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Counting lattices in products of trees

Nir Lazarovich, Ivan Levcovitz, and Alex Margolis

Abstract. A BMW group of degree .m;n/ is a group that acts simply transitively on vertices of
the product of two regular trees of degrees m and n. We show that the number of commensura-
bility classes of BMW groups of degree .m;n/ is bounded between .mn/˛mn and .mn/ˇmn for
some 0 < ˛ < ˇ. In fact, we show that the same bounds hold for virtually simple BMW groups.
We introduce a random model for BMW groups of degree .m; n/ and show that asymptotically
almost surely a random BMW group in this model is irreducible and hereditarily just-infinite.

1. Introduction

Given n 2 N, let Tn denote the regular tree of valence n. A BMW group of degree
.m; n/ is a subgroup of Aut.Tm/ �Aut.Tn/ that acts simply transitively on the vertex
set of Tm � Tn. Using these groups, Wise [20, 21] and Burger–Mozes [4] produced
the first examples of non-residually finite and virtually simple CAT(0) groups respec-
tively. BMW groups have been extensively studied since and have rich connections to
the study of automata groups and commensurators (see Caprace’s survey [18]). Par-
ticularly relevant here is work of, amongst others, Rattaggi [15–17] and Radu [14].

In this paper, our goal is two-fold: (1) estimate the number of BMW groups and
virtually simple BMW groups up to abstract commensurability, and (2) define and
study a random model for BMW groups. Although conceptually related, the two parts
are independently presented.

Counting BMW groups

Let BMW.m; n/ be the set of all BMW groups of degree .m; n/ up to conjugacy
in Aut.Tm/ � Aut.Tn/. Let P' be the equivalence relation of abstract commensura-
bility, i.e., the groups � and ƒ satisfy � P'ƒ if they have isomorphic finite index
subgroups. In analogy to counting results for hyperbolic manifolds (see Remark 1.1),
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Caprace [18, Problem 4.26] asks for an estimate on the number of abstract commen-
surability classes of BMW groups of degree .m; n/ as m; n!1. Addressing this
question, we give the following result:

Theorem A. There exist 0 < ˛ < ˇ such that, for all sufficiently large m and n,

.mn/˛mn � jBMWvs.m; n/= P'j � jBMW.m; n/= P'j � .mn/ˇmn;

where BMWvs.m; n/ is the collection of BMW groups, up to conjugacy, of degree
.m; n/ that contain an index 4 simple subgroup.

All BMW groups contain an index 4 normal subgroup, so the index in the above
theorem is as small as possible.

Remark 1.1. Compare the above result with the bounds obtained by [2,9]: there exist
0<˛0<ˇ0 such that the number of commensurability classes of hyperbolic manifolds
of volume at most v is bounded between v˛

0v and vˇ
0v .

A random model for irreducible BMW groups

The random model we define is based on a combinatorial description of BMW groups
(more precisely, of involutive BMW groups) given in Section 2.1. We postpone the
definition of the model to Section 5, and only highlight its main properties in Theo-
rem B below. This model does not capture all possible BMW groups. It was chosen
predominantly for its relative ease of computations on the one hand, and its naturality
on the other.

A BMW group is irreducible if it does not contain a subgroup of finite index that
is isomorphic to the direct product of two free groups. A group is just-infinite if it
is infinite and has only finite proper quotients. It is hereditarily just-infinite if all its
finite-index subgroups are just-infinite.

Theorem B. A random BMW involution group of degree .m; n/, with n > m5, is
hereditarily just-infinite and, in particular, is irreducible with probability at least
1 � C

m
, where C is a constant that is independent of m and n.

Remark 1.2. In fact, when n > m5, we have that:

• An arbitrary BMW group of degree .m; n/ is irreducible if and only if it has non-
discrete projections to both its factors. Something stronger happens in the random
model: asymptotically almost surely, the projection to Aut.Tm/ (resp. to Aut.Tn/)
of a random BMW group in the model contains the universal groups U.Am/
(resp. U.An/).
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• By the previous remark and a rigidity theorem for BMW groups [5, Theorem 1.4.1]
(see also Theorem 3.8), asymptotically almost surely, two random BMW groups
are not isomorphic.

We give the following conjecture regarding this random model.

Conjecture 1.3. In the above range of m and n, a random BMW group is asymp-
totically almost surely not residually finite and consequently is virtually simple by
Theorem B.

More generally, we conjecture the following.

Conjecture 1.4. As m; n!1, the proportion of virtually simple BMW groups of
degree .m; n/, up to conjugacy, tends to 1.

Positive evidence for Conjecture 1.4 has been given by Rattagi [15] and Radu [14]
for small values of m and n.

Outline

In Section 2 we discuss involutive BMW groups and a combinatorial description of
them. In Section 3, we bound the number of BMWs from above, and in Section 4, we
prove the more difficult lower bound, giving Theorem A. In Section 5 we present our
random model for BMW groups. Next, in Section 6 and Section 7, we show that the
local actions are alternating or symmetric with high probability. Finally, in Section 8
we prove Theorem B. We note that sections Section 3 and Section 4 can be read
independently of Section 5, Section 6, Section 7 and Section 8 (and vice versa).

2. Involutive BMW Groups

An involutive BMW group � of degree .m; n/ is a BMW group such that for every
edge e of Tm � Tn, there is some g 2 � that interchanges the endpoints of e. Since �
acts simply transitively on vertices, such an element g must be an involution. We
let BMWinv.m; n/ denote the set of all involutive BMW groups of degree .m; n/, up
to conjugacy in Aut.Tm/ � Aut.Tn/. A BMW group of degree .m; n/ is said to be
irreducible if and only if the projection of � to either (and hence both) Aut.Tn/ or
Aut.Tm/ is not discrete. We remark that � is irreducible if and only if it does not
virtually split as a direct product of two non-trivial free groups [4, Proposition 1.2].

Any tree T is bipartite; let AutC.T / be the index 2 subgroup of Aut.T / preserving
the bi-partition of T . Given a BMW group � of degree .m; n/, denote by

�C D � \ .AutC.Tm/ � AutC.Tn//
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the index 4 subgroup of � preserving the bipartitions of Tm and Tn. This subgroup is
always torsion-free [14, Lemma 3.1].

2.1. Structure sets

In this section we describe structure sets which encode presentations for BMW groups.
For the rest of this article, we fix countable indexing sets a1; a2; : : : and b1; b2; : : : ,
and for each k 2 N, we set Ak WD ¹a1; : : : ; akº and Bk WD ¹b1; : : : ; bkº.

Definition 2.1 (Structure set). An .m; n/-structure set S is a collection of subsets of
Am t Bn such that:

(1) each element of S is of the form ¹ai ; bk; aj ; blº, where ai ; aj 2 Am and
bk; bl 2 Bn, and

(2) for every a 2 Am and b 2 Bn, ¹a; bº is a subset of exactly one set in S .

Let �m;n denote the set of all .m; n/-structure sets.
For a structure set S , denote by RS the set of words in Am t Bn defined as

RS D ¹aibkaj bl j ¹ai ; bk; aj ; blº 2 Sº:

Remark 2.2. In the definition of a structure set, the elements ai and aj (and sim-
ilarly bk , bl ) of a set ¹ai ; bk; aj ; blº 2 S are not assumed to be distinct, so some
¹ai ; bk; aj ; blº 2 S may have fewer than 4 elements. We often still write repeating
elements in these subsets, e.g., ¹ai ; bk; ai ; blº instead of ¹ai ; bk; blº. In this exam-
ple, the word aibkaibl is one of the words in RS corresponding to ¹ai ; bk; ai ; blº D
¹ai ; bk; blº.

Remark 2.3. A useful point of view on structure sets is given by partitions of the
complete bi-partite graph: Let Km;n be the complete bi-partite graph on Am t Bn.
Given ¹ai ; bk; aj ; blº 2 S , one can assign to it the closed (possibly degenerate) path
of length 4 in Km;n connecting the vertices ai ; aj to the vertices bk; bl . In this way,
one can think of an .m; n/-structure set as a partition of the edges of the complete
bi-partite graph on the vertices Am t Bn into closed paths of length 4 such that each
edge belongs to exactly one such path.

A (combinatorial) square complex is a 2-complex in which 2-cells (squares) are
attached along combinatorial paths of length four. A VH-complex is a square complex
in which the set of 1-cells (edges) is partitioned into vertical and horizontal edges such
that the attaching map of each square alternates between them. We regard the product
Tm � Tn of trees as a VH-complex where an edge is horizontal if it lies in Tm � ¹vº
for some v 2 Tn, and vertical if it lies in ¹vº � Tn for some v 2 Tm.
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Definition 2.4 (Marking). A marking M on Tm � Tn is a choice of a base vertex
o 2 Tm � Tn and an identification of the horizontal (resp. vertical) edges incident to o
with Am (resp. Bn). An element g 2 Aut.Tm/ � Aut.Tn/ is said to fix M if g fixes o
and fixes all edges adjacent to o.

Fix a marking M on Tm � Tn with base vertex o. Let BMWM.m; n/ be the set
of all involutive BMW groups of degree .m; n/, up to an automorphism fixing M. In
other words, two BMW groups � and � 0 of degree .m; n/ are equal in BMWM.m; n/

if and only if � D g� 0g�1, where g is an element of Aut.Tm/�Aut.Tn/ that fixes M.
Let �m;n be the set of all .m; n/-structure sets. We now describe how to obtain a
bijection:

ˆWBMWM.m; n/! �m;n:

Let � be an involutive BMW group of degree .m;n/. As � is involutive, each edge
of Tm � Tn is stabilized by a unique element of � . By a slight abuse of notation, we
let ai (resp. bi ) denote the element of � that stabilizes the edge that is adjacent to o
with label ai (resp. bi ). As � acts freely and transitively on the vertices of Tm � Tn,
its action induces a well-defined, �-invariant labeling of the edges of Tm � Tn which
we generally call the �-induced labeling. Moreover, it is readily checked that the
1-skeleton of Tm � Tn with this labeling is the Cayley graph for � with generating set
¹a1; : : : ; am; b1; : : : ; bnº (where bigons in this Cayley graph are collapsed to edges).

We now describe how to form an .m; n/-structure set S associated to � . Let S
be the collection of subsets ¹ai ; bk; aj ; blº such that there exists a square in Tm � Tn
whose edges are labeled ai ; bk; aj ; bl with respect to the �-induced labeling. Note
that since � acts simply transitively on the vertices of Tm � Tn and preserves the
�-induced labeling, it suffices to only consider the squares containing o.

