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Lagrangian cobordisms and Lagrangian surgery

Jeff Hicks

Abstract. Lagrangian k-surgery modifies an immersed Lagrangian submanifold by topological
k-surgery while removing a self-intersection. Associated to a k-surgery is a Lagrangian surgery
trace cobordism. We prove that every Lagrangian cobordism is exactly homotopic to a con-
catenation of suspension cobordisms and Lagrangian surgery traces. This exact homotopy can
be chosen with as small Hofer norm as desired. Furthermore, we show that each Lagrangian
surgery trace bounds a holomorphic teardrop pairing the Morse cochain associated with the
handle attachment to the Floer cochain generated by the self-intersection. We give a sample
computation for how these decompositions can be used to algorithmically construct bounding
cochains for Lagrangian submanifolds. In an appendix, we describe a 2-ended embedded mono-
tone Lagrangian cobordism which is not the suspension of a Hamiltonian isotopy following a
suggestion of Abouzaid and Auroux.

1. Introduction

1.1. Overview: Lagrangian cobordisms

A Lagrangian cobordism KWLC  L� is a Lagrangian submanifold K � X � C

whose projection to C fibers over the real axis outside of a compact set. This deter-
mines a set of “ends” for the Lagrangian cobordism given by LagrangiansLC; L��X
(see Definition 2.1.1).

These Lagrangian submanifolds were first discussed by Arnold in [3]. Lagrangian
cobordisms give an equivalence relation on Lagrangian submanifolds which is coarser
than Hamiltonian isotopy (in the sense that if LC; L� are Hamiltonian isotopic, they
are also Lagrangian cobordant, with K having topology LC �R).

The largest collection of constructions for Lagrangian cobordisms come from [15],
which introduced a k-surgery operation on Lagrangian submanifolds and an associ-
ated k-trace cobordism for 0 � k � n � 1, where n D dim.X/=2. When k D 0, this
is the Polterovich surgery introduced in [24]. Crucially, Haug provides a geometric

2020 Mathematics Subject Classification. Primary 53D12; Secondary 57R58.
Keywords. Lagrangian submanifolds, Lagrangian cobordisms, Lagrangian surgery, monotone
Lagrangian submanifolds, Floer theory.

https://creativecommons.org/licenses/by/4.0/


J. Hicks 510

.q� ! qC/

e

e

.q� ! qC/

TA

C

CF 0.K0;1/

CF 1.K0;1/

Figure 1. An immersed null cobordism K0;1 � C0 � C of the zero-dimensional Whitney
sphere S0 �C0. The patterned region represents a holomorphic teardrop pairing Morse cochain
with self-intersection.

meaning to the surgery model described by [4], which writes down a k-trace cobor-
dism for 0� k � n. When kD n, the cobordism constructed in [4] is a null-cobordism
for the Whitney sphere. For the simplest example, k D n D 0, the Whitney sphere is
an immersion

i0;0;CWS0 D ¹qC; q�º ! C0
D ¹ptº;

and the Polterovich surgery trace/Whitney null-cobordism is the curve drawn in Fig-
ure 1.

These surgery traces have some nice properties:

• As manifolds, the ends L�; LC of a Lagrangian surgery trace cobordism

Kk;n�kC1WLC L�

differ by topological surgery. The “height” on the Lagrangian trace cobordism
given by projection to the real coordinate �RWK

k;n�kC1! R has a single critical
point of index n � k.

• As an embedding, L� has one fewer self-intersection than LC. If Kk;n�kC1 is
graded, one Floer generator associated with this self-intersection lives in degree
n � k � 1.

1.2. Overview: Floer cohomology and surgery

The Floer complex of an embedded Lagrangian submanifold CF �.L/ is a deforma-
tion of the cochain group CM �.L/ by incorporating the counts of holomorphic disks
with boundary on L into the differential and product structures of CM �.L/. The
underlying cochain group CM �.L/ can be singular cochains, Morse cochains, or
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differential forms. The deformation enhances CF �.L/ with a filtered A1 structure
counting configurations of holomorphic polygons with boundary on L. The algebra
structure of CF �.L/ contains an abundance of data about the Lagrangian L. Most
importantly, when CF �.L/ is a tautologically unobstructed or weakly unobstructed
A1 algebra, it has homology groupsHF �.L/ which are invariant under Hamiltonian
isotopy. Similarly, whenever LC; L� embedded monotone Lagrangian cobordant,
Biran and Cornea [7] show that CF �.LC/ and CF �.L�/ are homotopy equivalent.

For monotone Lagrangian cobordisms with multiple ends, there is a known rela-
tion between Polterovich surgery, Lagrangian cobordisms, and exact sequences of
Floer cohomology. By using a neck stretching argument to compare holomorphic
polygons on the summands of the connect sum to holomorphic polygons with bound-
ary on the surgery, [14, Chapter 10] shows that when Lagrangians LC D L0 [ L1

and L� are related by Polterovich surgery that L� arises as a mapping cone on
L0 ! L1 in the Fukaya category. Because there exists a surgery trace cobordism
between LC and L�, we can obtain the same result from [7] without appealing
to neck-stretching. Related work [21, 27] shows that a surgery exact triangle in the
Fukaya category arises from the Lagrangian Polterovich surgery trace. In the imm-
ersed setting, Palmer and Woodward [23] showed that Polterovich surgery leaves
Floer cohomology invariant upon incorporating a bounding cochain.

1.3. Overview: Monotone Lagrangian cobordisms

Without placing additional restrictions on the kinds of Lagrangian cobordisms we
consider, the equivalence relation given by Lagrangian cobordisms is far too flexi-
ble: for example, whenever LC and L� are Lagrangian isotopic, they are embedded
Lagrangian cobordant (although the Lagrangian cobordism may be non-orientable).
One way to re-impose some rigidity on our Lagrangian cobordisms is to ask that they
have well-defined Floer cohomology. In particular,

• if we require K to be exact and embedded with dim.K/ > 6, then K has the
topology of L �R for some L � X ([26]); or

• by asking our Lagrangian cobordisms to be monotone and embedded we learn
that the ends LC; L� are equivalent in the Fukaya category ([7]).

These conditions are so rigid as to make it difficult to find any Lagrangian cobor-
disms at all! In the first setting, the only known examples of Lagrangian cobordisms
are those arising from Hamiltonian isotopy; in the second case, we provide (to our
knowledge) the first known example of a 2-ended monotone Lagrangian cobordism
which is not a suspension in Appendix A. Previous work of the author ([16]) shows
that embedded Lagrangian cobordisms which are unobstructed by bounding cochain
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have enough flexibility to make their construction feasible, yet enough rigidity to pro-
vide meaningful Floer theoretic results.

1.4. Outline and results

This paper contributes two observations to the theory of Lagrangian cobordisms.

• The first (Section 3) is that Lagrangian cobordisms are flexible enough that they
admit a handle decomposition into standard pieces given by k-surgeries. This
result only uses standard techniques in symplectic geometry and does not con-
tain any Floer-theoretic computations.

• The second provides rigidity. In Section 4 we relate the geometry of Lagrangian
cobordisms to Floer theory. For each standard k-surgery, we exhibit a holomorphic
teardrop with boundary on our Lagrangian cobordism, which pairs the surgery
handles of the cobordism with its self-intersections (Figure 1). Obstructions aris-
ing from the holomorphic teardrop can possibly occur in the local model for 0-
surgery, and unobstructedness of this curvature term provides a rigidity criterion
for Lagrangian cobordism.

If a 0-surgery is the Lagrangian connect sum at q of two Lagrangians L0; L1 which
intersect at several points, then the bounding cochain making the surgery trace unob-
structed restricts to a bounding cochain on the immersed Lagrangian submanifold
L0 [L1. This Lagrangian equipped with bounding cochain is isomorphic to the map-
ping cone at the intersection point; thus the holomorphic teardrops which appear on
the Lagrangian surgery trace give a construction of the [14, Chapter 10] exact surgery
triangle. We also provide numerous examples of Lagrangian cobordisms.

• Section 5 contains some examples where we use the Floer cohomology of surgery
traces to compute obstructedness/unobstructedness of Lagrangian cobordisms.

• In Appendix A we construct a 2-ended monotone Lagrangian cobordism which
is not given by a Hamiltonian isotopy. The construction comes from a proposal
due to Abouzaid and Auroux to construct a neither “wide-nor-narrow” monotone
Lagrangian submanifold, which we also include.

We now give a more detailed outline of the paper.
In Section 2, we review known constructions of Lagrangian cobordisms and Floer

theory of Lagrangian cobordisms. We focus on Biran and Cornea’s theorem that
“monotone Lagrangian cobordisms provide equivalences in the Fukaya category”,
and explore the limitations that monotonicity places on this theorem. We give a simple
example of an oriented obstructed Lagrangian submanifold whose ends are non-iso-
morphic in the Fukaya category.



Lagrangian cobordisms and Lagrangian surgery 513

In Section 3.1, we provide some standard tools for decomposing Lagrangian co-
bordisms. In short, when decomposing a Lagrangian cobordism K�X � C, we can
consider decompositions that have boundaries fibering over the X or C coordinate. In
Proposition 3.1.6 we show that Lagrangian cobordisms are decomposable along the
C-coordinate, and in Proposition 3.1.10 we give a method for decomposing Lagrang-
ian cobordisms along the X -coordinate.

These decompositions are used in Section 3.2 to construct the standard surgery
handle. We review the parameterization of the Whitney sphere and the Lagrangian
null-cobordism for the Whitney sphere in Section 3.2.1. The parameterization is com-
pared to the Lagrangian surgery handle from [4]. In addition to the parameterization
of the surgery handle, Figures 9–13 provide plots of these handles as projections to
the C coordinate and as multisections of the T �Rn; we hope that these examples pro-
vide the reader with intuition on the construction and geometry of surgery handles.
We use this particular parameterization of the surgery handle in Section 3.3, where
we prove the main result of this section.

Theorem (Restatement of Theorem 3.3.1). LetKWLC L� be a Lagrangian cobor-
dism. Then K is exactly homotopic to the concatenation of surgery trace cobordisms
and suspensions of exact homotopies. Furthermore, the Hofer norm of this exact
homotopy can be made as small as desired.

The proof of Theorem 3.3.1 shows Lagrangian cobordism can be placed into
a good position by an exact homotopy. We additionally comment on the relation
between Lagrangian surgery and anti-surgery. We acknowledge that exact homotopy
is a high price to pay in order to place a Lagrangian cobordism in standard position.
However, it is the strongest equivalence relation we can hope to place as the stan-
dard form must be immersed. We conjecture that unobstructedness of a Lagrangian
submanifold K is preserved by exact isotopies whose Hofer norm is smaller than the
valuation of the bounding cochain on L. In particular, if K is embedded and tau-
tologically unobstructed, the conjecture states that the standard decomposition (with
transverse intersections, given by Theorem 4.2.12) is unobstructed.

Section 4 investigates the relation between self-intersections of Lagrangian sub-
manifolds and topology of the Lagrangian surgery trace. In Section 4.1, we show
that the ends of a surgery trace cobordism can be equipped with a Morse function
so that the critical points of the negative end are in index-preserving bijection with
the self-intersections of the positive end. It follows that whenever KWL�  LC is
embedded and graded that �.L�/D �.LC/. The remainder of the section extends this
relation to Floer cohomology. Given a two-ended monotone Lagrangian cobordism
KWLC  L� and any other monotone Lagrangian L0, the authors of [7] construct a
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homotopy equivalence

CF �.LC; L0/! CF �.L�; L0/;

from which the above equality of Euler characteristics follows (Theorem 2.3.1). As a
result, LC and L� are quasi-isomorphic objects in the Fukaya category. We call this
isomorphism the “continuation map” associated to a Lagrangian cobordism K. We
adopt the name continuation map from the homotopy equivalence on Floer cohomol-
ogy groups induced by a Hamiltonian isotopy (which is also called the continuation
map).

Section 4.2 lays the groundwork by defining Lagrangian cobordisms with double
bottlenecks, which allow us to discuss Lagrangian cobordisms whose ends are imm-
ersed. We have a version of Theorem 3.3.1 where the pieces in the decomposition are
Lagrangian cobordisms with double bottlenecks. When

.K; t�; tC/W .LC;HC/! .L�;H�/

is a Lagrangian cobordism with double bottlenecks, we prove that for appropriate
definition of Floer cochains,

�si.L�/ D �si.LC/ D �bot.K; t�; tC/:

We then provide a short review of immersed Floer cohomology in Section 4.3. In
Section 4.4, we conjecture that the homotopy equivalence from Theorem 2.3.1 can
be extended to the non-monotone immersed setting via a pairing of Floer cochains
witnessed by a holomorphic teardrop.

Theorem (Restatement of Theorem 4.4.1). The standard Lagrangian surgery trace
bounds a holomorphic teardrop pairing the critical point of the surgery trace with the
self-intersection in Floer cohomology.

Section 5 discusses when we can and cannot find an extension of Theorem 2.3.1
to a (non-monotone) Lagrangian cobordism. In Section 5.1, we use the pairing from
Theorem 4.4.1 to justify why the example Lagrangian cobordism given in Figure 5
does not construct a continuation map in the Fukaya category. Section 5.2 applies
this conjectural framework to a computation yielding a continuation map associ-
ated with a Lagrangian surgery trace cobordism in specific examples (see Figures 2
and 27). In these examples, the holomorphic teardrop contributes to a curvature term
m0Wƒ! CF �.KA;B/ in Floer cohomology. The existence of a bounding cochain or
obstruction of CF �.KA;B/ either yields or precludes the construction of a continua-
tion map on Floer cohomology between LEb and S1E [ S

1
�E . In the case of Figure 2,

the Lagrangians LEb and S1E [ S
1
�E are disjoint, so the result is obvious; however
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Figure 2. A Lagrangian cobordism corresponding to a Lagrangian surgery which does not yield
a continuation map in the Fukaya category. The Lagrangian cobordism is obstructed.

the comparison to the setting of Figure 27 which only differs in terms of the areas A
and B is illustrative.

Finally, Appendix A has some constructions of monotone Lagrangian subman-
ifolds. In Section A.1 we complete a proposal of Abouzaid–Auroux to construct
a neither narrow-nor-wide Lagrangian submanifold. The ideas of this construction
are employed in Section A.2 to construct an embedded oriented 1-ended monotone
Lagrangian cobordism. We then use this cobordism, along with a surgery trace, to
construct a 2-ended monotone Lagrangian cobordism in Section A.3.

2. Background

Notation

Let X always denote a symplectic manifold of dimension 2n. There will be many
Lagrangian submanifolds of varying dimensions in this article. The dimension of a
submanifold will be determined by reverse alphabetical order, so

dim.J / � 2 D dim.K/ � 1 D dim.L/ D n D dim.M/C 1:

In this paper, we will frequently take local coordinates for a Lagrangian subman-
ifold U � L � X , and identify the Weinstein neighborhood with a neighborhood
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of U � Rn � Cn. We will denote the coordinates near U by .qi C |pi /. Unless
otherwise stated, all Lagrangian submanifold considered are possibly immersed.

2.1. Lagrangian homotopy and cobordism

A homotopy of Lagrangian submanifolds is a smooth map it WL � R! X with the
property that at each t0 2R, it0 WL! X is an immersed Lagrangian submanifold. For
each t0 2 R, a homotopy of Lagrangian submanifolds yields a closed cohomology
class Fluxt0.it / 2 H

1.L;R/, called the flux class of it at t0. The value of the flux
class on chains c 2 C1.L;R/ is defined by

Fluxt0.it /.c/ WD
Z
it Wc�Œ0;t0�!X

!:

If Fluxt0.it / is exact for all t0 2 R, we say that this homotopy is an exact homotopy.
In the case that it is an exact isotopy, there exists a time dependent Hamiltonian
Ht WX �R! R with the following properties:

• Ht jL is a primitive for the flux class in the sense that dHt0 jL D Fluxt0.it /.

• The isotopy is generated by the Hamiltonian flow �t WX � R! X in the sense
that

it .L/ D �t .i0.L//:

Even when it is only a homotopy we will denote byHt WL�R! X the primitive
to the flux class. The Hofer norm of such an isotopy is defined to beZ

R

�
sup
q2L

Ht .q/ � inf
q2L

Ht .q/
�
dt;

which does not depend on the choice of primitive Ht .q/. Lagrangian cobordisms are
an extension of the equivalence relation of exact homotopy.

Definition 2.1.1 (Arnol’d [3]). Let LC; L� be (possibly immersed) Lagrangian sub-
manifolds of X . A 2-ended Lagrangian cobordism with ends LC; L� is a (possibly
immersed) Lagrangian submanifoldK � .X �C; !X C !C/ for which there exists a
compact subset D � C so that

K n .��1C .D// D .LC �R>tC/ [ .L
�
�R<t�/:

The sets R>tC and R<t� are rays pointing along the negative and positive real axis
of C, starting at some values t� < 0< tC. We denote such a cobordismKWLC L�.

There is a more general theory of k-ended Lagrangian cobordisms, although for
simplicity of notation we only discuss the 2-ended case, and always use “Lagrang-
ian cobordism” to mean “2-ended Lagrangian cobordism”. All of the decomposition
results of this paper extend to the k-ended setting.
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T �S1

Kj0L� LC

K

Figure 3. The shadow projection of a Lagrangian cobordism K � T �S1 � C to the C factor.
This Lagrangian cobordism is the suspension of a Hamiltonian isotopy.

The projection to the C component of a Lagrangian cobordism is called the sha-
dow projection of the Lagrangian cobordism; the infimal area of a simply connected
region containing the image of the projection is called the shadow of a Lagrangian
cobordism [10]. We will denote this quantity by Area.K/. See Figure 3 for a dia-
gram of a Lagrangian cobordism. We call the R-component of X �C the cobordism
parameter, and the projection to this coordinate will be denoted by �RWX �C! R.
Given a Lagrangian cobordism K, we will abuse notation and use �RWK ! R to
denote the cobordism parameter restricted to K.

Claim 2.1.2. Let t0 2 R be a regular value of the projection �RWK ! R. The slice
of K at t0,

Kjt0 WD �X .�
�1
R .t0/ \K/

is a (possibly immersed) Lagrangian submanifold of X .

Lagrangian cobordance extends the equivalence relation of exactly homotopic.
We call a Lagrangian cobordism a suspension if �RWK ! R has no critical points.

Proposition 2.1.3 (Audin–Lalonde–Polterovich [4]). LetLC;L��X be two Lagrang-
ian submanifolds. Then LC and L� are exactly homotopic if and only if there exists
a suspension Lagrangian cobordism KWLC L� between these two Lagrangians.

Given an exact homotopy it WL�R!X whose primitiveHt WL!R has compact
support, there is a suspension cobordism of it parameterized by

L �R! X �C;

.q; t/ 7! .it .q/; t C |Ht .q// 2 X �C:

The Hofer norm of it is equal to the shadow of the suspension cobordism.
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For the purpose of providing some geometric grounding to our discussions, we
give an example of a Lagrangian cobordism which is not an exact homotopy. We
first note that every compact Lagrangian submanifold K � X � C gives an example
of a Lagrangian cobordism KW ; ;. While these Lagrangian cobordisms are not
very interesting from a Floer-theoretic perspective (as they can be displaced from
themselves), they are useful for understanding the kinds of geometry which can appear
in a Lagrangian cobordism.

Example 2.1.4 (Sheared product torus). Consider C � C with coordinates given by
.q1; p1; q2; p2/. The product Lagrangian torus LT 2 is the submanifold parameterized
by

.�1; �2/ 7! .cos.�1/C | sin.�2/; cos.�1/C | sin.�2// � C �C:

We apply a linear symplectic transformation

�WC2
! C2;

.q1; p1; q2; p2/ 7!
�
q1 C

1

2
q2 C |

4

3
p1 �

2

3
p2; q2 C

1

2
q1 C |

4

3
p2 �

2

3
p1

�
;

so that K WD �.LT 2/ is in general position. After taking this shear, �RWK ! R is
a Morse function with four critical values corresponding to the standard maximum,
saddles, and minimum on the torus. Several slices and the shadow of the Lagrangian
cobordism are drawn in Figure 4.

2.2. Previous work: Anti-surgery

Lagrangian anti-surgery, introduced by Haug [15], gives a method for embedding the
Lagrangian cobordism handle from [4]. Given a Lagrangian L�X , an isotropic anti-
surgery disk for L is an embedded isotropic disk i WDkC1 ! X with the following
properties:

• Clean intersection. The boundary of DkC1 is contained in L. Additionally, the
interior of DkC1 is disjoint from L, and the outward pointing vector field to D is
transverse to L.

• Trivial normal bundle. Over DkC1, we can write a splitting

.TDkC1/! D TDkC1
˚E:

Furthermore, we ask that there is a symplectic trivialization

DkC1
�Cn�k�1

! E

so that over the boundary, Ej@DkC1 is contained in TLj@DkC1 .



Lagrangian cobordisms and Lagrangian surgery 519

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2

1

0

1

2
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Figure 4. Scatter plots of randomly selected points lying on the sheared product torus K D
�.LT 2/. The color corresponds to the value of �|RWK ! R. Top: The shadow projection of
the Lagrangian submanifoldK. Bottom: Several slices of K D �.LT 2/ at different real values.
The critical values of the cobordism parameter �RWK ! R are at ˙1:5 and ˙:5. We use this
opportunity to highlight a common misconception: although all slices Kjt are immersed, the
Lagrangian K is embedded.

