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Erratum to “Ergodic components of partially hyperbolic
systems”

Andy Hammerlindl

Abstract. This erratum addresses two issues with the proofs in the paper [Comment. Math.
Helv. 92, 131–184 (2017)].

1. Introduction

This erratum addresses two issues with the proofs in the paper [2]. The first issue is
that [2, Prop. 6.4] as stated is not correct.1 For instance, the automorphism

Z2 ! Z2; .x; y/ 7! .5x C 2y; 2x C y/

gives a counterexample as it fixes a coset of Z � 2Z. The flaw in the proof is that it
confuses invertibility in GL.n;Z/ with invertibility in GL.n;R/ and the notions are
not equivalent. In fact, the proposition holds in the following revised version.

Proposition 1. Let G be a torsion free, finitely-generated, nilpotent group and sup-
pose � 2 Aut.G/ is such that �.g/ ¤ g for all g 2 G other than the identity element
e 2 g. If H is a normal, �-invariant subgroup, then � fixes at most finitely many
cosets of H .

We prove this revised version below. The original proposition ([2, Prop. 6.4]) is
used in only two places in the proofs of [2, Thm. 4.3 and Lem. 6.5]. For [2, Lem. 6.5],
it is straightforward to adapt the proof to use this new proposition in place of [2,
Prop. 6.4]. For [2, Thm. 4.3], more work is required and we show how to recover its
proof in a section below.

The other issue to address in the original paper comes at the start of Section 8,
which deals with AB-systems. That section states that hf h�1 is homotopic to fAB
and uses this to lift hf h�1 to a map on N � R. In fact, the two functions are not

1Note that the numbering of sections in some preprint versions may differ from the pub-
lished version.
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homotopic in general. For instance, for the linear partially hyperbolic maps on the
3-torus T3 D R3=Z3 given by the matrices0B@5 2 0

2 1 0

0 0 1

1CA and

0B@5 2 0

2 1 0

1 0 1

1CA
both have vertical center foliations and the identity map is a leaf conjugacy between
the two systems. The two systems are not homotopic to each other and attempting to
lift the two systems to AI-system on T2 � R as in [2, Sec. 8] will not work. To fix
this, we amend the definition of an AB-system to add the homotopy as an assumption.
That is, a partially hyperbolic diffeomorphism f is an AB-system if

(1) it preserves the orientation of the center bundle Ec ,

(2) there is a leaf conjugacy h between f and an AB-prototype fAB , and

(3) hf h�1 is homotopic to fAB .

This additional assumption can always be achieved by lifting f and fAB to finite
covers:

Proposition 2. If a partially hyperbolic diffeomorphism f satisfies conditions (1)
and (2) above, then a lift of f to a finite cover satisfies all of (1), (2), and (3).

The proof of this is given in the final section of this erratum.
For those readers interested only in the case where the nilmanifoldN is a torus Td,

we have structured the proofs below so that most of the details specific to the non-toral
case may be skipped over.

Karel Dekimpe suggested an alternative method to establish Proposition 1. Instead
of proving the proposition directly, one can instead show the following fact, from
which the proposition follows as a corollary:

Let G be a finitely generated torsion free nilpotent group and ' 2 Aut.G/ be
fixed point free. Assume thatH is a ' invariant subgroup of G such that G=H
is torsion free. Then it follows that the induced automorphism on G=H is also
fixed point free.

Here, a “fixed point free” automorphism is one where the identity element is the only
fixed point.
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2. Proof of Proposition 1

This section gives a proof of Proposition 1. We first prove this in the abelian case and
then use induction on the length of the upper central series to handle the non-abelian
case.

Lemma 3. Let G be isomorphic to Zd and suppose � 2 Aut.G/ is fixed point free.
IfH is a normal, �-invariant subgroup, then � fixes at most finitely many cosets ofH .

Proof. Assume G D Zd and define a linear map AWQd ! Qd such that Az D �.z/
for all z 2 Zd . One can see that Ax ¤ x for all x 2 Qd and so A � I is invertible
as a linear automorphism of Qd , where I denotes the identity map. Let V � Qd be
the span of H ; that is, the set of all Q-linear combinations of elements of H . From
.A � I /H � H , it follows that .A � I /V � V . Since A � I is a finite-dimensional
linear automorphism, it must be that .A � I /V D V . Note that this is different than
saying that .A � I /H and H are equal, which is where the mistake in the original
paper occurred.