To show that S is a structure set, let a 2 Am and b 2 Bn. There exists a unique
square s which contains both edges incident to o labeled by a and b. Since � acts
simply transitively on vertices, any other square which contains two edges labeled by
a and b is in the orbit of s and consequently its edges have the same labels as s. Thus,
there is a unique ¹ai ; bk; aj ; blº 2 S containing a and b. So, S is indeed an .m; n/-
structure set. We say that S is the structure set associated with � , and we define
ˆ.Œ��/ D S , where Œ�� is the equivalence class in BMWM.m; n/ containing � .

Additionally, we conclude that � has the presentation

hAm t Bn j ¹a
2
j a 2 Amº [ ¹b

2
j b 2 Bnº [RS i: (1)

This follows since we can take the 1-skeleton of Tm � Tn, label it with the �-induced
labeling (i.e., form the Cayley graph for �) and attach 2-cells corresponding to the
relations RS . The resulting complex can also be obtained from the Cayley complex
for � by collapsing each bigon corresponding to the relations a2 and b2 to an edge.
In fact, it is just Tm � Tn with the �-induced edge labeling.
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We now need to check that ˆ is well defined. Suppose that � 0 is an involutive
BMW group of degree .m; n/ that is conjugate to � by some g 2 Aut.Tm/ �Aut.Tn/
that fixes M. Then, as g fixes M, the �-induced labeling and � 0-induced labeling
of Tm � Tn agree on all squares that contain o. It follows by construction that the
structure sets associated to � and � 0 are equal. Consequently, ˆ is well defined.

We now check that ˆ is injective. Suppose that � and � 0 are involutive BMW
groups of degree .m; n/ and that

ˆ.Œ��/ D ˆ.Œ� 0�/:

Consequently, the �-induced labeling and the � 0-induced labeling of Tm � Tn agree
on all squares which contain o. It now readily follows that � 0 is conjugate to � by
some element g 2 Aut.Tm/ � Aut.Tn/ that fixes the marking M. Thus, � and � 0 are
equal in BMWM.m; n/.

Finally, we check that ˆ is surjective. Let S be an .m; n/-structure set. Then the
group � with presentation as in (1) is an involutive BMW group (see, e.g., [18]).
Moreover, ˆ.Œ��/ D S . We have thus shown the following result.

Proposition 2.5. Let M be a marking of Tm � Tn. There is a bijection

ˆWBMWM.m; n/! �m;n:

Moreover, for each S 2 �m;n, each representative of ˆ�1.S/ has the presentation

hAm t Bn j ¹a
2
j a 2 Amº [ ¹b

2
j b 2 Bnº [RS i:

Let g 2 Aut.Tm/ � Aut.Tn/ be an automorphism. We describe how g acts on
markings. Let M be a marking of Tm � Tn with base vertex o. Then g induces a new
marking M0 D gM whose base vertex is o0 D go and such that the label of an edge e
adjacent to o0 is equal to the label of g�1e under the marking M. This action of g also
induces a bijection

‰g WBMWM.m; n/! BMWM0.m; n/

by sending Œ�� 2 BMWM.m; n/ to Œg�g�1� 2 BMWM0.m; n/.
Let S be an .m; n/ structure set, and let � 2 Sym.Am/ and � 2 Sym.Bm/ be

permutations. We can form a new .m; n/-structure set S 0 by applying the permutation
.�; �/ 2 Sym.Am/ � Sym.Bn/ � Sym.Am t Bn/ to the subsets in S . We say that S 0

is a relabeling of P induced by � and �.
Let � 0 D g�g�1 for some g 2 Aut.Tm/ � Aut.Tn/. Since � acts vertex transi-

tively, we may assume, without loss of generality, that g fixes o. Thus, g induces
permutations � 2 Sym.Am/ and � 2 Sym.Bm/ on the labels (in the marking M) of



Counting lattices in products of trees 603

the edges incident to o. It readily follows that the structure set of S 0 of � 0 is obtained
from the structure set S of � by relabeling.

Thus, if � and � 0 are conjugate BMW groups, then their associated structure sets
are the same up to a relabeling, regardless of a choice of marking. Conversely, suppose
that S 0 is an .m; n/-structure set that is a relabeling of a structure set S induced by
� 2 Sym.Am/ and � 2 Sym.Bn/. Then we can choose a marking M on Tm � Tn and
a BMW group � whose associated structure set is P . Additionally, we can choose a
g 2 AutM.Tm � Tn/ so that the induced action of g on the labels of the horizontal
and vertical edges around o is given by � and � respectively. From this, we have
that g�g�1 is a BMW group conjugate to � whose structure set is S 0. We have thus
shown the following proposition.

Proposition 2.6. There is a bijection

‰WBMW.m; n/! �m;n=relabeling:

2.2. Local actions

Let X be a locally finite graph. For every vertex v 2 V.X/, let E.v/ be the set of
edges of X incident to v. If a group � acts on X , the local action of � on X at the
vertex v is the induced action of Stab�.v/ on the set E.v/. By abuse of terminology,
we will also refer to the image of the action Stab�.v/! Sym.E.v// Š Sym.n/ as
the local action, where n D jE.v/j. The local actions of � � Aut.Tm/ � Aut.Tn/ are
the local actions of � on Tm and Tn. More specifically, we call the local action of �
on Tm the A-tree local action, and the local action of � on Tn the B-tree local action.

We show how to read off the local action of an involutive BMW group of degree
.m; n/ from the corresponding structure set. First note that since a BMW group of
degree .m; n/ acts transitively on the vertices of Tm � Tn, its local actions on Tm
(resp. Tn) at different vertices are conjugate actions. We can thus refer to the local
action on Tm (resp. on Tn) as the conjugacy class of the local action at some vertex
of Tm (resp. Tn).

Let us focus on the local action on Tn. Let M be a marking of Tm � Tn with
base vertex o. Let �A and �B be the projections of Tm � Tn to the first and second
factors, respectively. Let oB D �B.o/ 2 Tn. Edges incident to oB in Tn are labeled
by elements of Bn as follows: the label of an edge e incident to oB is the label of the
unique edge e0 of Tm � Tn incident to o such that �B.e0/ D e.

Let � be an involutive BMW group of degree .m; n/ with structure set S . The
local action of � at the vertex oB can be identified with a subgroup of Sym.Am/ '
Sym.m/. Recall that � is generated by the elements a1; : : : ; am, b1; : : : ; bn. Observe
that Stab�.oB/ D ha1; : : : ; ami, and thus the local action on Tn is generated by the
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�B
�!

oB D �B.o/

e bk

aie bl

e3
aj

ai
e1

e4 bl e2 D aie
0bk

o0o

e0 bk

Figure 1. Determining the action of ˛i .k/.

action of each one of a1; : : : ; am 2Am. Denote by ˛i 2 Sym.n/' Sym.Bn/ the action
of ai on Bn.

Lemma 2.7. Let 1 � i � m and let 1 � k; l � n. Then, ˛i .k/ D l if and only if
¹ai ; bk; aj ; blº 2 S for some aj 2 Am.

Proof. Fix 1 � i � m and 1 � k � n. Then, by the definition of a structure set, there
exists a unique ¹ai ; bk; aj ; blº 2 S containing both ai and bk . Thus, to prove the
claim, it is enough to show that ˛i .k/ D l . Let e be the edge of Tm that is labeled
by bk and incident to oB D �B.o/. To show that ˛i .k/ D l , we need to show that the
label of aie is bl .

There exists a unique edge e0 2 Tm � Tn labeled bk and incident to o. This edge
satisfies �B.e0/D e. The element ai acts on Tm � Tn by mapping o to the endpoint o0

of the unique edge e1 labeled ai incident to o. Since � preserves the �-induced label-
ing, aie0 is the unique edge e2 of Tm � Tn incident to o0 labeled bk . The edges e1; e2
are adjacent edges of a (unique) square in Tm � Tn. Let e1; e2; e3; e4 be the edges of
this square as shown in Figure 1. By the definition of S , their respective �-induced
labels are ai ; bk; aj ; bl . We get that aie D �B.aie0/ D �B.e2/ D �B.e4/. Since e4 is
incident to o, the label of aie is the same as that of e4, namely bl .

We call the involutions ˛1; : : : ; ˛m 2 Sym.n/ the B-tree local involutions. Simi-
larly, we can define the A-tree local involutions ˇ1; : : : ; ˇn 2 Sym.m/ corresponding
to the local actions of b1; : : : ; bn on the tree Tm.

2.3. Virtual simplicity of BMW groups

The following theorem is a corollary of [3, Propositions 3.3.1, 3.3.2] and [4, Theo-
rem 4.1].
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Theorem 2.8 (Burger–Mozes). Let m; n � 6, let � be an irreducible BMW group of
degree .m;n/, and assume that the local actions of � on Tm and Tn contain the alter-
nating groups Alt.m/ and Alt.n/, respectively. Then, � is hereditarily just-infinite.

For a group � , its finite residual �.1/ is the intersection of all finite-index sub-
groups of � . The following widely known lemma is a tool to prove virtual simplicity
of a group.

Lemma 2.9. If a group � is hereditarily just-infinite and is not residually finite,
then �.1/ is a finite index, simple subgroup of � .

Proof. Since � is not residually finite, the finite residual �.1/ is a non-trivial normal
subgroup of � . By assumption � is just-infinite, thus �.1/ must have finite index in � .
As � is hereditary just-infinite, �.1/ is itself just-infinite, and thus cannot contain
any non-trivial infinite-index normal subgroup. On the other hand, by definition and
since �.1/ has finite index in � , �.1/ cannot have any non-trivial finite-index normal
subgroup. Thus, �.1/ is simple.

3. Upper bounds on BMW counts

In this section we give upper bounds for the number of conjugacy classes of invo-
lutive BMW groups. We then use a result of Burger–Mozes–Zimmer to bound the
number of BMW groups that are abstractly commensurable to a given BMW group
with primitive local actions and simple type-preserving subgroup.

3.1. Upper bound on conjugacy classes of involutive BMWs

Proposition 3.1. There are at most .mn/mn conjugacy classes of involutive BMW
groups of degree .m; n/.

Proof. Recall that �m;n denotes the set of .m; n/-structure sets. Every S 2 �m;n

defines a function fS WAm �Bn!Am �Bn by fS .a;b/D .a0; b0/ if ¹a;b;a0; b0º 2 S .
This function is well defined by the definition of a structure set. We can reconstruct S
from fS by

S D ¹¹a; b; a0; b0º j .a0; b0/ D fS .a; b/; a 2 Am; b 2 Bnº:

Thus we get an injective map �m;n ,! .Am � Bn/
Am�Bn mapping S 7! fS . Conse-

quently,

jBMW.m; n/j � jBMWM.m; n/j D j�m;nj � j.Am � Bn/
Am�Bn j D .mn/mn;
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where the equality jBMWM.m; n/j D j�m;nj follows from the bijection in Proposi-
tion 2.5.