Given an isotropic anti-surgery disk DkC1 with boundary on L, [15] produces a
Lagrangian ˛DkC1.L/, the anti-surgery of L along DkC1, along with a Lagrangian
anti-surgery trace cobordism

K˛
DkC1

WL ˛DkC1.L/:

As a manifold, ˛DkC1.L/ differs from L by k-surgery along @DkC1, and the cobor-
dism parameter �RWK˛

DkC1
! R provides a Morse function with a single criti-

cal point of index k C 1. A k-surgery is a modification of a manifold L which
replaces a subset of the form Sk �Dn�k withDkC1 �Sn�k�1. When compared toL,
the anti-surgery ˛DkC1.L/ possesses a single additional self-intersection qDn . The
construction is inspired by an analogous construction for Legendrian submanifolds
in [11]. The terminology “anti-surgery” is based on the following observation: given
a Lagrangian anti-surgery disk Dn for L, the Polterovich surgery [24] of ˛Dn.L/
at the newly created self-intersection point qDn is Lagrangian isotopic to L. In this
sense, anti-surgery and surgery are inverse operations on Lagrangian submanifolds.
Accordingly, if L arises from L0 by anti-surgery along a disk DkC1, Haug states
that L arises from L0 by Lagrangian n � k � 1 surgery.
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These surgeries and anti-surgeries appear in Figure 4, which decompose the prod-
uct torus into slices related by the creation/deletion of Whitney spheres, surgeries,
and anti-surgeries. Some higher-dimensional examples of anti-surgery are in Fig-
ures 13 and 12, which draws Lagrangians related by anti-surgery in the cotangent
bundle of R2. In these figures, we have highlighted the isotropic anti-surgery disk
corresponding modifications in red; the Lagrangians on the right-hand side all exhibit
a single self-intersection at the origin.

2.3. Floer theoretic properties of Lagrangian cobordisms

Our motivation for studying Lagrangian cobordisms comes from their Floer theoretic
properties. A fundamental result states that cobordant Lagrangians have homotopic
Floer theory.

Theorem 2.3.1 (Biran–Cornea [7]). Suppose that KWLC  L� is a monotone em-
bedded Lagrangian submanifold. LetL0 �X be a monotone test Lagrangian subman-
ifold. Then the chain complexesCF �.LC;L0/ andCF �.L�;L0/ are chain homotopic.

More generally, Biran and Cornea prove that a Lagrangian cobordism with k-
inputs ¹LCi º

k
iD1 and output L� yields a factorization of L� into an iterated mapping

cone of the LCi . In the setting of two-ended monotone Lagrangian cobordisms, appli-
cations of Theorem 2.3.1 are limited by lack of examples. In fact, [26] shows that
under the stronger condition thatK is exact, every embedded exact Lagrangian cobor-
dism KWL0  L1 of dim.K/ � 6 has the topology of L0 � R. It is still currently
unknown if all such Lagrangian cobordisms are Hamiltonian isotopic to suspensions
of Hamiltonian isotopies.

It is expected that Theorem 2.3.1 should extend to more general settings than
monotone Lagrangian submanifolds. One of the broader extensions is to the class of
unobstructed immersed Lagrangian cobordisms. Roughly, unobstructed Lagrangians
are those whose counts of holomorphic disks can be made to cancel in cohomol-
ogy (see the discussion following Definition 4.3.3). The Floer theoretic property of
unobstructedness is absolutely necessary to obtain a continuation map in the Fukaya
category. We given an example of a Lagrangian cobordism which cannot give a con-
tinuation map in the Fukaya category.

Example 2.3.2. Let S1E � T
�S1 be the section E

2�
d� which bounds an annulus of

area E with the zero section. Pick E1 ¤ E2 two positive real numbers. Consider the
Lagrangian submanifold which is the disjoint union of two circles

S1E1 t S
1
�E1
� T �S1;

as drawn in Figure 5.
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Surgery Exact homotopy Anti-surgery

C

�E1=2�

�E2=2�

E2=2�

E1=2�

T �S1

A2 A1

(a) Slices

(b) Shadow

Figure 5. An oriented immersed Lagrangian cobordism. If A1 ¤ A2, then K is an obstructed
Lagrangian submanifold. The slashed regions correspond to the images of holomorphic
teardrops with boundary on K under the projection �C . The boundary of these teardrops
obstruct the solution to the Maurer–Cartan equation for K.

By applying anti-surgery along the interval ¹0º � Œ�E1=2�;E1=2��, we obtain a
Lagrangian cobordism to a Lagrangian double section of T �S1 intersecting the zero
section at .0; 0/. We subsequently apply Lagrangian surgery at this self-intersection
to obtain S1E2 t S

1
�E2

. Consider the Lagrangian cobordism built from concatenating
the anti-surgery and surgery trace cobordism. This is an immersed Lagrangian cobor-
dism which can be perturbed by Hamiltonian isotopy to make the self-intersections
transverse. Let K � T �S1 � C be this Lagrangian cobordism, which has a single
self-intersection.

The statement of Theorem 2.3.1 cannot be extended to a class of Lagrangian
cobordism which containsK. In this setting, E1 ¤ E2, and therefore the Lagrangians
S1E2 t S

1
�E2

and S1E1 t S
1
�E1

are disjoint. Since S1E2 t S
1
�E2

and S1E1 t S
1
�E1

are
non-isomorphic objects of the Fukaya category, the Lagrangian cobordism K cannot
hope to yield a continuation map.

We propose that the proof of Theorem 2.3.1 fails because the Lagrangian K is
an obstructed Lagrangian submanifold, that is, the Floer differential on K does not
square to zero due to the possibility of disk/teardrop bubbling (see discussion around
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Definition 4.3.3). The Lagrangian cobordism K bounds two holomorphic teardrops
of area A1 and A2, whose projections under �C are drawn in Figure 5. When these
teardrops have differing area, they collectively contribute a non-trivial m0 curvature
term to the Floer cohomology CF �.K/, which cannot be canceled by a bounding
cochain.

This example demonstrates that understanding when Lagrangians are unobstructed
is essential for building meaningful continuation maps from Lagrangian cobordisms.
We will return to Example 2.3.2 in Section 5.1, where we examine the setting where
A1 D A2 and the Lagrangian cobordism K is unobstructed. In previous work, the
author [16] showed that bounding cochains for Lagrangian cobordisms could be used
to compute wall-crossing transformations for Lagrangian mutations.

3. Lagrangian cobordisms are Lagrangian surgeries

In this section we prove that every Lagrangian cobordism can be decomposed into
a composition of Lagrangian surgery traces and exact homotopy suspensions. Sec-
tion 3.1 gives some constructions for decomposing Lagrangian cobordisms. In Sec-
tion 3.2 we describe the standard Lagrangian surgery handle. Finally, in Section 3.3
we show that a Lagrangian cobordism can be exactly homotoped to good position,
and subsequently decomposed into surgery traces.

3.1. Decompositions of Lagrangian cobordisms

We consider two types of decompositions for Lagrangian cobordisms K � X � C:
across the cobordism parameter C in Section 3.1.4 and across the X -coordinate in
Section 3.1.5.

3.1.1. Gluing across the C parameter: Concatenation. Given Lagrangian cobor-
disms

KC0WLC L0; K0�WL0 L�

there exists a concatenation cobordism K0� ıKC0WLC L�. The exact homotopy
class of the concatenation does not depend on the length of cylindrical component
connecting the negative end of KC0 to the positive end of K0�. The concatenation
operation shows that Lagrangian cobordance is an equivalence relation on the set of
Lagrangian submanifolds. In the setting of differentiable manifolds, concatenation
can be used to provide a decomposition of any cobordism into a sequence of standard
surgery handles.
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3.1.2. Gluing across the X parameter: Lagrangian cobordisms with cylindrical
boundary. When describing surgery and trace cobordisms, it is also important to con-
sider Lagrangian cobordisms with cylindrical boundary. We call this decomposition
along the X -coordinate.

Definition 3.1.1. Let LC � X be a Lagrangian submanifold with boundary M . Let
M � Œ0; "/�X be a collared neighborhood of the boundary. A Lagrangian cobordism
with cylindrical boundary KWLC  L� is a Lagrangian submanifold K � X � C

whose boundary has a collared neighborhood of the form .M � Œ0; "//�R � X �C.

We will use Lagrangians cobordisms with cylindrical boundary to describe local
modifications to Lagrangian submanifolds. Let LC D LC

#
[M LC

"
be a decomposi-

tion of a Lagrangian submanifolds along a surface M D @LC
"

. Given K"WLC" ! L�
"

a Lagrangian cobordism with cylindrical boundary M , we can obtain a Lagrangian
cobordism

K" [M�R .L
C

#
�R/WLC .L�

"
[M LC

#
/:

In this case, we say that the Lagrangian L� WD L�
"
[M LC

#
arises from modification

of LC at the set LC
"

.

Definition 3.1.2. We say that KWLC  L� decomposes across the X -coordinate
along M � LC if there exist Lagrangian cobordisms with cylindrical boundary M ,

K"WL
C

"
 L�

"
; K# W L

C

#
 L�

#
;

so that L˙ D L˙
"
[M L˙

#
� X is a Lagrangian submanifold and

K D K" [M�R K#:

Proposition 3.1.3. Suppose that K decomposes across the X -coordinate so we may
write K D K" [M�R K#: Then K is exactly homotopic to either of the following
compositions of Lagrangian cobordisms:

.K" [M�R .L
�
#
�R// ı ..LC

"
�R/ [M�R K#/;

..L�
"
�R/ [M�R K#/ ı .K" [M�R .L

C

#
�R//:

Proof. Observe that the Hamiltonian �|RWX � C ! R restricts to the constant zero
function on the collar boundary .M � Œ0; "// � R of K". The flow of the associated
Hamiltonian vector field onX �C is leftward translation of the cobordism parameter.
Similarly, the Hamiltonian ��|RWX �C ! R restricts to the constant zero function
on the collar boundary ofK#; its associated Hamiltonian flow is rightward translation.
Let �W .�"; "/! .�1; 1/ be a smooth increasing function which is constantly ˙1 in
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a neighborhood of ˙". Let j WK ! X � C parameterize our Lagrangian cobordism.
The Lagrangian isotopy

jt WK �R! X �C;

q 7!

8̂̂<̂
:̂
.�X ı j.q/; �C ı j.q/C t / if q 2 K" n .M � Œ0; "// �R;

.�X ı j.q/; �C ı j.q/ � t / if q 2 K# n .M � ."; 0�/ �R;

.�X ı j.q/; �C ı j.q/C � � t if q 2 .M � .�"; "// �R;

is an exact homotopy with primitive �|R on K" n ..M � Œ0; "// � R/ and ��|R on
K# n .�R/. The homotopy fixes the image of .M � "/ �R.

3.1.3. Some general tools for Lagrangian cobordisms. As we will work with imm-
ersed Lagrangian cobordisms, we need the following replacement of Weinstein neigh-
borhoods.

Definition 3.1.4. Let X and Y be symplectic manifolds. A local symplectic embed-
ding is a map �W Y ! X so that around every y 2 Y there exists a neighborhood U
on which �jU WU ! X is a symplectic embedding. Let i WL! X be an immersed
Lagrangian submanifold. A local Weinstein neighborhood is a map from a neighbor-
hood of the zero section in the cotangent bundle of L to X

�WB�" L! X;

which is a local symplectic embedding, and whose restriction to the zero section
makes the diagram

L X

B�" L

i

0
�

commute.

For both decomposition along theX coordinate and cobordism parameter, we will
use the following generalization of Proposition 2.1.3.

Lemma 3.1.5 (Generalized suspension). Let I be a finite indexing set. Suppose that
we are given for each ˛ 2 I an exact Lagrangian homotopy i˛t WL

˛ �R!X˛ , whose
flux primitive is H˛

t WL
˛ � R! R. Let Y be another manifold, and pick functions

�˛W Y ! R. For fixed q˛ 2 L˛ , let .y; d�˛.y//W Y ! T �Y be the parameterization
of the exact Lagrangian section whose primitive is

Y ! R;

y 7! H˛
�˛.y/.q

˛/:
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Then

j�I W

�Y
˛2I

L˛
�
� Y !

�Y
˛2I

X˛
�
� T �Y;

.q˛; y/ 7!

�
i˛�˛.y/.q

˛/; y;
X
˛2I

H˛
�˛.y/.q

˛/d�˛.y/

�
parameterizes a Lagrangian submanifold.

We note that the usual suspension construction is recovered by taking I D ¹1º,
Y D R, and �.y/ D t .

Proof. For convenience, write j for j�I . Pick local coordinates y1 : : : yn for Y , so
that we may locally identify T �Y with Cn and write sections of the cotangent bundle
as

Y ! T �Y;

yi 7!

�
yi C |

X
˛2I

H˛
�˛.y/.q

˛/
@�˛

@yi

�
:

Let d
dt
i˛t 2 TX

˛ be the vector field along the image of i˛t associated to the isotopy i˛t .
Let .q˛j / denote local coordinate on the L˛ . Since i˛t is a exact Lagrangian homotopy
with flux primitive given by H˛

t , we have that

� d
dt
i˛t
!X˛ jL˛ D

X
i

@qjH
˛
t dq

˛
j :

Let @v˛ 2 TL˛ , and @yi 2 T Y be vectors. We compute j�.@yj / and j�.
P
˛2I c˛@v˛ /:

j�.@yj / D

�
@�˛

@yj

d

dt
i˛�˛.y/; ıij C |

X
˛2I

�
@2�˛

@yi@yj
H�˛.y/ C

@�˛

@yi

@�˛

@yj

d

dt
H˛
�˛.y/

��
;

j�

�X
˛2I

c˛@v˛

�
D

�X
˛2I

c˛.i�.s//�@v˛ ; |
X
˛2I

c˛
@�˛

@yi
@˛vH

˛
�˛.y/

�
:

We compute the vanishing of the symplectic form on pairs of vectorsX
˛2I

b˛@v˛ ;
X
ˇ2I

cˇ@wˇ 2
Y
˛2I

TL˛:

This term vanishes as TL˛ is a Lagrangian subspace of !˛X :

!

�
j�

�X
˛2I

b˛@v˛

�
; j�

�X
ˇ2I

cˇ@wˇ

��
D

X
˛Dˇ2I

b˛cˇ!X˛
�
.i�.s//�@v˛ ; .i�.s//�@wˇ

�
:
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The vanishing of the symplectic form on pairs of vectors j�.@yi /; j�.
P
˛2I c˛@v˛ /

comes from the assumption that the Lagrangian homotopies L˛t have flux primitive
given by H˛

t :

!

�
j�.@yi /; j�

�X
˛2I

c˛@v˛

��
D

X
˛2I

c˛

�
!X˛

�@�˛
@yj

d

dt
i˛�˛.y/; .i�.s//�@v˛

��
C

X
˛2I

c˛!T �Y

�
ıij ;

@�˛

@yj
@˛vH

˛
�˛.y/

�
D

X
˛2I

c˛

�@�˛
@yi

�
� d
dt
i˛
�˛.y/

!X˛ C dH
˛
�˛.y/

�
@v˛

�
D 0:

The vanishing of the symplectic form on pairs of vectors j�.@yi /; j�.@yj / corresponds
to the fact closed sections of the cotangent bundle are Lagrangian sections.

!
�
j�.@yi /; j�.@yj /

�
D

X
˛2I

!X˛

�
@�˛

@yi

d

dt
i˛�˛.y/;

@�˛

@yj

d

dt
i˛�˛.y/

�
C !Y

�
ıik C |

X
˛2I

�
@2�

@yi@yk
H�.y/ C

@�˛

@yi

@�˛

@yk

d

dt
H˛
�˛.y/

�
;

ıjk C |
X
˛2I

�
@2�

@yj @yk
H�.y/ C

@�˛

@yj

@�˛

@yk

d

dt
H˛
�˛.y/

��
D 0:

3.1.4. Decomposition across the cobordism parameter. Cobordisms can be decom-
posed into smaller cobordisms along any regular level set of Morse function. We show
an analogous decomposition for Lagrangian cobordisms.

Proposition 3.1.6. Let KWLC  L� be a Lagrangian cobordism with cylindrical
boundaryM . Suppose that �RWK! R has isolated critical values, and that 0 2 R is
a regular value of the projection �RWK!C, so thatL0 WDKj0 �X is a Lagrangian
submanifold. Then there exists Lagrangian cobordisms with cylindrical boundary M

Kk.�1;0�WL
0 L�; KkŒ0;1/WL

C L0;

so that K and Kk.�1;0� ı KkŒ0;1/ are exactly homotopic Lagrangian cobordisms.
Furthermore, the construction can be done in such a way that

• the Hofer norm of this exact homotopy is as small as desired and,

• if K is embedded, and the slice L0 is embedded, then Kk.�1;0� ı KkŒ0;1/ is
embedded as well.

A picture of this decomposition is given in Figure 6.
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K

Kk.�1;0� KkŒ0;1/

Figure 6. Cobordisms can be decomposed across the cobordism parameter at non-critical values
of �R ı j WK ! R.

Proof. We construct a suspension Lagrangian cobordism J � .X �C/�C with ends

J WKk.�1;0� ıKkŒ0;1/ K;

which will be the suspension of our exact homotopy. Consider the decomposition as
sets K D Kjt��" [tD�" KjŒ�";"� [tD" KjŒ";1/, where

Kjt��" D �
�1
R ..�1;�"�/; KjŒ�";"� D �

�1
R .Œ�"; "�/; KjŒ";1/ D �

�1
R .Œ";1//:

The piece KjŒ�";"� is a suspension, so by Proposition 2.1.3, there exists a primitive
Ht WL

0 � Œ�"; "�! R, so that we can parameterize KjŒ�";"� as

L0 � Œ�"; "�! X �C;

.q; t/ 7! .it .q/; t CHt .q//:

We choose a truncation profile �.t; s/W Œ�"; "� � R! Œ�"; "� which satisfies the
following conditions (as indicated in Figure 7):

�.t; s/js<0 D t; �.t; s/jjt j>2"=3 D t;

�.t; 1/jjt j<"=3 D 0;
@�

@s

ˇ̌̌
s>1
D 0:

Consider the Lagrangian submanifold J jŒ�";"��R given by the generalized suspen-
sion from Lemma 3.1.5,

j�WL
0
� Œ�"; "� �R! X � T �Œ�"; "� � T �R:

This is a Lagrangian cobordism over the s parameter with collared boundaries in both
the t and s directions:
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�
2"
3
�
"
3

"
3

2"
3

�" "

j j j j j j j

0

0

1�

�

t

s

Figure 7. Contour plot of the truncation profile �.t; s/.

• In the s direction,Kjjt jD" is a boundary forKjŒ�";"� WDJ jŒ�";"��¹sD0º. This extends
to a collared boundary Kjjt j>2"=3, and Kjjt j>2"=3 � Rs is a collared boundary
for J jŒ�";"��Rs . Therefore, J jŒ�";"��Rs , as a cobordism in the s direction, is a
Lagrangian cobordism with cylindrical boundary.

• At each value of s, the collar .M � Œ0; "0// � Œ�"; "�t � KjŒ�";"� is a collared
boundary of the slice J jŒ�";"��¹sº.

We are interested in the positive end of this Lagrangian cobordism, which we call
KCjŒ�";"�, so that

J jŒ�";"��RWK
C
jŒ�";"� KjŒ�";"�

is a suspension Lagrangian cobordism with collared boundary.
The Lagrangian KCjŒ�";"� is a suspension, and parameterized by

.q; t/ 7!
�
i�.t;1/.q/; t C |

d�.t; 1/

dt
H�.t;1/

�
:

We can therefore form a Lagrangian cobordism J WKC K, where

KC D Kj.�1;"� [tD�" K
C
jŒ�";"� [tD" KjŒ";1/:

By construction, �|R.K
CjŒ�"=3;"=3�/D 0, so this portion looks like L0 � Œ�"=3; "=3�.

We therefore may assemble Lagrangian cobordisms:

Kk.�1;0� WD K
C
j.1;0� [L0 .L

0
� Œ0;1//WL0 L�;

KkŒ0;1/ WD K
C
jŒ0;1/ [L0 .L

0
� .�1; 0�/WLC L0:

Clearly, KC D Kk.�1;0� ıKkŒ0;1/. Additionally, since KC fixes the boundary M ,
bothKk.�1;0� andKkŒ0;1/ are Lagrangian submanifolds which fix the boundaryM .
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It remains to show that this construction can be completed so that the Hofer norm
is as small as desired. The norm isZ

R

�
sup

.q;t/2L�Œ�";"�

�@�
@s
H�.s;t/.q/

�
� inf
.q;t/2L�Œ�";"�

�@�
@s
H�.s;t/.q/

��
�

�
sup

.q;t/2L�Œ�";"�

Ht .q/ � inf
.q;t/2L�Œ�";"�

Ht .q/
� Z �

sup
t2Œ�";"�

@�

@s
� inf
t2Œ�";"�

@�

@s

�
ds

� 2"
�

sup
.q;t/2L�Œ�";"�

Ht .q/ � inf
.q;t/2L�Œ�";"�

Ht .q/
�
;

which can be made as small as desired.

Since this construction occurs away from the critical locus, we additionally have
a matching of Morse critical points

Crit.�RWK ! R/ D Crit.�RWKk.�1;0� ıKkŒ0;1/ ! R/

D Crit.�RWKkŒ0;1/ ! R/ [ Crit.�RWKk.�1;0� ! R/:

Recall that the shadow of a Lagrangian cobordism Area.K/ is the infimum of areas
of simply connected regions containing the image of �CWK ! C, which generalized
the Hofer norm.