Now consider the set .A � I /�1H . This is an additive subgroup of Qd and in
general it can have elements in Qd n Zd . Since H is a subgroup of .A � I /�1H and

spanH D V D .A � I /�1V D span.A � I /�1H;

it follows that H has finite index as a subgroup of .A � I /�1H . Returning to the
original problem, consider a fixed coset �.x CH/ D x CH for some x 2 Zd . Then
.A � I /x 2 H , and so x 2 .A � I /�1H . This shows that all such fixed cosets lie in
.A � I /�1H and so there are only finitely many of them.

Lemma 4. Let �W G ! G be a group automorphism and let X be a normal �-
invariant subgroup. If �jX has at most finitely many fixed points and � fixes at most
finitely many cosets of X , then � itself has finitely many fixed points.

Proof. If �.g/D g and �.g0/D g0 are fixed points in the same coset gX D g0X , then
�.g0g�1/D g0g�1 is a fixed point in X . Hence, each of the finitely many fixed cosets
has finitely many fixed points.

Corollary 5. Suppose � is an automorphism of a group G with center Z, andH is a
�-invariant normal subgroup of G. If the induced maps on Z=.H \ Z/ and G=HZ
have finitely many fixed points, then the induced map on G=H has finitely many fixed
points.

Proof. Apply the previous lemma to the quotient

0! Z=.H \Z/! G=H ! G=HZ ! 0:
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Lemma 6. Suppose G is a finitely generated torsion free nilpotent group and let
�WG ! G be an automorphism. Let Z denote the center of G. If � is fixed point free,
then the only fixed coset �.gZ/ D gZ is Z itself.

Proof. As a torsion free abelian group, the center Z is isomorphic to Zd . By [4,
Cor. 2, Sec. 3], G=Z is torsion free. Suppose �.gZ/ D gZ ¤ Z is a fixed coset.
Let Y be the subgroup generated by g and Z. Then Y is isomorphic to ZdC1 and
within Y , there are infinitely many fixed cosets: �.gkZ/ D gkZ for k 2 Z. This
contradicts Lemma 3.

Proof of Proposition 1. We prove this by induction on the length of the upper central
series of G. The abelian base case is given by Lemma 3. Assume now that G is non-
abelian with center Z and that Proposition 1 is already known to hold for the quotient
map ˆWG=Z ! G=Z.

Since �jZ has no fixed points other than the identity element, Lemma 3 implies
that �jZ fixes at most finitely many cosets of H \Z. Lemma 6 implies that the only
fixed point of ˆ is Z. By the inductive hypothesis, ˆ fixes at most finitely many
cosets of HZ=Z. Then Lemma 5 implies that � (on all of G) fixes at most finitely
many cosets of H .

3. Circle bundles over nilmanifolds

Before revising the proof of [2, Thm. 4.3], we first prove the following.

Proposition 7. Suppose M is a circle bundle with oriented fibers over a nilmani-
fold N . If M has a compact horizontal submanifold †, then M is a trivial bundle.

Remark. In the case that N is a surface, this proposition follows from the Milnor–
Wood inequality since we can use† to build a horizontal foliation. For circle bundles
in higher dimensions, the bundle is trivial if and only if the Euler class, represented
by an element of the cohomology group H 2.N /, is equal to zero [5, Sec. 6.2]. This
means that it might be possible to prove the proposition using purely algebraic tools.
However, we did not see a way to do this and so instead we show directly that the
bundle is trivial by constructing a section.

Remark. We consider everything in the C 0 setting here. The circle bundle is defined
by a C 0 map pWM ! N and a compact horizontal submanifold † is a codimension
oneC 0 submanifold such that pj†W†!N is a covering map of finite degree. To show
thatM is trivial, it enough to find a section; that is, another horizontal submanifold†1
such that pj†1

W†1! N is a homeomorphism. To simplify the proof, we assume that
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the circle fibers are tangent to a C 0 vector field as is the case for the center leaves of
a partially hyperbolic skew product.

