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Abstract. In the first part of this work we have established an efficient method to obtain a
topological classification of locally discrete, finitely generated, virtually free subgroups of real-
analytic circle diffeomorphisms. In this second part we describe several consequences, among
which the solution (within this setting) to an old conjecture by P. R. Dippolito [Ann. Math. 107
(1978), 403–453] that actions with invariant Cantor sets must be semi-conjugate to piecewise
linear actions. In addition, we exhibit examples of locally discrete, minimal actions which are
not of Fuchsian type.

1. Introduction and results

1.1. On the structure of codimension-one foliations

In the recent years, probably under the impulse of the monographs by Ghys [15] and
Navas [25] there has been an intense activity around the study of groups acting on the
circle. One historical motivation is the theory of codimension-one foliations. Indeed,
an action of a group G on the circle S1 gives rise, by suspension of the action, to a
codimension-one foliation of a closed manifold. There is a perfect dictionary between
the dynamics of the action on S1 and the dynamics of the leaves of the foliation.
Foliations defined by suspensions represent a particular class (e.g., the manifold M
must admit a flat circle bundle structure; if the foliation has no compact leaf, then it
has a unique minimal set; etc.) however their study is important for developing new
techniques, manufacturing examples, and test conjectures.
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The main motivation for this work is an old conjecture in foliation theory stated
by Dippolito [10] (see also the recent survey of Navas [26, Question 16] for the
ICM 2018).

Conjecture 1.1 (Dippolito). Let .M;F / be a codimension-one foliation of a closed
manifold which is transversely C 2, with exceptional minimal set ƒ. Then there exists
a transverse measure supported onƒ for which the Radon–Nikodym derivative of the
action of any holonomy pseudogroup is locally constant.

As Dippolito writes in [10], this conjecture is conditioned on the solution of a
major open problem.

Conjecture 1.2 (Dippolito). Let .M;F / be a codimension-one foliation of a closed
manifold which is transversely C 2, with exceptional minimal set ƒ. Then there exists
a semi-exceptional leaf (that is, a boundary leaf ofM nƒ), whose germs of holonomy
maps form an infinite cyclic subgroup.

The only result available in this direction goes back to the PhD thesis of Hector
(Strasbourg, 1972), which establishes it under the assumption of non-trivial r-jets for
elements in the holonomy group, for some r � 1. This holds for instance in the case of
transversely real-analytic foliations. This result is the so-called Hector’s lemma, see
also Navas [24, Appendix] for a detailed account. For a short discussion around Con-
jecture 1.2, see also the list of problems in foliation theory compiled by Langevin [20,
Question B.1.1] in 1992.

Our principal contribution is to show (or at least give strong evidences) that indeed
Conjecture 1.2 is the unique obstacle towards Conjecture 1.1. As a consequence of a
more general result (Theorem 3.10), we are able to establish Conjecture 1.1 for groups
of real-analytic diffeomorphisms of the circle.

Theorem D. Let G � Diff!C.S
1/ be a finitely generated group of real-analytic circle

diffeomorphisms acting with a minimal invariant Cantor set. Then the action of G
is semi-conjugate to an action by piecewise linear homeomorphisms. More precisely,
every such G is semi-conjugate to a subgroup of Thompson’s group T .1z

The definition of Thompson’s group T will be given in Definition 3.4. Concisely,
it is defined as the group of all dyadic piecewise linear homeomorphisms of the circle
S1 Š R=Z.

The proof of Theorem D relies on an old theorem of Ghys [14] and a recent work
of Deroin, Kleptsyn and Navas [9], combined with the main result of the compan-
ion work by Alonso et al. [1], after which we have an efficient way to determine a

1A little comment about the choice of numbering: the main results of [1] appear as Theor-
ems A, B and C, so here we start with Theorem D, reducing confusion when giving reference.
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topological classification of groups of real-analytic diffeomorphisms with a minimal
invariant Cantor set and we are able to apply Theorem 3.10. Precise statements will
be recalled in the next section. We are confident that our strategy for Theorem D
can be extended to deal with transversely C 2, codimension-one foliations with an
exceptional minimal set, with cyclic germs of holonomy of semi-exceptional leaves;
however this is not immediate, as one needs to face extra combinatorial problems
when passing from groups to pseudogroups.

1.2. Multiconvergence property

The next results give further dynamical information about the actions of virtually
free, locally discrete subgroups of Diff!C.S

1/, notably giving a description of periodic
points.

Before stating Theorem E, recall that one of the deepest results on groups acting
on the circle is the characterization of Fuchsian groups (i.e., discrete subgroups of
PSL.2;R/), up to C 0 conjugacy, by the so-called convergence property (by works of
Tukia [28], Gabai [13], Casson and Jungreis [7]), which is the case K D 1 in the
following definition.

Definition 1.3. Let G � HomeoC.S1/ be a subgroup. We say that G has the mul-
ticonvergence property if there exists a uniform K 2 N such that for every infinite
sequence ¹gnºn of distinct elements in G, there exist finite subsets A and R � S1,
with #A; #R � K, and a subsequence ¹gnk

ºk such that the sequence of restrictions
¹gnk
�S1nRºk pointwise converges, as k !1, to the locally constant map g1, with

image g1.S1 nR/ D A, with #R discontinuity points at R and such that g1.a/ D a
for every a 2 A nR.

Typical examples of groups with the multiconvergence property are discrete sub-
groups of finite central extensions of PSL.2;R/, but we also have

Theorem E. If G � Diff!C.S
1/ is a finitely generated, virtually free, locally discrete

subgroup, then it has the multiconvergence property.

This immediately implies the following.

Corollary F. If G � Diff!C.S
1/ is a finitely generated, virtually free, locally discrete

subgroup, then the number of fixed points of a non-trivial element in G is uniformly
bounded.

Let us discuss some direct consequences on the possible values of rotation num-
bers. The following definition is inspired by the monograph by Kim, Koberda and
Mj [19].
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Definition 1.4. Let G � HomeoC.S1/ be a subgroup. The rotation spectrum

rot.G/ WD ¹rot.g/ j g 2 Gº

of G is the collection of rotation numbers of elements of G.

The classical Denjoy theorem states that if a diffeomorphism f in Diff2C.S
1/ has

irrational rotation number (thus the subgroup hf i � HomeoC.S1/ has infinite rotation
spectrum), then the action of hf i on S1 is minimal. The following corollary is an
analogue for finitely generated groups of real-analytic diffeomorphisms:

Corollary G. Let G be a finitely generated subgroup of Diff!C.S
1/ with infinite rota-

tion spectrum. Then G acts minimally on S1.

Proof. Suppose G does not act minimally, then either it acts with a finite orbit (in
which case the proof ends easily), or it acts with a minimal invariant Cantor set. In the
latter case, Denjoy theorem implies that every element has rational rotation number.
Moreover, by a result of Ghys [14], G must be virtually free. Observe that a finitely
generated virtually free group cannot have elements of arbitrary large period; also,
by Corollary F, we have a uniform bound on periods of periodic orbits and thus on
denominators of rotation numbers.

Remark 1.5. The regularity assumption G � Diff!C.S
1/ in Corollary G is necessary:

Thompson’s group T � HomeoC.S1/ has infinite rotation spectrum (it contains all
dyadic rotations, and actually rot.T / D Q=Z, see Lemma 3.4) and is semi-conjugate
to a subgroup of Diff1C .S

1/ acting with a minimal invariant Cantor set (Ghys and
Sergiescu [17]).

In [23], Matsuda proved that if a subgroup G � Diff!C.S
1/ is non-locally discrete

and acts without finite orbits, then G has infinite rotation spectrum. As a direct con-
sequence of Corollary F, we obtain that the converse holds for virtually free groups.

Corollary H. Let G be a finitely generated, virtually free subgroup of Diff!C.S
1/,

whose action on S1 has no finite orbit. The following statements are equivalent:

(1) G is locally discrete;

(2) the rotation spectrum rot.G/ D ¹rot.g/ j g 2 Gº is finite.

Remark 1.6. After Conjecture 1.11, we expect that the statement of the corollary
remains valid without the virtual-freeness assumption.

Remark 1.7. Let us mention an open problem suggested by Matsuda [23]: if G �
Diff!C.S

1/ has infinite rotation spectrum, does it contain an element with irrational
rotation number?
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1.3. On the classification of locally discrete groups

For the next result, we recall some context, starting from the following definition.

Definition 1.8. A subgroup G � Diff!C.S
1/ is (C 1-)locally discrete if for every inter-

val I � S1, the restriction of the identity to I is isolated in the C 1 topology among
the set of restrictions

G�I D ¹g�I ºg2G � C 1.I IS1/:

Remark 1.9. Notice that a priori the notion of local discreteness is stronger than
simple discreteness. However no example of discrete, non-locally discrete group is
known. In this direction, Bertrand Deroin informed us that he is able to find many
such examples inside the group of C 2 diffeomorphisms. However, the question in
real-analytic regularity stays open, see also the discussion about work of Eskif and
Rebelo [11] below.

Also, when G � Diff1C.S
1/ is a group of C 1 diffeomorphisms, we introduce the

subset of non-expandable points NE.G/ D ¹x 2 S1 j g0.x/ � 1 for every g 2 Gº.
Recent developments of Rebelo, the authors and collaborators [2, 8, 9, 12, 27] have
clarified the picture for locally discrete groups.

Theorem 1.10. Let G � Diff!C.S
1/ be a finitely generated subgroup.

(1) If NE.G/ ¤ ¿, then G is locally discrete.

(2) If G is locally discrete and is

• neither one-ended, non-finitely presentable, nor

• one-ended, with unbounded torsion,

then G must be of the following type:

• either virtually free and NE.G/ ¤ ¿, or

• C! conjugate to a finite central extension of a cocompact Fuchsian group,
and NE.G/ D ¿.