Claim 3.1.7. LetK andKC WDKk.�1;0� ıKkŒ0;1/ be the Lagrangians from Propo-
sition 3.1.6. Then, Area.K/ D Area.KC/.

Proof. If K is a suspension arising from exact homotopy Ht , then the shadow can be
computed via the Hofer norm:

Area.K/ D
Z

R

�
sup
q2LC

Ht .q/ � inf
q2LC

Ht .q/

�
dt:

We note that KjŒ�";"� and KCjŒ�";"� are suspensions. Integrating by change of vari-
ables yields

Area.KCjŒ�";"�/

D

Z
Œ�";"�

�
sup
q2LC

�d�.t; 1/
dt

H�.t;1/.q/
�
� inf
q2LC

�d�.t; 1/
dt

H�.t;1/.q/
��
dt

D

Z
Œ�";"�

�
sup
q2LC

Ht .q/ � inf
q2LC

Ht .q/
�
dt D Area.KjŒ�";"�/:

The same method allows us to construct Lagrangian cobordisms from Lagrangian
submanifolds K � X �C.
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Definition 3.1.8. Let K � X � C be a Lagrangian submanifold (not necessarily a
Lagrangian cobordism) with cylindrical boundary. Suppose that t�; tC are regular
values of the projection �RWK ! R, and that the critical values of �R are isolated.
Then by applying Proposition 3.1.6 at t�; tC, we can define the truncation of K to
Œt�; tC� which is a Lagrangian cobordism with cylindrical boundary

KkŒt�;tC�WKjtC  Kjt� :

3.1.5. Decomposition across the X -coordinate. We now look at how to “isolate” a
portion of a Lagrangian cobordism across the X -coordinate so that it can be decom-
posed in the sense of Definition 3.1.2.

Definition 3.1.9. Let KW LC  L� be an embedded Lagrangian cobordism with
�RWK ! R having isolated critical points. A dividing hypersurface for K is an
embedded hypersurface M � L0 with the following properties:

• M divides L0 in the sense that L0 D L0
#
[M L0

"
, where L0

"=#
are the components

of L0 nM .

• M � L0 � K contains no critical points of �RWK ! R.

A dividing hypersurface allows for the following decomposition of our Lagrang-
ian cobordism.

Proposition 3.1.10. LetM � L0 be a dividing hypersurface forKWLC L�. Then
there exists a decomposition of Lagrangian cobordisms up to exact homotopy:

K � zK� ıK
M
ı zKC;

so thatK
M

is a Lagrangian cobordism which decomposes alongM , andK
M
j0DL

0.
Furthermore, this construction can be performed in such a way that

• the exact homotopy has as small Hofer norm as desired; and

• ifK is embedded and the sliceL0 is embedded, then zK� ıK
M
ı zKC is embedded

as well.

Proof. Let i WK!X �C be the parameterization of our Lagrangian cobordism. Con-
sider a small collared neighborhood M � Is � L0. We take B�" .M � Is/ a small
neighborhood of the zero section inside the cotangent bundle of .M � Is/. There
exists a map �WB�" .M � Is/ ! X , which is locally a symplectic embedding, and
sends the zero section to i.M � Is/.

ForH WM � Is!X with jdH j< " and the support ofH contained on an interior
subset of M � I , denote by dH � X the (possibly immersed) submanifold parame-
terized by

M � I
df
��! B�" .M � Is/

�
�! X:
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There exists an open neighborhood U � K containing M � L0 � K with the prop-
erty that .U jt / \ B�" .M � Is/ is a section of the cotangent ball for each t . Next let
Ht .q; s/WM � Is ! R be the primitive of this section for each t so we can parame-
terize i WU ! X �C by

M � Is � It ! X �C;

.q; s; t/ 7!
�
dHt ; t C |

d

dt
Ht

�
:

We now consider a function �.s; t/W Is � It ! R which is constantly 1 in a neighbor-
hood of @.Is � It /, and constantly 0 on an interior set .�"0; "0/s � .�"00; "00/t � Is � It .
Consider the Lagrangian suspension cobordism

zi WM � Is � It ! X �C;

.q; s; t/ 7!
�
d.�.s; t/Ht /; t C |

d

dt
�.s; t/Ht

�
;

and by abuse of notation, let zi WK ! X � C be the Lagrangian cobordism where we
have replacedKjU with the chart parameterized above. The parameterizations zi and i
are exactly isotopic.

For t0 2 .�"00; "00/ and .q; s/ 2M � .�"0; "0/, we have that d
dt
zi.q; s; t/D 0. There-

fore, zKk.�"00;"00/ admits a decomposition in the X factor along M . We define

K
M
WD zKk.�"00;"00/; zK� WD zKk<�"00 ; zKC WD zKk<"00 :

Bounding the Hofer norm is similar to the computation for Proposition 3.1.6, and is
bounded by the 2."0C "00/.sup.q;t;s/Ht .q; s/� inf.q;t;s/Ht .q; s//, which can be made
as small as desired.

We write this decomposition as

K
M
D K

#
[M�R K

"
: (3.1)

By applying Proposition 3.1.3 to our decomposition along M , we further split the
Lagrangian cobordism as a composition. There is a sequence of exact homotopies
(Figure 8):

K zK� ıK
M
ı zKC zK� ı

�
K
#
[M�R �L

�
"
�R

�
ı
�
K
"
[M�R .L

C

#
�R/

�
ı zKC:

This second exact homotopy has Hofer norm bounded by 2"00Area.K/.
We note that no part of this construction modifies the height function, so

Crit.�RWK ! R/ D Crit.�RW zK
�
ıK

M
ı zKC ! R/:
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zK�
K
"

K
#

zKC

zK�
K
"

K
#

zKC

K

Figure 8. Given a dividing hypersurface M in a Lagrangian cobordism K, one can exactly
homotope K to a composition where the middle Lagrangian cobordism decomposes across
the X coordinate. This middle component can be further decomposed by applying Proposi-
tion 3.1.3.

As in the setting of decomposition along the C coordinate, we can show that in
good cases this decomposition does not modify the Lagrangian shadow. Suppose that
M � L0 is a dividing hypersurface forKWLC L�. Furthermore, suppose that over
the chart M � Is � It � K considered in the proof of Proposition 3.1.10, we have

sup
q2Kj�R.q/Dt

�|Ri.q/ > sup
q2M�Is�¹tº

�|Ri.q/;

inf
q2Kj�R.q/Dt

�|Ri.q/ < inf
q2M�Is�¹tº

�|Ri.q/:

Then
Area.K/ D Area. zK� ıK

M
ı zKC/:

3.2. Standard Lagrangian surgery handle

In this section we give a description of a standard Lagrangian surgery handle. We
include many figures in the hope of making the geometry of Lagrangian surgery
apparent and start with the simple example of Lagrangian null-cobordism for Whitney
spheres.
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1.0 0 .5 0 .0 0 .5 1 .0

1.0

0.5

0.0

0.5

1.0

Projection of L2;0
4=3

to C
L2;0
4=3

immersed in T �R2

Figure 9. The Whitney sphere L2;0;C
4=3

� C2. On the left: a projection of randomly sampled
points on L2;0;C

4=3
to the first complex coordinate. The area of the projection is 2 � 4=3. On the

right: L2;0;C
4=3

drawn as a subset of T �R2.

3.2.1. Null-cobordism and the Whitney sphere. We first give a definition of the
Whitney sphere in higher dimensions, and show that this is null-cobordant.

Definition 3.2.1. The Whitney sphere of area A is the Lagrangian submanifold

L
n;0;C
A � Cn;

which is parameterized by

i
n;0;C
A WSnr ! Cn;

.x0; : : : ; xn/ 7! .x1 C |2x0x1; x2 C |2x0x2; : : : ; xn C |2x0xn/;

where Snr D ¹.x0; : : : ; xn/ j
Pn
iD0 x

2
i D r

2º, and r D 3

q
4
3
A.

This Lagrangian has a single transverse self-intersection at the pair of points
.˙r; 0; : : : ; 0/ 2 Snr . We call these points q˙ 2 Ln;0;CA . The quantity A describes
the area of the projection of Ln;0;CA to the first complex coordinate:

Area.�C.L
n;0;C
A //

2
D 2 �

�Z r

0

2t
p

r2 � t2 dt

�
D A:

The Lagrangian submanifoldL1;0;CA is the figure eight curve. An example of the Whit-
ney 1-sphere is drawn in the Figure 10 as the sliceK1;1j1 DL

1;0
4=3

. In Figure 9 we give
a plot of the Whitney 2-sphere, L1;0;C

4=3
� C2, presented as a set of covectors in the

cotangent bundle T �R2.
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Figure 10. A plot of points on the null-cobordism K1;1 � C2 of the Whitney sphere
L1;0;C
4=3

� C1. Points are consistently colored between figures. Top: The shadow projection
of this null-cobordism. Bottom: Slices of the null-cobordism at different values of the cobor-
dism parameter.

The Whitney sphere can be extended in one dimension higher to a Lagrangian
submanifold parameterized by the disk. Let r.x0; : : : ; xn/ D

Pn
iD0 x

2
i . The parame-

terization

j n;1WRnC1 ! Cn
�C;

.x0; : : : ; xn/ 7! .in;0r .x0; : : : ; xn/; r
2
� |x0/

gives an embedded Lagrangian diskKn;1 � Cn �C which has the following proper-
ties:

• When r < 0, the slice Kn;1jr is empty;

• The slice Kn;1j0 is not regular;

• When r > 0 the slice Kn;1jr is a Whitney sphere of area A D 4r3

3
.

We will prove that this is a Lagrangian submanifold in Section 3.2.2. In Figure 10
we draw this Lagrangian null-cobordism and its slices, which are Whitney spheres of
decreasing radius.

While Kn;1 is not a Lagrangian cobordism (as it does not fiber over the real line
outside of a compact set,) it should be thought of as a model for the null-cobordism
of the Whitney sphere. If we desire a Lagrangian cobordism, we may apply Defini-
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tion 3.1.8 to truncate this Lagrangian submanifold and obtain a Lagrangian cobor-
dism.

3.2.2. Standard surgery and anti-surgery handle. The standard Lagrangian surg-
ery handle [4] is a Lagrangian Rn �R1 inside T �Rn � T �R1, where T �R1 is iden-
tified with C by

.q; p/ 7! p C |q:

Let �i;k beC1 if i � k and �1 otherwise. Consider the function

Gk;n�kC1WRnC1 ! R;

.x0; x1; : : : ; xn/ 7! x0

� nX
iD1

�i;kx
2
i

�
C
1

3
x30 :

The graph of dGk;n�kC1 parameterizes a Lagrangian submanifold inside the cotan-
gent bundle,

RnC1 ! T �Rn �C;

.x0; x1; : : : ; xn/ 7!

�
x1 C |�1;k2x1x0; : : : ; xn C |�n;k2xnx0;

x0 C |

�
x20 C

nX
iD1

�i;kx
2
i

��
;

whose projection to the �|R coordinate is a Morse function with a single critical point
of index kC 1. Our convention is that the Morse index of a critical point is dimension
of the upward flow space of the point. By multiplying the last coordinate by �| , we
interchange the real and imaginary parts of the shadow projection.

Definition 3.2.2. For k � 0, the local Lagrangian .k; n � k C 1/ surgery trace is the
Lagrangian submanifold Kk;n�kC1loc � .C/n �C parameterized by

j k;n�kC1WRnC1 ! T �Rn �C

.x0; x1; : : : ; xn/ 7!

�
x1 C |�1;k2x1x0; : : : ; xn C |�n;k2xnx0;

x20 C

nX
iD1

�i;kx
2
i � |x0

�
:

The positive and negative slices of this Lagrangian submanifold will be denoted

L
k;n�k;C
loc WD K

k;n�kC1
loc j1; L

kC1;n�k�1;�
loc WD Kk;n�kC1j�1:

For k D �1, we define K�1;nC2loc WD .K
n;1
loc /
�1.
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Figure 11. A Lagrangian surgery cobordism K0;2loc � C2. Top: The shadow projection of the
surgery 1-handleK0;2loc . Bottom: Slices of the surgery. The left-most and right-most pictures are
models of the surgery and anti-surgery neck.

This will be the local model for Lagrangian surgery trace, which we will construct
in Section 3.2.3. Before we proceed with the construction, we state some properties
of the surgery trace, and give some examples.

Theorem 3.2.3 (Properties of the standard Lagrangian surgery trace). The Lagrangian
surgery trace

K
k;n�kC1
A WL

k;n�k;C
A  L

kC1;n�k�1;�
A

has the following properties:

• L
k;n�k;C
A is a Lagrangian Sk �Dn�k with a single self-intersection. Its intersec-

tion with the first k-coordinates is a Whitney isotropic Lk;0;CA ;

• L
kC1;n�k�1;�
A an embedded Lagrangian DkC1 � Sn�k�1; and

• �RWK
k;n�kC1
A ! R is Morse, with a single critical point of index k C 1.

A particularly relevant example isK0;nC1loc � CnC1, which gives a local model for
the Polterovich surgery trace (see Figure 11 for the example K0;2loc ).

The slice Lk;n�k;Cloc is an immersed Lagrangian submanifold with a single double
point,

�X ı j
k;n�kC1.˙1; 0; : : : ; 0/ D .0; : : : ; 0; 0/:
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We denote these points q˙ 2L
k;n�k;C
loc . 1 A useful observation is that when the positive

end of the surgery trace is restricted to the first k-coordinates,

L
k;n�k;C
loc jCk D L

k;0;C
loc � Ck

we see an isotropic Whitney sphere. The other end of the Lagrangian surgery trace,
L
kC1;n�k�1;�
loc is embedded. Furthermore,

L
kC1;n�k�1;�
loc jCk D ;:

This allows us to interpret Kk;n�kC1loc as a null-cobordism of a Whitney isotropic in
the first k-coordinates. This is a slightly deceptive characterization, as not all Whitney
isotropic spheres are null-cobordant; see Remark 4.2.6.

According to our convention (which is that Lagrangian cobordisms go from the
positive end to the negative end), the Lagrangian cobordismK

k;n�kC1
loc resolves a self-

intersection of the input end. For this reason, we say that Kk;n�kC1loc provides a local
model of Lagrangian surgery. Given j WK!X �C a parameterization for a Lagrang-
ian cobordism K, the inverse Lagrangian cobordism (denoted by K�1 � X � C) is
the Lagrangian submanifold parameterized by .�X ı j;��R ı j C |�|R ı j / (i.e., by
reflecting the real parameter of the cobordism). We call the inverse Lagrangian sub-
manifold, .Kk;n�kC1loc /�1 the local model for Lagrangian anti-surgery.

Example 3.2.4 (Lagrangian Surgery Handle K0;3loc ). In Figure 12 we draw slices of
the Lagrangian cobordism K

0;3
loc . In the surgery interpretation, the Lagrangian self-

intersection point is an isotropic Whitney sphere L0;0 � C0, highlighted in blue.
In the anti-surgery interpretation, the isotropic Lagrangian disk highlighted in red

is contracted, collapsing the S1 boundary to a transverse self-intersection.

Example 3.2.5 (Lagrangian Surgery Handle K1;2loc ). In Figure 13 we draw slices of
the Lagrangian cobordismK

1;2
loc . In the surgery interpretation, we resolve the isotropic

Whitney S1 sphere highlighted in blue by replacing it with two copies (an S0 family)
of the null-cobordism D2;0.

In the anti-surgery interpretation, the isotropic Lagrangian disk highlighted in red
is contracted, collapsing the immersed S0 boundary and yielding a Lagrangian with
a self-intersection.

An important observation is that while the cobordisms Kk;n�kC1loc and Kn�k;kC1loc
are topologically inverses, they are not inverses of each other as Lagrangian cobor-
disms. The first is a cobordism between an immersed Sk �Dn�k and an embedded

1The following mnemonics may be useful to the reader: the positive end of the surgery
cobordism is immersed and locally looks like the character “C”.
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K0;3loc j�0:5 K0;3loc j0:5

Figure 12. Slices of the surgery 2-handle K0;3loc � C3 from before and after the critical point.
These correspond to models of the surgery and anti-surgery neck. The positive end (right) is
an immersed D2 � S0, with double point is indicated in blue. The negative end (left) is an
embedded S1 �D1, whose Lagrangian antisurgery D2 from [15] is drawn in red.

DkC1 � Sn�k�1, while the second is between an immersed Sn�k�1 �DkC1 and an
embedded Dn�k � Sk (see Theorem 3.2.3). This can be seen in examples by com-
paring Figures 12 and 13.

3.2.3. Lagrangian surgery trace. In this section we prove Theorem 3.2.3. First,
we apply Section 3.1.5 to build from K

k;n�kC1
loc a Lagrangian cobordism with fixed

boundary. For this construction, we write K WD Kk;n�kC1loc . Pick a radius A 2 R>0.
LetLk;n�kC1;0DKj0; see for instance Figure 10. As a subset of the domain Rn �R1

parameterizing K, the domain parameterizing the Lagrangian Lk;n�kC1;0 is given by
the locus ²

.x0; x1; : : : ; xn/ j x
2
0 C

nX
iD1

�i;kx
2
i D 0

³
:

We then take hypersurfaceMk;n�kC1 � L
k;n�kC1;0 cut out by x20 C x

2
1 C � � �x

2
n D 1.

As in the proof of Proposition 3.1.10, take an extension M � Is � It � K which is
disjoint from the subset V D x20 C x

2
1 C � � �x

2
n D 1=4. By using Proposition 3.1.10 to

perform a decomposition across the X -coordinate along M , we obtain a Lagrangian
cobordism with fixed boundary K

#
. We use the notation from equation (3.1), and we

designate the # component to be the one which contains the origin in Dn �D1.
Since .K

#
/ \ V D .K/ \ V , we obtain�

K
#
\ V

�ˇ̌
1=2
D
�
.K/

ˇ̌
1=2

�
\ V:
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K1;2loc j�0:5 K1;2loc j0:5

Figure 13. Slices of the surgery 2-handle K1;2loc � C2 from before and after the critical point.
These correspond to models of the surgery and anti-surgery neck. The positive end (right) is an
immersedD1 � S1, whose isotropic Whitney S1 is highlighted in blue. The negative end (left)
is an embedded S0 �D2, whose isotropic antisurgery D1 from [15] is drawn in red.

We define the standard Lagrangian trace of area 1
6

to be

K
k;n�kC1
1=6

WD K
#


Œ�1=2;1=2�

;

where the double vertical bar refers to the truncation from Definition 3.1.8. The stan-
dard Lagrangian surgery trace of area A is then defined to be the rescaling (under the
map z 7! c � z on Cn) of the previously constructed Lagrangian submanifold,

K
k;n�kC1
A WD 6A �K

k;n�kC1
1=6

:

The ends of the standard Lagrangian surgery trace of area A will be denoted:

K
k;n�kC1
A WL

k;n�k;C
A  L

kC1;n�k�1;�
A :

Remark 3.2.6. Note that in the case of k D �1; n, this simply corresponds to trunca-
tion

K
k;n�kC1
A D K

k;n�kC1
loc


<r

where A D 4r3

3
.

Remark 3.2.7. When kD�1, we have a Lagrangian cobordismK
�1;nC2
A D.Kn;1/�1.

This case differs slightly from the standard Lagrangian Surgery trace in that the posi-
tive end L�1;nC1;CA is empty, and the negative end L0;n;�A is a Whitney sphere.
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L0

L1

L0#L1

(a) The Lagrangian surgery traceKBC as defined in [5].

zL0 [ zL1L0#L1

(b) The standard Lagrangian surgery trace K0;2A . The application of Proposition 3.1.10 to KBC modifies the
Lagrangian cobordism over the red neighborhood. The flux A is the difference between the blue and brown areas.

Figure 14. Comparison between Polterovich surgery and the standard Lagrangian surgery trace.
Notice that the fluxes swept over the surgeries differ (both in magnitude and sign).

Example 3.2.8. The ends of the Lagrangian surgery trace K0;nA WL
0;n;C
A  L

1;n�1;�
A ,

which resolves a single transverse intersection of an n-dimensional Lagrangian, do
not quite agree with the standard pictures drawn for the Polterovich surgery. In par-
ticular, the flux of the surgery (which determines the map !WH2.X; L

1;n�1;�
A /! R

in terms of !WH2.X;L
0;n;C
A /! R) is surprisingly counterintuitive. We now describe

the flux swept out by the local model for the standard Lagrangian surgery trace when
dim.X/ D 2. This example is based on the computation of flux which appears in [16,
Section 4.1] and the discussion surrounding [15, Figure 8].

In [24] the local model for Polterovich surgery of two Lagrangian submanifolds
intersecting transversely at a point replaces the Lagrangians L0; L1 � R2 (as drawn
on the right-hand side of Figure 14 (a)) with the Lagrangian L0#L1 (as drawn on
the left-hand side of Figure 14 (a)). Figure 14 (a) also depicts the Lagrangian surgery
cobordism

KBC W .L0; L1/ .L0#L1/

as defined in [5]. The flux of the surgery – the area highlighted in brown on the left-
hand side – is equal to the shadow of KBC . This 3-ended Lagrangian cobordism is
not a Lagrangian cobordism with cylindrical boundary (as it has three ends), so it is
not a local model for the standard Lagrangian trace (as defined in Section 3.2.3).