Proof. Assume † intersects each fiber in exactly k points. We may define a metric
on each fiber such that the length of every fiber is exactly one and that its points of
intersection with† are equally spaced; that is, the distance between one point of inter-
section and the next is exactly 1

k
. We may choose these metrics to vary continuously

along M .
Let � W zM !M be the universal covering map. We may assume that zM D zN �R,

where zN is the nilpotent Lie group covering N and such that the fibers of M lift to
lines of the form v �R with v 2 zN . We further assume that the metric on a fiber ofM
lifts to a metric on v �R which is equal to the standard Euclidean metric given by R.
In particular, ��1.†/ intersects each fiber v �R in a set of points of the form®

.v; �.v/C t / W t 2 1
k

Z
¯

for some �.v/ depending on v. We may assume � W zN ! R is continuous. To see
this, choose a connected component z† of ��1.†/ and define �.v/ to be the unique
intersection of v �R with z†.

Write G D �1.M/, and H D �1.N /. The bundle projection pWM ! N induces
a surjective homomorphism p�WG ! N . We now use z† to define a homomorphism
� WG ! 1

k
Z. Without loss of generality, assume �.e/ D 0 where e is the identity

element of zN . For a deck transformation g 2 G, let �.g/ be such that .e; �.g// is the
unique intersection of g.z†/ with e �R. Similarly to [2, Lem. 7.6], one may show that
� WG ! 1

k
Z is a homomorphism. We claim the following.

Claim. There is a (not necessarily unique) homomorphism  WH ! 1
k

Z such that
 p�.g/ � �.g/ 2 Z for all g 2 G.

We leave the proof of this to the end and first show that this gives the desired result.
By the properties of nilmanifolds [4, Thm. 5],  determines a Lie group homomor-
phism  W zN ! R where if we regard H as a discrete subgroup of zN then this is an
extension of  from H to all of zN . Define a submanifold z†1 as the graph of � �  ;
that is, .v; t/ 2 z†1 if and only if t D �.v/ �  .v/. By the above claim, for all deck
transformations g 2G, the intersection of g.z†1/ with e �R lies inside e �Z. Hence,
z†1 quotients down to a compact horizontal submanifold †1 � M which intersects
each fiber exactly once and therefore shows that the circle bundle is trivial.

It remains to prove the claim.

Proof of the claim. We first consider the abelian case where H is isomorphic to Zd .
Let ¹h1; : : : ; hd º be a generating set for H and choose elements gi 2 G such that

p�.gi / D hi :
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Let z 2G be the deck transformation .v; t/ 7! .v; t C 1/ corresponding to going once
around a fiber of the circle fibering. Note that �.z/ D 1. As explained in the original
proof of [2, Thm. 4.3], hzi is the kernel of p�, and so ¹z; g1; : : : ; gd º is a generating
set for G. Define  WH ! 1

k
Z by  .hi / D �.gi /. Then

 p�.z/ � �.z/ D �1 and  p�.gi / � �.gi / D 0:

As  p� � � takes integer values on a generating set for G, it must take integer values
on all of G.

We now extend this argument to the non-abelian case. Note that both M and N
are nilmanifolds. Consider the root set G1 of the commutator subgroup of G. That is
g 2 G1 if and only if gk 2 ŒG; G� for some k � 1. Such sets are discussed in detail
in [1, Chap. 1] (where the notation there is G

p
2.G/ instead of G1). In particular,

G1 is a normal subgroup and any homomorphism from G to a torsion free abelian
group R is identically zero on G1 and so factors through G ! G=G1 ! R: We can
therefore define a homomorphism �1WG=G1 !

1
k

Z as the quotient of � .
Similarly writeH1 for the root set of ŒH;H�. ThenH=H1 is a torsion free abelian

group homomorphic to Zd for some d (see [1]), and p�WG ! H descends to a map

p1WG=G1 ! H=H1:

Adapting the argument above, we may define a map  1WH=H1 ! 1
k

Z such that
 1p1 � �1 takes integer values on all of G=G1. Then  1 determines a map

 WH ! 1
k

Z;

as desired.

4. Revised proof of [2, Theorem 4.3]

This section revises the proof of [2, Thm. 4.3] to use Proposition 1 above in place of
the incorrect [2, Prop. 6.4]. By virtue of Proposition 7 above, we need only show that
the partially hyperbolic system has a compact us-leaf.