Remark 3.2. For general (not necessarily involutive) BMW groups, using the .m;n/-
datum defined in [14] (which is analogous to structure sets defined here), a similar
proof gives a number ˇ > 0 such that the number of conjugacy classes of BMW
groups is bounded by .mn/ˇmn.

3.2. .m; n/-complexes and type-preserving subgroups

In this subsection we associate to each involutive BMW-group a certain edge-labeled
square complex that completely describes the group. These complexes will allow us
to deduce a count on the number of involutive BMW groups with the same type-
preserving subgroup up to conjugation.

Definition 3.3. An .m; n/-complex is a VH-complex Y such that:

(1) Y has exactly 4 vertices: v00, v10, v01 and v11;

(2) there are exactly m edges between v00 and v10 (resp. v01 and v11), all of
which are horizontal and labeled by distinct elements of Am;

(3) there are exactly n edges between v00 and v01 (resp. v10 and v11), all of which
are vertical and labeled by distinct elements of Bn;

(4) for each horizontal edge e1 and vertical edge e2 of Y , there is a unique square
containing both e1 and e2;

(5) there is a label-preserving vertex-transitive action on Y .

Remark 3.4. By (4) above, an .m;n/-complex contains exactlymn squares. We also
note that the label preserving automorphism group of an .m; n/-complex is precisely
Z2 � Z2.

Lemma 3.5. Fix a marking on Tm�Tn, and let � be an involutive BMW group of deg-
ree .m;n/. Label the edges of Tm�Tn by the �-induced labeling. Then �Cn.Tm�Tn/
is an .m; n/-complex.

Conversely, let Y be an .m; n/-complex. Then the set S , consisting of the subsets
¹ai ; bk; aj ; blº, where ai ; bk; aj ; bl are the labels of the edges of squares in Y , is an
.m; n/-structure set.

Proof. Let � be as in the statement of the lemma. The type-preserving subgroup
�C < � acts freely, so we can consider the quotient complex Z WD �Cn.Tm � Tn/.
As edge labels pass to the quotient and as �=�C ' Z2 � Z2 acts transitively on the
vertices ofZ,Z is an .m;n/-complex as required. The proof of the converse statement
follows from Definitions 2.1 and 3.3.
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We will need the following lemma counting the number of possible .m; n/-com-
plexes with isomorphic square complexes.

Lemma 3.6. Given any .m;n/-complexC , there are at most 2.nŠmŠ/2 distinct .m;n/-
complexes that are isomorphic to C as unlabeled square complexes (i.e., isomorphic
via a cellular isomorphism that does not necessarily preserve labels or the VH-
structure).

Proof. Let Y be an the underlying square complex of an .m; n/-complex C . There
are at most two ways of giving Y a suitable VH -structure. After choosing a VH -
structure, Y has 4 vertices, 2m horizontal edges and 2n vertical edges, and there are
at most .nŠmŠ/2 ways to choose labels to obtain an .m; n/-complex. Thus there are
at most 2.nŠmŠ/2 possible .m; n/-complexes that are isomorphic to Y as unlabeled
square complexes.

The next lemma bounds the number of involutive BMW groups with conjugate
type-preserving subgroups.

Lemma 3.7. For each � 2BMW.m;n/, there are at most 2.nŠmŠ/2 conjugacy classes
of ƒ 2 BMW.m; n/ with �C conjugate to ƒC.

Proof. Suppose that �C D gƒCg�1 for some g 2 Aut.Tm/�Aut.Tn/. We then have
that Y1 WD �Cn.Tm � Tn/ is isomorphic to Y2 WD gƒCg�1n.Tm � Tn/ as unlabeled
square complexes. By Lemma 3.6, Y2 can be one of at most 2.nŠmŠ/2 possible .m;n/-
complexes. By Lemma 3.5 and Proposition 2.5, such an .m; n/-complex completely
determines gƒg�1 up to a conjugation. The lemma now follows.

Recall that a subgroup F � Sym.n/ is primitive if no non-trivial partition of
¹1; : : : ; nº is stabilized by F . The following theorem is a reformulation of a result
of Burger–Mozes–Zimmer, which builds on a superrigidity theorem of Monod and
Shalom [11].

Theorem 3.8 ([5, Theorem 1.4.1]). Let G D .Aut.Tm/ � Aut.Tn// Ì R, where R �
Z=2Z permutes the factors when m D n and is trivial otherwise, and let �; � 0 �
Aut.Tm/ � Aut.Tn/ be cocompact lattices with primitive local actions. Then any iso-
morphism �W�! � 0 is induced by conjugation inG, i.e., there exist some g 2G such
that ghg�1 D �.h/ for all h 2 � .

Recall that two groups are abstractly commensurable if they have isomorphic
finite index subgroups. The previous theorem implies the following.

Proposition 3.9. Let � be an involutive BMW group of degree .m; n/ with primitive
local actions and with �C simple. Then, up to conjugacy, there are at most 2.nŠmŠ/2

involutive BMW groups of degree .m; n/ that are abstractly commensurable with � .
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Proof. Let ƒ be an involutive BMW group of degree .m; n/ that is abstractly com-
mensurable to � . As �C is simple, ƒ contains a finite index subgroup H that is
isomorphic to �C. It follows from Theorem 3.8 that H is type-preserving and has
four orbits of vertices, so H D ƒC. By Theorem 3.8, �C is conjugate to ƒC. The
result now follows from Lemma 3.7.

4. Counting commensurability classes of BMW groups

In order to count commensurability classes of BMW groups, we first define a partial
structure set S0 (see definition below). We show in Theorem 4.2 that if � is an invo-
lutive BMW group whose structure set contains S0, then the index 4 subgroup �C

is simple. We then deduce the lower bound of Theorem A by showing that there are
sufficiently many such � .

Definition 4.1. A partial structure set S0 is a collection of subsets of Am tBn of the
form ¹ai ; bk; aj ; blº, for ai ; aj 2 Am and bk; bl 2 Bn, such that for every a 2 Am and
b 2 Bn at most one subset of S0 contains both a and b.

Our starting point is the following involutive BMW group � (denoted as �4;5;9
by Radu [14]).

Theorem ([14, Theorem 5.5]). The involutive BMW group � of degree .4; 5/, whose
associated .4; 5/-structure set is

S� WD
®
¹a1; b1; a1; b1º; ¹a1; b2; a1; b2º; ¹a2; b3; a1; b3º; ¹a2; b1; a2; b1º

¹a3; b2; a2; b2º; ¹a3; b3; a3; b1º; ¹a1; b4; a1; b4º; ¹a4; b5; a1; b5º

¹a3; b5; a2; b4º; ¹a4; b2; a4; b1º; ¹a4; b4; a4; b3º
¯
;

satisfies �.1/ D �C, where �.1/ is the intersection of all finite index subgroups
of �.

Let ˛�1 ; : : : ; ˛
�
4 be the corresponding B-tree local involutions of S�, and let

ˇ�1 ; : : : ; ˇ
�
5 be the A-tree local involutions. The A-tree and B-tree local involutions

can be computed explicitly (using Lemma 2.7) to show that

h˛�1 ; : : : ; ˛
�
4 i D Sym.5/ and hˇ�1 ; : : : ; ˇ

�
5 i D Sym.4/:

Thus, the local actions of � on T4 and T5 are Sym.4/ and Sym.5/, respectively. Let
m � 13; n � 14 be integers.
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For natural numbers k � k0, denote by Jk; k0K WD ¹k; k C 1; : : : ; k0º. Fix the fol-
lowing three involutions in Sym.J6; nK/:

˛01 D .7 10/.8 11/.12 13/.14 15/.16 17/ : : : ;

˛02 D .9 7/.10 8/.11 12/.13 14/.15 16/ : : : ;

˛03 D .6 9/:

Note that these three involutions generate Sym.J6; nK/. Similarly, fix the following
three involutions of Sym.J5;mK/:

ˇ01 D .6 9/.7 10/.11 12/.13 14/.15 16/ : : : ;

ˇ02 D .8 6/.9 7/.10 11/.12 13/.14 15/ : : : ;

ˇ03 D .5 8/:

These involutions generate Sym.J5;mK/.
Define the following partial structure sets:

SAR D ¹¹ai ; bk; ai ; b˛0
i
.k/º j 1 � i � 3; 6 � k � nº;

SBR D ¹¹ai ; bk; aˇ 0
k
.i/; bkº j 5 � i � m; 1 � k � 3º;

SAC D ¹¹a4; bk; a4; bkº j 6 � k � 8º;

SBC D ¹¹ai ; bk; ai ; bkº j 5 � i � 7; 4 � k � 5º;

SAB D ¹¹ai ; bk; aˇ 0
k�5

.i/; b˛0
i�4

.k/º j 5 � i � 7; 6 � k � 8º;

SA D ¹¹ai ; bk; ai ; b˛0
i�4

.k/º j 5 � i � 7; 9 � k � n; ˛
0
i�4.k/ > 8º;

SB D ¹¹ai ; bk; aˇ 0
k�5

.i/; bkº j 8 � i � m; 6 � k � 8; ˇ
0
k�5.i/ > 7º;

SM D ¹¹a4; bn; am; bn�1º; ¹am�2; b4; am�1; bn�2ºº;

SC1 D ¹¹ai ; bn; ai ; bnº; ¹ai ; bn�1; ai ; bn�1º j 8 � i < mº;

SC2 D ¹¹am�1; bk; am�1; bkº; ¹am�2; bk; am�2; bkº j 9 � k � n � 3º:

Let

S0 WD S� [ SAR [ SBR [ SAC [ SBC [ SAB [ SA [ SB [ SM [ SC1 [ SC2: (�)

See Figure 2 and Table 1.
It is straightforward to check that for any 1 � i � m and 1 � k � n, ¹ai ; bkº is a

subset of at most one set in S0, making S0 a partial structure set.

Theorem 4.2. If an .m; n/-structure set S contains S0, then its associated involutive
BMW group � satisfies that �C is simple.
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a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 am�2 am�1 am

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10b11 bn�2 bn�1 bn

S� SAR SBR SAC SBC SAB SA SB SM SC1 SC2

Figure 2. The partial structure set S0 gives rise to a partial partition of the complete bipartite
graph Km;n in the sense of Remark 2.3, each set in S0 corresponds to a 4-cycle in Km;n
contained in the associated highlighted subset in the figure.

a1–a3 a4 a5–a7 a8–a10 a11–am�3 am�2–am�1 am

b1–b3 S� S� SBR SBR SBR SBR SBR

b4 S� S� SBC SM

b5 S� S� SBC

b6–b8 SAR SAC SAB SAB , SB SB SB SB

b9–b11 SAR SAB , SA SAB SC2

b12–bn�3 SAR SA SC2

bn�2 SAR SA SM

bn�1–bn SAR SM SA SC1 SC1 SC1 SM

Table 1. Table showing which partial structure sets possibly possess ¹ai ; bkº as a subset of one
its elements. For example, if ¹a6; b4º is a subset of some s 2 S0, then s 2 SBC .