To obtain a 2-ended Lagrangian cobordism with cylindrical boundary fromKBC ,
one must apply a Lagrangian isotopy which cylindricalizes the boundary (Proposi-



Lagrangian cobordisms and Lagrangian surgery 541

tion 3.1.10). The resulting Lagrangian cobordism

K
0;2
A W .

zL0 [ zL1/ L0#L1

is drawn in Figure 14 (b). A subtle point is that the positive end of this Lagrangian
cobordism is no longer L0 [ L1. The construction from Proposition 3.1.10 covers
K
0;2
A with two charts. The first chart agrees with the Lagrangian cobordismKBC from

before. The second chart, contained in the region highlighted in red, is a suspension
of a Hamiltonian isotopy of Li restricted to the red region. The flux of this suspension
is the blue hatched region in Figure 14 (b), and equal to Area.K0;2A /. Observe that

Area.K0;2A / > Area.KBC /:

As a consequence, the area bounded by zL0 [ zL1 and L0#L1 has the opposite sign of
the area between L0 [ L1 and L0#L1! The quantity A D Area.K0;2A / � Area.KBC /
describes the symplectic area bounded by zL0 [ zL1 and L0#L1.

The construction of a standard Lagrangian surgery handle allows us to define the
standard Lagrangian surgery trace.

Definition 3.2.9. We say that KWLC L� is a standard Lagrangian surgery trace if
it admits a decomposition across the X coordinate as K D K� [Sn�k�Sn K

k;n�kC1
A ,

where K� is a suspension Lagrangian cobordism with collared boundary.

While the standard Lagrangian surgery trace is a useful cobordism to have, a
geometric setup for performing Lagrangian surgery on a given Lagrangian LC is
desirable. Such a criterion is given in [15] by the anti-surgery disk. In that paper,
it was noted that the presence of a Whitney isotropic k sphere was a necessary but not
sufficient condition for implanting a Lagrangian surgery handle. We give a sufficient
characterization in Remark 4.2.6.

3.3. Cobordisms are iterated surgeries

Having described the Lagrangian surgery operation and trace cobordism, we show that
all Lagrangian cobordisms decompose into a concatenation of surgery traces and exact
homotopies. This characterization is analogous to the handle body decomposition of
cobordisms from the data of a Morse function.

Theorem 3.3.1. Let KWLC L� be a Lagrangian cobordism. There is a sequence
of Lagrangian cobordisms

KH it
WL�iC1 LCi for i 2 ¹0; : : : ; j º;

K
ki ;n�kiC1
i WLCi  L�i for i 2 ¹1; : : : ; j º;
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which satisfy the following properties:

• L�jC1 D L
C and LC0 D L

�;

• each Kki ;n�kiC1 is a Lagrangian surgery trace;

• each KH it is the suspension of an exact homotopy; and

• there is an exact homotopy between

K � K
H
j
t
ıK

kj ;n�kjC1

j ıK
H
j�1
t
ı � � � ıKH1t

ıK
k1;n�k1C1
1 ıKH0t

:

Furthermore, this construction can be performed in such a way that the exact
homotopy has as small Hofer norm as desired.

The decomposition comes from using the function �RWK!R to provide a handle
body decomposition ofK. We note that unlessK is the suspension of an exact isotopy,
the decomposition will necessarily be immersed (as the Lagrangian surgery traces are
all immersed).

3.3.1. Morse Lagrangian cobordisms. We first must show that K can be placed
into general position by exact homotopy so that �R is a Morse function (as in Exam-
ple 2.1.4).

Claim 3.3.2 (Morse lemma for Lagrangian cobordisms). LetK�X�C be a Lagrang-
ian cobordism. There existsK 0, a Lagrangian cobordism exactly homotopic toK, with
�RWK

0 ! R a Morse function. Furthermore, the construction can be conducted so
that

• the Hofer norm of the exact homotopy is as small as desired; and

• if K is embedded, then K 0 is embedded as well.

Proof. By abuse of notation, we will use K to denote the smooth manifold param-
eterizing the (possibly immersed) Lagrangian cobordism K. Let �WB�"K ! X be a
local Weinstein neighborhood. At each point x 2 B�"K there is a Darboux neighbor-
hood of �.x/, which can be chosen to be the product of Darboux neighborhoods of
�X ı �.x/ and �C ı �.x/. Therefore, there exists around x 2 B�"K Darboux coordi-
nates .q0; p0; : : : ; qn; pn/ so that

q0 WD �R ı �; p0 WD �|R ı �

are the pullbacks of the real and imaginary coordinates to the local Weinstein neigh-
borhood. Let C1" .B

�
"K/ be the smooth functions B�"K ! R with compact sup-

port disjoint from the boundary. Let C1cob.KIR/ be the functions which agree with
�RWK ! R outside of a compact set. Given H 2 C1" .B

�
"K/, let  tH be the time t
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Hamiltonian flow ofH , and let j tH D � ı 
t
H be the corresponding exactly homotopic

immersion of K. We obtain a map

P WC1" .B
�
"K/! C1cob.KIR/;

H 7! �R ı j
1
H ;

so that P .H/ is the real coordinate of the immersion j tH . We will show that this map
is a submersion, and in particular open. Let f WK ! R be a function with compact
support, representing a tangent direction of C1cob.KIR/. As K � B�"K is embedded,
f can be extended to a compactly supported function F WB�"K!R, so that F jK D f ,
and F 2 C1" .B

�
"K/. The flow of H in the q0 coordinate is

dq0

dt
D
dH

dp0
:

We define our Hamiltonian Hf WB�"K ! R by the integral

Hf .x/ WD

Z
�X .x/�q0.x/�.�1;p0.x//

F dp0:

With this choice of Hamiltonian, the Hamiltonian flow at time zero of the real coordi-
nate at a point x 2 K � B�"K is given by

d

dt
.�R ı j

t
Hf
/jtD0.x/ D

dq0

dt

ˇ̌̌
tD0
.x/ D f .x/:

This shows that P is a submersion at 0. Since every open set of C1cob.KIR/ contains
a Morse function, and the image of P is open, there is a choice of Hamiltonian H
near 0, so that P .H/ D �R ı j

1
Hf

is a Morse function on K.
Because the Hamiltonian can be chosen near zero, we can choose it so that

sup
x2K

H.x/ � inf
x2K

H.x/

is bounded by a constant as small as desired. This shows that the exact homotopy
associate to the time 1 flow of H has as small Hofer norm as desired.

A similar argument shows that everyK is exactly homotopic toK 0 with the prop-
erty that Crit.�RWK

0 ! R/ is disjoint from 	si.K 0/, the set of self-intersections
of K 0. If �RWK ! R is a Morse function whose critical points are disjoint from
its self-intersections, we say that the Lagrangian cobordism is a Morse–Lagrangian
cobordism.
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��1R .t > 0/

��1R .t < 0/

��1
|R.s/

Figure 15. Three cases giving surgery, anti-surgery, and a degenerate Lagrangian cobordism.

3.3.2. Placing cobordisms in good position. The Lagrangian condition forces a cer-
tain amount of independence between the �R ı j and �|R ı j projections of the
Lagrangian cobordism.

Claim 3.3.3. Let j WK ! X � C be a Morse–Lagrangian cobordism. Then x 2 K
cannot be a critical point of both �R ı j and �|R ı j .

Proof. If so, then j�.TpK/ � TX � TX � TC. Since j�.TpK/ is a Lagrangian sub-
space, it cannot be contained in any proper symplectic subspace of T .X �C/.

Even when K is a Morse–Lagrangian cobordism, it need not be the case that at a
critical point q 2 Crit.�RWK ! R/ thatKjq�" is obtained fromKjqC" by surgery. In
the simplest counterexample, Kjq�" could be obtained from KjqC" by anti-surgery;
simply knowing the index of a �R ı j critical point does not determine if it arises
from surgery or antisurgery!

Example 3.3.4. We provide some intuition for what additional information is needed
to determine if a critical point gives a surgery or an antisurgery. Suppose that q is
an index-1 point of a 2-dimensional Lagrangian cobordism K. Then there exist local
coordinates around q so that �R ı j can be written as q20 � q

2
1 . Since the critical

points of �|R ı j are disjoint from those of �R ı j , the differential of �|R ı j is non-
vanishing at q. We now assume that �|R ı j is linear in .q0; q1/ -coordinates (note
that this will generally not be the case). We then can write .�|R ı j / D aq0 C bq1.
The slices of this Lagrangian cobordism are then the level sets of q20 � q

2
1 D t , and

the primitive describing the exact homotopy between those slices is aq0 C bq1. We
look at three cases (summarized in Figure 15):

(1) If jaj > jbj, then aq0 C bq1 restricted to q20 � q
2
1 D t will have two critical

points when t > 0. Let qt ; q0t be these two critical points. Let us make another assump-
tion (which in general does not hold), which is that these critical points are fixed points
of the homotopyKjt (i.e., �X ı j.qt0/D �X ı j.qt1/ and �X ı j.q0t0/D �X ı j.q

0
t1
/

for all t0; t1 > 0). Since limt&0 qt D limt&0 q
0
t D .0; 0/, we obtain that j.qt /D j.q0t /

whenever t > 0. We conclude that the positive slices are immersed (making K a
surgery).
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Kzipj�1 Kzipj�0:5 Kzipj0 Kzipj0:5 Kzipj1

Figure 16. A Morse–Lagrangian cobordism where the critical slice has a codimension-0 set
of self-intersection. This Lagrangian cobordism is parameterized by the mapping .x0; x1/ 7!
.x0 C x1 � 2|x0x1; 2.x

2
0
� x2

1
/C |.x0 C x1//.

(2) If instead jbj< jaj, the same argument holds except that aq0C bq1 has critical
points on the negative slices of K. K then gives an antisurgery.

(3) The last case is degenerate: when jaj D jbj, both the positive and negative
slices are embedded, but the critical slice is immersed along a set of codimension 0
(see Figure 16)!

In order for our critical points of �R to correspond to surgeries (Example 3.3.4 (1)),
we need to apply another exact homotopy based on an interpolation between Morse
functions.

Claim 3.3.5 (Interpolation of Morse functions). Let f; gWRn ! R be Morse func-
tions, each with a single critical point of index k at the origin and f .0/ D g.0/ D 0.
Take V any neighborhood which contains the origin. There exists a smooth family of
functions hcvWRn � Œ0; 1�! R which satisfies the following properties:

• in the complement of V , hcjRnnV D f jRnnV ;

• there exists a small neighborhood U of the origin so that h1jU D gjU ; and

• h1 is Morse with a single critical point;

• at time 0, h0.x/ D f .x/.
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Proof. Pick coordinates x1; : : : ; xn and y1; : : : ; yn, so that in a neighborhood of the
origin,

f D

nX
iD1

�i;kx
2
i ; g D

nX
iD1

�i;ky
2
i :

Let �WRn! Rn be a linear map so that ��.@yi / D @xi . Pick �c WRn � Œ0; 1=2�! Rn

an isotopy of linear maps smoothly interpolating between �0 D id and �1=2 D �. Take
U2 � V a small ball around the origin with the property that for all c, �c.U2/ � V .
Now consider an path of diffeomorphisms z�c WRn ! Rn satisfying the constraints

z�cjRnnV D id; z�0 D id; z�1=2jU2 D �jU2 :

For c 2 Œ0; 1=2�, we define hc WD f ı z�c .
We now define hc for c 2 Œ1=2; 1�. Pick U3 � U2 a neighborhood of the origin

with the property that, for every q 2 U3 and @v 2 TqRn, we have

j.d.f ı �/ � dg/.@v/j �
1

2
jdf .@v/j:

Take an interior subset U � U3 which is a neighborhood of the origin. Let � be a
bump function, which is constantly 1 on U , and 0 outside U3. Let � W Œ1=2; 1�! Œ0; 1�

be an increasing function smoothly interpolating between �.1=2/ D 0 and �.1/ D 1.
For c 2 Œ1=2; 1�, let

hc WD .1 � �.c/�/ � h1=2 C �.c/�g:

It remains to show that h1 is Morse, with a unique critical point at the origin. For
any q 2 Rn n U3, we have that dh1 D .z�1=2/� df , which is non-vanishing. For any
q 2 U , we have dh1 D dg, which vanishes if and only if q D 0. For q 2 U3 nU , take
@v 2 TqRn with the property that d�.@v/ D 0. Then

jdh1.@v/j D j.1 � �/ df .@v/C � df .@v/j >
1

2
jdf .@v/j > 0:

This proves that q is not a critical point of h1.

Proposition 3.3.6. Let K be a Morse Lagrangian cobordism. Let q 2 K be a critical
point of the projection �RWK ! R of index k C 1. There exists

• a neighborhood of the origin U � T �Dn �C, and a symplectic embedding

�WU ! X �C;

which respects the splitting so that �.0/ D q; and

• K 0 a Morse Lagrangian cobordism exactly homotopic to K,
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so thatK 0 \U D .Kk;n�kC1loc /\U under the identification given by �. Furthermore,

• the critical points of �RjK0 are in bijection with the critical points of �RjK;

• the Hofer norm of the exact homotopy is as small as desired; and

• if K is embedded, then K 0 is embedded as well.

Proof. At q take the Lagrangian tangent space TqK � T�X .q/X ˚ T�C.x/C. Since q
is a critical point of �R, we have that

TqK � T�X .q/X ˚ |R:

By dimension counting, any set of vectors @v0; @v1 ; : : : ; @vn 2 TqK with the prop-
erty that .�X /�.@v1/ ¤ 0 for all vi cannot form a basis of a Lagrangian subspace for
�X .TqK/; therefore, there exists a vector @s 2 TqK, so that �X .@s/D 0, and we may
split TqK D .�X /�.TqK/˚ |R. Choose a Darboux chart

U � T �Rn �C; � U ! X �C;

which respects the product decomposition, and has ��.Rn � |R/ D TqK. Write K
for Rn � |RjU . Because K and K have the same tangent space, we can further
restrict to a Weinstein neighborhood of K so that K is an exact section of the tan-
gent bundle B�"K. By taking a possibly smaller neighborhood, we will identify K D
Dn
r0
� Œ�s0; s0�, where the s-coordinate denotes the |R direction. Let F be the prim-

itive of this section, so that KjB�K D dF .
If we let s be the coordinate on K which travels in the |R direction, then we can

compute �RWK ! R at q 2 K by

f .q/ WD �R.q/ D @sF.q/;

which is a Morse function on K with a single critical point.
We now implement the handle in this neighborhood. Let Gk;n�kC1WK ! R be

the primitive for the handle from Definition 3.2.2, so that g WD @sGk;n�k is a Morse
function on K. We will use Claim 3.3.5 to obtain a function hc interpolating between
f and g, and define a preliminary primitive H pre

c WD
R
hcds. The section associated

to H pre
c will satisfy all the Morse properties we desire; however it does not agree

with F outside near the boundary of K. This is because while f and hc agree at the
boundary ofK, there is no reason for

R s
s0
hc.x; s/ds to match

R s
s0
f .x; s/dsDF.x; s/

near the boundary of K. Therefore, we need to add a correcting term to hc in order to
make these integrals agree near the boundary of K.

We set up this correction using a neighborhood as drawn in Figure 17. Take a set

W D Dn
r1
� Œs0=2; 3s0=4� � K:
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Let �WW ! R�0 be a bump function, vanishing on the boundary, with the property
that there exists an r2 < r1 so that for all x; y 2 Dn

r2
, we have �.x; s/ D �.y; s/.

Furthermore, assume that Z
¹xº�Œs0=2;3s0=4�

�.x; s/ ds D 1:

Let ˛ D sup.x;s/2K jd�j. Let ˇ D inf.x;s/2W jdf j. Since f has no critical points inW ,
this is greater than 0. To each choice of V � Dn

r2
� Œ�s0=2; s0=2� and associated

interpolation hc WV ! R, we can define a function

Ac.x/ WD

Z
¹xº�Œ�s0=2;s0=2�

.hc.x; s/ � f .x; s// ds:

We may choose V small enough so that our interpolation satisfies

sup
x;c
jAc.x/j <

ˇ

2˛
; sup

x
jdA1.x/j <

ˇ

2
:

Now consider the function

Hc.x; s/ D

Z
¹xº�Œ�s0;s�

hc.x; s/ � Ac.x/�.x; s/ ds:

Then @sH1.x; s/ D hc.x; s/ � Ac.x/�.x; s/. We have that

d.@sH1/ D dhc � d.Ac.x/�/:

By construction jd.Ac.x/�/j < jdhcj inside the region W , and Ac.x/� vanishes out-
side ofW . It follows that @sH1.x; s/ has no critical points outside of V . The derivative
@sH1.x; s/ is Morse, agrees with g in a neighborhood of the origin, where it has a sin-
gle critical point. Furthermore, near the boundary of K, we have

Hc.x; s/ D F.x; s/ for all .x; s/ 2 K n
�
Dn
r2
� Œ�s0=2; 3s0=4�

�
:

Consider the Lagrangian section of T �K given by dH1. This Lagrangian section
is exactly isotopic to KjT �K , with exact primitive vanishing at the boundary. We
therefore have an exactly homotopic family of Lagrangian cobordisms

Kc WD K n .KjT �K/ [ dHc ;

where Crit.�RWK0 ! R/ D Crit.�RWK1 ! R/ and K1jT �K D K
k;n�kC1
loc jT �K .

Finally, for the bound on the Hofer norm: this is given byZ 1

0

sup
x;s
.Hc.x; s/ � F.x; s// � inf

x;s
.Hc.x; s/ � F.x; s// dc:
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s0

�s0

V

Dnr1

Dnr2

Dnr0

K
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U

Figure 17. Nested neighborhoods for interpolating primitives. At the end of interpolation: our
Lagrangian handle matches the standard surgery handle over U ; the region V is used to inter-
polate between g D @sG and f D @sF ; the regionW is subsequently used to correct hc so that
its integral over the s-coordinate matches F at the boundary of K.

By choosing our initial neighborhood Dn
r0

sufficiently small (so both F.x; s/ and
Gk;n�k are nearly zero over the neighborhood), we make

sup
c;x;s
j.Hc.x; s/ � F.x; s/j

as small as desired.

3.3.3. Cobordisms are concatenations of surgeries. In this section, we prove that
every Lagrangian cobordism is exactly homotopic to the concatenation of standard
surgery handles.

Proof of Theorem 3.3.1. Let KWLC  L� be a Lagrangian cobordism. After appli-
cation of Claim 3.3.2, we obtainK 0, a Lagrangian cobordism exactly homotopic toK
with the property that �RWK

0 ! R is Morse with distinct critical values. Enumerate
the critical points ¹qiºliD1 D Crit.�RWK

0 ! R/. By Proposition 3.3.6, we may fur-
thermore assume thatK 0 is constructed so that there exists symplectic neighborhoods
Ui � T

�Dn � T �D1, so that

K 0 \ Ui D K
ki ;n�kiC1
loc \ Ui :

For each qi take "i small enough so that the .qi � "i ; qi C "i / are disjoint. Take ri
small enough so that the ball of radius ri centered at the critical point qi is contained
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within the charts Ui . K is exactly homotopic to the composition

Kk.�1;ql�"� ıKkŒql�";qlC"� ıKkŒqlC";ql�1C"� ı � � �

� � � ıKkŒq2C";q1�"� ıKkŒq1�";q1C"� ıKkŒq1C";1/:

By applying Proposition 3.1.10 on K 0k.qi�"i ;qiC"i / at the dividing hypersurface

Mi WD

²
.x0; : : : ; xn/ 2 Ui j

nX
jD0

x2j D r
2
i

³
;

we obtain an exact homotopy

K 0k.qi�"i ;qiC"i / � K
�
i ıKi

Mi
ıKCi ;

where K˙i are suspensions, and Kki ;n�kiC1i WD Ki
Mi

are Lagrangian surgery traces.
For each i , let KH it D K

C

iC1 ıK
�
i be the suspension of an exact homotopy. Then

K � KH lt
ıK

kl ;n�klC1

l
ıKH l�1t

ı � � � ıKH1t
ıK

k1;n�k1C1
1 ıKH0t

:

We finally check the Hofer norm of the exact homotopy above. At each step
where we employ an exact homotopy, the operations from Claim 3.3.2 and Proposi-
tions 3.3.6, 3.1.6, and 3.1.10 could be conducted in such a way to make the Hofer
norm of their associated exact homotopies as small as desired. Since there are a
finite number of operations being conducted, the Hofer norm of the exact homotopy
between K and a decomposition can be made as small as desired.

Conjecture 3.3.7. Suppose that L is an unobstructed Lagrangian, whose bounding
cochain has valuation c. Let L0 be exactly homotopic to L, with the Hofer norm of
the exact homotopy less than c. Then L0 is unobstructed.

The conjecture is based on the following observation: for Hamiltonian isotopies,
the suspension cobordism K has the property that CF �.K/ is an A1 mapping cocyl-
inder between CF �.LC/ and CF �.L�/, meaning that there are A1 projection maps

�˙WCF �.K/! CF �.L˙/

and a map (defined on chains, but not a A1 homomorphism)

iCWCF �.LC/! CF �.K/;

which can be extended to an A1 homomorphism

iCWCF �.LC/! CF �.K/:
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Exact homotopySurgeryExact homotopy

Figure 18. Rewriting an anti-surgery as exact homotopies and surgeries.

The homomorphism iC is an A1 homotopy inverse to �C. A key point is that the
lowest order portion of iC comes from the Morse continuation map, so iC has valua-
tion zero.