The proof of [2, Thm. 4.3] is unchanged up to the definition of y� WG ! R=Z and
the first use of [2, Prop. 6.4]. Using instead Proposition 1 above, the most we can
say is that y� has a finite image. In other words, there is an integer k � 1 such that
�.G/ D 1

k
Z.

The existence of � is given by [2, Prop. 6.1 and 6.2]. From the proofs of those
results, we can see that then there is a measure � on zS invariant under the action of G
and such that �.g/D �Œx;g.x// for any x 2ƒ and g 2 G. Here,ƒ is the intersection
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of the non-open accessibility classes � with zS . Choose some point x0 2 ƒ and for
each t 2 1

k
Z, define a set Xt � ƒ by

Xt D ¹x 2 ƒ W �Œx0; x/ D tº:

The sets Xt are disjoint and the action of g 2 G on ƒ takes Xt to XtC�.g/. Define
yt D supXt where we are identifying zS with R in order to define the supremum.
Then ¹yt W t 2 1

k
Zº is a discrete subset of ƒ which is invariant under the action of G.

This implies that for any point yt , its accessibility class AC.yt / � zM quotients down
to a compact us-leaf on M .

5. Proof of Proposition 2

We now prove Proposition 2. We first prove this in a simplified setting where M
and MB are the same manifold (not just homeomorphic manifold) and the leaf con-
jugacy is the identity. For instance, such assumptions hold for the example on T3

given at the start of this erratum. After this, we show how the extend this to prove
Proposition 2 in the general case.

In both cases, assume f WM !M is a partially hyperbolic diffeomorphism which
preserves the orientation of Ec and hWM ! MB is a leaf conjugacy to an AB-
prototype fAB WMB !MB .

Case 1. The homeomorphism h is the identity map on M DMB .

Write G for the simply connected nilpotent Lie group and � for the cocompact
lattice such that N D � n G is the nilmanifold associated to the AB-prototype fAB .
Quotienting G by ŒG; G� yields an abelian Lie group isomorphic to Rd for some d .
This defines a projection fromG to Rd , and for x 2 G, we write xx 2 Rd for its image
under the projection. This projection may further be chosen such that � is mapped
to Zd . (If the nilmanifold is a torus N D Zd n Rd , then the projection G ! Rd is
the identity map and all of the overlines in what follows may be safely ignored.)

Let A;BWG ! G be the commuting Lie group automorphisms defining the AB-
prototype. These induce linear automorphisms xA and xB on Rd with the property that

A.x/ D xA.xx/ and B.x/ D xB.xx/:

The universal cover of MB is G �R. Define ˇ.x; t/ D .B.x/; t � 1/. For  2 � ,
define � .x; t/D . � x; t/. Note that ˇ� D �B./ˇ and that every deck transformation
may be written in the form �ˇ

n for  2 � and n 2 Z.
Lift f to a diffeomorphism zf WG � R! G � R such that zf .0 � R/ D 0 � R,

where 0 is the identity element of G. Such a lift exists because of the leaf conjugacy.
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This lift then determines an automorphism f� of the fundamental group �1.MB/

defined by the property f�.�/ ı zf D zf ı � for all deck transformations � . Since 0�R

projects to an f -invariant circle in MB , one can show that f�.ˇ/ D ˇ. By the leaf
conjugacy,

zf .x �R/ D A.x/ �R

for all x 2 G, and so for each  2 � , there is an integer L./ such that f�.� / D
�A./ˇ

L./. Using that f� is a group homomorphism, one can show that

L.1 � 2/ D L.1/C L.2/ and A.1 � 2/ D A.1/B
L.1/A.2/

for all 1; 2 2 � . This implies thatLW�!Z is a group homomorphism and that there
is k � 0 such that L.�/ D kZ and Bk is the identity map on G. If k D 0, then f
induces the same action on �1.MB/ as the AB-prototype fAB and this would imply
the desired result. Therefore, we assume in what follows that k � 1.