To prove the above theorem, we need to show a few lemmas first. Throughout,
let S be an .m; n/-structure set containing S0 and let � be its associated involutive
BMW group.

Lemma 4.3. The A-tree and B-tree local actions of � are Sym.m/ and Sym.n/,
respectively.

Proof. We first show the claim for the B-tree local action. Let ˛1; : : : ; ˛m be the
B-tree local involutions of � . By Lemma 2.7 and as S�; SAR � S , for 1 � i � 3, we
get that ˛i D ˛�i � ˛

0
i and that ˛4 D ˛�4 � 4, where 4 is some unknown permutation

in Sym.J6; nK/.
Similarly, as SBR; SBC ; SAB ; SA � S , for 1 � i � 3, we get that ˛4Ci D id�˛0i ,

where id is the identity permutation of Sym.J1; 5K/. In addition, as ˛�1 ; : : : ; ˛
�
4 gener-

ate Sym.J1; 5K/ and ˛01; : : : ; ˛
0
3 generate Sym.J6; nK/, ˛1; : : : ; ˛7 generate a subgroup
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of Sym.n/ containing
Sym.J1; 5K/ � Sym.J6; nK/:

Finally, as SBR; SB ; SM ; SC1; SC2 � S , ˛m�1 is the transposition .4 n� 2/ (SM is
needed to deduce ˛m�1.4/ D n � 2, and the other relations are needed to ensure
everything other than 4 and n� 2 is fixed). From this we then conclude that ˛1; : : : ;˛m
generate Sym.n/.

The argument for the A-tree local action is similar, so we briefly outline it. Let
ˇ1; : : : ; ˇn 2 Sym.J1;mK/ be the A-tree local involutions. Using (�), we deduce that
ˇ1; : : : ; ˇ8 generate a subgroup containing Sym.J1; 4K/ � Sym.J5; mK/. Since ˇn�1
is the transposition .4 m/, it follows ˇ1; : : : ; ˇn generate Sym.m/.

Lemma 4.4 (Finite residual). If a structure set S contains S0, then its associated
involutive BMW group � satisfies �.1/ D �C.

Proof. Clearly �.1/ � �C, thus it suffices to show that �.1/ has index 4 in � . More
precisely, we show that

�=�.1/ ' Z=2 � Z=2:

Recall from Proposition 2.5 that � has a presentation with generators Am t Bn,
so we may identify Am and Bn with elements of � . For g 2 � denote by xg its image
in �=�.1/. By [18, Proposition 4.2 (vii)] and as S� � S , � contains the subgroup�.
By [14, Theorem 5.5] stated above, � satisfies

�=�.1/ ' Z=2 � Z=2:

It follows that xai D xaj for all i; j � 4, and xbk D xbl for all k; l � 5. Denote these
elements by xa; xb 2 �=�.1/, respectively.

In Claim 2 below, we prove that xbi D xb for all 1 � i � n and xai D xa for all
1 � i � m. The lemma follows from this as �=�.1/ is generated by xa; xb and satisfies
the relations xa2 D xb2 D Œxa; xb� D 1. Hence, it is isomorphic to Z=2 � Z=2.

We first prove the following claim, showing that certain generators of � are equal
in the quotient.

Claim 1. We claim that xai D xaj for all i; j � 5, and xbk D xbl for all k; l � 6.

Proof of Claim 1. We show that xbk D xbl for all k; l � 6. The second claim follows
by a similar argument.

Let G be the Schreier graph of the action of ˛01; ˛
0
2; ˛
0
3 on J6; nK, that is, the graph

with vertices J6; nK and an edge .k; ˛0i .k// for every i 2 ¹1; 2; 3º and k 2 J6; nK.
The graph G is connected and not bipartite since the natural action of Sym.J6; nK/ D
h˛01; ˛

0
2; ˛
0
3i on J6; nK is primitive.
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Let .k; l/ be an edge of G. We have that ˛0i .k/ D l for some i 2 ¹1; 2; 3º. Con-
sequently, ¹ai ; bk; ai ; blº 2 SAR and aibkaibl 2 RS is a relation in � . In particular,
bl D aibkai (as generators are involutions). SinceG is not bipartite and is connected,
any two vertices of G are connected by an even length path. It follows that for any k
and l such that 6 � k < l � n, there is an even number p such that xbl D xapxbkxap . As
xa2 D 1, we deduce that xbk D xbl . The claim follows.

Claim 2. We claim that xa D xai for all 1 � i � m, and xb D xbk for all 1 � k � n.

Proof of Claim 2. By Claim 1, we can define xa0 WD xai for all i � 5 and xb0 WD xbk for all
k � 6. To prove Claim 2, we need to show that xa D xa0 and xb D xb0. We show xa D xa0.
The second statement follows from a similar argument.

First note that since SAR � S the word a1bka1b˛0
1
.k/ 2 RS is a relation in � for

some 6 � k; ˛01.k/ < n � 2. In the quotient, this relation becomes xaxb0xaxb0 D 1 which
implies that xa commutes with xb0. Next, since SM � S the word a4bnambn�1 2 RS
is a relation in � . In the quotient, this gives xaxb0xa0xb0 D 1. As xb0 commutes with xa, we
see that xa D xa0. The claim follows.

This concludes the proof of Lemma 4.4.

We are now ready to prove Theorem 4.2.

Proof of Theorem 4.2. By Lemma 4.3, the local actions of the group � are the full
symmetric groups onm and n elements. Moreover, � is irreducible and not residually
finite as it contains � (see [18, Proposition 4.2 vii)]). The theorem then follows from
Theorem 2.8, Lemma 2.9 and Lemma 4.4.

Lemma 4.5. There exists a number ˛ > 0 such that, for all integersm> 0 and n > 0,
the number of .m; n/-structure sets is at least .mn/˛mn.

Proof. Without loss of generality assume thatm � n. Let 	n � Sym.n/ be the subset
of all involutions. For any m involutions ˛1; : : : ; ˛m 2 	n, we can define a structure
set

S D ¹¹ai ; bk; ai ; b˛i .k/º j 1 � i � m; 1 � k � nº:

Therefore, there are at least j.	n/mj different .m;n/-structure sets. By [7, Theorem 8],
the number of involutions in Sym.n/ is

j	nj � exp
�1
2
n.logn � 1/C

p
n
�
� n

1
4n

for large n. Thus the number of structure sets of degree .m; n/ is at least

j.	n/
m
j � n

1
4mn � .n2/

1
8mn � .mn/

1
8mn;
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where the last inequality follows from m � n. By choosing ˛ small enough, we get
the claim for all m and n (not just large enough n).

Theorem 4.6. There exists a number ˛ > 0 such that, for all sufficiently large nat-
ural numbers m and n, there are at least .mn/˛mn pairwise non-commensurable,
involutive BMW groups � of degree .m; n/ such that �.1/ D �C is simple.

Proof. Note that the partial structure set S0 defined in (�) has no element containing
¹ai ; bkº where i 2 J11; m � 3K and k 2 J12; n � 3K. Set m0; n0 to be the number
of elements in those integer intervals, respectively – namely m0 D m � 13 and n0 D
n � 14. We see that we can add to S0 any partial structure set supported on those
elements. Using Lemma 4.5, there is some ˛0 > 0 so that there are at least .m0n0/˛

0m0n0

different ways of extending S0 to a partial structure set S 0. By further adding the sets
¹ai ; bj ; ai ; bj º to S 0 for any i; j such that ¹ai ; bj º is not contained in an element
of S 0, one obtains a structure set S . Therefore there are at least .m0n0/˛

0m0n0 structure
sets containing S0. Additionally, a BMW group � associated to such a structure set
satisfies that �.1/ D �C is simple by Theorem 4.2.

We now give a lower bound for the number of commensurability classes of invo-
lutive BMWs associated to structure sets containing S0. By Proposition 3.9 the com-
mensurability class of such a BMW group has at most 2.mŠnŠ/2 structure sets. There-
fore, by the previous paragraph, there are at least .m0n0/˛

0m0n0=2.mŠnŠ/2 commensu-
rability classes of such involutive BMW groups of degree .m; n/. By using mŠ � mm

and nŠ � nn and m0 � m=2 and n0 � n=2 one gets the desired lower bound.

5. A random model for BMW groups

For each even n 2 N, let Fn � Sym.n/ be the subset of fixed-point-free involutions,
i.e., involutions which do not fix any element. When we write Fn, it is implied that n
is even. Let .Fn/m be the set of m-tuples of fixed-point-free involutions. We say that
˛ D .˛1; : : : ; ˛m/ 2 .Fn/

m has triple matchings if

˛i .k/ D j̨ .k/ D p̨.k/

for some 1 � k � n and some distinct 1 � i < j < p � m.
Fix ˛ D .˛1; : : : ; ˛m/ 2 .Fn/m with no triple matchings. We can then show how

to canonically define an .m; n/-structure set S˛ with associated B-tree local invo-
lutions ˛1; : : : ; ˛m. After fixing a marking M of Tm � Tn, by Proposition 2.5 this
also defines (up to conjugacy) an involutive BMW group �˛ 2 BMWM.m; n/ with
structure set S˛ .

For each 1 � k < l � n, set Ik;l WD ¹i j ˛i .k/D lº. Note that since ˛ has no triple
matchings, jIk;l j � 2. The structure set S˛ is the collection of subsets ¹ai ; bk; aj ; blº



N. Lazarovich, I. Levcovitz, and A. Margolis 614

a1 a2 a3

b1 b2 b3 b4 b5 b6

Figure 3. The partition of the edges of the bipartite graph K3;6 corresponding to Example 5.1.

such that 1 � i � j � m and 1 � k < l � n satisfy Ik;l D ¹i; j º (note that i could
equal j ). It is straightforward to check that S˛ is indeed a structure set and that the
B-tree local involutions of S˛ are exactly ˛1; : : : ; ˛m.

Example 5.1. Suppose that ˛ D .˛1; ˛2; ˛3/ 2 .F6/3 is such that ˛1 D .12/.34/.56/,
˛2 D .12/.35/.46/ and ˛3 D .16/.35/.24/. Note that ˛ has no triple matchings. The
structure set associated to ˛ is then

S˛ D
®
¹a1; b1; a2; b2º; ¹a1; b3; a1; b4º; ¹a1; b5; a1; b6º;

¹a2; b3; a3; b5º; ¹a2; b4; a2; b6º; ¹a3; b1; a3; b6º; ¹a3; b2; a3; b4º
¯
:

See Figure 3.