For exact homotopy, we expect that there still exist projection maps �˙. There
are several difficulties in the construction of these map (principally, it requires a rig-
orous definition of the Floer theory in this setting). In contrast to the isotopy case, the
map iC will be given by at lowest order by counts flow lines (between Morse gen-
erators) and holomorphic strips (between generators associated to self-intersections).
Thus, while we may be able to define a map (not an A1 homomorphism)

iCWCF �.LC/! CF �.K/;

the map may decrease valuation. We conjecture that the decrease in valuation is
bounded by the shadow of the Lagrangian cobordism. Under these circumstances,
there is a version of the A1 homotopy transfer theorem [16] which allows iC to be
extended to an A1 homotopy inverse to �C.

As the exact homotopies we consider for our decomposition of Lagrangian cobor-
disms have as small Hofer norm as desired, a corollary of the conjecture is that
decomposition of Lagrangian cobordism preserves unobstructedness.

Finally, we make a remark about anti-surgery versus surgery. We have shown
that every Lagrangian cobordism can be decomposed as a sequence of exact homo-
topies and Lagrangian surgery traces; in particular, the Lagrangian anti-surgery trace
.Kk;n�kC1/�1 can be rewritten as a Lagrangian surgery and exact homotopy. An
anti-surgery takes an embedded Lagrangian L and adds a self-intersection; one can
equivalently think of this as starting with an embedded Lagrangian, applying an exact
homotopy to obtain a pair of self-intersection points, and then surgering away one of
the self-intersections. This is drawn in Figure 18.
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4. Teardrops on Lagrangian cobordisms

One of the main observations about the decomposition described in Theorem 3.3.1 is
that the slices near a critical point of �RWK ! R differ

• topologically by a surgery, and

• as immersed submanifolds of X by the creation or deletion of a self-intersection.

An interpretation of the difference is that surgery trades topological chains of L� for
self-intersections of LC. When K is an embedded oriented Lagrangian submanifold,
one can show that this exchange preserves the Z=2Z grading of the topological chains.
As a consequence,

�.LC/ D �.K/ D �.L�/:

In this section we extend this statement to the immersed setting, and provide
evidence that this equality can be upgraded to an isomorphism of Floer cohomol-
ogy groups. In Section 4.1 we provide a definition for the Euler characteristic of an
immersed Lagrangian submanifold with transverse self-intersections (equation (4.2)).
Using Theorem 3.3.1, we then prove in Proposition 4.1.2 that for this definition of
Euler-characteristic �si.L�/ D �si.LC/.

The computation does not immediately extended to the Euler characteristic of a
Lagrangian cobordism KWLC  L� with immersed ends as K will not have trans-
verse self-intersections. We therefore require a standard form for Lagrangian cobor-
dism with transverse self-intersections. The standard form we choose (Lagrangian
cobordisms with double bottlenecks) is adopted from [20] who also studied the Floer
cohomology of immersed Lagrangian cobordisms. We subsequently show in Propo-
sition 4.2.13 that for Lagrangian cobordisms with double bottlenecks

.K; t�; tC/W .L�;H�/ .LC;HC/;

we have
�bot.K; t�; tC/ D �si.L�/ D �si.LC/; (4.1)

where �si; �bot are the Euler characteristic of an appropriate set of Floer cochains for
immersed Lagrangians and Lagrangian cobordisms with double bottlenecks.

In Section 4.3.1 we review the construction of immersed Lagrangian Floer coho-
mology, and in Section 4.4 we provide evidence that equation (4.1) can be extended to
chain homotopy equivalences between the immersed Lagrangian Floer cohomologies
of K;L� and LC when K is a standard surgery trace.

4.1. Grading of self-intersections, and an observed pairing on cochains

We recover this equality of Euler characteristic on the chain level for Lagrangian
cobordisms with self-intersections (Proposition 4.1.2). Suppose that X has a nowhere
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vanishing section� ofƒnC.T
�M;JM /. We say that i WL!X is graded if there exists

a function � WL! R, so that the determinant map

detWL! S1;

q 7! �.TqL/
˝2=j�.TqL/j

2

can be expressed as det.q/ D e2|�� : In this setting, we can define a self-intersection
corrected Euler characteristic for immersed Lagrangian submanifolds. Let

	si.L/ D ¹.p ! q/ j p; q 2 L; i.p/ D i.q/º

be the set of ordered self-intersections.2 Note that each self-intersection of L gives
rise to two elements of 	si. The index of a self-intersection .p ! q/ is defined as

ind.p ! q/ WD nC �.q/ � �.p/ � 2].i�TpL; i�TqL/;

where ].V;W / is the Kähler angle between two Lagrangian subspaces. We particu-
larly suggest reading the exposition in [2] on computation of this index.

Claim 4.1.1 (Index of handle self-intersections). Consider the parameterization of
one boundary of the standard Lagrangian surgery handle obtained from restricting
Definition 3.2.2 to the positive slice

j k;n�kC1jtD1WL
k;n�k;C

! Cn:

Equip Cn with the standard holomorphic volume form. The index of the self-intersec-
tions are

ind.q� ! qC/ D n � k � 1; ind.qC ! q�/ D k C 1:

Proof. To reduce clutter, we write j for j k;n�kC1. The hypersurface

x20 C

nX
iD1

�i;kx
2
i D 1 in RnC1

describes the slice Lk;n�k;C as a hypersurface of the local surgery trace. Its tangent
space at a point .�/ D .sin.�/; 0; : : : ; 0; cos.�// is spanned by the basis

¹cos.�/@1 � sin.�/@0; @2; @3; : : : ; @nº:

2The notation reflects our interpretation of each element .p! q/ as being a short Hamilto-
nian chord starting at p and ending at q.
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Let e1; : : : ; en be the standard basis of TCCn. Then

i�.@0/ D
X
i

2|�i;kxiei ;

j�.@i / D .1C 2|�i;kx0/ei for i D 1; : : : ; n;

so that the tangent space at Tj..�//L
k;n�k;C
loc is spanned by vectors Evi .�/, where

Ev1.�/ D

�
cos.�/C 2|

� nX
iD1

�i;k.cos2.�/ � sin2.�//
��
e1;

Evi .�/ D .1C 2|�i;k cos.�//ei for i D 2; : : : ; n.

Let zi .�/ be coefficients so that Evi .�/ D zi .�/ei . Then arg.zi .�// is decreasing for
i � k and increasing for i > k. The endpoints of the zi are given by

z1.0/ D 1C 2|; z1.�/ D �1C 2|;

zi .0/ D 1C 2|�i;k; zi .�/ D 1 � 2|�i;k :

To compute the index of .q� ! qC/, we complete the path z2i .�/=jz
2
i .�/j to a loop

by taking the short path, and sum the total argument swept out by each of the zi . For
ease of computation, let ˛ D arctan.2/.

• When i D 1, the loop z21.�/=jz
2
1.�/j sweeps out �2� � 4˛ radians; the short path

completion yields a contribution of �2� to the total index of this loop.

• When 1 < i � k, the loop z2i .�/=jz
2
i .�/j sweeps out �4˛ radians; the short path

completion yields a total contribution of 0 from this loop.

• When k < i � n, the loop z2i .�/=jz
2
i .�/j sweeps out 4˛ radians; the short path

completion yields a total contribution of 2� from this loop.

The total argument swept out is .n� k � 1/ � 2� . The index of the self-intersection is

ind.q� ! qC/ D n � k � 1:

By similar computation (or using duality) we see that

ind.qC ! q�/ D k C 1:

Let L be a compact graded Lagrangian submanifold, and f WL! R be a Morse
function. The set of Floer generators is

	.L/ D Crit.f / [ 	si.L/: (4.2)

For each x 2 Crit.f /, let ind.x/ be the Morse index. Define the self-intersection Euler
characteristic to be

�si.L/ WD
X

x2	.L/

.�1/ind.x/:
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Proposition 4.1.2. Let KWLC L� be a Lagrangian cobordism. Then

�si.L�/ D �si.LC/:

As was pointed out to me by Ivan Smith, this also follows in the case thatK is em-
bedded by the much simpler argument that the Euler characteristic is the signed self-
intersection, and noting that we can choose a Hamiltonian push-off so the intersections
of K \ �.K/ are in index preserving bijections with intersections L˙ \ �.L˙/.
Nevertheless, we give proof using decomposition as this will motivate Section 4.4.

Proof. As each exact homotopy preserves �si.L�/, we need only check the case that
Kk;n�kC1WLC L� is a surgery trace. Choose Morse functions f ˙WL˙!R which
in the local model of the surgery neck given by Definition 3.2.2 agree with the coor-
dinate xn. The critical points of f ˙ agree outside of the surgery region. Inside the
surgery region, we have

Crit.f C/ \ Lk;n�k;Cloc D Crit.xnWL
k;n�k;C
loc ! R/;

Crit.f �/ \ LkC1;n�k�1;�loc D Crit.xnWL
kC1;n�k�1;�
loc ! R/:

Recall that in the coordinates from Definition 3.2.2 these Lagrangian submanifolds
are parameterized by domains in RnC1 cut out by the equations

L
k;n�k;C
loc D

²
.x0; : : : ; xn/ j x

2
0 C

nX
iD1

�i;kx
2
i D 1

³
;

L
kC1;n�k�1;�
loc D

²
.x0; : : : ; xn/ j x

2
0 C

nX
iD1

�i;kx
2
i D �1

³
:

We compute the critical points of f restricted to the level sets of �R ı j using the
method of Lagrange multipliers:

rf D h2x0; 2�1;kx1; : : : ; 2�n;kxni;

grad�R ı j D h0; 0; : : : ; 0; 1i:

So the only critical points in the surgery region occur when x0; : : : ; xn�1 D 0. From
this, we obtain the following cases:

• If k D �1, then f C restricted to L�1;nC1;Cloc has no critical points (as it is empty)
and L0;n;� has critical points of index 0 and n, which we call e; x.

• If �1 < k < n, then f C restricted to Lk;n�k;Cloc has no critical points, and f �

restricted to LkC1;n�k�1;�loc has critical points of index k C 1 and n � k � 1. We
call these critical points x˙.
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Index 	si.LC/ Crit.f C/ Crit.f �/

k C 1 .qC ! q�/ xC

n � k � 1 .q� ! qC/ x�

(a) Floer cochains of 	.LC/ and 	.L�/ for a Lagrangian surgery
traceKk;n�kC1WLC L�, when �1 < k < n.

Index 	si.LC/ Crit.f C/

�1 .q� ! qC/

0 e

n x

nC 1 .qC ! q�/

(b) In the degenerate caseKn;1,
	.L�/ is empty.

Index 	si.L�/ Crit.f �/

�1 .q� ! qC/

0 e

f n x

nC 1 .qC ! q�/

(c) In the degenerate caseK�1;nC2,
	.LC/ is empty.

Table 1. Chain level differences in Floer generators before and after surgery.

• If k D n, then f C restricted to Ln;0;Cloc has critical points of index 0; n, which we
call e; x. The function f � restricted to LkC1;n�k�1;�loc has no critical points (as it
is empty).

The differences between 	.LC/; 	.L�/ are listed in Table 1. From the values
listed in Table 1 it follows that �si.L�/ D �si.LC/.

This computation leads to the following question: can we extend Proposition 4.1.2
to an equivalence of Floer theory.

4.2. Doubled bottlenecks

Problematically, the decomposition given by Theorem 3.3.1 is not very useful for
understanding Floer cohomology for Lagrangian cobordisms with immersed ends,
as such Lagrangian cobordisms will not have transverse self-intersections. This is
because the standard definition of Lagrangian cobordisms (Definition 2.1.1) does not
allow us to easily work with immersed Lagrangian ends. Rather, [20] gives a definition
for a bottlenecked Lagrangian cobordism which gives a method for concatenating
Lagrangian cobordisms with immersed ends in a way that preserves transversality of
self-intersections.

4.2.1. Bottlenecked Lagrangian cobordisms. We adapt [20, Definition 7.4] to our
setting.
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t� tC

K

C

(a) A cobordism with bottlenecks.

t� tC

K

C

(b) A cobordism with double bottlenecks.

Figure 19. Lagrangian cobordisms with bottlenecks or double bottlenecks allow us to discuss
Lagrangian cobordisms between immersed Lagrangian submanifolds.

Definition 4.2.1. Let i0WL0 ! X be an immersed Lagrangian with transverse self-
intersections. A bottleneck datum for L is an extension of the immersion to an exact
homotopy it WL0 � I ! X with primitive Ht WL0 � I ! R satisfying the following
conditions:

• Bottleneck:H0D 0 and there exists a boundC 2R so that jdHt
dt
j �C everywhere.

• Embedded away from 0: If it .q0/ D it .q1/, then either q0 D q1 or t D 0.

For simplicity of notation,3 we will denote the datum of a bottleneck by .L;Ht /.

We say that a Lagrangian cobordism K � X � C is bottlenecked at time t0 if
KjŒt0�";t0C"� is the suspension of a bottleneck datum. The image of the Lagrangian
cobordism under �C has a pinched profile (see Figure 19). By application of the open
mapping principle, the pinch point prevents pseudoholomorphic disks with boundary
on the Lagrangian cobordism from passing from one side of the Lagrangian cobor-
dism to the other (hence the name bottleneck).

Example 4.2.2 (Whitney Sphere). The first interesting example of a bottleneck comes
from the Whitney n-sphere Ln;0A � Cn. We treat Ln;0A as a Lagrangian cobordism
inside of Cn�1 �C. The shadow projection �CWL

n;0
A ! C is drawn in Figure 9. The

bottleneck on the Lagrangian cobordism occurs at t D 0, with bottleneck datum corre-
sponding to an exact homotopy of the Whitney .n � 1/-sphere Ln�1;0A � Cn�1. This
exact homotopy is parameterized by

i
n�1;0
A.t/

WSn�1r.t/ ! Cn�1;

whereA.t/D 3
4
.1� t2/

3
2 , and r.t/D

p
1 � t2. The primitive for this exact homotopy

isHtD2x0t . EachLn;0
A.t/

contain a pair of distinguished points, q˙D.˙r.t/;0; : : : ; 0/,

3The primitive of an exact homotopy does not determine the exact homotopy j ; however,
many properties of the bottleneck are determined by Ht .
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which correspond to the self-intersection of the Whitney .n� 1/ sphere. Note that qC
is the maximum of Ht on each slice, and q� is the minimum of Ht on each slice.

Given an immersed Lagrangian i WL! X with transverse self-intersections, there
exists a standard way to produce a bottleneck (which we call a standard bottleneck).
Pick a local Weinstein neighborhood �WB�r L! X . Let hWL! X be a function such
that jdhj < r , and that h.p/ ¤ h.q/ whenever .p ! q/ 2 	si.L/. Let Ht D t � h.
Then the Lagrangian cobordism submanifold parameterized by

L � .�"; "/! X � T �.�"; "/;

.q; t/ 7!
�
�
�
d
� t2
2
� h
�
q

�
; t C |Ht .q/

�
is an example of a Lagrangian cobordism with a bottleneck. At each self-intersection
.q0 ! q1/ 2 	si.L/, it will either be the case that h.q0/ < h.q1/ or h.q1/ < h.q0/.

Definition 4.2.3. Let it WL0 � I !X with primitiveHt WL0 � I !R be a bottleneck
datum. We say that .q0! q1/ 2 	si.L0/ has a maximum grading in the base from the
bottleneck datum if dHt

dt
.q0; 0/ >

dHt
dt
.q1; 0/; otherwise, we say that this generator

receives an minimum grading in the base from the bottleneck.

Remark 4.2.4. Our convention for maximal/minimal grading from the base is likely
related to the convention of positive/negative perturbations chosen in the paper [8,
Remark 3.2.1].

Example 4.2.5 (Whitney sphere, revisited). For the bottleneck in�1;0
A.t/

WSn�1
r.t/
!Cn�1

constructed in Example 4.2.2,

dHt

dt
.q˙/

ˇ̌̌
tD0
D ˙1

so that .q� ! qC/ has a maximum grading in the base.
We can construct another bottleneck datum so that .q� ! qC/ has a minimum

grading in the base. As H 1.Sn�1/ D 0, all Lagrangian homotopies are exact homo-
topies. Consider the homotopy in�1;0

s.t/
WL

n�1;0
B.t/

! Cn�1, where B.t/ D 1 C t2, and
t 2 Œ�1; 1�. This bottleneck is the exact homotopy of which first decreases the radius
of the Whitney sphere, then increases the radius of the Whitney sphere. For this bot-
tleneck, .q� ! qC/ inherits a minimum grading from the base.

While both in�1;0
A.t/

; i
n�1;0
B.t/

provide bottlenecks for the Whitney sphere, they are
really quite different as Lagrangians in Cn�1 � C. The first bottleneck can be com-
pleted to a null-cobordism by simply adding in two caps (yielding the Whitney n-
sphere in Cn); the second bottleneck cannot be closed off without adding in either a
handle or another self-intersection.
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Remark 4.2.6. Although not relevant to the discussion of bottlenecks, Example 4.2.5
gives us an opportunity to address the discussion at the end of [15, Section 3.4] related
to Whitney degenerations and Lagrangian surgery. The question Haug asks is: Does
containing a Whitney isotropic sphere suffice for implanting a surgery model? Haug
shows that this is not sufficient condition. The specific example considered is the
Whitney sphere L2;0;C � C2, which contains a 1-Whitney isotropic

L1;0;C � L2;0;C � C2:

If there was a Lagrangian surgery trace K1;2WL2;0;C  L�, which collapsed the 1-
Whitney isotropic, then L� would have the topology of an embedded pair of spheres.
Since no such Lagrangian submanifold exists in C2, we conclude that possessing a
1-Whitney isotropic does not suffice for implanting a surgery handle.

Upon a closer examination, we see that the Whitney 1-isotropic has a small normal
neighborhood

L1;0;C � I � L2;0;C � C �C;

which gives it the structure of a Lagrangian bottleneck. This is the bottleneck in�1;0
A.t/

described above.
Consider instead a Lagrangian submanifold LC which contains a Whitney k-

isotropic Lk;0;C � I � L with a neighborhood giving it the structure of the in�1;0
B.t/

bottleneck. Then there exists a Lagrangian surgery trace Kk;n�k WLC  L�. This
can be immediately observed for instance in Figure 13 – the right-hand side is exactly
isotopic to i1;0

B.t/
(with the cobordism parameter in the vertical direction).

As Example 4.2.5 shows, when one turns an immersed Lagrangian submanifold
L0 into a Lagrangian cobordism with a bottleneck K at t D 0, the self-intersections
of K with cobordism parameter 0 are in bijection with the self-intersections of L0.
The gradings of the self-intersections of K differ from the gradings of the self-inter-
sections of L0. When .q0 ! q1/ 2 	si.L0/ has a maximum grading in the base, the
gradings of self-intersections on K are

ind..q0; 0/! .q1; 0// D ind.q0 ! q1/;

ind..q1; 0/! .q; 0// D ind.q1 ! q0/C 1:

From a Floer-theoretic viewpoint this is problematic, as the underlying philosophy of
Theorem 2.3.1 is that the Floer cohomology of a Lagrangian cobordism should agree
with the Floer cohomology of the slice of the cobordism, and this mismatch in index
shows that these two groups cannot be the same by Euler characteristic considera-
tions. While bottlenecks give us a way to relate the immersed points of K with the
immersed points of the slice at the bottleneck, the self-intersections of K with min-
imum grading from the base will receive the wrong grading. An additional problem
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with self-intersections of K with minimum grading from the base is that one cannot
necessarily obtain compactness for moduli spaces of holomorphic teardrops with out-
put on a self-intersection with minimum grading in the base. We therefore use double
bottlenecks instead.

Definition 4.2.7. Let i WL! X be an immersion with transverse self-intersections,
andH WL!R, �WB�r L!X as in the construction of a standard bottleneck. Further-
more, assume that dH D 0 at each self-intersection point. Let �.t/D t .t C "/.t � "/,
and zHt .q/ WD �

0.t/H.q/. A standard double bottleneck datum is the exact homotopy

it WL � .�"; "/! X;

.q; t/ 7! �.d. zHt /q/

with the property that �X it .q0/ D �X it .q1/ if and only if i.q0/ D i.q1/ and t D
˙"=
p
3 (these are the critical points of �).

We say that a Lagrangian cobordismK �X �C has a double bottleneck at time t0
if KjŒt0�";t0C"� is the suspension of a standard double bottleneck datum.

If K is a Lagrangian cobordism with standard double bottleneck datum at times
t�; tC given by the data H˙WL˙ ! R, �˙WB�r L

˙ ! X , then we will write

.K; tC; t�/W .LC;HC/ .L�;H�/

and say that .K; tC; t�/ is a Lagrangian cobordism between LC; L� with double
bottlenecks determined by HC;H�.

Observe that in the setting where KWLC  L� is a Lagrangian cobordism, L˙

are embedded, and t˙ are chosen as in Definition 2.1.1, then

.K; tC; t�/W .LC; 0/ .L�; 0/

is a Lagrangian cobordism with double bottlenecks.
Each self-intersection .q0 ! q1/ 2 	si.L/ corresponds to two self-intersections

..q0;˙"=
p
3/! .q1;˙"=

p
3// in 	si.L;Ht /; if ..q0; "=

p
3/! .q1; "=

p
3// has a

maximal grading from the base, then ..q0;�"=
p
3/! .q1;�"=

p
3// has a minimal

grading from the base (and vice versa). To each immersed point .q0! q1/ 2 	si.L/,
we can associate a value

A.q0!q1/ WD

Z "=
p
3

"=
p
3

�
zHt .q1/ � zHt .q0/

�
dt:

Finally, we observe that for each .q0! q1/, the curves t C | zHt .q0/ and t C | zHt .q1/

bound a strip in uWR� I !C whose area is A.q0!q1/. Since q0; q1 are critical points
of h, they are fixed by the homotopy and we obtain a holomorphic strip

¹i0.q0/º � uWR � I ! X �C

with boundary on the double bottleneck.
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Given Lagrangian cobordisms with double bottlenecks

.KC0; tC; t0/W .LC;HC/ .L0;H 0/; .K0�; t0; t�/W .L0;H 0/ .L�;H�/;

there exists a composition .K0� ıKC0; tC; t�/W .LC;HC/ .L�;H�/. The com-
position is covered by the charts KC0j>t0�"; K0�j<t0C" which overlap over the dou-
ble bottleneck defined by L0;H 0 and �0. In the setting where HC;H 0;H� D 0 (so
that LC; L0; L� are embedded) this agrees with the usual definition of composition
of Lagrangian cobordisms.