Conjecture 1.11 (“Missing Piece” conjecture from Alvarez et al. [2]). The dichotomy
in Theorem 1.10 holds for every locally discrete, finitely generated subgroup G �
Diff!C.S

1/.

This suggests that locally discrete subgroups of Diff!C.S
1/ should be quite ele-

mentary, and that subgroups of Diff!C.S
1/ of more complicated type should be non-

locally discrete. For instance, PSL.2;R/� Diff!C.S
1/ contains some closed hyperbolic

3-manifold groups as non-locally discrete subgroups (this is well known to experts
and one early reference is in the book of Maclachlan and Reid [21, Section 13.7]; see
also the discussion in Bonatti, Kim, Koberda and Triestino [4]).
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Natural examples of locally discrete groups are the fundamental groups of hyper-
bolic surfaces of finite type (they are discrete in PSL.2;R/� Diff!C.S

1/) and their finite
central extensions. For a certain time, this was the only known class of such examples,
thus motivating Ghys to ask whether any locally discrete subgroup of Diff!C.S

1/ act-
ing minimally on the circle comes from a surface group (personal communication).
We will see in this work (Section 3.4) that ping-pong partitions give a simple com-
binatorial way to construct a rich collection of exotic examples of locally discrete
subgroups G � Diff!C.S

1/, giving negative answer to the question of Ghys. The main
technical ingredients are Theorem 3.10 (realization in Diff!C.S

1/), and Theorem 3.13
for realizing minimal free group actions.

On the other hand, finitely generated subgroups of Diff!C.S
1/ that are non-locally

discrete have been extensively studied by different authors in the last two decades.
In particular, they display strong rigidity properties. As a sample statement, let us
mention the following result by Eskif and Rebelo [11], which is about groups which
are non-C 2-locally discrete (the definition is the same as above, but considering the
C 2 closure).

Theorem 1.12 (Eskif and Rebelo). Consider two finitely generated, non-abelian sub-
groups G1 and G2 of Diff!C.S

1/. Suppose that these groups are non-C 2-locally dis-
crete. Then every homeomorphism hW S1 ! S1 satisfying G2 D hG1h

�1 coincides
with an element of Diff!C.S

1/.

Clearly ifG is non-C 2-locally discrete, then it is also non-C 1-locally discrete, but
the converse is currently unknown (cf. Remark 1.9). However, we have the following
statement, which extends [11, Theorem B] by Eskif and Rebelo (by a completely
different approach, we are able to remove a technical assumption).

Corollary I. Suppose that � is a finitely generated, non-elementary Gromov-hyper-
bolic group, and consider two topologically conjugate faithful representations �1; �2W
� ! Diff!C.S

1/. Assume that �1.�/ � Diff!C.S
1/ is non-C 2-locally discrete. Then

every orientation-preserving homeomorphism hWS1! S1 conjugating the represent-
ations �1 and �2 coincides with an element of Diff!C.S

1/.

Proof. IfG1 D �1.�/ (and thusG2 D �2.�/) admits a finite orbit, then we can repeat
the quite standard argument in [11]. Otherwise, after [11, Theorem 5.1] (which is an
intermediate step for Theorem 1.12), it is enough to prove that NE.G2/ D ¿. Recall
that a Gromov-hyperbolic group is always finitely presented and with bounded tor-
sion [5, Chapter III.�]. After Theorem 1.10, if NE.G2/ ¤ ¿, the Gromov-hyperbolic
groupG2 is virtually free and therefore it admits a ping-pong partition by Theorem A.
ThereforeG1, being C 0 conjugate toG2, also admits a ping-pong partition. This con-
tradicts that G1 is non-C 2-locally discrete.
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1.4. Organization of the paper

The whole work is based upon the notion of ping-pong partitions for virtually free
group actions on the circle. We start by recalling in Section 2 the setting and the
results from the companion work [1]. In Section 3 we explain how to realize ping-
pong partitions by actions with desired properties, which notably gives the proof
of Theorem D (realizations by dyadic piecewise linear homemorphisms) and sev-
eral interesting examples of locally discrete groups of real-analytic diffeomorphisms
with minimal actions. In Section 4 we study extensively the dynamical properties
obtained from the ping-pong partitions defined after the work of Deroin, Kleptsyn,
and Navas [9], which leads in particular to the proof of the multiconvergence property
(Theorem E). The text is completed by Appendix A, where we compare the original
construction by Deroin, Kleptsyn and Navas appearing in [9], with the construction
revisited in the companion work [1].

2. Ping-pong partitions for virtually free groups

As we explained in Section 1.3, an important aspect of the classification of locally
discrete subgroupsG � Diff!C.S

1/ is to understand how virtually free groups may act.
For this, we have introduced in [1] the notion of ping-pong partition, which is a semi-
conjugacy invariant, depending on a marking. We briefly recall the notions appearing
in [1]. It is a classical result that a finitely generated group is virtually free if and
only if it admits a proper isometric action (i.e., with finite stabilizers) on a locally
finite simplicial tree, with bounded fundamental domain. A marking of a virtually free
groupG is the choice of an orientation-preserving isometric action ˛WG! IsomC.X/
ofG on a treeX and a fundamental domain T �X . Given such a marking, we denote
by xX D .V;E/ the quotient graph of the action, and the choice of T � X determines
a spanning tree in xX , with set of oriented edges ET � E. We write S WD E n ET .
The marking determines finite vertex groupsGv � G (for v 2 V ) and edge groups Ae
(for e 2 E) with boundary injections ˛eWAe ! Go.e/, !eWAe ! Gt.e/ (here o.e/
and t .e/ denote respectively the origin and target of the oriented edge e 2 E). This
gives the following presentation of the group G, as the fundamental group of a graph
of groups:

G Š �1. xX IGv;Ae/D

$

Gv; E

ˇ̌̌̌
ˇ̌̌̌
ˇ̌

rel.Gv/ for v 2 V ;

xe D e�1 for e 2 E;

e D id for e 2 ET ;

e�1˛e.g/e D !e.g/ for e 2 E, g 2 Ae

%

: (2.1)
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Remark 2.1. Virtually free groups of circle homeomorphisms are of very special
form: vertex groups are finite cyclic, and in fact they are always free-by-finite cyclic
(see [1, Theorem C]).

Definition 2.2 (Interactive family). First, consider a graph xX D .V; E/ and let G D
�1. xX IGv; Ae/ be the fundamental group of a graph of groups. Choose a spanning
tree T D .V; ET / � xX , and let S D E n ET be the collection of oriented edges not
in T . We denote by StT .v/ D ¹e 2 ET j o.e/ D vº the star of v in T ; given e 2 ET
and v 2 V , we also write v 2 C.e; T / if the edge e belongs to the oriented geodesic
path in T connecting o.e/ to v.

Given an action of G on a set �, a family of subsets ˇ D ¹Xv; Zsºv2V;s2S is
called an interactive family if:

(IF 1) Xv , Zs (for v 2 V; s 2 S ) are pairwise disjoint subsets; the Zs are non-
empty, and if Gv ¤ ˛e.Ae/ for some e 2 E such that o.e/ D v, then
Xv ¤ ¿;

(IF 2) for every s 2 S and O 2 ˇ n ¹Zxsº, one has s.O/ � Zs;

(IF 3) ˛s.As/.Zs/ � Zs for s 2 S ;

(IF 4) .Go.s/ n ˛s.As//.Zs/ � Xo.s/ for s 2 S ;

(IF 5) for v 2V and e 2 StT .v/ such thatGv¤ ˛e.Ae/,Xv contains a non-empty
Xev ;

(IF 6) ˛e.Ae/.X
e
o.e/

/ � Xe
o.e/

for e 2 ET ;

(IF 7) if e 2 ET , v 2 V are such that v 2 C.e; T /, then

.Go.e/ n ˛e.Ae//.Xv/ � X
e
o.e/

(in particular, this holds for v D t .e/);

(IF 8) if e 2 ET ; s 2 S are such that o.s/ 2 C.e; T /, then

.Go.e/ n ˛e.Ae//.Zs/ � X
e
o.e/:

In addition, one says that the interactive family is proper if the following holds:

(IF 9) for s 2 S , the restriction of the action of ˛s.As/ to Zs is faithful, and
similarly, for e 2 ET , the restriction of the action of ˛e.Ae/ to Xe

o.e/
is

faithful;

(IF 10) if there exists a vertex v 2 V such that Xv ¤ ¿, then there exists a (pos-
sibly different) vertex w 2 V such that the union of all the images from
(IF 4), (IF 7), and (IF 8) inside the corresponding Xw misses a point;

(IF 11) if S D ¹s;xsº andXv D¿ for every v 2 V , then we require that there exists
a point p 2 � n .Zs [Zxs/ such that s.p/ 2 Zs and xs.p/ 2 Zxs .
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Definition 2.3. Let 	 be a collection of finitely many disjoint open intervals of the
circle S1. A gap of 	 is a connected component of the complement of

S
I2	 I in S1.

We denote by J the collection of gaps of the partition 	.
Given a homeomorphism gW S1 ! S1 and I 2 	, we say that the image g.I /

is 	-Markovian if it coincides with a union of intervals I0; : : : ; Im 2 	 and gaps
J1; : : : ; Jm 2 J (where m � 1). We will also informally write that g expands the
interval I .

Definition 2.4 (Ping-pong partition). Let G � HomeoC.S1/ be a virtually free group
and .˛WG ! IsomC.X/; T / a marking. Let G D ¹Gv; ˛s.As/sºv2V;s2S be the pre-
ferred system of generators for G.