A random element of Fn is an element of Fn chosen uniformly at random. A
random element of .Fn/m is an element of .Fn/m chosen uniformly at random, i.e., an
m-tuple of m independently chosen, random elements of Fn. We are now ready to
define random involutive BMW groups.

Definition 5.2. Suppose a marking M for Tm � Tn is fixed. Let n > 0 be even and
let ˛ be a random element of .Fn/m. If ˛ has no triple matchings, we define the corre-
sponding random involutive BMW group of degree .m; n/ to be �˛ 2 BMWM.m; n/.
On the other hand, if ˛ contains a triple matching, then we say that the corresponding
random involutive BMW group is not defined.

Let P be a property of BMW groups. We say that a random involutive BMW
group of degree .m;n/ satisfies property P with probability p, if given a random ˛ D

.˛1; : : : ; ˛m/ 2 .Fn/
m, then with probability p the corresponding random involutive

BMW group is defined and satisfies property P .
We will see in Lemma 5.5, if m is a function of n satisfying m.n/ D o.n

1
3 /, then

a random m-tuple ˛ 2 .Fn/m.n/ has no triple matchings (and consequently defines a
random BMW group) with probability tending to 1 as n tend to infinity.
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We first prove two elementary lemmas regarding fixed-point-free involutions. Re-
call that the double factorial of an integer n is defined as nŠŠ WD n � .n� 2/ � .n� 4/ � � �2
for n even and as nŠŠ WD n � .n � 2/ � .n � 4/ � � � 3 � 1 for n odd.

Lemma 5.3. For n even, jFnj D .n � 1/ŠŠ .

Proof. Let �.n/ D jFnj, and let � 2 Fn. There are n � 1 options for �.1/. After
choosing �.1/, there are �.n � 2/ ways of completing � to a fixed-point-free involu-
tion. So we get the recursion formula �.n/ D .n � 1/�.n � 2/, with �.2/ D 1. This
gives that �.n/ D .n � 1/ŠŠ.

Lemma 5.4. For n even, letO1; : : : ;Ok be a collection of unordered pairs of distinct
elements in ¹1; : : : ;nº such thatOi \Oj D; for i ¤ j . The probability that a random
element of Fn contains the orbit Oi for all 1 � i � k is .n�2k�1/ŠŠ

.n�1/ŠŠ
.

Proof. By Lemma 5.3, there are .n � 1/ŠŠ fixed-point-free involutions in Sym.n/ of
which .n � 2k � 1/ŠŠ have Oi as an orbit for every i .

The next lemma shows that when n is sufficiently greater than m, there are no
triple matchings with high probability.

Lemma 5.5. A random ˛ 2 .Fn/
m has no triple matchings with probability at least

1 � 4m3

n
.

Proof. Let ˛D .˛1; : : : ;˛m/. Let p denote the probability that ˛ has a triple matching.
Let��J1;mK3 be the set of triples .i; j;k/with i < j < k. For each !D.i; j; k/2�,
let Z!;l denote the event where

˛i .l/ D j̨ .l/ D ˛k.l/:

Each such event has probability 1
.n�1/2

of occurring. Let Z D
S
!2�

Sn
lD1Z!;l , and

note that the probability of Z occurring is p. As j�j � m3, we deduce via a union
bound that

p �
m3n

.n � 1/2
�
4m3

n
;

where we used that 1
n�1
�

2
n

for n � 2.

6. A-tree local actions

The aim of this section is to prove the following theorem.
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Theorem 6.1. There is a constant C such the following holds. If � is a random BMW
involution group of degree .m; n/ with n > m5, then the A-tree local action of � is
Sym.m/ with probability at least 1 � C

m
.

In the next proposition, we give conditions on ˛ 2 .Fn/m that ensure the A-tree
local action of the induced BMW group �˛ is Sym.m/. We then show that all these
conditions hold with sufficiently high probability.

We say that ˛ D .˛1; : : : ; ˛m/ 2 .Fn/
m has overlapping matches if there exist

distinct pairs ¹i; j º; ¹i 0; j 0º, with i ¤ j and i 0 ¤ j 0, such that ˛i .k/ D j̨ .k/ and
˛i 0.k/ D j̨ 0.k/ for some k.

Proposition 6.2. Suppose that ˛ D .˛1; : : : ; ˛m/ 2 .Fn/m satisfies:

(A1) ˛ has no triple matchings,

(A2) ˛ has no overlapping matches, and

(A3) for all i; i 0, there exists j such that ˛i and j̨ share a common orbit, and j̨

and ˛i 0 share a common orbit.

Then the A-tree local action of �˛ is Sym.m/.

Proof. As ˛ has no triple matchings, we let � D �˛ and S D S˛ be respectively the
associated BMW group and structure set associated to ˛. Let ˇ1; : : : ; ˇn be the A-tree
local involutions of � .

Suppose that ˛i .k/ D j̨ .k/ D l for some 1 � i < j � m and 1 � k < l � n.
We claim that ˇk is the transposition .i j /. By the definition of S , ¹ai ; bk; aj ; blº2S ,
and it follows from this that ˇk.i/D j . By (A2), for all distinct i 0; j 0 ¤ i; j , we have
that ˇi 0.k/¤ ǰ 0.k/. From this it follows that for all i 0¤ i;j , ¹ai 0 ;bk;ai 0 ;b˛i0 .k/º 2S .
Thus, ˇ.i 0/D i 0 for all i 0¤ i; j . We conclude that ˇk is indeed the transposition .i j /,
showing the claim.

Let 1 � i < i 0 � m. By (A3), there exists some j ¤ i; i 0 such that ˛i and j̨

share a common orbit, and j̨ and ˛i 0 share a common orbit. By the previous para-
graph, this implies there exist 1 � l; l 0 � n such that ˇl is the transposition .i j /
and ˇl 0 is the transposition .j i 0/. Thus ˇlˇl 0ˇl is the transposition .i i 0/. Conse-
quently, the subgroup generated by ¹ˇ1; : : : ; ˇnº contains all transpositions and so
generates Sym.m/.

The remainder of this section is devoted to showing that a random ˛ 2F m
n satisfies

the three conditions from Proposition 6.2 with sufficiently high probability. Condi-
tion (A1) was shown to hold in Lemma 5.5. We thus begin with condition (A2).

Lemma 6.3. A random ˛ 2 .Fn/
m has no overlapping matches with probability at

least 1 � 4m4

n
.
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Proof. Let ˛ D .˛1; : : : ; ˛m/. Let p denote the probability that ˛ has overlapping
matches. Let … � J1; mK4 be the set of quadruples .i; i 0; j; j 0/ such that ¹i; i 0º ¤
¹j; j 0º, i ¤ i 0 and j ¤ j 0. For each � D .i; i 0; j; j 0/ 2…, let Y�;k be the event where
˛i .k/ D ˛i 0.k/ and j̨ .k/ D j̨ 0.k/. The probability that each such event occurs is
equal to 1

.n�1/2
. Let Y D

S
�2…

Sn
kD1 Y�;k , and note that the probability that Y

occurs is equal to p. Since j…j � m4, we deduce via union bound that

p �
m4n

.n � 1/2
�
4m4

n
:

Next, we give the probability that two fixed-point-free involutions share a common
orbit.

Lemma 6.4. The probability that two random elements of Fn share a common orbit
is

n
2X

kD1

.�1/kC1
� n
2

k

�
.n � 2k � 1/ŠŠ

.n � 1/ŠŠ
;

Moreover, this probability converges to 1 � e�
1
2 as n!1.

Proof. Suppose ˛; ˛0 2 Fn are chosen uniformly at random. Let ¹O1; : : : ; Orº be the
set of orbits of ˛, where r D n

2
. Let Ti � Fn be the set of fixed-point-free involutions

with orbit Oi , and let Z be the number of fixed-point-free involutions in Fn with
orbit Oi for some 1 � i � n. By inclusion-exclusion,

Z D

ˇ̌̌̌ r[
iD1

Ti

ˇ̌̌̌
D

rX
kD1

.�1/kC1
� X
1�n1<���<nk�r

jTn1 \ � � � \ Tnk j

�
:

By Lemma 5.4, jTn1 \ � � � \Tnk j D .n� 2k � 1/ŠŠ for every 1� n1< � � �<nk � r .
By the above equation, we then have

Z D

rX
kD1

.�1/kC1
�
r

k

�
.n � 2k � 1/ŠŠ :

By Lemma 5.3, we can divide by .n � 1/ŠŠ to conclude the first claim.
We now prove the convergence claim. Set

ak;r D .�1/
kC1

�
r

k

�
.2r � 2k � 1/ŠŠ

.2r � 1/ŠŠ
for k � r;

and ak;r D 0 otherwise. We want to show that limr!1

Pr
kD1 ak;r is equal to 1� e�

1
2 .
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We first note that for all k � r ,

ak;r D .�1/
kC1

�
r

k

�
1

.2r � 1/.2r � 3/ � � � .2r � 2k C 1/

D
.�1/kC1

kŠ

r.r � 1/ � � � .r � k C 1/

.2r � 1/.2r � 3/ � � � .2r � 2k C 1/

D
.�1/kC1

kŠ

k�1Y
iD0

r � i

2r � 2i � 1
:

Thus jak;r j � 1
kŠ

for all k and r . Since
P1
kD1

1
kŠ
<1, Tannery’s theorem implies that

lim
r!1

1X
kD1

ak;r

exists and is equal to
1X
kD1

�
lim
r!1

ak;r
�
:

Clearly,

lim
r!1

ak;r D
.�1/kC1

kŠ2k
:

Therefore,

lim
r!1

rX
kD1

ak;r D

1X
kD1

.�1/kC1

kŠ2k
D 1 �

1X
kD0

1

kŠ

�
�1

2

�k
D 1 � e�

1
2 :

Corollary 6.5. There exists a number N such that whenever n � N , the probability
that two random elements in Fn share a common orbit is at least 1

3
.

Remark 6.6. It can be shown using estimates that N in the previous corollary, can
be taken to be 2.

Finally, we show that the third property of Proposition 6.2 holds with high proba-
bility.

Lemma 6.7. Let N be as in Corollary 6.5, n � N and ˛ 2 .Fn/m be a random
element. Then with probability at least 1 � 2m2.8

9
/m the following property holds:

for all 1 � i < i 0 � m there exists a j such that ˛i and j̨ share a common orbit,
and j̨ and ˛i 0 share a common orbit.