By the properties of nilmanifolds [4, Thm. 5], L extends to a Lie group homomor-
phismLWG!R. Since R is abelian,LjŒG;G�� 0 and there is a linear map xLWRd!R

such that xL.xx/ D L.x/ for all x 2 G. Let I denote the identity map on Rd . As xA is
hyperbolic, xA� I is invertible. Define xS WRd !R by xS D xL. xA� I /�1 and S WG!R

by S.x/ D xS.xx/. By Cramer’s rule, xS.mZd / � kZ, where m D det. xA � I /. Using
f�.ˇ� / D f�.�B./ˇ/, one can show LB./ D L./ for all  2 � . Hence, LB D L
as functions on G and one may use this to show that

xL xB D xL; xS xB D xS; SB D S:

Define �0 � � by  2 �0 if and only if x 2 mZd . Since xA.mZd / D mZd and
xB.mZd / D mZd , it follows that A.�0/ D �0 and B.�0/ D �0. Hence, A and B
define commuting automorphisms yA and yB of a nilmanifold yN D �0 nG that finitely
covers N . Using this we define a new AB-prototype f yA yB on a new suspension mani-
fold M yB which finitely covers the original. Further, zf quotients to a function

yf WM yB !M yB ;

which is a lift of the original f .
Define zH WG �R!G �R by zH.x; t/D .x; t C S.x//. If 2�0, then S./2kZ

and since Bk is the identity, it follows that

ˇS./.x; t/ D .x; t � S.//;

which may be used to show that zH� D �ˇ�S./ zH . This implies that zH quotients
to a diffeomorphism yH on M yB and that induced action on �1.M yB/ satisfies

yH�.ˇ/ D ˇ and yH�.� / D �ˇ
�S./
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for all  2 �0. Further note that yH is a leaf conjugacy between yf and f yA yB . Since

yH� yf�yh
�1
� .� / D

yH�f�yh
�1
� .� / D �A./ˇ

�SA./ˇL./ˇS./ D �A./;

it follows that yH yf yH�1 and f yA yB have the same action on �1.M yB/. Since M yB is an
Eilenberg–MacLane space of type K.�; 1/, this implies that the maps yH yf yH�1 and
f yA yB are homotopic and completes the proof of Proposition 2 in the case that h is the
identity.

Case 2. The homeomorphism hWM !MB is not the identity map.

Define a map gWMB ! MB by g D hf h�1. By construction, g is a homeomor-
phism which is topologically conjugate to f (a stronger property than leaf conjugacy).
For any finite cover yMB of MB , if g lifts to a homeomorphism ygW yMB ! yMB , then
there is a finite cover yM of M and lifts yf W yM ! yM and yhW yM ! yMB of the maps f
and g, respectively, such that

yh yf D ygyh:

In fact, we can just take yM to be the same topological space as yMB , but with its
smooth structure pulled back from M .

We now use the following definition of leaf conjugacy, adapted slightly from
the original definition in [3, Chap. 7]. A homeomorphism f WM ! M preserves a
foliation F if and only if it sends the leaf through p to the leaf through f .p/. If
f WM ! M and f 0WM 0 ! M 0 are homeomorphisms which preserve foliations F

and F 0, then .f;F / is leaf conjugate to .f 0;F 0/ if and only if there is a homeomor-
phism hWM !M 0 which carries leaves of F to leaves of F 0 and hf .L/D f 0h.L/ for
every leaf L of F . When f or f 0 is partially hyperbolic, the foliation is understood
to be the center foliation.

The proof in Case 1 never directly uses the partial hyperbolicity of f , only the
fact that f is a homeomorphism of MB such that the identity map on MB is a leaf
conjugacy between .f;F c/ and .fAB ;F c/ where F c is the center foliation of fAB .
Here in Case 2, g preserves F c and the identity map on MB is a leaf conjugacy
between .g;F c/ and .fAB ;F c/. Following all of the steps of case 1 with g in place
of f , we construct an AB-prototype

f yA yB WM yB !M yB

and a homeomorphism
yH WM yB !M yB

such that yH is a leaf conjugacy between f yA yB and a lift .yg;F c/ of .g;F / to a finite
cover. As described above, we can then lift f and h to maps

yf W yM ! yM and yhW yM !M yB
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so that yh is a topological conjugacy between yf and yg. We can then verify that the
composition yH ı yh is the desired leaf conjugacy between the partially hyperbolic
maps yf and f yA yB . This completes the proof of Proposition 2.
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