A ping-pong partition for .G; ˛; T / is a collection ‚ D ¹U ev ; Vsºv2V;e2St xX .v/;s2S

of open subsets of the circle S1, satisfying the following properties:

(PPP 1) Letting Uv D
S
e2St xX .v/

U ev , the family ¹Uv; Vsºv2V;s2S defines an inter-
active family in the sense of Definition 2.2, with three additional require-
ments: for any v 2 V ,

• the subsets U ev , for e 2 StT .v/, are the subsets required for (IF 5),

• the subsets U sv , for s 2 S such that o.s/ D v, are such that

.Gv n ˛s.As//.Vs/ � U
s
v ;

strengthening (IF 4), and moreover ˛s.As/.U sv / D U
s
v ,

• the subsets U ev , for e 2 St xX .v/, are pairwise disjoint.

(PPP 2) Every atom of ‚ is the union of finitely many intervals.

(PPP 3) For every element g 2 G and every connected component I of some
O 2 ‚,

• either there exists O 0 2 ‚ such that g.I / � O 0, or

• the image g.I / is 	-Markovian, where 	 is the collection of connec-
ted components of elements of ‚.

In addition, if ‚ defines a proper interactive family, we will say that the ping-pong
partition is proper.

Definition 2.5 (Equivalence of partitions). Let .G; ˛; T / be a marked virtually free
group, with preferred generating set G D ¹Gv; ˛s.As/sºv2V;s2S and let �; �0WG !
HomeoC.S1/ be two representations having interactive families ‚ D ¹U ev ; Vsº, ‚

0 D

¹U ev
0; V 0s º, respectively. Denote by 	; 	0 the corresponding sets of connected com-

ponents. A map � W	! 	0 is a ping-pong equivalence if the following conditions are
satisfied:

(PPE 1) � is a bijection which preserves the cyclic ordering of the intervals;
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(PPE 2) � preserves the inclusions relations of the two ping-pong partitions:

• if g 2 G ; I1; I2 2 	 are such that �.g/.I1/ � I2, then

�0.g/.�.I1// � �.I2/;

and, in case of equality, equality is preserved,

• whereas if g 2 G and I 2 	 are such that �.g/.I / is 	-Markovian,
union of intervals I0; : : : ; Im 2 	 and gaps J1; : : : ; Jm 2 J, then
�0.g/.�.I // is 	0-Markovian, union of the intervals �.I0/; : : : ; �.Im/
2 	0 and gaps �.J1/; : : : ; �.Jm/ 2 J.

Definition 2.6 (Semi-conjugacy). Let �; �0WG ! HomeoC.S1/ be two representa-
tions. They are semi-conjugate if the following holds: there exist

• a monotone non-decreasing map hWR! R commuting with the integer transla-
tions and

• two corresponding central lifts y�; y�0W yG ! HomeoZ.R/ to homeomorphisms of
the real line commuting with integer translations,

such that
h y�.yg/ D y�0.yg/ h for any yg 2 yG:

We can now recall the main results of [1].

Theorem A. Let G � Diff!C.S
1/ be a locally discrete, virtually free group of real-

analytic circle diffeomorphisms. For any marking .˛WG! IsomC.X/;T /, there exists
a proper ping-pong partition for the action ofG on S1 (in the sense of Definition 2.4).

Theorem B. Let �; �0W .G; ˛; T /! HomeoC.S1/ be two representations of a virtu-
ally free group with a marked action ˛ on a tree. Suppose that the actions on S1

have equivalent proper ping-pong partitions (in the sense of Definition 2.5). Then the
actions are semi-conjugate.

3. Realization

In this section we discuss the problem of realization. That is, given a ping-pong par-
tition for a marked virtually free group .G; ˛; T / of circle homeomorphisms, is it
possible to find a new action of .G; ˛; T / with equivalent ping-pong partition, but
of a given desired regularity? We will be particularly interested in the case of piece-
wise linear regularity (Theorem D, related to Dippolito’s conjecture) and real-analytic
regularity (for the examples in Section 3.4).

Some of the results are obtained by performing small perturbations of the original
action. For this, we recall that the group HomeoC.S1/ is a topological group when
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endowed with the topology of uniform convergence. This topology is determined by
the uniform distance: given f and g in HomeoC.S1/, define

dC0.f; g/ D sup
x2S1

dS1.f .x/; g.x//;

where dS1 denotes the distance on the circle on S1 Š R=Z induced by the Euclidean
distance on the line (so dS1.x;y/ is the length of the shortest connected component of
S1 n ¹x;yº). This also defines a topology on the space of representations of a groupG
in HomeoC.S1/: two representations �1 and �2 in Hom.G;HomeoC.S1// are "-close
if there exists a symmetric generating system G of G such that

sup
s2G

dC0.�1.s/; �2.s// � ":

When two points x; y 2 S1 are sufficiently close, we can use a Euclidean chart
to measure their distance, and we will often write jx � yj D dS1.x; y/, where x � y
denotes the usual operation in any Euclidean chart.

3.1. Combinatorial realization

Definition 3.1. Let D0 � S1 be a dense subset. A subgroup G0 � HomeoC.S1/ is
D0-combinatorial if it satisfies the following conditions:

(C 1) D0 is G0-invariant.

(C 2) For any n 2 N and any two n-tuples .x1; : : : ; xn/ and .y1; : : : ; yn/ of
circularly ordered points of D0, there exists an element of G0 such that
g.xi / D yi for all i 2 ¹1; : : : ; nº.

(C 3) For any q 2 N, the subgroup G0 contains an element of order q.

(C 4) For any two elements a and b 2 G0 of finite order q 2 N and same rotation
number, and for any finite subsetE �D0 such that ak�E D bk�E for every
k 2 ¹1; : : : ; q � 1º, there exists an element h 2G0 such that b D hah�1 and
h�E D id�E .

When D0 D S1 we simply say that G0 is combinatorial.

Example 3.2. Let D0 D S1 and let G0 D PLC.S1/ be the group of orientation-
preserving, piecewise linear homeomorphisms of the circle. We claim that PLC.S1/ is
combinatorial. Properties (C 1)–(C 3) are clearly satisfied. To establish condition (C 4),
let a and b be as in Definition 3.1. Up to replace a and b by appropriate powers, we
can assume rot.a/ D rot.b/ D 1=q. Fix a point x0 2 E and consider the interval

I0 WD Œx0; a.x0// D Œx0; b.x0// � S1;
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which is a fundamental domain for both a and b. We have that ak.I / D bk.I / DW Ik
for every k 2 ¹0; : : : ; q � 1º. Consider the map hWS1 ! S1, defined by

h.x/ WD bka�k.x/ for x 2 Ik :

It follows that ha D bh and, by assumption, we have h.x/ D x for every x 2 E. In
particular, h preserves every interval Ik , on which it is defined by the piecewise linear
map bka�k , so h 2 PLC.S1/. This proves that the group of orientation-preserving,
piecewise linear homeomorphisms of the circle is combinatorial.

We need to slightly improve the previous example, passing from the uncountable
group PLC.S1/ to a countable (even finitely presented!) subgroup.

Definition 3.3. A dyadic rational (or dyadic rational number) is a point of ZŒ1
2
�=Z�

R=Z Š S1, that is, a point of the form p=2q .mod Z/, where p; q 2 N. Thompson’s
group T is the group of all dyadic piecewise linear homeomorphisms, that is, hom-
eomorphisms of the circle R=ZŠ S1 which are locally of the form x 7! 2kxCp=2q ,
for k; p 2 Z and q 2 N, with finitely many discontinuity points for the derivative, all
at dyadic rationals.

See [3, 6] as standard references on Thompson’s groups.

Lemma 3.4. Thompson’s group T is ZŒ1
2
�=Z-combinatorial.

Proof. Condition (C 1) follows from the definition of T , condition (C 2) is classical
(see, for instance, [3, Section A5.3]), and so is condition (C 3) (see [17, Propos-
ition III.2.1]). Finally, the same argument provided in Example 3.2 shows condi-
tion (C 4).

We detail a different proof of condition (C 2). Given n-tuples .x1; : : : ; xn/ and
.y1; : : : ; yn/ as in (C 2), we just need to find a dyadic piecewise linear homeomorph-
ism

fi W Œxi ; xiC1�! Œyi ; yiC1�

for every i 2 ¹1; : : : ; nº (set xnC1 D x1 and ynC1 D y1); we will then consider the
dyadic piecewise linear map g such that g�Œxi ;xiC1�

D fi for every i 2 ¹1; : : : ; nº. For
this, it suffices to exhibit partitions

Œxi ; xiC1� D I1 [ � � � [ Ir ; Œyi ; yiC1� D J1 [ � � � [ Jr

by dyadic intervals (that is, with dyadic rational endpoints), so that jJj j=jIj j is a power
of 2 for every j 2 ¹1; : : : ; rº; we will then declare fi to be the unique piecewise linear
homeomorphism which maps Ij to Jj linearly for all j 2 ¹1; : : : ; kº.

Note that there exist m; k 2 N and ` 2 Z such that

jŒxi ; xiC1�j D
m

2`
; jŒyi ; yiC1�j D

k

2`
:
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Without loss of generality (considering the inverse map if necessary), we can assume
m � k. Choose r D k, let J1; : : : ; Jk be the partition of Œyi ; yiC1� by k subintervals
of even size 1

2` and let I1; : : : ; Ik be consecutive subintervals of Œxi ; xiC1� determined
by the conditions:

jIj j D

8̂̂<̂
:̂

1

2` for j 2 ¹1; : : : ; m � 1º;
1

2`Cj�.m�1/ for j 2 ¹m; : : : ; k � 1º;
1

2`Ck�m for j D k:

This defines the map fi , and hence the desired element g 2 T . It then follows that
Thompson’s group T is ZŒ1

2
�=Z-combinatorial.

The following result is quite standard (see, e.g., [3, Corollary A5.8] for a proof for
many groups of piecewise linear homeomorphisms).