Proof. Let ˛ D .˛1; : : : ; ˛m/. For each 1 � i < i 0 � m and j ¤ i; i 0, let Yi;j;i 0 be the
event that both ˛i and j̨ share a common orbit, and j̨ and ˛i 0 share a common orbit.
Since (up to conjugation) we can treat j̨ as fixed, and ˛i and ˛i 0 as independently
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randomly chosen, we get that the event that ˛i and j̨ share an orbit and the event that
j̨ and ˛i 0 share an orbit are independent. By Corollary 6.5 each of them occurs with

probability at least 1
3

. Therefore, the probability of the event Yi;j;i 0 is

P .Yi;j;i 0/ �
�1
3

�2
D
1

9
:

Let Zi;i 0 be the event that no Yi;j;i 0 occurs for any j … ¹i; i 0º, and let Z DS
i¤i 0 Zi;i 0 . Observe that the property in the lemma’s statement holds exactly when

the event Z does not occur. Since Zi;i 0 D
T
j…¹i;i 0º Y

c
i;j;i 0 and the events Yi;j;i 0 are

independent, we have that

P .Zi;i 0/ �
�
1 �

1

9

�m�2
D

�8
9

�m�2
� 2

�8
9

�m
;

and by a union bound that

P .Z/ �
X
i¤i 0

P .Zi;i 0/ � 2m
2
�8
9

�m
:

Proof of Theorem 6.1. Suppose first that n � N , where N is as in Corollary 6.5. By
Lemmas 5.5, 6.3 and 6.7, and by a union bound, a random ˛ 2 F m

n satisfies the three
properties of Proposition 6.2 with probability at least

p.m; n/ WD 1 �
4m3

n
�
4m4

n
� 2m2

�8
9

�m
:

Since n > m5, we can pick some constant C such that p.m; n/ � 1 � C
m

as required.
Moreover, by choosing C large enough, we can guarantee that this holds for all n (not
just for n � N ).

7. B-tree local action

In this section we show that the B-tree local action of a random BMW group contains
the alternating group Alt.n/ asymptotically almost surely (Corollary 7.2). This fol-
lows from a generation result for random fixed-point-free involutions (Theorem 7.1).
This theorem should be compared to those of Dixon [8] and Liebeck–Shalev [10]
which address generation results for random permutations and random involutions
respectively. In fact, our proof closely follows that of Liebeck–Shalev.

Theorem 7.1. Let m � 3, " > 0 and ˛ D .˛1; : : : ; ˛m/ 2 .Fn/m a random element.
Then

P
�
Alt.n/ � h˛1; : : : ; ˛mi

�
� 1 �O.n�.m�.1=2�"/�1//:



N. Lazarovich, I. Levcovitz, and A. Margolis 620

Corollary 7.2. LetmDm.n/ be a function of n satisfying 5 �m.n/DO.n1=3/, and
let ˛ 2 .Fn/m be a random element. The probability that the B-tree local action of
the random BMW group �˛ contains Alt.n/ is 1 �O.1=n/.

Proof. By Lemma 5.5, the group �˛ is well defined with sufficiently high probability.
As we saw in Section 5, theB-tree local action is generated by ˛1; : : : ; ˛m. The bound
above now follows from the theorem.

To prove Theorem 7.1, we follow the same strategy as that of Liebeck–Shalev [10].
Given a group G, we let MG denote the set of maximal, proper subgroups of G. Let
Nn �MSym.n/ be the set of maximal proper subgroups of Sym.n/ which do not con-
tain Alt.n/. If Alt.n/ 6� h˛1; : : : ; ˛mi, then the permutations ˛1; : : : ; ˛m are contained
in some subgroup M 2 Nn. It follows by a union bound that

P
�
Alt.n/ 6� h˛1; : : : ; ˛mi

�
�

X
M2Nn

P .˛1; : : : ; ˛m 2M/

D

X
M2Nn

P .˛ 2M/m; (2)

where ˛ 2 Fn is chosen uniformly at random.
Given a group G, Liebeck–Shalev define the function

�G.s/ WD
X

M2MG

ŒG WM��s;

and show that �Alt.n/.s/DO.n
�.s�1//! 0 as n!1 for all s > 1 [10, Theorem 3.1].

A similar proof shows thatX
M2Nn

ŒSym.n/ WM��s D O.n�.s�1//

as n!1 for all s > 1. By Lemma 7.3 below and (2), we have that

P .Alt.n/ 6� h˛1; : : : ; ˛mi/ �
X
M2Nn

P .˛ 2M/m

� cm
X
M2Nn

ŒSym.n/ WM��m.
1
2�"/

for some constant c. Theorem 7.1 then follows from the last two equations. Thus, we
now turn our attention to proving the following lemma.

Lemma 7.3. For every "> 0, there exists a constant c such that given any even integer
n > 0, any M 2 Nn and a random ˛ 2 Fn, then

P .˛ 2M/ � cŒSym.n/ WM��
1
2C":
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Proof. We follow the same outline as the proof of [10, Theorem 5.1]. We have the
following two equations

jSym.n/j D nŠ D exp
�
n logn � nC

1

2
log.2�n/C o.1/

�
;

jFnj D .n � 1/ŠŠ D exp
�1
2
.n logn � n/CO.1/

�
;

each following from Stirling’s approximation, where for the second equation we also
use the identity

jFnj D .n � 1/ŠŠ D
.n/Š

2
n
2 .n=2/Š

:

Thus, there exists a constant c0 � 1 such that

c�10 jSym.n/j
1
2 � jFnj � .2�n/

1
4 � c0jSym.n/j

1
2 : (3)

Additionally, since .2�n/
1
4 � nŠ D jSym.n/j, we may also assume that c0 satisfies

c�10 jSym.n/j
1
2�

"
2 � jFnj � c0jSym.n/j

1
2 : (4)

By the O’Nan–Scott theorem (cf. [1, Appendix]), the maximal subgroups of Sym.n/
are either primitive, direct products of symmetric groups (not transitive) or wreath
products of symmetric groups (transitive and imprimitive).

Case 1: M is primitive. The main theorem of [13] shows that every primitive sub-
group M 2 Nn satisfies jM j � 4n. Furthermore, there exists a constant c1 such that

4n � c1jSym.n/j
"
2 :

By (4),

jM \ Fnj

jFnj
�
jM j

jFnj
� c0c1

jSym.n/j
"
2

jSym.n/j
1
2�

"
2

� c0c1jSym.n/j�
1
2C" � c0c1ŒSym.n/ WM��

1
2C":

Case 2: M is not transitive. In this case, M can be identified with Sym.k/ � Sym.l/
for some k; l < n such that k C l D n. Furthermore, M \ Fn D Fk � Fl if both k
and l are even, and M \ Fn D 1 otherwise. By (3), we get that

jM \ Fnj

jFnj
�
jFkjjFl j

jFnj
� c30

�
jSym.k/jjSym.l/j
jSym.n/j

� 1
2

�

� n

2�kl

� 1
4

� c30

�
jM j

jSym.n/j

� 1
2

� c30 ŒSym.n/ WM��
1
2 ;

where the third inequality follows since n � 2�kl .
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Case 3: M is transitive and imprimitive. In this case, M can be identified with
Sym.k/ o Sym.l/ for some k; l < n such that kl D n. In wreath product notation,
every permutation ˛ 2M can be written as ˛ D .�1; : : : ; �l/ � � , where �i 2 Sym.k/
and � 2 Sym.l/. It readily follows that ˛ is a fixed-point-free involution if and only if
the following three conditions hold:

(1) Up to relabeling the l-element set that Sym.l/ acts on, � has the form

� D .1 2/.3 4/ � � � .2m � 1 2m/

for some m � l
2

,

(2) �1 D ��12 ; : : : ; �2m�1 D �
�1
2m, and

(3) �2mC1; : : : ; �l are fixed-point-free involutions in Sym.k/.

Fixing an involution � 2 Sym.l/withm transpositions, the number of fixed-point-
free involutions ˛ 2M \ Fn which can be written as ˛ D .�1; : : : ; �l/ � � is

jSym.k/jmjFkjl�2m D .kŠ/m..k � 1/ŠŠ/l�2m � cl�2m0 .kŠ/
l
2 � cl0.kŠ/

l
2 ;

where the first inequality follows from (4). We thus get the bound

jM \ Fnj � c
l
0.kŠ/

l
2 � j	l j;

where 	l is the set of all involutions in Sym.l/. It is shown in [7, Theorem 8] (and
refined in [12]) that

j	l j � exp
�1
2
l log l �

1

2
l C
p
l CO.1/

�
� exp

�1
2
l log l �

1

2
l C

1

2

p
2�l CO.1/

�
:

Therefore, by Stirling’s approximation, there exists c2 such that j	l j � c2.lŠ/
1
2 for

all l . From the last two equations we deduce that

jM \ Fnj � c2c
l
0.kŠ/

l
2 .lŠ/

1
2 D c2c

l
0..kŠ/

l lŠ/
1
2 :

By (3) and as jM j D .kŠ/l lŠ, we get

jM \ Fnj

jFnj
� c0c2c

l
0.2�n/

1
4

� .kŠ/l lŠ
nŠ

� 1
2

� c2c
lC1
0 .2�n/

1
4 ŒSym.n/ WM��

1
2 : (5)

Recall that M D Sym.k/ o Sym.l/ is a maximal subgroup of Sym.n/ that pre-
serves a partition of n elements into l subsets of size k. Without loss of generality,
let the n-element set be ¹1; : : : ; kº � ¹1; : : : ; lº and suppose that M preserves the
partition

Fl
jD1¹1; : : : ; kº � ¹j º.



Counting lattices in products of trees 623

Consider the subgroup H of Sym.n/ that stabilizes the set ¹iº � ¹1; : : : ; lº for
each 1 � i � k, and which fixes pointwise the set ¹kº � ¹1; : : : ; lº. Then H is a copy
of .Sym.l//k�1 which satisfies H \M D 1. Thus,

ŒSym.n/ WM� � jH j D .lŠ/k�1:

Since lŠ is super-exponential, there exists c3 so that cl0 � c3 � .lŠ/
"
2 . We get that

cl0 � c3 � .lŠ/
"
2 � c3ŒSym.n/ WM�

"
2 ; (6)

where the second inequality follows as ŒSym.n/ W M� � .lŠ/k�1 � lŠ. As lŠ � 2l

2
, as

n D kl and as l � n
2

, we also get that

ŒSym.n/ WM� � .lŠ/k�1 �
2l.k�1/

2
�
2
n
2

2
:

Moreover, there exists a constant c4 such that .2�n/
1
4 �

c4
2
.2
n
2 /

"
2 . We then get that

.2�n/
1
4 �

c4

2
.2
n
2 /

"
2 � c4ŒSym.n/ WM�

"
2 : (7)

By (5), (6) and (7), it follows that

jM \ Fnj

jFnj
� c0c2c3c4ŒSym.n/ WM��

1
2C":

Setting c D max¹c0c1; c30 ; c0c2c3c4º completes the proof.