4.2.2. �si for Lagrangian cobordisms with double bottlenecks. Recall that for
immersed compact Lagrangian submanifolds L with transverse self-intersections, the
Floer cochains are defined in equation (4.2) to be critical points of an auxiliary Morse
function f WL! R or ordered pairs of points in L whose image in X agree. From
this data we defined a self-intersection Euler characteristic. When defining the self-
intersection Euler characteristic for Lagrangian cobordisms, we must state which
auxiliary Morse functions are admissible, and how to count the self-intersection points
at the double bottlenecks. At a minimum, the self-intersection Euler characteristic that
we define for Lagrangian cobordisms with double bottlenecks should satisfy the rela-
tion

�bot..K0� ıKC0; tC; t�//D�bot.KC0; tC; t0/C�bot.K0�; t0; t�/��si.L0/: (4.3)

We first handle the issue of the auxiliary Morse function. Pick f ˙WL˙ ! R Morse
functions. For the Lagrangian cobordism .K; tC; t�/ we take an admissible Morse
function (adapted from [16, Definition 2.1.3]), which is a Morse function f WK ! R

satisfying:

• The Morse flow restricted to the fibers above real coordinates t� and tC are deter-
mined by f ˙,

.�R/� gradf j��1R .t�/ D 0; .�R/� gradf j��1R .t�C/ D 0;

.�X /� gradf j��1R .t�/ D gradf �; .�R/� gradf j��1R .tC/ D gradf C:

• The gradient points outward in the sense that

dt.� gradf /j�R.q/<t
� < 0; dt.� gradf /jt�<�R.q/<t

�C" > 0;

dt.� gradf /j�R.q/>t
C > 0; dt.� gradf /jtC�"<�R.q/<t

�C < 0:

For such a choice of Morse function, Crit.f C/; Crit.f �/ naturally are subsets of
Crit.f /, and all critical points of f have cobordism parameter between t� and tC

(inclusive). For embedded Lagrangian cobordisms, the Euler characteristic defined
using the cochains of an admissible Morse functions satisfies equation (4.3).
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This leaves us with handling the self-intersections of the Lagrangian cobordism
with double bottlenecks .K; tC; t�/. From the design of the double bottlenecks, we
see that there are inclusions 	si.L˙/ ,! 	si.K/ sending each intersection to the cor-
responding intersection in the double bottleneck with maximum grading from the
base. This inclusion preserves degree. Unfortunately, the double bottlenecks contain
additional intersections not corresponding to elements of 	si.L˙/ coming from those
intersections with minimal degree in the base. We must judiciously throw out some of
these intersections.

Definition 4.2.8. Let .K; tC; t�/W .LC; HC/ .L�; H�/ be a Lagrangian cobor-
dism with double bottlenecks, parameterized by j WK ! X � C. The bottlenecked
Floer generators of .K; tC; t�/ are

	bot.K; tC; t�/ WD Crit.f /

t ¹.q0 ! q1/ 2 	si
j t� � �R ı j.q

0/ � tCº

t ¹.q0 ! q1/ 2 	si
j �R ı j.q

0/ < t�; and .q0 ! q1/ has max grad. from baseº

t ¹.q0 ! q1/ 2 	si
j tC < �R ı j.q

0/; and .q0 ! q1/ has max grad. from baseº:

For .K; tC; t�/W .LC; HC/ .L�; H�/ a Lagrangian cobordism with double
bottlenecks, we define

�bot.K; tC; t�/ WD
X

x2	bot.K;tC;t�/

.�1/ind.x/:

Claim 4.2.9. �bot.K; tC; t�/ satisfies equation (4.3).

Proof. From the definition �bot.K; tC; t�/ we see that

	bot.KC�; tC; t�/ D
�
	bot.K0�; t0; t�/ t .	bot.KC0; tC; t0/ n Crit.f 0//

�
t ¹.q0 ! q1/ 2 	si.K0�/ j �R ı j.q

0/ < t�;

and .q0 ! q1/ has min grad. from baseº

t ¹.q0 ! q1/ 2 	si.KC0/ j tC < �R ı j.q
0/;

and .q0 ! q1/ has min grad. from baseº:

There is a bijection between 	si.L0/ and the union of the latter 2 terms, however this
bijection increases the index of the critical points by 1. Equation (4.3) immediately
follows.

4.2.3. Decomposition of Lagrangian cobordism via double bottlenecks. Observe
that the methods used in Proposition 3.1.6 can similarly be used to give a decomposi-
tion of a Lagrangian submanifoldK �X into bottlenecked Lagrangian submanifolds.
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K1;2loc j1

K1;2loc j1

Figure 20. Left: The shadow of K1;2j1 as projected to the first complex coordinate, with bot-
tleneck at the origin. Right: The Lagrangian K1;2j1 drawn as a section of T �R2.

Proposition 4.2.10. Let K � X � C be a Lagrangian submanifold, and t�; tC reg-
ular values of the projection �RWK ! R. Suppose Ht WL

˙ � Œt˙ � "; t˙ C "�! R

generates an exact homotopy whose suspension is KjŒt˙�";t˙C"�. Furthermore, sup-
pose that over this region, Ht .q1/ ¤ Ht .q2/ for each double point .q1 ! q2/ of the
slice Kjt . Then there exist choices of Lagrangian bottleneck data .L˙; H˙/ and a
Lagrangian cobordism with double bottleneck

.K; tC; t�/W .LC;HC/ .L�;H�/:

While the standard surgery handle does not have transverse self-intersections,
there is a geometrically pleasing construction of a bottlenecked Lagrangian surgery
trace.

Consider LkC1;n�k;C � CnC1.We now will now treat LkC1;n�k;C as if it were a
Lagrangian cobordism, with first coordinate of CnC1 serving as the cobordism coor-
dinate. We will therefore write

LkC1;n�k;C � Cn
�C1:

From this viewpoint, LkC1;n�k;C � Cn �C1 can also be considered as a Lagrangian
surgery trace, as �R1 WK

kC1;n�kC1;Cj�R1
<1=2 ! R has a single critical point. Fur-

thermore, this Lagrangian has a single self-intersection, forming a bottleneck under
the C1 projection: see the shadow projection drawn in Figure 20. By applying Propo-
sition 4.2.10 to KkC1;n�kC1;Cj�R1

<1=2, we obtain a double bottlenecked Lagrangian
surgery trace.
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Definition 4.2.11. We call the resulting Lagrangian cobordism with double bottle-
necks

K
k;n�kC1
A;B � CnC1;

where the quantity A measures the symplectic area of the class of the teardrop on
K
k;n�kC1
A;B , while B is the area of holomorphic strip associated with a double bottle-

neck.

Note thatKk;n�kC1A;B has 2 self-intersections and a single critical point of the height
function. By following the method of proof in Theorem 3.3.1, we obtain a doubled-
bottleneck decomposition of Lagrangian cobordisms.

Corollary 4.2.12. Let .K; t�; tC/W .LC;HCt / .L�;H�t / be a Lagrangian cobor-
dism with double bottlenecks. Then there a sequence of Lagrangian cobordisms with
double bottlenecks

.KH it
; t�iC1; t

C

i /W .L
�
iC1; h

�
iC1;t / .LCi ; h

C

i;t / for i 2 ¹0; : : : ; j º;

.K
ki ;n�kiC1
Ai ;Bi

; tCi ; t
�
i /W .L

C

i ; h
C

i;t / .L�i ; h
�
i;t / for i 2 ¹1; : : : j º;

which satisfy the following properties:

• L�jC1 D L
C and LC0 D L

�;

• each Kki ;n�kiC1Ai ;Bi
is a Lagrangian surgery trace with double bottlenecks;

• each KH it is the suspension of an exact homotopy; and

• there is an exact homotopy between

K � K
H
j
t
ıK

kj ;n�kjC1

Aj ;Bj
ıK

H
j�1
t
ı � � � ıKH1t

ıK
k1;n�k1C1
A1;B1

ıKH0t
;

whose Hofer norm can be made as small as desired.

We can now upgrade Proposition 4.1.2 to compare the Euler characteristic of a
Lagrangian cobordism with immersed ends to the Euler characteristic of the ends.

Proposition 4.2.13. Let .K; t�; tC/W .LC;HC/! .L�;H�/ be a Lagrangian cobor-
dism with double bottlenecks. Then we have a matching of Euler characteristics

�bot.K/ D �si.L�/ D �si.LC/:

Proof. As in Proposition 4.1.2, it suffices to check for the double bottleneck surgery
traces:

K
k;n�kC1
A;B WL

k;n�k;C
loc  L

kC1;n�k�1;�
loc :
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We discuss the cases �1 < k < n. Equip Kk;n�kC1A;B with an admissible Morse func-
tion f which is given by perturbing the Morse–Bott function � ı �R in Figure 21
by the functions f ˙ from Proposition 4.1.2 at the maxima of � ı �R. The function
� ı �R has a single critical point (the critical point of the Morse surgery handle)
with real coordinate between tC; t� which lives in degree n � k. The remaining crit-
ical points of f come from the perturbations f ˙, which we enumerated in Table 1.
The self-intersections of Kk;n�kC1A;B correspond to two copies of the self-intersections
of Lk;n�k;Cloc whose indexes are shifted depending on whether they receive maxi-
mum or minimum grading from the base. The bottleneck cochains 	bot.K

k;n�kC1
A;B /

are listed in Figure 21. From reading the table, we see that

�bot.K
k;n�kC1
A;B / D .�1/kC1 C .�1/n�kC1;

which agrees with �si.L
kC1;n�k�1;�
loc /.

4.3. Overview of immersed Floer cohomology

4.3.1. Immersed Lagrangian Floer cohomology. There are several models based
on the work of [1] which produce a filtered A1 algebra associated to an immersed
Lagrangian i WL! X . We follow notation from [23] adapted to the Morse cochain
setting, although much of our intuition for this filtered A1 algebra comes from [5, 9,
13, 19].

Let f WL! R be a Morse function, i WL! X be a graded Lagrangian immersion
with transverse self-intersections, and 	si.i/D ¹.p! q/ j p; q 2 L; i.p/D i.q/º be
the set of ordered preimages of transverse self-intersections. Assume that

Crit.f / \ 	.L/ D ;:

Definition 4.3.1 (Fukaya–Oh–Ohta–Ono [14]). Let R be a commutative ring with
unit. The universal Novikov ring over R is the set of formal sums

ƒ�0 WD

² 1X
iD0

aiT
�i j ai 2 R; �i 2 R�0; lim

i!1
�i D1

³
:

Let k be a field. The Novikov field is the set of formal sums

ƒ WD

² 1X
iD0

aiT
�i j ai 2 k; �i 2 R; lim

i!1
�i D1

³
:
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xC

x�S1r1

S1r2

y A B

�

�R

(a) Slices

(b) Shadow

(c) Morse profile

(d)

Index Elements of 	.Kk;n�kC1
A;B

/

k C 1 xC .qC; 1/! .q�; 1/

k C 2 .qC; 0/! .q�; 0/

n � k � 1 x� .q�; 0/! .qC; 0/

n � k y

Figure 21. The slices, shadow, and choice of profile � used in constructing the Morse function.
The drawn example is for k D 0; n D 2. (a) Critical points of the function f ˙. The gradient
flow of f ˙ on the slice is indicated by the arrows. (b) The shadow of our Lagrangian cobor-
dism. (c) The profile of a Morse–Bott function on Kk;n�kC1

A;B
which is subsequently perturbed

by f ˙ at the Morse–Bott maxima and minimum. (d) A tabulation of the indices of elements
in 	bot.Kk;n�kC1

A;b
/. Observe that cochains listed in rows k C 1; n � k � 1 agree with those

from Table 1.

An energy filtration on a graded ƒ-module A� is a filtration F �iAk so that

• each Ak is complete with respect to the filtration4 and has a basis with valuation
zero over ƒ;

• multiplication by T � increases the filtration by �.

4In the sense that the topology induced by taking a basis of opens to be F �iAk is complete.
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Associated to an immersed Lagrangian submanifold with transverse self-intersec-
tions is a filtered graded ƒ-module generated on critical points of f and .q0 ! q1/:

CF k.L/ D
M

x2Crit.f /;
ind.x/Dk

ƒx ˚
M

.q0!q1/2	si.L/;
ind.q0!q1/Dk

ƒ.q0!q1/:

We will write 	.L/ D Crit.f / [ 	si.L/ for the set of generators of CF �.L/. The
Floer cohomology of L comes with filtered product operations deforming the Morse
structure by counts of holomorphic polygons with boundary on L,

hmk.x1; : : : ; xk/; x0i D
X

ˇ2H2.X;L/

T !.ˇ/#MP .L; ˇ; xi /;

where
x D x0; x1; : : : ; xk 2 Crit.f / [ 	si.L/;

P is perturbation datum, and MP .L; ˇ; xi / is the moduli space of P -perturbed
pseudoholomorphic treed polygons. We provide a short description of what this data
entails. In [9, Section 4.2], a treed disk C is a tree whose vertices v are labeled with
disks with internal marked points and deg.v/ boundary marked points and whose
edges are labeled with (possibly semi-infinite) intervals. From this data we obtain a
space C which is glued together from the disks and intervals labeling the vertices and
edges. We write C D S [ T , where S is the surface portion of the treed disk, and T
are the edges. For a pseudoholomorphic treed polygon, this surface portion is allowed
to have strip-like ends. Given a Lagrangian L with Morse function f we exam-
ine maps uWC ! X which sends uj@S ; ujT � L. Without considering perturbation
datum, a pseudoholomorphic treed disk is such a map where ujS is pseudoholomor-
phic, and ujT are flow lines of rf . In order to achieve regularity, we need to perturb
the J -holomorphic curve and Morse flow line equations by picking perturbations of
the almost complex structure and Morse function. A perturbation datum P is a choice
of perturbations for all domains C . These choices must be made coherently, mean-
ing that the perturbations for treed disks which differ by disk bubbling and flow-line
breaking have related perturbation datum [9, Definition 4.12].

We reserve P 0 to denote the trivial perturbation datum (so that MP0.L; ˇ; xi /

consists of configurations of J -holomorphic polygons attached to Morse flow-lines).
It is expected that themk form a filteredA1 algebra (in the sense of [14, Chapter 10]).
As we only use these structure coefficients to make some suggestive computations, we
do not claim that here.

In good examples, we know that CF �.L/ is an A1 algebra. We give such an
example below.
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0 e

x

.qC ! q�/

.q� ! qC/

n

nC 1

�1

:::

Figure 22.m1-structure on CF �.Ln;0
A
/ with n � 2. There are no Morse flow lines contributing

the differential on the Floer cohomology. However, the presence of holomorphic teardrops con-
tributes to differential (drawn in red) canceling all homology classes.

4.3.2. Example computation: Whitney sphere. We review a computation from [2]
computing the Floer complex for the Whitney sphere Ln;0A � Cn. We assume that
n � 2 so that Ln;0A is a graded Lagrangian submanifold. We take a Morse func-
tion for the Ln;0A given by the x1 coordinate. Then Crit.f / D ¹e; xº, where e is the
maximum of f in degree 0, and x is a generator in degree n. We take the points
q˙ D .˙r.A/; 0; : : : ; 0/ 2 S

n
r.A/

to be the preimages of the self-intersections of this
Whitney sphere. The computation from Section 4.1 shows that .qC! q�/ has degree
nC 1, and .q� ! qC/ has degree �1.

We now give a description of the moduli space of holomorphic teardrops with
boundary on the Whitney sphere. Let pD .x1; : : : ;xn;0/2Sn�Rn �R be a point on
the equatorial sphere. Then we can construct a holomorphic teardrop with boundary
on the Whitney sphere Ln;0A � Cn which is parameterized by

upWD˛ ! Cn;

z 7! .x1z; x2z; : : : ; xnz/;

where
D˛ D ¹aC |b j a 2 Œ0; 1�; jbj � 2a

p

1 � a2º:

Let ˇ 2 H2.X; L/ be the homology class of this teardrop. The parameter A of the
Whitney sphere is constructed so that

!.ˇ/ D A:

Claim 4.3.2 ([2, Lemma 5.1.2]). The moduli space of holomorphic teardrops with
boundary on Sn1 is regular for the standard almost complex structure and has one
component,

MJ .L
n;0
A ; ˇ; .q� ! qC// D S

n�1;
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where ˇ is the class of the teardrop Œup�. The evaluation map

evWMJ .L
n;0
A ; ˇ; .q� ! qC// � .D

2
n ¹1º/! L

n;0
A

is a homeomorphism onto Ln;0A n ¹qC; q�º:

Proof. In the version 2 preprint of [2], it is proven that all teardrops with boundary
on Ln;0A for the standard almost complex structure are of the form up .

It remains to show that these teardrops are regular. In this proof, we will write
L WD L

n;0
A . We need only show that the linearized Dolbeault operator

Dup WW
1;kI".u�pTCn; �/! LkI".�0;1 ˝ u�pTCn/

surjects. For expositional purposes we will now restrict to p D .0; 0; : : : ; 1/. Since
TCn trivializes across the coordinates of Cn as

Ln
iD1 Li , the pullback u�pTCn

has a trivialization
Ln
iD1.u

�
pLi / as well. The proof of Claim 4.1.1 shows that the

Lagrangian sub-bundle .upj@D2/�TL can also be trivialized. In that proof, the curve
.�/ D .sin.�/; 0; : : : ; 0; cos.�// 2 Sn � RnC1 has the property that

in;0 ı .�/ D .0; : : : ; cos.�/C |2 sin.�/ � cos.�//

parameterizes the boundary of up . The proof of Claim 4.1.1 therefore shows that
.upj@D2/

�TL splits as a sum of real line bundles
Ln
iD1 �i . Furthermore, this splitting

respects the splitting TCn D L1 ˚ � � � ˚Ln, in the sense that

�i � .upj@D2/
�Li :

The map Dup decomposes across the trivialization

nM
iD1

W 1;kI".u�pLi ; �i /!

nM
iD1

LkI".�0;1 ˝ u�pLi /:

Let Dup jLi WW
1;kI".u�pLi ; �i / ! LkI".�0;1 ˝ u�pLi / be the restriction of Dup to

each component of the trivialization. We show that each of the Dup jLi surjects.

• For 1 � i < n, the argument from Claim 4.1.1 shows that the Maslov index is of
the loop determined by �i is 0; the Fredholm index of Dup jLi is 1. By automatic
regularity in dimension one, this linearized operator surjects.

• For i D n, the argument from Claim 4.1.1 shows that the Maslov index is 2; the
Fredholm index of Dup jL1 is 3. By automatic regularity in dimension one, this
linearized operator surjects.
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It follows that Dup is surjective, with Fredholm index

ind.Dup / D .n � 1/C 2 D nC 1:

This gives us an ind.Dup / � 2 D n � 1-dimensional moduli space of teardrops, as
expected.

Figure 22 contains a summary of generators and differentials of CF �.Ln;0A /which
shows that the Floer cohomology of the Whitney sphere vanishes. We now place this
computation in context with the table at the end of Figure 21. In that table, a matching
is visible on the chain level between critical points of the surgery handles and the self-
intersections of the handles. In the Whitney sphere, the holomorphic teardrops pair
the Floer cochains from self-intersections with the Floer cochains from the auxiliary
Morse function in the sense that the Floer differential is exact. The goal of Section 4.4
is to show that there are holomorphic teardrops on the Lagrangian surgery trace which
similarly pairs critical point of � ı�RWK

k;n�kC1
A;B with a self-intersection in the double

bottleneck.
These holomorphic teardrops can be used in examples of immersed Lagrangian

cobordism with transverse self-intersection to construct continuation maps; a toy com-
putation is given in Section 5.1.

4.3.3. Deformations and Lagrangian intersection Floer cohomology. Lagrangian
surgery can be interpreted as a geometric deformation of a Lagrangian submanifold.
To understand the conjectured equivalent deformation on Floer cohomology, we need
to discuss deformations of filtered A1 algebras.