Lemma 3.5. LetD0�S1 be a dense subset and letG0�HomeoC.S1/ be aD0-com-
binatorial group of circle homeomorphisms. Then G0 is C 0-dense in HomeoC.S1/.

Proof. Fix s 2 HomeoC.S1/. Given sufficiently small " > 0, choose a finite subset
B � D0 such that for every two consecutive points b1 and b2 in B , one has

js.b1/ � s.b2/j � "=2:

Then, for every b 2 B , choose a point b0 2 D0 such that

js.b/ � b0j � "=2;

and such that the assignment s.b/ 7! b0 is a circular order preserving bijection. We
claim that any element g 2 G0 such that g.b/ D b0 for every b 2 B (which exists by
condition (C 2)), satisfies supx2S1 jg.x/ � s.x/j � ". Indeed, if x D b 2 B , then

js.x/ � g.x/j D js.b/ � b0j � "=2

by construction; otherwise given x 2 S1 n B , denote by Œb1; b2� � S1 the smallest
interval containing x, whose endpoints are in B . Then, we have

s.x/ � g.x/ � s.b2/ � g.b1/ � s.b2/ � s.b1/C "=2 � ";

and similarly

s.x/ � g.x/ � s.b1/ � g.b2/ � s.b1/ � s.b2/ � "=2 � �";

as desired.

The following result improves condition (C 4).
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Lemma 3.6. LetD0�S1 be a dense subset and letG0�HomeoC.S1/ be aD0-com-
binatorial group of circle homeomorphisms. For every " > 0 there exists ı such that if
a and b 2 G0 have finite order q 2 N and same rotation number, with dC0.a; b/ < ı,
then for every finite subsetE�D0 such that ak�EDbk�E for every k2¹1; : : : ; q�1º,
then there exists an element h 2 G0 as in condition (C 4), which moreover satisfies
dC0.h; id/ < ".

Proof. Fix " > 0, and let a and b be two torsion elements of the same rotation number

rot.a/ D rot.b/ D 1=q;

with supi2¹1;:::;q�1º¹dC0.ai ; bi /º < ı, where the constant ı > 0 will be fixed later
(note that as HomeoC.S1/ is a topological group, it is not restrictive, taking a smal-
ler ı, to assume that all powers of a and b are close).

Take a finite subsetE �G0 as in the statement. Note that ifE D¿, then the result
is simple consequence of Lemma 3.5, as it holds forD0DS1 andG0DHomeoC.S1/.
Fix a point p 2 E, and consider the interval

I D Œp; a.p/� D Œp; b.p/�;

which is a fundamental domain for both a and b. Take a finite a-invariant subset
B � D0 which is ı-dense in S1 (here we use condition (C 1)). Set B0 D B \ I .
Then, by condition (C 4), we can find an element k 2 G0 such that

kai .x/k�1 D bi .x/

for every i 2 ¹0; : : : ; q � 1º and x 2 B0 [E. As in the proof of Lemma 3.5, this gives
dC0.k; id/ < 2ı. Set xa D kak�1, which is an element in G0 satisfying

xai .x/ D bi .x/

for every x 2 B [ E. Therefore, by condition (C 4), there exists an element xh 2 G0
such that

xhxa D bxh and xh.x/ D x

for every x 2 B [E. In particular, xh is ı-close to the identity. Taking ı small enough,
we see that the composition h D xhk 2 G0 satisfies the desired properties.

We are ready to discuss the main technical result of this section.

Proposition 3.7 (Combinatorial perturbation). Let D0 � S1 be a dense subset and
let G0 � HomeoC.S1/ be a D0-combinatorial group of circle homeomorphisms. Let
.G;˛;T /� HomeoC.S1/ be a marked finitely generated virtually free group of circle
homeomorphisms, and let G � G be the system of generators associated with the
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marking ˛WG! IsomC.X/, as in Definition 2.4. Then for every " > 0 and every finite
subset P � D0 such that G 2.P / � D0,2 there exists a homomorphism � WG ! G0

such that the following conditions are satisfied:

(1) For every s 2 G , the homeomorphisms s and �.s/ have the same order, and
the rotation numbers of s and �.s/ agree when rot.s/ is rational.

(2) For every s 2 G , the image �.s/ and s are "-close (with respect to the uniform
distance).

(3) �.s/�P D s�P for any s 2 G . Moreover, if s 2 Gv is an element of a vertex
group, then �.s/�Gv.P /

D s�Gv.P /
.

Remark 3.8. Observe that condition (1) cannot be extended to obtain equality of all
rotation numbers: Thompson’s group T is ZŒ1

2
�=Z-combinatorial (Lemma 3.4), but

contains no element of irrational rotation number (Remark 1.5).

Remark 3.9. In fact, in this work we will never need to apply Proposition 3.7 to
subgroups G � HomeoC.S1/ containing elements with irrational rotation numbers
(see the discussion in Section 1.2). Also, condition (2) is needed only when there are
non-trivial HNN extensions to consider.

Proof of Proposition 3.7. We argue by induction on the number of edges of the quo-
tient graph xX D X=˛.G/: the marking .G;˛; T / gives an identification of G with the
fundamental group of a graph of finite cyclic groups (see (2.1) and Remark 2.1), and
therefore G is obtained by first performing iterated amalgamated free products of the
vertex groups Gv , which are finite cyclic groups, and then iterated HNN extensions
over the remaining edge groups.

Step 1 (Initial step). G is a finite cyclic group.

Write G DGD¹id; s; : : : ; sq�1º, with rot.s/D 1=q, andP1DG.P /�D0 (which
is a G-invariant finite subset). Fixing a point x1 2 P1, we can take a monotone enu-
meration of the points of P1:

x1 < � � � < xk < xkC1 D s.x1/ < � � � < x2k < x2kC1 D s
2.x1/

< � � � < x.q�1/kC1 D s
q�1.x1/ < � � � < xqk .< x1/:

Let g0 2 G0 be an element of order q (which exists by condition (C 3)), which we
can assume to have the same rotation number as s. Observe that, given " > 0, there
exists g" 2 G0 with the same properties and which is "-close to s: indeed, let ' 2
HomeoC.S1/ be such that 'g0'�1 D s, and using Lemma 3.5, take f 2 G0 which

2Note that G 2 always contains id, therefore G 2.P / D P [ G .P / [ G 2.P /.
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is sufficiently close to ', so that the conjugate g" WD fg0f �1 (which is an element
of G0) is "-close to s.

Next, for every sufficiently small "1 > 0, there exist a subsetQ1 D ¹yiº
qk
iD1 �D0

and "0 > 0 such that:

• for every i 2 ¹1; : : : ; qkº, the point yi is "1

2
-close to xi and the map P1 ! Q1

defined by xi 7! yi is a circular order preserving bijection;

• g"0
.yi /D yiCk for every i 2 ¹1; : : : ; qkº (where subscripts are taken modulo qk).

Note that here we use condition (C 1).

For every i 2 ¹1; : : : ; qkº, let Ii � S1 denote the shortest interval whose endpoints
are xi and yi , and take a finite subset

B � D0 n

qk[
iD1

Ii ;

which is "1

2
-dense in S1 n

Sqk
iD1 Ii . Then we can use condition (C 2) to find an element

h 2 G0 such that h.xi /D yi for every i 2 ¹1; : : : ; qkº and h.x/D x for every x 2 B .
This gives that h is "1-close to id in the uniform distance. Therefore, for every " > 0
there exists "1 > 0 such that the element

xg D h�1g"0
h

belongs to G0, has order q and rot.xg/ D 1=q, and is "-close to s. Moreover, by con-
struction, for every i 2 ¹1; : : : ; qkº and j 2 ¹0; : : : ; q � 1º, we have

xgj .xi / D xiCjk D s
j .xi /

(where subscripts are taken modulo qk). Hence, we can define the desired morphism
� WG ! G0 by �.s/ D xg.

The first inductive step will allow to retract the spanning tree T � xX to a single
vertex.

Step 2 (Iterated amalgamated free products). G DG1 �C G2 is the amalgamated free
product of a non-trivial groupG1 and a non-trivial finite cyclic groupG2, over a finite
cyclic subgroup C .

Consider the corresponding system of generators G1 forG1, so that G D G1 [G2.
We also write

C D ˛e.C / D !e.C /

for the common subgroup of G1 and G2 in G1 �C G2. We will show by induction
that the result holds for G. After Step 1, and induction on Step 2, we can assume that
the result holds for both G1 and G2, for any " > 0, and any finite subset P � D0
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such that G1.P / and G2.P / are in D0. (Note here that we do not technically require
G 21 .P / � D0.) We will show that the same result holds for the amalgamated free
product G1 �C G2.

For this, let us assume that G .P / � D0. By induction, there exist morphisms
�1WG1 ! G0 and �2WG2 ! G0 satisfying conditions (1)–(3) in the statement, with
respect to the subset P and some sufficiently small "0 > 0 to be fixed later. Let q be
the order of the cyclic subgroup C , and let c be a generator of C ; write a D �1.c/
and b D �2.c/, and note that they are both "0-close to c, and thus 2"0-close one to the
other. By the induction hypothesis, we have that rot.a/ D rot.b/ and the equalities

aj�C.P/ D bj�C.P/ D cj�C.P/ for every j 2 ¹0; : : : ; q � 1º:

It follows by condition (C 4) that there exists h 2 G0 such that a D hbh�1 and hD id
on C.P /. Moreover, by Lemma 3.6, for any fixed "1 > 0, we can take "0 > 0 such
that h is "1-close to id.

We then consider the conjugate morphism x�2WG2!G0 given by g 7! h�2.g/h
�1.