8. Irreducibility of random BMWs

The aim of this section is to complete the proof of Theorem B. More precisely, we
prove the following theorem.

Theorem 8.1. There is a constant C such that the following holds. If � is a random
BMW involution group of degree .m; n/ with n > m5, then all of the following hold
with probability at least 1 � C

m
:

(1) the A-tree local action of � is Sym.m/;

(2) the B-tree local action of � is either Sym.n/ or Alt.n/;

(3) � is irreducible;

(4) � is hereditarily just-infinite.
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b1 b2 b3 b4 b5 b6

Figure 4. The graph G˛ for the permutations in Example 5.1. Bold edges represent ‘black’
edges and dotted edges represent ‘white’ edges.

Conclusions (1) and (2) follow directly from Theorem 6.1 and Corollary 7.2
respectively. Moreover, conclusion (4) follows from conclusions (1)–(3) and Theo-
rem 2.8. Thus, we are left to prove conclusion (3) regarding the irreducibility of � .
By a theorem of Caprace [6, Theorem 1.2 (vi)], conclusion (3) is implied by conclu-
sions (1) and (2) as long as

n …

²
mŠ

2
� 1;

mŠ

2
; mŠ � 1;

mŠ.m � 1/Š

4
� 1;

mŠ.m � 1/Š

4
;

mŠ.m � 1/Š

2
� 1;

mŠ.m � 1/Š

2
; mŠ.m � 1/Š � 1

³
:

Thus, in order to finish the proof Theorem 8.1, it is enough to show that (3) holds
whenever n is one of the values above. To do so, we actually show conclusion (3)
holds whenever n > m8 (covering the above finite cases) by using the theorem of
Trofimov–Weiss stated below.

Suppose that � is a group acting vertex-transitively on a locally finite connected
graph X . We do not assume the action is faithful. Given a vertex v 2 X , let �v be its
stabilizer, and let � Œi�v be the pointwise stabilizer of the set of all vertices distance i
or less from v. Recall that the local action of � is the subgroup of Sym.m/ induced
by the action of �v on the edges adjacent to v. The following is a consequence of a
theorem of Trofimov–Weiss, as reformulated by Caprace [18, Section 4.5].

Theorem 8.2 ([19, Theorem 1.4]). Suppose that a group � acts vertex transitively on
a connected locally finite graph X with 2-transitive local action. If � Œ6�v 6� �

Œ7�
v for

some v 2 V.X/, then the image of the action � ! Aut.X/ is not discrete.

Recall that a BMW group � �Aut.Tm/�Aut.Tn/ acts on Tm by projecting to the
first factor. We prove Theorem 8.1 (3) by showing that the hypotheses of Theorem 8.2
are satisfied with sufficiently high probability for a random BMW group. We do this
by investigating the following graph.
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Definition 8.3. Given ˛ 2 .Fn/m, define the following simplicial graph G˛ whose
edges are colored black and white such that:

• the vertex set of G˛ is Bn D ¹b1; : : : ; bnº;

• vertices bi and bj are joined by an edge if there is some 1 � k � m such that
˛k.i/ D j . This edge is black if there exist distinct k ¤ k0 such that ˛k.i/ D
˛k0.i/ D j , and is white otherwise.

An example of the above graph is shown in Figure 4.

Lemma 8.4. Suppose that ˛ D .˛1; : : : ; ˛m/ 2 .Fn/m satisfies:

(Irr1) ˛ has no triple matchings;

(Irr2) there exists some b 2 Bn such that all edges in the closed ball N6.b/ of G˛

are white;

(Irr3) G˛ is connected;

(Irr4) G˛ contains a black edge;

(Irr5) the A-tree local action of �˛ is 2-transitive.

Then, the BMW group �˛ is irreducible.

Proof. Recall from Section 2.1 that the action of the involutive BMW group � D �˛
on Tm � Tn preserves a labeling of edges of Tm � Tn, where horizontal edges are
labeled by elements of Am and vertical edges by Bn. Moreover, recall that the 1-
skeleton of Tm � Tn can be identified with the Cayley graph of � . Let oD .oA; oB/ 2
Tm � Tn be the vertex corresponding to the identity. By the definition of �˛ and as ˛
has no triple matching, if ai ; bk; aj ; bl are the labels of the edges of a square in
Tm � Tn, then

˛i .k/ D j̨ .k/ D l:

Let �AWTm � Tn ! Tm be the projection map.
By a slight abuse of notation, we identify each b 2 Bn with the element � that

interchanges the endpoints of the edge incident to o and labeled by b. We deter-
mine the action of b on Tm as follows. Let L be a path in Tm � ¹oBº starting at o.
Let ai1 ; : : : ; air 2 Am be the labels of consecutive edges of L. Now let R be the
unique 1 � r rectangle in Tm � Tn whose bottom left vertex is o, whose left edge is
labeled by b and whose top edge is the path bL. Such a rectangle is shown in Figure 5,
with ai 0

j
and bkj as indicated in Figure 5.

Let L0 be the path in Tm � ¹oBº corresponding to the bottom of the rectangle R,
i.e., L0 is the unique edge path starting at o and whose edges have labels ai 0

1
; : : : ; ai 0r .

The paths bL and L0 have the same projection to Tm. Thus b fixes the projection
�A.L/ of L onto Tm pointwise if and only if aij D ai 0j for all 1 � j � r .
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ai1 ai2 air

ai 0
1

ai 0
2

ai 0r

b D bk0 bk1 bk2 bkr�1 bkr

bo

o

Figure 5. Determining the action of b 2 Bn on the A-tree Tm.

By the definition of the graph G˛ , there is a path ` in G˛ traversing in order the
vertices bk0 ; : : : ; bkr . Moreover, the edge joining bkj�1 and bkj is white if and only
if aij D ai 0j . We thus see that b fixes �A.L/ if and only if all edges of ` are white.

By (Irr2), (Irr3) and (Irr4), there exists some b 2 Bn such that all edges in the
closed ball N6.b/ are white, but there is a black edge in the closed ball N7.b/. Fix
such a b 2 Bn. It follows that b fixes all paths of length 6 starting at oA, i.e., b 2 � Œ6�v .
Moreover, there is some path traversing, in order, the vertices b D bk0 ; bk1 ; : : : ; bk7
in N6.b/ such that the edge .bk6 ; bk7/ is black. Since, for each j , .bkj�1 ; bkj / is an
edge of G˛ , there is some aij 2Am such that ˛ij .kj�1/D kj . Consider the path �A.L/
of Tm starting at oA whose edges are sequentially labeled by ai1 ; : : : ; ai7 . Since the
edge .bk6 ; bk7/ is black, b cannot fix �A.L/, hence b … � Œ7�v .

Since the A-tree local action is 2-transitive and � Œ6�v 6� �
Œ7�
v , it follows from The-

orem 8.2 that the projection of �� � Aut.Tm/ � Aut.Tn/ to Aut.Tm/ is not discrete.
Therefore, �� is irreducible by [4, Proposition 1.2].

To prove Theorem 8.1, we need to show that conditions (Irr1)–(Irr5) are satisfied
with high probability. This has already been established for (Irr1), (Irr3) and (Irr5)
in Lemma 5.5, Corollary 7.2 and Theorem 7.1 respectively. Hence, all that remains
is to show that conditions (Irr2) and (Irr4) hold with high probability. To do so, we
investigate the following random variable.

Definition 8.5. Let m; n 2 N with n even. Given ˛ 2 Fn, define

P˛ WD ¹¹i; ˛.i/º j 1 � i � nº:

For random ˛ D .˛1; : : : ; ˛m/ 2 .Fn/
m, define the random variable

Mn;m.˛/´
X
i<j

jP˛i \ P j̨
j:

Remark 8.6. The number of black edges in G˛ is at most Mn;m.˛/, with equality
precisely when ˛ has no triple matchings. In particular, G˛ has no black edges if and
only if Mn;m.˛/ D 0.
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The following lemma demonstrates that G˛ has at least one black edge with suffi-
ciently high probability.

Lemma 8.7. There exists a constant N such that if given any m; n 2 N with n even
and n � N and a random ˛ 2 .Fn/

m, then the probability that G˛ has no black edge
is at most .2

3
/m�1.

Proof. For random ˛ D .˛1; : : : ; ˛m/ 2 .Fn/
m, define the random variable

Yn;m.˛/ D

mX
iD2

jP˛1 \ P˛i j:

It follows from the definition of Mn;m that, for each ˛ 2 .Fn/m, we have

0 � Yn;m.˛/ �Mn;m.˛/:

Therefore, P .Mn;m D 0/ � P .Yn;m D 0/.
By Corollary 6.5 there is a constant N such that for n � N , two random elements

of Fn do not have a common orbit with probability at most 2=3, i.e., P .Mn;2D0/�
2
3

.
Since Yn;m is the sum of m � 1 non-negative independent identically distributed ran-
dom variables with the same distribution as Mn;2, we have for n � N that

P .Mn;m D 0/ � P .Yn;m D 0/ �
�2
3

�m�1
:

The result now follows from Remark 8.6.

We now show the following proposition.

Proposition 8.8. Let m; n 2 N with n > m8 and n even. Then with probability at
least 1� 1

m
, for some b 2 Bn, the closed ball N6.b/ � G˛ only contains white edges.

We first prove some lemmas that are used in the proof of Proposition 8.8.

Lemma 8.9. For any even n, we have E.Mn;2/ D
n

2.n�1/
� 1.

Proof. Let .˛;˛0/ 2 .Fn/2 be a random element. As in Lemma 6.4, we may assume ˛
is fixed and ˛0 is chosen at random. Let C1; : : : ; Cr be the orbits of ˛, with r D n

2
,

and let Yi be the indicator random variable associated to the event that Ci is an orbit
of ˛0. Then Mn;2 D

Pr
iD1 Yi , and P .Yi D 1/ D

1
n�1

by Lemma 5.4. Therefore, by
the linearity of expectation,

E.Mn;2/ D
n

2.n � 1/
� 1;

as required.
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Lemma 8.10. For any A > 0, we have P .Mn;m � A/ �
m2

2A
.

Proof. Observe thatMn;m is a sum of m.m�1/
2

random variables, each having the same
probability distribution as Mn;2. By Lemma 8.9 and linearity of expectation, we see
that

E.Mn;m/ �
m.m � 1/

2
�
m2

2
:

The result now follows by applying Markov’s inequality.