Definition 4.3.3. Let A be a filtered A1 algebra. Let d 2 A be an element with
val.d/ > 0. The d-deformed algebra .A; d/ is the filtered A1 algebra whose chains
match A, and whose product is given by

mkd.a1 ˝ � � � ˝ ak/

D

1X
iD0

X
i0C���CikDi

mkCi .d˝i0 ˝ a1 ˝ d˝i1 ˝ � � � ˝ d˝ik�1 ˝ ak ˝ d˝ik /:

We say that b is a bounding cochain or is a solution to the Maurer–Cartan equation if
m0b D 0. The space of Maurer–Cartan solutions is denoted by MC.A/. If there exists
a bounding cochain for A, we say that A is unobstructed. Given N an A � B filtered
A1 bimodule, and deforming chains dA 2 A; dB 2 B , we obtain .N; dA; dB/ which



Lagrangian cobordisms and Lagrangian surgery 571

is an .A;dA/ � .B;dB/ bimodule. The product structure is given by

m
k1j1jk2
.A;dA/jN j.B;dB /

.a1 ˝ � � � ˝ ak1 ˝ n˝ b1 ˝ � � � bk2/

D

X
i;j2N

X
i0C���Cik1Di

j0C���Cjk2Dj

m
k1Ci j1jk2Cj

AjN jB

�
d
˝i0
A ˝ a1 ˝ d˝i1 ˝ � � �

� � � ˝ ak ˝ d
˝ik
A ˝ n˝ d

˝j0
B ˝ b1 ˝ d˝j1 ˝ � � �

� � � ˝ bk ˝ d
˝jk
B

�
:

Observe that when b is a bounding cochain for A then the differential on .A; b/
squares to zero. If bA;bB are bounding cochains for A;B , and N is an A�B filtered
A1 bimodule, then .N; bA; bB/ is an .A; bA/ � .B; bB/ uncurved A1 bimodule. In
particular, the differential on .N;bA;bB/ squares to zero.

When discussing the Lagrangian Floer cohomology, we will write CF �.L;d/ for
the Lagrangian Floer cohomology deformed by the element d. If CF �.L/ is unob-
structed, then we say that the Lagrangian L is unobstructed. At lowest order, the
Maurer–Cartan equation for a bounding cochain for CF �.L/ states that

m1morse.b/ D m
0
C higher order terms;

where m1morse is the Morse differential on L. One interpretation of this is: to first
approximation, an unobstructed Lagrangian submanifold is a Lagrangian submanifold
where the boundary classes of holomorphic disks with boundary on L cancel out in
homology.

Given two Lagrangian submanifolds L0; L1 which intersect transversely, we will
write

CF �.L0; L1/ WD
M

x2L0\L1

ƒx

for the Lagrangian intersection Floer cochains of L0 and L1. It is expected that is
an CF �.L0/ � CF �.L1/ filtered A1 bimodule, whose bimodule structure comes
from counting treed-pseudoholomorphic polygons. Given di 2 CF

�.Li / deforming
cochains, we write CF �..L0;d0/; .L1;d1// for the CF �.L0;d0/� CF �.L1;d1/ fil-
tered A1 bimodule. Again, as we are primarily interested in making some motivating
computations, we will not use the algebraic structures of this complex and simply
use the language of A1 algebras to make some remarks about the areas of various
polygons which naturally occur in Lagrangian submanifolds associated to surgeries.

4.3.4. Running example: Multisection of T �S 1. We return to the Lagrangian sub-
manifold LE � T �S1 first defined in Example 2.3.2 , parameterized by

S1 ! T �S1;

� 7!
�
2�;

E

8
sin.�/

�
:
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.� ! 0/ e

.0! �/ x

T E�T E

Figure 23. The chain complex CF �.LE/. The black lines represent the Morse flow lines, while
the red edges represent contributions to the differential coming from holomorphic strips.

This is a Lagrangian submanifold with 1-self-intersection where � D 0 and � D � .
With respect to the standard holomorphic form on T �S1DC�, the generator .�! 0/

has degree 0 and .0! �/ has degree 1. There are two holomorphic strips of area E
from the .� ! 0/ generator to the .0! �/ generator.

In this case there are no holomorphic disks or teardrops with boundary on LE ,
so we may compute HF �.LE /, which is isomorphic as a vector space to H �.S1/˚
H �.S1/. We note that we do not expect CF �.LE / to be homotopic as a differential
graded algebra or filtered A1 algebra to C �.S1 [ S1/.

A computation which will be useful later is the Lagrangian intersection Floer
cohomology between LE and a section S1E 0 of the cotangent bundle. Here, S1E 0 is the
Lagrangian section parameterized by

� 7!
�
�;
E 0

2�

�
;

as drawn in Figure 24. Let b WD
P
i aiT

Di .0 ! �/ 2 CF �.LE / be a deforming
cochain forLE , whose lowest order term is a0TD0 . We compute CF �..LE ;b/;S1E 0/.
The intersection between these two Lagrangian submanifolds consists of two points,

LE \ S
1
E 0 D ¹p; qº:

There are two holomorphic strips with boundary on LE and S1E 0 which have area A
andB . Additionally, there exists a holomorphic triangle with ends limiting to q;p and
.0! �/ of area C . The constants A;B;C;E;E 0 satisfy the relation:

B CE 0 D
E

2
C C:

The differential on CF �..LE ;b/; S1E 0/ is given by

m1.p/ D T A � T B C a0T
D0 � T C CO.min.A;D0 C C//:

For this differential to vanish, we obtain the constraint at lowest order that

D0 D
E

2
�E 0:
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E0

2�

.0! �/

pq

A
.0! �/

pq

C

.0! �/

pq
B

Figure 24. Areas of various holomorphic strips and triangles appearing in the computation
ofCF �..LE ;b/; S1E0/.

Furthermore, if this condition is met, there exists some extension of TD0.0! �/ to
a bounding cochain b so that HF �..LE ;b/; S1E 0/ D H

�.S1/.
We will recover this bounding cochain from the Lagrangian surgery trace cobor-

dism in Section 5.2.

4.4. Existence of holomorphic teardrops

4.4.1. Teardrops on surgery traces. We now examine the Floer cohomology of the
bottlenecked surgery handle Kk;n�kC1A;B . The Floer cochains are given in Figure 21.
The Floer products, in addition to counting treed pseudoholomorphic disks, counts
treed pseudoholomorphic polygons ([2, 23]). The strip-like ends of these polygons
limit to the self-intersections of our Lagrangian submanifold. When a treed pseudo-
holomorphic polygon has only 1 strip like end (either input or output), we call it a
treed pseudoholomorphic teardrop.

Theorem 4.4.1. LetKk;n�kC1A;B be the local model of the double bottleneck Lagrangian

surgery trace. Take the standard Morse function �RWK
k;n�kC1
A;B ! R, and standard

choice of almost complex structure on CnC1. Let ˇA be the class of teardrop with
boundary on Kk;n�kC1A;B which has boundary on the Whitney isotropic contained in
K
k;n�kC1
A;B j0. The moduli space MJ .K

k;n�kC1
A;B ; ˇA; ..qC; 0/! .q�; 0///; xC/ is com-

prised of a single regular treed holomorphic polygon, which is a teardrop.

Proof. The space of holomorphic teardrops with input on ..qC; 0/! .q�; 0/// can
be described by the space of holomorphic teardrops with boundary on the isotropic
k-sphere contained in Kk;n�kC1A;B . By arguments similar to Claim 4.3.2, the moduli
space of such teardrops is regular and has an evaluation map which sweeps out the
homology class of y.
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.q� ! qC/

y

y

..qC; 0/! .q�; 0//

C

Index

k C 2

k C 1

n � k � 1 ..q�; 0/! .qC; 0//

..qC; 1/! .q�; 1//

TB

n � k
TA

m0 if k D 0

TA

Figure 25. Floer cohomology of the bottlenecked surgery trace Kk;n�kC1
A;B

. The holomorphic
teardrop is marked in orange and has area A, the holomorphic strip from the bottleneck is
marked in blue and has area B .

This leads to the appearance of a term in the differential of the Floer complex of
K
k;n�kC1
A;B ; see Figure 25.

The most interesting example of this occurs when we take the trace of the stan-
dard Polterovich surgery, when k D 0. In this setting, the Whitney isotropic is a
1-dimensional sphere, and so the space of holomorphic teardrops is zero-dimensional.
This gives us an additional contribution which we can count.

Corollary 4.4.2. For the standard choice of J , MJ .K
0;nC1
A;B ;ˇA; ..q�; 0/! .qC; 0///

consists of a single holomorphic teardrop.

The presence of this contribution will turn on a non-trivial curvature term

T A..qC; 0/! .q�; 0. //�

in the A1 algebra. For CF �.K0;nC1A;B / to be unobstructed, there must be a Floer
cochain whose coboundary is T A..qC; 0/ ! .q�; 0//. A candidate cochain would
be T B�A..qC; 1/! .q�; 1//. As deforming cochains are required to have positive
valuation, we see that K0;nC1A;B is unobstructed if and only if B < A.

5. Sample computation

The previous section suggests the following algorithm for computing a continua-
tion map associated to an unobstructed Lagrangian cobordism. First, decompose the
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Lagrangian cobordism K using Theorem 3.3.1 into pieces Ki which are either a sus-
pension of an exact homotopy or surgery trace. If we can show that unobstructed ofK
implies unobstructedness of each of the Ki (Conjecture 3.3.7), then Theorem 4.4.1
suggests that each Ki provides a continuation map between its ends. The continu-
ation map associated to K would then be given by composing all of these smaller
continuation maps together.

More precisely, we conjecture that there exists a version of Floer cohomology for
a Lagrangian cobordism with double bottlenecks, CF �bot.K/, which has filtered A1
projections

CF �bot.K/

CF �.LC/ CF �.L�/:

�C

��

As a vector space, CF �bot.K/ is generated on 	bot.K/. We observe from Figure 21
that

	bot.K/ D 	.L�/ [ 	.LC/ [ .	.LC/Œ1� n ¹.q� ! qC/º/ [ ¹yº:

Since ind.y/ D ind.q� ! qC/C 1, we identify CF �bot.K/ as a vector space with

CF �.L�/˚ CF �.LC/Œ1�˚ CF �.LC/:

Under this identification the projections onto the first and last component agree with
the maps �˙ above, and CF �.LC/Œ1� is a filtered A1 ideal of CF �bot.K/. Then
Theorem 4.4.1 suggests that the maps induced by the Floer differential on CF �.K/,

CF �.LC/! CF �.LC/Œ1�; CF �.L�/! CF �.LC/Œ1�

are invertible (although the inverse will have negative Novikov valuation). A similar
approach was used in [16, Claim 4.4.7].

From this map we can construct weakly filtered5 homotopy equivalences from
CF �.K/ to either CF �.LC/ or CF �.L�/. A similar story holds for Lagrangian
cobordisms which are the suspension of an exact homotopy.

Problematically, weakly filtered maps do not preserve the property of unobstruct-
edness. If a weakly filtered map decreases the filtration by at most �, it only defines
a pushforward map on bounding cochains whose valuations are at least �. In particu-
lar, if CF �.LC/; CF �.L�/ are weakly filtered homotopy equivalent, and CF �.LC/
is unobstructed, then CF �.L�/ is unobstructed provided that the bounding cochain
for LC has sufficiently large valuation. Therefore, each Lagrangian cobordism com-
ing from a Lagrangian surgery trace KWLC  L� only identifies a subset of the

5A weakly filtered map is allowed to decrease the filtration, see [16, Definition A.1.3].
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Maurer–Cartan elements ofLC with those ofL�. To see which bounding cochains are
identified: every bounding cochain b onK induces bounding cochains on �˙� b onL˙,
which sets up a correspondence between subsets of the Maurer Cartan spaces of LC

and L�. The objects .L˙;b˙/ are expected to be isomorphic in the Fukaya category,
with the homotopy equivalences from CF �bot.K; b/ to CF �.L˙; b˙/ providing a
“continuation map”. Note that not every bounding cochain on L˙ can be achieved in
this manner. This observation was employed in [16] to recover wall-crossing formula
for Lagrangian tori via Lagrangian cobordisms related to the mutation operation.

More generally, given a Lagrangian cobordism KWLC L�, we expect that the
decomposition from Theorem 4.2.12 will provide us with an algorithm which

• determines if a bounding cochain exists for K. For simplicity, write

K D Kn ı � � � ıK1;

where each Ki WLi  Li�1 is either a Lagrangian surgery trace or suspension of
an exact homotopy. Let MC.L/ denote the set of bounding cochains on L. Then
the discussion above produces for each i a subset Bi � MC.Li / �MC.Li�1/ of
bounding cochains restricted from Ki . The fiber product

B1 �MC.L1/ B2 �MC.L2/ � � � � �MC.Ln�1/ Bn

then describes the bounding cochains on K.

• computes the homotopy equivalence between CF �.LC/ and CF �.L�/ if they
are unobstructed. This homotopy equivalence is the composition of the homotopy
equivalences induced by each suspension or surgery trace cobordism.

The construction of such an algorithm is beyond the scope of this paper. We
therefore conclude with two sample computations demonstrating how the proposed
algorithm might work in practice. In Section 5.1, we look at which choices of surgery
parameters make the Lagrangian cobordism constructed in Example 2.3.2 unobstruc-
ted. In Section 5.2, we look at a single Lagrangian surgery trace K0;2A;B . When A > B ,
we show that this Lagrangian cobordism is unobstructed and gives a continuation
map between its ends (when equipped with appropriate bounding cochains). When
A < B , we show that the Lagrangian cobordism is obstructed (and furthermore that
the ends are not isomorphic objects in the Fukaya category for any choice of bounding
cochain).

5.1. A return to Example 2.3.2

We now return to a variation of Example 2.3.2. In particular, we discuss the con-
ditions for when antisurgery followed by surgery give an unobstructed Lagrangian
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cobordism, and why when unobstructed these Lagrangian cobordisms are mapping
cocylinders.

Consider the Lagrangian cobordismKAC;A� , which is obtained concatenating the
following Lagrangian submanifolds:

• a Lagrangian anti-surgery trace .K1;1AC/
�1WS1EC t S

1
�EC
 LE , where LE is an

immersed Lagrangian submanifold in T �S1;

• a Lagrangian surgery trace K1;1A� WLE  S1E� t S
1
�E�

.

The slices and shadow of the Lagrangian cobordism KAC;A� are drawn in Figure 26
(a) and (b). The relations between EC; E�; AC; A� and E are

E � 2EC D AC; E � 2E� D A�:

The immersed Floer cohomology ofKAC;A� is a deformation of the Morse cohomol-
ogy of KAC;A� . We take the standard Morse function for the ends of the cobordism,
which is generated on critical points:

CM �.S1E˙
t S1�E˙

/ D ƒhe˙0 ; e
˙
1 ; x

˙
0 ; x

˙
1 i:

Topologically, KAC;A� is two pairs of pants sharing a common neck; we take the our
Morse function to be a perturbation of the Morse–Bott function which has maximums
along the ends, and a minimally graded S1 along the common neck. The generators
and zero-dimensional flow lines contributing to

m1WCM �.KAC;A�/! CM �.KAC;A�/

are drawn in Figure 26 (c). Pairs of canceling flow lines are indicated with dotted lines.
In addition to these Morse flow trees, the A1 product structure on CF �.KAC;A�/

counts configurations of holomorphic teardrops. By Theorem 4.4.1 both the surgery
and anti-surgery trace contribute holomorphic teardrops with output on .qC ! q�/.
The lowest order contributions to m0 and m1 are listed in Figure 26 (d). The most
important term is the curvature term,

m0 D .T AC � T A�/.qC ! q�/CO.min.AC; A�//:

We break into two cases.

5.1.1. Case 1:AC¤A�. In the event whereAC¤A�, them0Wƒ!CF �.KAC;A�/

term is non-zero. Furthermore, since min.AC; A�/ is the smallest area of a holomor-
phic teardrop,

val
�
hmk.x1; : : : ; xk/; .qC ! q�/i

�
> min.AC; A�/
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(a) Slices

(b) Shadow

(c) Morse differential

(d) Floer differential

Figure 26. Anti-surgery followed by surgery.
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for all xi satisfying val.xi / > 0. It follows that there is no solution to the Maurer–
Cartan equation, and CF �.KAC;A�/ is obstructed. Furthermore, clearly S1EC t S

1
�EC

is not isomorphic to S1E� t S
1
�E�

as an object of the Fukaya category.

5.1.2. Case 2: AC D A�. The more interesting example is to consider is when
AC D A�. In this setting, the curvature term vanishes, and CF �.KAC;A�/ is tauto-
logically unobstructed. A computation shows that the chain complex CF �.KAC;A�/
is a mapping cylinder; by using homotopy transfer theorem one can construct a A1
morphism

yi�WCF �.S1E� t S
1
�E�

/! CF �.KAC;A�/:

The composition

ˆ D �C ı yi�WCF �.S1E� t S
1
�E�

/! CF �.S1EC t S
1
�EC

/

is a continuation map, reflecting that KAC;A� should provide an equivalence of ob-
jects in the Fukaya category.

5.2. Continuations, obstructions, and mapping cones

We now employ the algorithm proposed at the beginning of this section to compute
a continuation map for an immersed Lagrangian cobordism. Consider the double-
section Lagrangian LEa � T

�S1 discussed in Section 4.3.4. Let S˙E be the pair of
sections ˙ E

2�
d� of T �S1. When 0 < 2E < Ea there is a Lagrangian surgery trace

cobordism LEa  S1E t S
1
�E .

Remark 5.2.1. The direction of the inequality 0 < 2E < Ea is a bit subtle. At first
glance, the inequality 0 < Ea < 2E appears natural because it is the one obtained by
using the local surgery model associated with the Polterovich surgery of two Lagrang-
ian submanifolds intersecting transversely at a single point. Because we apply Propo-
sition 3.1.10 to construct the Lagrangian surgery trace, the ends of the Lagrang-
ian surgery trace (see Section 3.2.3) differ by a non-trivial amount of flux from the
Polterovich surgery model. The flux swept out is opposite and greater than the area
bounded by the surgery neck, leading to the inequality 0 < 2E < Ea. We give a more
detailed account in Example 3.2.8.

One constructs the double bottleneck surgery trace (Definition 4.2.11)

K
0;2
A;B WLEb  S1E t S

1
�E

by subsequently applying a small exact homotopy, where the flux swept out on the
positive end gives the relation 0 < Eb < Ea. We will drop the superscript and from
here on write KA;B for this Lagrangian cobordism. Here, A is the area of the small
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teardrop of the surgery, andB is the area of the strip associated with the bottleneck; the
slice above the second bottleneck is denotedLEa . The relations betweenA;B;Ea;Eb
and E are

Ea �Eb D 2B; Ea � 2E D 2A:

See Figure 27 (a), (b) for slice and shadow of the Lagrangian cobordism. We equip
KA;B with an admissible Morse function; this has critical points e0; e1; x0; x1 near
the negative end, ea; eb; xa; xb corresponding to the Morse critical points of the
slices LEa and LEb , and an additional critical point y from the surgery handle. The
Lagrangian KA;B has two self-intersections; we call 3 generators of the Floer coho-
mology .� ! 0/a, .0! �/a, and .0! �/b , and discard the fourth generator.

5.2.1. Computation of low order products. As it is difficult to compute the full
product structure for Floer cochains of KA;B , we restrict ourselves to computing
smallest-order contributions to the m0 and m1 terms on CF �bot.KA;B/. These low-
est order computations are sufficient to prove unobstructedness of Floer groups by
standard arguments using the filtration of CF �bot.KA;B/.

• The differential on the Morse complex of CM �.KA;B/ can be fully computed.
The Morse flow-lines are drawn in Figure 27 (c). The differential is represented by
black dotted and solid arrows in Figure 27 (d). The dotted arrows have canceling
contributions.

• By Corollary 4.4.2, there exists a holomorphic teardrop which can either be con-
sidered as having input on .0! �/a or output on .� ! 0/a with area A:

– The teardrop with output on .0 ! �/a appears in the m0 term in the A1
structure

m0 D T A � .0! �/a C .OA/:

This is represented with the highlighted red term in Figure 27 (d). Addition-
ally, this teardrop contributes to the differential,

hm1.x1/; .0! �/ai D T
A
CO.A/:

– The teardrop with input on .� ! 0/a gives a contribution to the differential

hm1.� ! 0/a; yi D T
A
CO.A/:

• The holomorphic strips contributing to the differential on CF �bot.KA;B/ arise
from the strips which appear on a double bottleneck

hm1.� ! 0/a; .0! �/bi D T
BCEb � T BCEb :

The double bottleneck also has a holomorphic strip pairing the generator which is
“doubled” with maximal and minimal grading from the base

hm1.0! �/b; .0! �/ai D T
B
CO.B/:
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Figure 27. Slices, shadow, Morse function and Floer complex of the surgery trace cobordism.
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These contributions are represented by red arrows in Figure 27 (d). We obtain two
cases which we consider separately: when A > B and when A < B . We discuss the
Floer theoretic and geometric implications below.