For every " > 0, we can choose "1 > 0 small enough, so that x�2.g/ is "-close to g for
every g 2 G2. We deduce also from (3) that for any s 2 G2, we have that

x�2.s/�P D s�P :

Therefore, the morphism x�2 also satisfies conditions (1)–(3) in the statement, with
respect to the subset P .

Since
x�2.c/ D hbh

�1
D a D �1.c/;

by the universal property of amalgamated free products, there exists a (unique) morph-
ism � WG! G0 extending �1 and x�2. From the construction, we have �.s/D s on P
for any s 2 G . This concludes the construction in this step.

Therefore, by induction, we are reduced to consider a graph of groups with a
single vertex. We remark again that after this first iterated process, we still only require
G .P /�D0 (but not G 2.P /�D0). The second inductive step concludes the construc-
tion.

Step 3 (Iterated HNN extensions). G D G1�C is an HNN extension of a group G1
over a finite cyclic group C .

Write C1 D ˛e.C / and C2 D !e.C /, for the two subgroups of G1, and let s 2 G
be a stable letter, that is, a non-trivial element such that s˛e.c/s�1 D !e.c/ for every
c 2 C . The system of generators for G is of the form G D G1 [ ¹s; s

�1º, where G1

is a system of generators of G1 containing C1 and C2. We assume by induction that
the result holds for G1 for any " > 0, and for any finite subset P � D0 such that
G 21 .P / � D0. We will show that the result holds for the HNN extension G1�C .
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For this, let us assume that G 2.P /�D0. We also writeQD G .P /. By induction,
there exists a morphism �1WG1 ! G0 satisfying conditions (1)–(3) in the statement,
with respect to the subset P and some sufficiently small "0 > 0 to be fixed later.
Moreover, from the previous steps, as G .Q/ � D0, the result also holds for every
vertex group Gv (in particular, for C1 and C2), with respect to the subset Q. Let r be
the order of C , and take the generators c1 and c2 of C1 and C2 respectively, such that

rot.c1/ D rot.c2/ D 1=r:

It follows that sc1s�1 D c2.
Assume first that s has rational rotation number, with rot.s/ D p=q in reduced

terms. Let x0 2 S1 be a periodic point for s and write xi D si .x0/ for i 2 ¹1; : : : ; qº
(note that xq D x0). As s has infinite order, there exists a point y0 2 S1 which is not
periodic, and write similarly yi D si .y0/ for i 2 ¹1; : : : ; qº (note that y0 ¤ yq).

For any i 2 ¹0; : : : ; qº, take points x0i and y0i in D0 as follows: if xi (resp. yi )
belongs to D0, then set x0i D xi (resp. y0i D yi ); if not, choose x0i (resp. y0i ) in
D0 n G .Q/ (with x0q D x

0
0) sufficiently close to xi (resp. yi ), so that at the end, the

map
G .Q/ [ ¹xi ; yiº

q
iD0 ! G .Q/ [ ¹x0i ; y

0
iº
q
iD0

given by 8̂̂<̂
:̂
xi 7! x0i for i 2 ¹0; : : : ; q � 1º;

yi 7! y0i for i 2 ¹0; : : : ; qº;

x 7! x for x 2 G .Q/;

(3.1)

is a circular order preserving bijection. Note that any element g 2 G0 such that

g.x0i / D x
0
iC1 and g.y0i / D y

0
iC1 for every i 2 ¹0; : : : ; q � 1º (3.2)

(which exists by condition (C 2)), satisfies the requirements in condition (1) of the
statement: such an element g has a periodic orbit of order q (the orbit of x00) and
an orbit with more than q points (the orbit of y00), and therefore it has infinite order;
moreover, the rotation numbers of g and s are the same.

We need however to choose an element g 2 G0 satisfying extra conditions. First
of all, we require g D s on G .Q/ � D0. As the image of Q [ s�1.Q/ � G .Q/ by g
is s.Q/[Q � D0, we deduce that g�1 D s�1 on Q (and thus on P ). This is always
possible, and compatible with the previous requirement, by the fact that the bijection
defined by (3.1) preserves the circular order, so that we can use condition (C 2).

We also need a strengthening of condition (3.2): for every j 2 ¹0; : : : ; r � 1º and
i 2 ¹0; : : : ; q � 1º, we want

g�1.c
j
1 /.x

0
i / D �1.c

j
2 /.x

0
iC1/ and g�1.c

j
1 /.y

0
i / D �1.c

j
2 /.y

0
iC1/: (3.3)
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Let us verify that condition (3.3) is realizable. First, we note that as every x0i and y0i
are in D0, by condition (C 1) also their images by �1.C1/ and �1.C2/ are in D0.
It remains to justify that there exists "0 > 0 such that the circular ordering of these
points is compatible with the requirement (3.3). This is because, as "0 ! 0, for every
� 2 ¹x0i ; y

0
iº
q
iD0, we have

�1.c
j
1 /.�/! c

j
1 .�/ and �1.c

j
2 /s.�/! c

j
2 s.�/ D sc

j
1 .�/:

Moreover, up to add a finite subset B � D0 for defining g by interpolation, as we did
in Step 1, we can find the desired g which is arbitrarily close to s.

Write now a D g�1.c1/g
�1 and b D �1.c2/. Then the elements a and b belong

to G0, they have finite order q and same rotation number. As we can assume that g is
arbitrarily close to s, it follows that a is arbitrarily close to s�1.c1/s�1, which in turn
is arbitrarily close to sc1s�1 D c2 and thus to b D �1.c2/.

Since for all x 2 P [ s.P / and j 2 ¹1; : : : ; q � 1º, we have s�1.x/ 2 G .P /DQ

and cj1 .s
�1.x// 2 G 2.P / D G .Q/, then the following equality holds:

aj .x/ D g�1.c
j
1 /g
�1.x/ D gc

j
1 s
�1.x/ D sc

j
1 s
�1.x/

D c
j
2 .x/ D �1.c

j
2 /.x/ D b

j .x/:

Considering also (3.3), by condition (C 4), there exists h 2 G0 such that hah�1 D b
and h D id on P [ s.P /[ ¹x0i ; y

0
iº
q
iD0. As we can assume that a and b are arbitrarily

close, Lemma 3.6 ensures that we can find such an element h 2G0 which is arbitrarily
close to id.

Hence, setting xg D hg, which belongs to G0 and is arbitrarily close to s, we have

�1.c2/ D b D hah
�1
D hg�1.c1/g

�1h�1 D xg�1.c1/xg
�1;

so by the universal property of HNN extensions there exists a (unique) morphism
� WG!G0 extending �1 such that �.s/D xg. Moreover, by construction, we have that
xg D s and xg�1 D s�1 on P , it follows that �.t/D t on P for any t 2 G . Finally, since
h D id on ¹x0i ; y

0
iº
q
iD0, the element xg satisfies the condition in (3.2), and therefore

rot.xg/ D rot.s/ and xg has infinite order. Thus, the result also holds for the HNN
extension G, in the case rot.s/ is rational.

Assume now that s has irrational rotation number rot.s/D ˛, with rational approx-
imations ¹pn=qnºn2N . Take a point x0 2 S1 in the minimal invariant set of s; observe
that (by definition of rational approximations) for any n 2 N, there is an interval
In � S1, whose endpoints are x0 and sqn.x0/, and which contains no other point
si .x0/ with i 2 ¹1; : : : ; qn � 1º. Choosing n large enough, we can assume that In
contains no point of G .Q/ neither. As before, we write xi D si .x0/ for every i 2
¹1; : : : ; qnº. Take now y0 2 In�1 n s

�qn.In/, so that none of the points yi WD si .y0/
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for i 2 ¹0; : : : ; qnº is contained in In (this follows again by combinatorial properties
of rational approximations). For any i 2 ¹0; : : : ; qnº, take points x0i and y0i as follows:
if xi (resp. yi ) belongs to D0, then set x0i D xi (resp. y0i D yi ); if not, choose x0i
(resp. y0i ) in D0 n G .Q/ sufficiently close to xi (resp. yi ), so that at the end, the map

G .Q/ [ ¹xi ; yiº
qn

iD0 ! G .Q/ [ ¹x0i ; y
0
iº
qn

iD0

given by 8̂̂<̂
:̂
xi 7! x0i for i 2 ¹0; : : : ; qnº;

yi 7! y0i for i 2 ¹0; : : : ; qnº;

x 7! x for x 2 G .Q/;

is a circular order preserving bijection. Thus, by condition (C 2), there exists an ele-
ment g 2 G0 such that the following properties are satisfied:

• g D s on G .Q/ � D0. As before, this gives g�1 D s�1 on Q.

• g.x0i / D x
0
iC1 for every i 2 ¹0; : : : ; qn � 2º, and g.x0qn�1

/ D x00. (Note that this
implies rot.g/ D pn=qn.)

• g.y0i / D y
0
iC1 for every i 2 ¹0; : : : ; qn � 1º. Therefore, g has infinite order.

We then proceed as in the case of rational rotation number: we take g 2 G0 which
satisfies in addition the condition analogue to (3.3), from which we will be able to
find h 2 G0 such that

hah�1 D b and h D id

on P [ s.P / [ ¹x0i ; y
0
iº
qn�1
iD0 . We then define �.s/ D hg as before, which will have

the desired properties. Details are left to the reader.
Therefore, after repeating Step 3 finitely many times, we get that for every " > 0,

and every finite subset P � D0 such that G 2.P / � D0, there exists � WG ! G0

satisfying conditions (1)–(3) of the statement.

Theorem 3.10. Let .G;˛;T /� HomeoC.S1/ be a marked virtually free group whose
action on S1 admits a proper ping-pong partition. LetD0 � S1 be a dense subset and
let G0 be a D0-combinatorial group of circle homeomorphisms. Then the group G is
semi-conjugate to a subgroup of G0. Moreover, the semi-conjugacy can be chosen
arbitrarily close to the identity with respect to the uniform distance.