Proof of Proposition 8.8. By Lemma 8.10, P .Mn;m �
m3

2
/ � 1

m
. To prove Proposi-

tion 8.8, it thus suffices to show that ifMn;m.˛/ <
m3

2
, then all edges in the closed ball

N6.b/ are white for some vertex b. Indeed, if Mn;m.˛/ <
m3

2
, then by Remark 8.6,

G˛ contains fewer than m3

2
black edges. Since vertices of G˛ have valence at most m,

any edge of G˛ has at most 2m5 vertices a distance 5 or less from it. Thus there are at
most

2m5 �
m3

2
D m8

vertices that are at a distance of 5 or less from the endpoint of a black edge. Hence,
as m8 < n, the closed ball N6.b/ contains no black edge for some vertex b.

Proof of Theorem 8.1. As noted in the paragraph after Theorem 8.1, we may assume
n > m8. Lemma 5.5, Proposition 8.8, Corollary 7.2, Lemma 8.7 and Theorem 6.1
each give upper bounds for the probability than one of the conditions (Irr1)–(Irr5) in
Lemma 8.4 do not hold. Taking a union bound, we see that there is a constant N such
that if n�max.m8;N /, the probability that at least one of (Irr1)–(Irr5) is not satisfied
is at most

4m3

n
C
1

m
C
C1

m
C

�2
3

�m�1
C
C2

m

for some constants C1 and C2. Therefore for some sufficiently large constant C , we
deduce that for all even n > m8 conditions (Irr1)–(Irr5) of Lemma 8.4 are satisfied
with probability at least 1 � C

m
. Lemma 8.4 ensures that the group �˛ satisfies con-

clusion (3) of Theorem 8.1 with probability at least 1 � C
m

. Theorem 8.1 now follows
from the discussion immediately after its statement.

Acknowledgments. We thank Pierre-Emmanuel Caprace for his comments on the
manuscript and for his suggestion to use the main result of his paper [6] to improve
the bound in Theorem B. We also thank the anonymous referee for their comments
and suggestions.

Funding. N.L. is supported by the Israel Science Foundation (grant no. 1562/19),
and by the German-Israeli Foundation for Scientific Research and Development.



Counting lattices in products of trees 629

References

[1] M. Aschbacher and L. Scott, Maximal subgroups of finite groups. J. Algebra 92 (1985),
no. 1, 44–80 Zbl 0549.20011 MR 772471

[2] M. Burger, T. Gelander, A. Lubotzky, and S. Mozes, Counting hyperbolic manifolds.
Geom. Funct. Anal. 12 (2002), no. 6, 1161–1173 Zbl 1029.57021 MR 1952926

[3] M. Burger and S. Mozes, Groups acting on trees: From local to global structure. Inst.
Hautes Études Sci. Publ. Math. (2000), no. 92, 113–150 Zbl 1007.22012 MR 1839488

[4] M. Burger and S. Mozes, Lattices in product of trees. Inst. Hautes Études Sci. Publ. Math.
(2000), no. 92, 151–194 MR 1839489 Zbl 1007.22013

[5] M. Burger, S. Mozes, and R. J. Zimmer, Linear representations and arithmeticity of lattices
in products of trees. In Essays in geometric group theory, pp. 1–25, Ramanujan Math. Soc.
Lect. Notes Ser. 9, Ramanujan Mathematical Society, Mysore, 2009 Zbl 1198.22007
MR 2605353

[6] P.-E. Caprace, A radius 1 irreducibility criterion for lattices in products of trees. Ann. H.
Lebesgue 5 (2022), 643–675 Zbl 07574012 MR 4482338

[7] S. Chowla, I. N. Herstein, and W. K. Moore, On recursions connected with symmetric
groups. I. Canad. J. Math. 3 (1951), 328–334 Zbl 0043.25904 MR 41849

[8] J. D. Dixon, The probability of generating the symmetric group. Math. Z. 110 (1969),
199–205 Zbl 0176.29901 MR 251758

[9] T. Gelander and A. Levit, Counting commensurability classes of hyperbolic manifolds.
Geom. Funct. Anal. 24 (2014), no. 5, 1431–1447 Zbl 1366.57011 MR 3261631

[10] M. W. Liebeck and A. Shalev, Classical groups, probabilistic methods, and the .2; 3/-
generation problem. Ann. of Math. (2) 144 (1996), no. 1, 77–125 Zbl 0865.20020
MR 1405944

[11] N. Monod and Y. Shalom, Cocycle superrigidity and bounded cohomology for negatively
curved spaces. J. Differential Geom. 67 (2004), no. 3, 395–455 Zbl 1127.53035
MR 2153026

[12] L. Moser and M. Wyman, On solutions of xd D 1 in symmetric groups. Canadian J. Math.
7 (1955), 159–168 Zbl 0064.02601 MR 68564

[13] C. E. Praeger and J. Saxl, On the orders of primitive permutation groups. Bull. London
Math. Soc. 12 (1980), no. 4, 303–307 Zbl 0443.20001 MR 576980

[14] N. Radu, New simple lattices in products of trees and their projections. Canad. J. Math.
72 (2020), no. 6, 1624–1690 Zbl 07282204 MR 4176704

[15] D. Rattaggi, Computations in groups acting on a product of trees: Normal subgroup struc-
tures and quaternion lattices. PhD thesis, ETH Zürich, 2004

[16] D. Rattaggi, Anti-tori in square complex groups. Geom. Dedicata 114 (2005), 189–207
Zbl 1147.20039 MR 2174099

[17] D. Rattaggi, A finitely presented torsion-free simple group. J. Group Theory 10 (2007),
no. 3, 363–371 Zbl 1136.20026 MR 2320973

[18] R. Sauer, L2-Betti number of discrete and non-discrete groups. In New directions in
locally compact groups, pp. 205–226, London Math. Soc. Lecture Note Ser. 447, Cam-
bridge University Press, Cambridge, 2018 Zbl 1407.22003 MR 3793289

https://doi.org/10.1016/0021-8693(85)90145-0
https://zbmath.org/?q=an:0549.20011
https://mathscinet.ams.org/mathscinet-getitem?mr=772471
https://doi.org/10.1007/s00039-002-1161-1
https://zbmath.org/?q=an:1029.57021
https://mathscinet.ams.org/mathscinet-getitem?mr=1952926
https://doi.org/10.1007/bf02698915
https://zbmath.org/?q=an:1007.22012
https://mathscinet.ams.org/mathscinet-getitem?mr=1839488
https://doi.org/10.1007/bf02698916
https://mathscinet.ams.org/mathscinet-getitem?mr=1839489
https://zbmath.org/?q=an:1007.22013
https://zbmath.org/?q=an:1198.22007
https://mathscinet.ams.org/mathscinet-getitem?mr=2605353
https://doi.org/10.5802/ahl.132
https://zbmath.org/?q=an:07574012
https://mathscinet.ams.org/mathscinet-getitem?mr=4482338
https://doi.org/10.4153/cjm-1951-038-3
https://doi.org/10.4153/cjm-1951-038-3
https://zbmath.org/?q=an:0043.25904
https://mathscinet.ams.org/mathscinet-getitem?mr=41849
https://doi.org/10.1007/BF01110210
https://zbmath.org/?q=an:0176.29901
https://mathscinet.ams.org/mathscinet-getitem?mr=251758
https://doi.org/10.1007/s00039-014-0294-3
https://zbmath.org/?q=an:1366.57011
https://mathscinet.ams.org/mathscinet-getitem?mr=3261631
https://doi.org/10.2307/2118584
https://doi.org/10.2307/2118584
https://zbmath.org/?q=an:0865.20020
https://mathscinet.ams.org/mathscinet-getitem?mr=1405944
https://doi.org/10.4310/jdg/1102091355
https://doi.org/10.4310/jdg/1102091355
https://zbmath.org/?q=an:1127.53035
https://mathscinet.ams.org/mathscinet-getitem?mr=2153026
https://doi.org/10.4153/CJM-1955-021-8
https://zbmath.org/?q=an:0064.02601
https://mathscinet.ams.org/mathscinet-getitem?mr=68564
https://doi.org/10.1112/blms/12.4.303
https://zbmath.org/?q=an:0443.20001
https://mathscinet.ams.org/mathscinet-getitem?mr=576980
https://doi.org/10.4153/s0008414x19000506
https://zbmath.org/?q=an:07282204
https://mathscinet.ams.org/mathscinet-getitem?mr=4176704
https://doi.org/10.1007/s10711-005-5538-9
https://zbmath.org/?q=an:1147.20039
https://mathscinet.ams.org/mathscinet-getitem?mr=2174099
https://doi.org/10.1515/JGT.2007.028
https://zbmath.org/?q=an:1136.20026
https://mathscinet.ams.org/mathscinet-getitem?mr=2320973
https://zbmath.org/?q=an:1407.22003
https://mathscinet.ams.org/mathscinet-getitem?mr=3793289


N. Lazarovich, I. Levcovitz, and A. Margolis 630

[19] V. I. Trofimov and R. M. Weiss, Graphs with a locally linear group of automorphisms.
Math. Proc. Cambridge Philos. Soc. 118 (1995), no. 2, 191–206 Zbl 0846.05043
MR 1341785

[20] D. T. Wise, Non-positively curved squared complexes: Aperiodic tilings and non-residu-
ally finite groups. PhD thesis, Princeton University, 1996

[21] D. T. Wise, Complete square complexes. Comment. Math. Helv. 82 (2007), no. 4, 683–724
Zbl 1142.20025 MR 2341837

Received 2 February 2022.

Nir Lazarovich
Department of Mathematics, Technion, Haifa 32000, Israel; lazarovich@technion.ac.il

Ivan Levcovitz
Department of Mathematics, Tufts University, Medford, MA 02155, USA;
ivan.levcovitz@tufts.edu

Alex Margolis
Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA;
margolis.93@osu.edu

https://doi.org/10.1017/S0305004100073588
https://zbmath.org/?q=an:0846.05043
https://mathscinet.ams.org/mathscinet-getitem?mr=1341785
https://doi.org/10.4171/CMH/107
https://zbmath.org/?q=an:1142.20025
https://mathscinet.ams.org/mathscinet-getitem?mr=2341837
mailto:lazarovich@technion.ac.il
mailto:ivan.levcovitz@tufts.edu
mailto:margolis.93@osu.edu

	1. Introduction
	Counting BMW groups
	A random model for irreducible BMW groups
	Outline

	2. Involutive BMW Groups
	2.1. Structure sets
	2.2. Local actions
	2.3. Virtual simplicity of BMW groups

	3. Upper bounds on BMW counts
	3.1. Upper bound on conjugacy classes of involutive BMWs
	3.2. (m,n)-complexes and type-preserving subgroups

	4. Counting commensurability classes of BMW groups
	5. A random model for BMW groups
	6. A-tree local actions
	7. B-tree local action
	8. Irreducibility of random BMWs
	References

