we have

$$\max_{j \in \{-7,7,14\}} \lambda_j (\beta^T (21)^n 12212332221233^* 222123322212332221221211111(12)^n \widetilde{\beta})$$

$$< 3.709699859751525 < j_1'$$

for any
$$\beta, \widetilde{\beta} \in \{1, 2, 3\}^{\mathbb{N}}$$
.

Therefore,

$$\lambda_0(\theta^T(21)^n 12212332221233^* 222123322212332221221211111(12)^n \widetilde{\theta})$$

$$= m(\theta^T(21)^n 12212332221233^* 222123322212332221221211111(12)^n \widetilde{\theta})$$

$$\in L \subset M,$$

since, if
$$\theta = (a_1, a_2, \dots)$$
 and $\widetilde{\theta} = (b_1, b_2, \dots)$, then
$$\lambda_0(\theta^T(21)^n 12212332221233^* 222123322212332221211111(12)^n \widetilde{\theta})$$

is the limit (when $m \to \infty$) of Markov values of periodic words with periods of the form

$$a_m a_{m-1} \dots a_1 (21)^n 12212332221233^* 222123322212332221221211111 (12)^n b_1 b_2 \dots b_m$$

Let us define the following sets:

$$K_n = \{[3; 2, 2, 2, 1, 2, 3, 3, 2, 2, 2, 1, 2, 3, 3, 2, 2, 2, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, (12)^n, \widetilde{\theta}],$$

$$\widetilde{\theta} \in \{1, 2\}^{\mathbb{N}}\},$$

$$\widetilde{K}_n = \{[0; 3, 2, 1, 2, 2, 2, 3, 3, 2, 1, 2, 2, 1, (12)^n, \theta], \theta \in \{1, 2\}^{\mathbb{N}}\}.$$

The previous discussion implies that

$$K_n + \widetilde{K}_n \subset L \cap (j_1', j_1' + \varepsilon) \subset M \cap (j_1', j_1' + \varepsilon),$$

whenever $n \ge n_0$. Note that K_n and \tilde{K}_n are two regular Cantor sets diffeomorphic to

$$C(2) = \{ [0; a_1, a_2, \ldots], a_n \in \{1, 2\}, \forall n \in \mathbb{N} \},\$$

which is a non-essentially affine regular Cantor set of class \mathcal{C}^2 (see [2, Proposition 1]) with HD(C(2)) > 0.5. In particular,

$$HD(K_n) = HD(\widetilde{K}_n) = HD(C(2)) > 1/2.$$

It follows from the dimension formula from [3] that

$$HD(K_n + \tilde{K}_n) = \min\{1, HD(K_n) + HD(\tilde{K}_n)\} = 1,$$

so that

$$HD(M \cap (j'_1, j'_1 + \varepsilon)) = HD(L \cap (j'_1, j'_1 + \varepsilon)) = 1.$$

References

- [1] C. Matheus and C. G. Moreira, Fractal geometry of the complement of Lagrange spectrum in Markov spectrum. *Comment. Math. Helv.* 95 (2020), no. 3, 593–633 Zbl 1465.11165 MR 4152626
- [2] C. G. Moreira, Geometric properties of the Markov and Lagrange spectra. *Ann. of Math.* (2) **188** (2018), no. 1, 145–170 Zbl 1404.11095 MR 3815461
- [3] C. G. Moreira, Geometric properties of images of cartesian products of regular Cantor sets by differentiable real maps. *Math. Z.* 303 (2023), no. 1, article no. 3 Zbl 07629596 MR 4517269

Received 8 July 2023.

Luke Jeffreys

School of Mathematics, University of Bristol, Fry Building, Woodland Road, Bristol BS8 1UG, UK; luke.jeffreys@bristol.ac.uk

Carlos Matheus

Centre de Mathématiques Laurent Schwartz, CNRS (UMR 7640), École Polytechnique, 91128 Palaiseau, France; matheus.cmss@gmail.com

Carlos Gustavo Moreira

School of Mathematical Sciences, Nankai University, Tianjin 300071, P. R. China; and IMPA, Estrada Dona Castorina 110, 22460-320, Rio de Janeiro, Brazil; gugu@impa.br

Clément Rieutord

École Polytechnique, 91128 Palaiseau, France; and IMPA, Estrada Dona Castorina 110, 22460-320, Rio de Janeiro, Brazil; clement.rieutord@polytechnique.edu