5.2.2. Continuation maps and Unobstructedness:A>B. We first note that when-
ever A > B , the curvature term m0 can be canceled out at lowest order by the differ-
ential, as

m1.T A�B.0! �/b/ D T
A.0! �/a CO.A/:

We can build a bounding cochain order by order using the filtration on CF �bot.KA;B/,
whose first term is

bA;B WD T
A�B.0! �/b CO.A � B/ 2MC.KA;B/:

This gives us a sufficient condition for this Lagrangian cobordism to be unobstructed:
the flux swept out by the exact homotopy as defined by the double bottleneck (mea-
sured by the area B of the holomorphic strip) must not be greater than the area of the
surgery neck taken (as measured by the holomorphic teardrop A). Since

�CWCF �bot.KA;B/! CF �.LEb /

is an A1 homomorphism, we obtain a bounding cochain �C� bA;B for CF �.LEb /. We
can verify this computation by checking the Lagrangian intersection Floer cohomol-
ogy against a test Lagrangian S1E 0 . Recall from Section 4.3.4, the complex

CF �..LEb ; �
C
� bA;B/; S

1
E 0/

is acyclic whenever the lowest order term of �C� .bA;B/ is not T
Eb
2 �E

0

. In this case,
the lowest order term of b is

T A�B D T
Ea�2E

2 �
Ea�Eb

2 D T
Eb
2 �E :

So at lowest order, CF �..LEb ; �
C
� bA;B/; S

1
E 0/ has non-trivial homology if and only

if E D E 0.
The computation shows that the ends of KA;B cannot be distinguished at lowest

order by testing them against objects S1E 0 in the Fukaya category. We now show that
the ends have the same immersed Lagrangian Floer cohomology by showing that
.KA;B ; b/ is a mapping cocylinder, providing a homotopy equivalence between the
Floer cohomology of its ends. This will construct a continuation map between the
ends of the cobordism. First, we note that the projection

�CWCF �bot.KA;B ;b/! CF �.LEb /
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is a homotopy equivalence. The homotopy can be described on generators as follows:
Let

	� D ¹e0; x0; e1; x1º;

	0 D ¹y; ea; xa; .0! �/aº;

	C D ¹.� ! 0/a; eb; xb; .0! �/bº:

Let CF �bot.KA;B/j	� be the subspace spanned by the appropriate set of generators.
This is generally not an A1 ideal, however

CF �bot.KA;B/j	0 ˚ CF
�

bot.KA;B/j	C ;

is an A1 ideal. We additionally consider the map

H WCF �bot.KA;B/j	C ! CF �bot.KA;B/j	0 ;

which on the given basis sends

H.ea/ D e1 � e0; H.y/ D e0;

H..0! �/a/ D T
�A.x1 � x0/; H.xa/ D x0:

Let iCWCF �.LjEb /! CF �bot.KA;B/ be the chain-level inclusion

iC.eb/ D eb C e1 � e0; iC.xb/ D xb C x0;

iC..� ! 0/b/ D T
�B..� ! 0/a C T

Ae0/;

iC.0! �/b D .0! �/b C T
B�A.x1 � x0/:

At lowest order, the map iC is a homotopy inverse to �C with homotopy given byH .
By using the homotopy transfer theorem6 we may extend iC to an A1 homomor-

phism
yiCWCF �.LEb ; .�

C/�bA;B/! CF �bot.KA;B ;bA;B/:

We combine the inclusion map with the projection

��WCF �bot.KA;B ;bA;B/! CF �.L�; .��/�bA;B/

to obtain a continuation map

ˆ WD �� ı yiCWCF �.LEb ; .�
C/�bA;B/! CF �.S1E t S

1
�E ; .�

�/�bA;B/:

6There may be some concern that the valuation of H is negative. This is in general not a
problem as long as H ım0 has positive valuation. Since we have canceled out m0 by incorpo-
ration of a bounding cochain, we can use the homotopy transfer theorem here.
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One can furthermore use the continuation map to study how modifications of the
bounding cochain on .LEb ; b/ relate to local systems on the Lagrangian S1E ;tS

1
�E .

As ˆ is a weakly filtered A1 homomorphism of energy loss B � A, there exists a
pushforward map on degree 1 Maurer–Cartan solutions with valuation greater than
A � B:

ˆ�W ¹d 2MC 1.LEb ;b/; val.hd; .0! �/bi/ > A � Bº !MC 1.S1E t S
�E /:

Given an element

d D c1.T
A�BC"

CO.A � B C "//..0! �/b/C 2c0.T
"
CO."//xb;

we can compute the pushforward to first order:

ˆ�.d/ D c0.T
"
CO."//x0 C c1.T

"
CO."//x1;

showing thatˆ� is a surjection. If we interpret graded deformations in MC..LEb ;b//

as a local system, this suggests that all local systems on S1E t S
1
�E are realized by

deformations of .LEb ;b//.

5.2.3. Obstructedness: B � A. The other setting of interest is when B � A, as
drawn in Figure 2. Then the Lagrangian cobordism KA;B is obstructed, in the sense
that MC.KA;B/ is empty. In this setting, LEb is never isomorphic to S1E t S

1
�E for

any choice of deforming cochain, as Eb < 2E. This is easily observed as LEb can be
displaced from S1E t S

1
�E by a Hamiltonian isotopy.

A. Monotone two-ended Lagrangian cobordisms

A Lagrangian submanifold L� .X;!/ is called monotone if there exists a � > 0 such
that the homomorphism

!;�W�2.X;L/! R

are proportional so that ! D ��. Monotone Lagrangian submanifolds provide an
interesting subset of examples to work with as they are more general than exact
Lagrangian submanifolds, and always have well-defined Floer cohomology. As a
result, the Floer cohomology of monotone Lagrangian submanifolds has been stud-
ied extensively. The pearly-Floer cohomology of monotone Lagrangian submanifolds
CF �.L/ is a deformation of the Morse cohomology [5]; as such, the maximal rank of
the Floer cohomology group is bounded by the cohomology of L. We say that L is
wide if this bound is achieved, i.e.,

HF �.L/ ' H �.LIƒ/:
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Many constructions of wide monotone Lagrangian submanifolds exist (for example,
every exact Lagrangian). In contrast, a Lagrangian submanifold is called narrow if
HF �.L/ vanishes. The Chiang Lagrangian in dimension n not a prime power is nar-
row over every characteristic [25, Theorem 4.10]. A dramatic example of a narrow
monotone Lagrangian submanifold comes from [22], which produces examples of
displaceable monotone Lagrangian submanifolds. The wide-narrow dichotomy (intro-
duced in [6]) observes that the relative sizes of the Floer cohomology groups and
the cohomology groups of a monotone Lagrangian submanifold tends to characterize
the “rigidity” of a Lagrangian submanifold. More precisely: quantitative measures of
the size of a Lagrangian submanifold L (such as the width, or Gromov width of the
complement of L) are oftentimes small for narrow Lagrangians and large for wide
Lagrangians. It was conjectured in [6] that all Lagrangian submanifolds are either
wide or narrow. We include a construction (the main idea was communicated to us
by Abouzaid and Auroux) of a monotone Lagrangian submanifold which is neither
wide-nor-narrow.

For the same reason that monotonicity is a good property for studying Lagrangian
submanifold, the theory of monotone Lagrangian cobordisms is similarly well dev-
eloped. For instance, it is known that every pair of monotone Lagrangian cobordant
submanifolds are isomorphic in the Fukaya category. To our knowledge, we provide
the first example of a 2-ended embedded monotone Lagrangian cobordism not given
by suspension of a Hamiltonian isotopy.

A.1. A Neither wide nor narrow monotone Lagrangian submanifold

The goal is to obtain a Lagrangian submanifold which is neither wide nor narrow, that
is HF �.L/ ¤ 0;H �.L/. The approach is the following: Given Lagrangian submani-
folds L1; L2 which fit into a monotone Lagrangian cobordism

KW .L1; L2/ L3;

the work [7] shows that CF �.L3/ is a mapping cone of a morphism CF �.L1/ !

CF �.L2/. If L1 is narrow and L2 is wide, then

HF �.L3/ D HF
�.L2/ D H

�.L2/;

which is unlikely to be H �.L3/.
The difficulty of this construction is that generally the surgery you produce is

non-monotone. If L1 and L2 intersect transversely at distinct points L1 t L2 D
¹x1; : : : ; xkº, then a candidate Lagrangian cobordism is the surgery trace cobordism.
However, it is rarely the case that the Lagrangian submanifold obtained by surgering
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L1 and L2 at their intersection points,

L3 D L1#x1;:::;xkL2

is a monotone Lagrangian submanifold, as any strip of index 1 with boundary on
L1 [L2 will give rise to a disk of Maslov index zero on the Lagrangian surgery. One
might hope that L1 and L2 intersect at single point; problematically, the Lagrangian
intersection Floer cohomology HF �.L1; L2/ would be non-vanishing, which seem-
ingly contradicts the narrowness of L1.

The proposal of Abouzaid and Auroux is to perform the above construction with
Lagrangian submanifolds L1 and L2 which intersect cleanly along a single (non-
point) connected component, and perform surgery along the component. The upshot
is that (in comparison to the transverse intersection case) one would hope that there
are no Maslov index 1 strips with boundary in L1 [ L2; intuitively, we should think
that all of the Maslov index 1 strips have degenerated to flow-lines on the intersection
locus for some choice of Morse function onL1 \L2 corresponding to an infinitesimal
Hamiltonian perturbation of L2. In this setting, one can still define the Lagrangian
surgery of L1 and L2 at their intersection (either using the ideas of [12], or surgery
constructions from [17, 20]); this comes with a surgery trace cobordism allowing us
to apply the mapping cone construction of Biran and Cornea.

We then need to find monotone L1 and L2 which intersect transversely along
a single connected component. Let X be a symplectic manifold, and L � X be a
narrow monotone Lagrangian submanifold. Inside ofX � xX , consider the Lagrangian
submanifold

L1 D L � L � X � xX:

By application of the Künneth formula, L1 is a narrow monotone Lagrangian sub-
manifold of X � xX .

We also consider the diagonal Lagrangian

L2 D ¹.x; x/ 2 X � xX j x 2 Xº:

This Lagrangian is monotone, and by identifying the Floer cohomology of the diago-
nal with the fixed-point Floer cohomology of X � xX , we see that L2 is wide.

These two Lagrangian submanifolds intersect cleanly along

�L WD ¹.x; x/ 2 X � xX j x 2 Lº;

so the surgeryL3 WDL1#�LL2 is a good candidate for a wide nor-narrow Lagrangian
submanifold. It remains to check if the surgery trace cobordismKW .L1; L2/ L3 is
monotone. A criterion is given by [20, Lemma 6.3] on the fundamental groups of the
summands of the Lagrangian connect sum, namely at least one of �1.Li / is torsion in
�1.X � xX/. This will clearly depend on the choice of L and X , which we now fix.
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As suggested to the author by Cheuk Yu Mak, we take the example

L D L
p
0;m � CPmC1 D X

from [22, Theorem 1.4] which is self-displaceable (and therefore narrow) and mono-
tone. The topology of L is S1 � Sm. Since X � xX is simply connected, the image of
�1.L2/ is torsion in �1.X � xX/. Therefore, the surgery trace cobordism

KW .L1; L2/ L3

is monotone.
Finally, it remains to show thatL3 has different homology thanL2. A computation

on the fundamental group shows that when m > 2,

�1.L3/ D �1.CPmC1 n�L/ ��1.�L/ �1..L � L/ n�L/

D Z ¤ �1.L2/

as L2 Š CPmC1.

A.2. A 1-ended oriented embedded monotone Lagrangian cobordism

We expand on ideas in the construction above to produce a 1-ended oriented embed-
ded monotone Lagrangian cobordism. First, a short observation. Let i WL! X be a
Lagrangian immersion. Let �2.X; i WL! X/ denote the set of disks

uW .D; @D/! .X;L/

with the property that uj@D factors through the immersion i . If i is an embedding, this
is exactly the same as �2.X; i.L//. Suppose that i˙WL! X are exactly homotopic
Lagrangian immersions. There is a canonical identification

�2.X; i
C
WL! X/ Š �2.X; i

�
WL! X/;

and the Maslov index and symplectic area

�W�2.X; i
˙
WL! X/;

!W�2.X; i
˙
WL! X/;

are unchanged under this identification. This is not the case when we work with
�2.X; i

˙.L//, which cannot usually be identified. Even when they are (i.e., there are
no birth/deaths of self-intersections), the symplectic area of polygons with corners of
the self-intersection on i˙.L/ can change. However, from this we can conclude the
following.
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Claim A.2.1. Suppose that iCWL!X is an embedding which is exactly homotopic to
i�WL!X (which may not be an embedding). If i�.L/�X is monotone, then iC.L/
is monotone.

Let L � X be a displaceable oriented monotone embedded Lagrangian submani-
fold, with a given parameterization iLt WL� Œ0;1�t!X of the exact isotopy which dis-
places the Lagrangian submanifold from itself (for example, from [22, Theorem 1.4]).
Additionally we suppose that this exact isotopy is picked so that it ; i1�t are disjoint
for all t 2 .0; 1=4/. Let Ht WL! R be the primitive of the flux form. Pick C large
enough so that

jHt j < C=2: (A.1)

Consider now the curve

0WS
1
D Rt=4Z! T �S1 D C=.100CZ/

parameterized in Figure 28, whose parameterization over Œ1; 2� and Œ3; 4� is given by
t C 2|C and .t � 2/� 2|C , respectively. The self-intersection of the curve occurs at
0.0:5/D 0.2:5/. The parameterization is picked so that those segments have normal
neighborhoods of radius C over those portions of the parameterization. The area A
highlighted in blue (notably avoiding the normal neighborhoods) is chosen to be at
least 10C .

Since 0 parameterizes a Whitney sphere, we can construct a null-cobordism

j  WD2
! T �S1 �C;

j  .D2/W ; 0.S
1/:

We will denote the cobordism parameter on T �S1 � C by s. We parameterize the
Lagrangian null-cobordism so that it is the suspension of an exact homotopy when
s � 1, as drawn in the bottom of Figure 31. The negative end of this cobordism has a
chart

j  js�1WS
1
� .�1; 1�s ! T �S1 �C;

.t; s/ 7! .s.t/; s C |H

s .t//:

Because we picked A > 10C , we can ensure that the following criteria are met in the
above chart:

(A) During this portion of the Lagrangian null-cobordism, s.t/ D .t/ for all
t 2 Œ1; 2� [ Œ3; 4�. This means that H 

s .t/ is constant in the t parameter over
Œ1; 2� [ Œ3; 4�.

(B) If s.t0/ D s.t1/, with t0 ¤ t1, then t0; t1 2 ¹0:5; 2:5º.
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Œ0;1��|ŒC;3C�

Œ0;1��|Œ�C;�3C�

A

T �S1S1

1

2

3

0

Figure 28. The path parameterized by 0.

(C) For all s 2 Œ1=8; 1�, we have H 
s .0:5/ < �C;H


s .2:5/ > C .

(D) sjt2.0;1/[.2;3/ remains disjoint from the normal neighborhoods of radius C
drawn in Figure 28.

We now describe the main idea of the construction of the null-cobordism. Con-
sider the Lagrangian null-cobordism

j  � iL0 .D
2
� L/W ; 0.S

1/ � iL0 .L/:

Note that this is an immersed monotone Lagrangian null-cobordism with self-inter-
section along

¹0º � L �R<0 � C �X �C:

Since L is displaceable from itself, we can hope to make this immersed Lagrangian
null-cobordism an embedded Lagrangian null-cobordism by application of an exact
homotopy.

We first describe the negative end of this embedded Lagrangian null-cobordism.
Consider a cutoff function �0.t/W Œ0; 1�! Œ0; 1� with the property that

@t� < 2; �jt<1=10 D 0; and �jt>9=10 D 1:

We look at the Lagrangian submanifoldxiL0 WL� S
1!X � T �S1 drawn in Figure 30,

which is obtained by concatenating:

• the identity cobordism for i0WL! X along the blue path,
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t

s

Figure 29. A contour plot of the auxiliary function �s.t/W Œ0; 1�t � Œ0; 1�s ! Œ0; 1�.

• the suspension of the exact isotopy i�0.t/WL � Œ0; 1�t ! X (the green region),

• the identity cobordism for i1WL! X along the red path,

• the suspension of the exact isotopy i�0.�t/WL � Œ0; 1�t ! X (the orange region).

The blue path and red path are chosen to match the paths of 0 drawn in Figure 28,
and by our bound on @t�, and the suspension cobordisms have shadow lying inside
the neighborhoods surrounding 0jt2Œ1;2�[Œ3;4�. Since L is embedded and each of the
four pieces described above are embedded; therefore the only self-intersections of
xiL0 WL � S

1 ! X � T �S1 occur when the shadows of these four pieces overlap. By
item (D), the only such occurrence is when the blue and red path cross. This occurs at
t D 0:5; 1:5 by item (B). However, the X -component of these pieces are given by

i0WL! X and i1WL! X;

which were chosen to be disjoint. Therefore, the Lagrangian parameterized by xiL0 is
embedded.

We are now ready to modify the immersed Lagrangian null-cobordism

j  � iL0 WD
2
� L! .X � T �S1 �C/;

so that the end agrees with xiL0 . This Lagrangian cobordism is embedded over the
portion where the cobordism parameter is greater than 1. We therefore need to replace
j  � iL0 js�1 with a suspension of an exact homotopy (defined for s � 1/:

(i) whose negative end is given by the Lagrangian xiL0 WS
1 � L! T �S1 �X ;

(ii) which agrees with j  � iL0 in a neighborhood s D 1; and

(iii) is embedded.
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iL
0
.L/ � Œ0; 1�

K�1
iLt

iL
1
.L/ � Œ2; 3�

K
iLt

Figure 30. The Lagrangian submanifold xiL
0
.q; t/WL � S1 ! X � T �S1, projected to the S1

coordinate.

The slices of the suspension are drawn in Figure 31. We now give an explicit param-
eterization of this exact homotopy. Let �s.t/W Œ0; 1�t � Œ0; 1�s ! Œ0; 1� be a smooth
function drawn in Figure 29 with

(a) �s.0/ D 0, �0.1/ D 1 and �1.1/ D 0;

(b) 0 � @t�s < 2C ;

(c) when 0 � s < 1=4 and 3=4 � s � 1, we have @s�s D 0; and

(d) when 0 � t < 1=10 and 9=10 � t � 1, we have @t�s D 0.

Next, we consider the exact homotopy of Lagrangian submanifolds defined for
s 2 Œ0; 1�:

xiLs WL � S
1
! X � T �S1;

.q; t/ 7!

8̂̂̂̂
<̂
ˆ̂̂:
�
iL0 .q/; s.t/

�
if t 2 Œ0; 1/;�

iL
�s.t�1/

.q/; s.t/ � |
d�s
dt
H�s.t�1/.q/

�
if t 2 Œ1; 2/;�

iLs .q/; s.t/
�

if t 2 Œ2; 3/;�
iL
�s.4�t/

; s.t/C |
d�s
dt
H�s.4�t/.q/

�
if t 2 Œ3; 4/:

The map iLs is smooth by item (d).
Now consider the Lagrangian suspension cobordism of this exact homotopy

jLj.0;1/WL � S
1
� .0; 1/! X � T �S1 �C;

.q; t; s/ 7!
�
xiLs .q; t/; s C |

xHs.q; t/
�
;
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s D 0 s D 1

KL WD jLWL �D2 ! X � T �S1 �C

C

Figure 31. An embedded oriented monotone null-cobordism with connected ends.

where xHs.q; t/ is the primitive for the exact homotopy xiLs .q; t/. By using item (a)
of �, boundary of the suspension satisfies agrees with j  � iL0 .D

2 � L/jsD1, and
by item (d) the domains of the suspension and j  � iL0 .D

2 � L/js�1 can be glued
together to give a smooth Lagrangian cobordism.

We now prove that jLj.0;1/ is an embedding (item (iii)). Observe that the slices
of jLj.0;1/ are embedded away from the locus t 2 ¹0:5; 2:5º; s > 1=4. By employing
items (b), (C), and equation (A.1), over the region where s > 1=4,

xHs.q; 0:5/ < H

s .q; 0:5/C j@t�sjjHt j < C C 2 �

C

2

� 0 � C � 2 �
C

2
< H 

s .q; 1:5/C j@t�sjjHt j < xHs.q; 0:5/;

so jLj.0;1/ is an embedding.
We now describe a Lagrangian null-cobordism of xiL0 .q; t/.
By items (i) and (ii), we can form an embedded Lagrangian cobordism

KLW ; ! xiL0 .L � S
1/;

which is parameterized by jLj.0;1/ for slices with 0 < s < 1, and parameterized by
iL1 � j

 for slices s > 1. We denote this parameterization by

jLWL �D2
! X � T �S1 �C;

which is an embedded Lagrangian null-cobordism.
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KL

Figure 32. A monotone 2-ended Lagrangian cobordism.

We now prove that jLWL�D2! X � T �S1 �C is monotone. There is an exact
homotopy between zjL and iL1 � j

 . Since the Maslov index and symplectic area
decompose across products, and the symplectic area and Maslov index vanish on

�2.X � T
�S1 �C; j WD2

! T �S1 �C/; iL1 � j

W L �D2

! X � T �S1 �C;

the immersed Lagrangian is monotone with monotonicity constant matching L. By
Claim A.2.1, jLWL �D2 �X ! T �S1 �C is monotone as well.

A.3. A 2-ended monotone embedded Lagrangian cobordism

We now consider the Lagrangian L1 D L
p

k;m
�L

p

k;m
�X � xX . This can be displaced

from itself in a way so that the resulting displacement avoids the diagonal Lagrangian

iL2 WL2 � X � xX:

Let iS
1
W S1 ! T �S1 be the zero section which intersects the figure eight exactly at

the self-intersection of s . Consider the embedded Lagrangian submanifold

xi
L1
0 WL1 � S

1
� .X � xX/ � T �S1

from the previous section. We also take the product Lagrangian

iL2 � iS
1

WL2 � S
1
! .X � xX/ � T �S1:

These two Lagrangians intersect along �L � ¹0º � .X � xX/ � T �S1.
We take the Lagrangian surgery cobordism

KW .xi
L1
0 ; iL2 � iS

1

/ xiL10 #.iL2 � iS
1

/:

By Section A.1, this is a 3-ended monotone Lagrangian cobordism. We concatenate
this with the Lagrangian cobordism KL1 W ; ! xi

L1
0 constructed in Section A.2 to

obtain a 2-ended Lagrangian cobordism

K ı ..KL1/�1 [ L2 �R/W iL2 � iS
1

!xi
L1
0 #.iL2 � iS

1

/:
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