Proof. Let G be the system of generators associated with the marking

˛WG ! IsomC.T /:

Denote by ‚ a proper ping-pong partition and let � be the collection of endpoints of
the atoms of the partition ‚. By density of D0, there exists an orientation preserving
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circle homeomorphism � WS1! S1, such that �.G 2.�// �D0, and with � arbitrarily
close to id in the uniform distance. Thus, upon conjugating by � , we can assume
that G 2.�/ � D0. It follows from Proposition 3.7 that for every " > 0 there exists a
morphism � WG ! G0 satisfying conditions (1)–(3) of its statement. In particular, for
every s 2 G , the image �.s/ is "-close to s and we have

�.s/�� D s��: (3.4)

It easily follows that ‚ is also a proper interactive family for �.G/, and that � WG !
G0 is injective (see [1, Theorem 5.4]). Using (3.4), we deduce that .G; ˛; T / and
.�.G/; ˛ ı ��1; T / admit equivalent proper ping-pong partitions. Thus, the sub-
groups G and �.G/ are semi-conjugate by Theorem B. Moreover, as we have that s
and �.s/ are "-close for every s 2 G , it follows that we can choose the semi-conjugacy
arbitrarily close to the identity in the uniform distance.

Proof of Theorem D. The proof follows directly from Lemma 3.4, which states that
Thompson’s group T is ZŒ1

2
�-combinatorial, Theorem A, which gives a proper ping-

pong partition, and Theorem 3.10, which gives the realization in T .

3.2. Real-analytic regularity

In this section we will show that the group of real-analytic diffeomorphisms Diff!C.S
1/

is combinatorial. We start with an interpolation result in real-analytic regularity, from
which we will deduce condition (C 2). This will be also used for the proof of The-
orem 3.13.

Lemma 3.11. Given finitely many points

0 � x1 < � � � < xn < 1 and 0 � y1 < � � � < yn < y1 C 1;

there exists a real-analytic function f 2 C!.R/ such that f 0.x/ > 0 for all x 2 R,
f .x/ � x is 1-periodic and for all j 2 ¹1; : : : ; nº the following conditions hold:

(1) f .xj / D yj ;

(2) f 0.xj / D 1;

(3) if yjC1 � yj > xjC1 � xj , then f 0.x/ > 1 for every x 2 .xj ; xjC1/C Z;

(4) if yjC1 � yj < xjC1 � xj , then f 0.x/ < 1 for every x 2 .xj ; xjC1/C Z.

Proof. Using a trigonometrical approximation, we shall find a real-analytic function
with the required properties. We will first construct the derivative in the form

f 0.x/ D 1C q.x/r.x/;
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where q is a 1-periodic trigonometric polynomial with roots at x1; : : : ; xn and r is
everywhere positive. More precisely, consider the subset S � ¹1; : : : ; nº formed by
all j 2 ¹1; : : : ; nº such that

yj � yj�1

xj � xj�1
� 1 and

yjC1 � yj

xjC1 � xj
� 1

have distinct sign. Then set �j D 1 if j 2 S , and �j D 2 if j 2 ¹1; : : : ; nº n S . For an
appropriate choice of sign, the trigonometric polynomial

q.x/ D ˙

nY
jD1

sin�j .�.x � xj //

has the desired properties.
Let us look for a 1-periodic function r 2 C!.R/ of the form

r.x/ D

nX
jD1

Sj rj .x/;

where Sj > 0 and the rj 2 C!.R/ will be constructed as approximate characteristic
functions of the subsets .xj ; xjC1/ C Z. Given a sufficiently small " > 0 and j 2
¹1; : : : ; nº, consider the following 1-periodic function %"j 2 C

0.R/:

%"j .x/ D

8̂̂̂̂
<̂̂
ˆ̂̂̂:
" for x 62 Œxj ; xjC1�C Z;

"C
�

1
jq.xjC"/j

� "
�x�xj�m

"
for x 2 Œxj ; xj C "�Cm;

1
jq.x/j

for x 2 Œxj C "; xjC1 � "�Cm;

" �
�

1
jq.xjC1�"/j

� "
�x�xjC1�m

"
for x 2 ŒxjC1 � "; xjC1�Cm;

where m 2 Z. Using Weierstrass approximation theorem, we can take a 1-periodic
trigonometric polynomial r"j 2 C

!.R/ which is "=2-close to %"j (with respect to the
uniform distance). Note that after this choice, the function r"j is everywhere positive
for sufficiently small " > 0. Also, by construction, the function jqj � r"j tends pointwise
to 1.xj ;xjC1/CZ as "! 0, and therefore the quantity

a"jk WD

Z xkC1

xk

jq.x/jr"j .x/ dx

(where we set xnC1 D x1 C 1) tends to .xkC1 � xk/ıjk as "! 0.
In order to ensure property (1), we consider the following system of linear equa-

tions in the unknowns S1; : : : ; Sn:

nX
jD1

Sj a
"
jk D j.ykC1 � yk/ � .xkC1 � xk/j .k 2 ¹1; : : : ; nº/; (3.5)
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where we write ynC1 D y1 C 1. By the previous observation, as "! 0, the matrix
of the system (3.5) tends to the diagonal matrix diag.x2 � x1; : : : ; xnC1 � xn/, and
therefore for sufficiently small " > 0, the system (3.5) admits a unique solution, which
we denote by S"1 ; : : : ; S

"
n. Note that for every j 2 ¹1; : : : ; nº, we have

S"j !

ˇ̌̌̌
yjC1 � yj

xjC1 � xj
� 1

ˇ̌̌̌
as "! 0:

Set then r".x/ WD
Pn
jD1 S

"
j r

"
j .x/, and observe that for every x 2 .xj ; xjC1/CZ, we

have
1C q.x/r".x/!

yjC1 � yj

xjC1 � xj
as "! 0:

Therefore, we can find " > 0 such that the following conditions are satisfied:

• the system (3.5) has a solution (hence the function r" is defined),

• for every x 2 R, we have 1C q.x/r".x/ > 0, and moreover 1C q.x/r".x/ > 1
(respectively, < 1) for every x 2 .xj ; xjC1/C Z, where j 2 ¹1; : : : ; nº is such
that yjC1 � yj > xjC1 � xj (respectively, yjC1 � yj < xjC1 � xj ).

We can then take r D r" and define

f W x 2 R 7! y1 C

Z x

x1

1C q.�/r.�/ d�;

which gives the desired function.

The next statement is the main result of this section.

Proposition 3.12. The group of real-analytic diffeomorphisms Diff!C.S
1/ is combin-

atorial.

Proof. As we are considering D0 D S1, condition (C 1) is trivially satisfied. Lem-
ma 3.11 above gives condition (C 2). Condition (C 3) is clear (all rigid rotations are in
Diff!C.S

1/). It is well known that any two real-analytic diffeomorphisms of finite order
and same rotation number are C! conjugate (see, e.g., [18, §II.6]): let a 2 Diff!C.S

1/

be of finite order and rot.a/ D p=q, denote by A any lift of a to the real line, then

ha.x/ D
1

q

q�1X
iD0

Ai .x/ � i
p

q
.mod Z/

defines a C! conjugacy of a to the rotation Rp=q of angle p=q .mod Z/. Therefore
given any two finite order elements a and b 2 Diff!C.R/ with same rotation number
rot.a/ D rot.b/ D p=q, the composition h D h�1

b
ı ha conjugates a to b. We claim

that it also satisfies the additional requirements in condition (C 4). For this, letE � S1

be a finite subset such that ai .x/ D bi .x/ for every i 2 ¹1; : : : ; q � 1º, and denote
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by A and B two lifts of a and b respectively, to the real line. Then for every x 2 E,
we have

ha.x/ D
1

q

q�1X
iD0

Ai .x/ � i
p

q
.mod Z/ D

1

q

q�1X
iD0

B i .x/ � i
p

q
.mod Z/ D hb.x/;

and thus h.x/ D h�1
b
ha.x/ D x. This gives condition (C 4).

3.3. Minimality criterion

Ping-pong partitions are an adapted tool to recognize semi-conjugate actions, but they
do not provide full topological information. In particular, it is unclear how to decide
whether an action with ping-pong partition is minimal. In this direction we prove the
following partial result.

Theorem 3.13. Every marked, finitely generated free subgroup of HomeoC.S1/ with
a proper ping-pong partition is semi-conjugate to a subgroup of Diff!C.S

1/ whose
action is minimal.

We will prove Theorem 3.13 later in the subsection. Before this, we will make
some general considerations for recognizing minimal actions of virtually free groups.

Remark 3.14. At the present moment we are unable to extend Theorem 3.13 to every
virtually free group; technical difficulties arise when there are torsion elements. In
fact, it could be that not every combinatorial configuration is realizable in real-analytic
regularity: an elementary instance of this is Kontsevich’s “métro ticket” theorem, dis-
cussed by Ghys in [16], and our approach is faced to an obstruction of similar nature.
In some particular cases it is possible to construct a minimal action, for instance when
the group is a central extension of a free group, or when the group is of the form
Fn Ì Zm, where the cyclic group acts on Fn by permutation of a free basis (in which
case one has simply to implement the symmetries of the free generating set in their
real-analytic realizations as in Lemma 3.11).

3.3.1. Ping-pong partitions and Markovian sequences. Let .G;˛;T / be a marked,
finitely generated, virtually free subgroup of HomeoC.S1/ acting with a ping-pong
partition ‚. Recall that 	 denotes the collection of connected components of atoms
of ‚ and J the collection of gaps of the partition. It is proved in [1, Proposition 6.5]
that the minimal set ƒ for G is contained in the union of the closures of intervals
of 	. Hence, for such an action to be minimal, it is necessary that the gaps of the
partition (they do not need to be real gaps ofƒ) be degenerate (i.e., reduced to points).
Unfortunately, this condition is not sufficient as the next example shows.
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UtUs�1
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Figure 3.1. Partitions for Example 3.15.

Example 3.15. Consider a classical Schottky configuration. For that we take a cir-
cularly ordered family of open arcs 	0 D ¹Is; It ; Is�1 ; It�1º in S1, with pairwise
disjoint closure, and we denote by J0 the set of gaps of 	0 indexed as follows. For

 2 ¹s; s�1; t; t�1º, denote by J
 the element of J0 located on the left of I
 . Consider
two homeomorphisms s and t in HomeoC.S1/ such that

s.Is/ D It [ Js [ Is [ Jt�1 [ It�1 ;

t .It / D Is�1 [ Jt [ It [ Js [ Is;

s�1.Is�1/ D It�1 [ Js�1 [ Is�1 [ Jt [ It ;

t�1.It�1/ D Is [ Jt [ It�1 [ Js�1 [ Is�1 :

See Figure 3.1. Then the groupG generated by S D ¹s; s�1; t; t�1º is free. The action
of G has an exceptional minimal set ƒ and 	0 defines a ping-pong partition. For

 2 S , define U
 D Int.J
 [ I
 /. It is a simple exercise to verify that, althoughG has
an exceptional minimal set,

‚ D ¹Us; Ut ; Us�1 ; Ut�1º

is a ping-pong partition for the action of G with degenerate gaps.

This is an example of proper ping-pong partition with neutral intervals (the inter-
vals J
 ), which motivates the following definition.

Definition 3.16 (Markovian sequences and neutral intervals). Let .G;˛;T / be a mar-
ked, finitely generated, virtually free subgroup of HomeoC.S1/ with ping-pong par-
tition ‚. We let G be the corresponding generating set of G. A Markovian sequence
for an interval I 2 	 is a finite sequence of generators s1; : : : ; sk 2 G such that for
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a
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1

1

I1

I2

Ub

Figure 3.2. Ping-pong partition for PSL.2;Z/ Š Z2 � Z3 (Example 3.17).

every l 2 ¹1; : : : ; k � 1º, the image slsl�1 � � � s1.I / is an interval of 	 and the image
sk.sk�1 � � � s1.I // is 	-Markovian. An interval I 2 	 without Markovian sequence is
called neutral.

Example 3.17. Consider the classical Farey partition ‚ D ¹Ua; Ubº for the action of

PSL.2;Z/ Š Z2 � Z3;

where a and b denote generators of order 3 and 2, respectively. Considering the para-
metrization of the circle S1 Š R[ ¹1º, the subset Ua is the union of the two disjoint
intervals

I1 D .0; 1/ and I2 D .1;1/;

whereas Ub D .1; 0/ is a single interval. The gaps of the partition are the points 0, 1,
and1. We have the relations

b.Ub/ D I1 [ ¹1º [ I2; a.I1/ D I2; a.I2/ D Ub:

See Figure 3.2. A Markovian sequence for the interval Ub is given by b, while for the
intervals I1 and I2, we can take a2; b and a; b respectively (no sequences of length 1
exist).

Example 3.18. An interesting example of ping-pong partition with intervals with
non-trivial Markovian sequences (that is, admitting no sequences of length 1), appears
in [22]. It is a ping-pong partition for an action of the free group F2 D hf; gi. Take
eight circularly ordered points x1; : : : ; x8 2 S1 and for i 2 ¹1; : : : ; 8º write

Ii D .xi ; xiC1/
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Figure 3.3. A ping-pong partition for an action of F2 with non-trivial Markovian sequence
(Example 3.18).

(indices are taken modulo 8). The partition is defined by the following relations:

f .I1/ D I8 [ ¹x1º [ I1 [ ¹x2º [ I2;

g�1.I2/ D I7;

f �1.I3/ D I2 [ ¹x3º [ I3 [ ¹x4º [ I4;

g�1.I4/ D I1 [ ¹x2º [ I2 [ ¹x3º [ I3 [ ¹x4º [ I4 [ ¹x5º [ I5;

f .I5/ D I4 [ ¹x5º [ I5 [ ¹x6º [ I6;

g.I6/ D I5 [ ¹x6º [ I6 [ ¹x7º [ I7 [ ¹x8º [ I8 [ ¹x1º [ I1;

f �1.I7/ D I6 [ ¹x7º [ I7 [ ¹x8º [ I8;

g.I8/ D I3:

Markovian sequences for the intervals I2 and I7 are given by g�1; f �1 and g; f �1,
respectively. See Figure 3.3.

Lemma 3.19. Let .G; ˛; T / be a marked, finitely generated, virtually free subgroup
of HomeoC.S1/ with proper ping-pong partition ‚. Assume that I 2 	 is neutral.
Then I \ƒ D ¿.

Proof. Let I be a neutral interval and let 	0 � 	 be the subcollection of intervals
I 0 2 	 such that there exists a finite sequence s1; : : : ; sk 2 G such that for every
l 2 ¹1; : : : ; kº, we have Il D slsl�1 � � � s1.I / 2 	 and Ik D I 0. It is clear that 	0 is a
finite family of neutral intervals of 	. As before, we denote by � � S1 the collection
of endpoints of intervals of 	.

For k � 1, let ‚k be the k-th refinement of ‚ (that is, we iterate k times the
refinement described in [1, Section 6.3]). We can prove by induction that intervals
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of 	0 are neutral connected components of atoms of ‚k . Set �0 D � and inductively
�k D G .�k�1/; then�k is the collection of endpoints of intervals of‚k (see [1, Sec-
tion 6.5]). We have I \�k D ¿ for all k � 0. Since I is open and �1 D

S
k2N �k

accumulates on ƒ (see [1, Proof of Theorem B]), we deduce that ƒ \ I D ¿.

3.3.2. Strictly Markovian partitions. In order to prove Theorem 3.13, we need the
following definition.

Definition 3.20. Let .G; ˛; T / be a marked, finitely generated, virtually free sub-
group of HomeoC.S1/. We say that a ping-pong partition ‚ for .G; ˛; T / is strictly
Markovian if it is proper, its gaps are degenerated, and it has no neutral interval.

The next two lemmas show how to reduce to the case of group actions with strictly
Markovian ping-pong partitions.

Lemma 3.21. Let .G;˛;T / be a marked, finitely generated, virtually free subgroup of
HomeoC.S1/ with proper ping-pong partition ‚ and minimal invariant set ƒ. Then
for every atom O 2 ‚, we have O \ƒ ¤ ¿.

Proof. Asƒ �
S
O2‚

xO , there exists an atomO 2‚ intersectingƒ. Now, by theG-
invariance of ƒ, we can propagate this to every other atom of ‚ using the properties
(IF 2), (IF 7), and (IF 8) of an interactive family.

Lemma 3.22. Every marked, finitely generated, virtually free subgroup of the group
HomeoC.S1/ with a proper ping-pong partition is semi-conjugate to a marked sub-
group of HomeoC.S1/ with a strictly Markovian ping-pong partition.

Proof. If the action of the subgroup is minimal then the ping-pong partition has no
neutral intervals (see Lemma 3.19) and its gaps are degenerated. We assume next
that the minimal invariant set ƒ is a Cantor set. We write .G; ˛; T / for the marked
subgroup, and ‚ for the ping-pong partition. Take a minimalization of G, that is, a
subgroup G0 � HomeoC.S1/, isomorphic to G, whose action is minimal and semi-
conjugate to that of G. Write hWS1 ! S1 for the surjective map realizing the semi-
conjugacy between G and G0. Note that h is finite-to-1 on ƒ. By Lemma 3.21, for
every atom O 2 ‚, the intersection O \ ƒ is infinite (because ƒ has no isolated
points) so the image h.O/ has non-empty interior. We define ‚0 D ¹Int.h.O//ºO2‚.
As h defines a semi-conjugacy, ‚0 defines a ping-pong partition for the action of G0

(with respect to the marking induced by the isomorphism with G). Since G0 is min-
imal, we are now reduced to the first case considered in this proof, so the ping-pong
partition ‚0 has no non-degenerated gaps and no neutral intervals.
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3.3.3. Markovian expansion and first returns. Assume that .G; ˛; T / is a marked,
finitely generated, virtually free subgroup of HomeoC.S1/ with a strictly Markovian
ping-pong partition ‚. As the ping-pong partition ‚ is strictly Markovian, for any
point x 2 S1 there exists a unique interval Ix 2 	 such that x belongs to Ix union
its leftmost point. Fix x0 2 S1. We define by induction a sequence of generators
¹snºn2N � G and intervals ¹Inºn2N � 	, as follows. Write I0 D Ix0

and, for any
n � 1, write

xn D sn�1.xn�1/ and In D Ixn
I

for any n � 0, we take as sn 2 G the first generator appearing in a shortest Markovian
sequence for In. The sequence of partial compositions ¹sn � � � s0ºn2N is called a
Markovian expansion of x0 2 S1.

Take now I 2 	 and let x0 2 �0 be its leftmost point. Consider a Markovian
expansion ¹sn � � � s0ºn2N of x0 and assume there exists a least integer n � 1 such that
xn D x0; then the element h D .sn�1 � � � s0/�1 satisfies I � h.I / and h.x0/ D x0. In
analogy with Definition 4.3, we say that the element h is a first return to I .

Lemma 3.23. Let .G;˛;T / be a marked, finitely generated, virtually free subgroup of
HomeoC.S1/ with a strictly Markovian ping-pong partition ‚. Assume that for every
I 2 	 and every first return h to I , the map h has no fixed point on I . Then �0 � ƒ.

Proof. Let x0 2 �0. We take a Markovian expansion ¹sn � � � s0ºn2N of x0. Since �0
is finite, there exist two least integers n < m such that xn D xm. We write

x D xn D xm

for this point and
I D In D .x; y/

for the corresponding interval in 	. Consider the element hD .sm�1 � � � sn/�1 2G. By
minimality of the choice of n andm, the map h is a first return to I . In particular, h has
no fixed point on h.I / \ I by hypothesis. As h.I / � I , we deduce that hn.y/! x

as n!1. Note that for every n 2 N, we have

hn.y/ 2 �1 D G.�0/:

As �1 accumulates on ƒ (see [1, Proof of Theorem B]), we deduce that x 2 ƒ, and
thus, by G-invariance, also x0 D .sn�1 � � � s0/�1.x/ is in ƒ.

3.3.4. Minimal and real-analytic realization. We keep the assumption that .G;˛;T /
admits a strictly Markovian ping-pong partition‚. For l � 1, we let 	l be the collec-
tion of intervals of 	 admitting a shortest Markovian sequence of length l .
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Remark 3.24. By definition, we have that I 2 	1 if and only if there exists s 2 G

such that s.I / is 	-Markovian. When l � 2, if I 2 	l and s1; : : : ; sl is a shortest
Markovian sequence, then s1.I / 2 	l�1. Since 	 is finite there exists a largest k such
that 	k is non-empty, and as we are assuming that ‚ is strictly Markovian, we have

	 D

k[
lD1

	l :

For practical purposes, it will be better to work with a particular class of strictly
Markovian ping-pong partitions.

Definition 3.25. Let ‚ be a ping-pong partition for a marked, finitely generated, vir-
tually free subgroup .G; ˛; T / of HomeoC.S1/. We say that ‚ is geometric if it is
strictly Markovian and for every interval I 2 	 and shortest Markovian sequence
s1; : : : ; sl for I , we have js1.I /j > jI j.

Note the definition above is not restrictive:

Lemma 3.26. Every marked, finitely generated, virtually free subgroup .G; ˛; T / of
HomeoC.S1/ with a strictly Markovian ping-pong partition is conjugate to a sub-
group G0 of HomeoC.S1/, for which the ping-pong partition induced by the con-
jugacy is geometric. Moreover, when G � Diff!C.S

1/, we can take G0 � Diff!C.S
1/.

Proof. Let ‚ be the ping-pong partition for .G; ˛; T /, with collection of intervals 	.
We first make the choice of a collection of intervals 	0, and then consider an appro-
priate conjugating map. For this, we take a partition 	0 of the circle into #	 open
intervals, and fix a bijection � W	! 	0 which preserves the circular order of the inter-
vals. For l 2 ¹1; : : : ; kº, we set 	0

l
D �.	l/. We choose the partition 	0 so that the

following conditions are satisfied:

max
I 02	0
jI 0j < 2 min

I 02	0
jI 0j; (3.6)

min
I 02	l�1

jI 0j > max
I 02	0

l

jI 0j for any l � 2: (3.7)

We can now take a real-analytic diffeomorphism hWS1!S1 such that for every I 2	,
we have h.I /D �.I /. Then the conjugate subgroupG0 D hGh�1 satisfies the desired
properties. Indeed, if I 0 2 	01, then there exists a generator s 2 G 0 D hGh�1 such that
s.I 0/ is 	0-Markovian, and by condition (3.6) we have

js.I 0/j � 2 min
J 02	0

jJ 0j > max
J 02	0

jJ 0j � jI 0j:

When I 0 2 	0
l
, with l � 2, there exists a generator s 2 G 0 such that s.I 0/ 2 	0

l�1
and

by condition (3.7), we have js.I 0/j > jI 0j.
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Definition 3.27. Let‚ be a geometric ping-pong partition for a marked, finitely gen-
erated, virtually free subgroup .G;˛;T / of Diff1C.S

1/. We say that‚ is infinitesimally
geometric if for every interval I 2	 and shortest Markovian sequence s1; : : : ; sl for I ,
we have s01.x/ > 1 for every x 2 I .

Lemma 3.28. Every marked, finitely generated, virtually free subgroup of Diff1C.S
1/

with an infinitesimally geometric ping-pong partition acts minimally.

Proof. Let .G; ˛; T / be such a group and ‚ the infinitesimally geometric ping-pong
partition. We assume by contradiction that the minimal invariant set ƒ is a Cantor
set. Note first that as ‚ is infinitesimally geometric, for every first return h to I , we
have h0.x/ < 1 for every x 2 I . This proves, by the mean value theorem, that the
first return h has no fixed point on I . By Lemma 3.23, this implies that �0 � ƒ. We
deduce that all gaps ofƒ are contained inside the intervals of 	. Let J0 be a gap ofƒ,
and let I0 2	 be such that J0 � I0. By induction, we can find sequences of generators
¹snºn2N , gaps ¹Jnºn2N of ƒ, and intervals ¹Inºn2N of 	 such that for every n 2 N:

(1) Jn � In;

(2) either sn.In/ D InC1, or sn.In/ is 	-Markovian and InC1 � sn.In/;

(3) s0n.x/ > 1 for every x 2 In;

(4) sn.Jn/ D JnC1.

From these conditions it is clear that the sequence of lengths jJnj is strictly increasing,
and that the gaps Jn are pairwise disjoint (if two gaps of ƒ have non-empty intersec-
tion they must be equal). This contradicts the fact that there are only finitely many
gaps whose length exceeds a given constant.

From this discussion, we deduce that ping-pong partitions for free groups admit
minimal real-analytic realizations.

Proof of Theorem 3.13. In the case of a free group G, a marking corresponds to the
choice of a symmetric free generating system S (see Section 4.1). We also choose a
subset S0 � S such that

S D S0 t S
�1
0 :

Let ‚ be a ping-pong partition for .G; S/ � HomeoC.S1/. After Lemma 3.22, we
can assume that‚ is strictly Markovian, and after Lemma 3.26 we can assume that‚
is geometric. Using Lemma 3.11, for every s 2 S0 we can find a real-analytic diffeo-
morphism xs 2 Diff!C.S

1/ such that

s.x/ D xs.x/

for every x 2 �0 [ s�1.�0/, and such that if I 2 	 is such that js.I /j > jI j, then
xs 0.x/ > 1 on I , whereas if js�1.I /j> jI j, then .xs�1/0.x/ > 1 on I . The first condition



S. Alvarez et al. 674

a

b

a

b

c

Figure 3.4. Left: ping-pong partition for Z4 �Z2
Z6 Š SL.2;Z/ (Example 3.29). Right: ping-

pong partition for an action of Z3 � Z4 � Z5 (Example 3.30).

guarantees that the marked subgroup . xG D h xSi; xS/, where xS D ¹xs;xs�1 W s 2 S0º, has
an equivalent ping-pong partition (it is basically the starting partition ‚), which is
moreover geometric. By Theorem B, this gives that the action of xG is semi-conjugate
to the action ofG. The second condition on derivatives guarantees that the partition‚
for . xG; xS/ is infinitesimally geometric, so that from Lemma 3.28 we deduce that the
action of xG is minimal.

3.4. Classical and exotic examples

In this subsection we discuss various examples of ping-pong partitions. First we illus-
trate how one can produce examples of actions of some amalgamated free products or
HNN extensions. The examples we give are quite basic, as considering more complex
examples would lead to unreadable pictures.

Example 3.29. The standard example is the partition for the standard action of

PSL.2;Z/ Š Z2 � Z3;

which corresponds to the classical Farey tessellation of the disc (see Example 3.17).
The second example is the partition for the standard action of

SL.2;Z/ Š Z4 �Z2
Z6;

which is a lift of degree 2 of the previous partition. See Figure 3.4 (left).

Example 3.30. Similarly we can construct examples of arbitrary free products of
finite cyclic group. An example for the free product Z3 � Z4 � Z5 appears in Fig-
ure 3.4 (right).
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a

s

a

s

Figure 3.5. Left: a ping-pong partition for an action of the HNN extension Z3�¹idºŠZ3 � Z

(Example 3.31). Right: a ping-pong partition for an action of the HNN extension Z6�Z2

(Example 3.32).

Example 3.31. It is also easy to exhibit examples of ping-pong partitions for HNN
extensions corresponding to free products. In Figure 3.5 (left), we give an example
for the group Z3�¹idº Š Z3 � Z.

Example 3.32. Taking lifts of the previous examples, we can obtain ping-pong parti-
tions for actions of HNN extensions. See Figure 3.5 (right).

The next series of examples are for free groups, and they illustrate how one can
easily construct locally discrete subgroups of Diff!C.S

1/ whose action is minimal, and
which are not conjugate into a central extension of PSL.2;R/.

Example 3.33. Using Theorem 3.13, we can find elements f; g; h 2 Diff!C.S
1/ that

generate a locally discrete, free group of rank 3 that acts minimally and such that:

• f has exactly four fixed points: two hyperbolic attracting and two hyperbolic
repelling;

• g and h have exactly two fixed points each, one hyperbolic attracting and one
hyperbolic repelling.

See Figure 3.6 (left).

Example 3.34. Similarly, we can find f;g 2Diff!C.S
1/ that generate a locally discrete,

free group of rank 2 that acts minimally and such that:

• f has exactly two fixed points, one hyperbolic attracting and one hyperbolic
repelling;

• g has exactly two fixed points, both of them parabolic.

See Figure 3.6 (right).
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f

g

h

f
g

Figure 3.6. Left: ping-pong partition for Example 3.33. Right: ping-pong partition for Exam-
ple 3.34.

Example 3.35. Whereas the first two examples can be realized by choosing generat-
ors that individually belong to some finite central extension of PSL.2;R/, it is possible
to describe other examples where this does not happen.

For instance, there exist f; g; h 2 Diff!C.S
1/ that generate a locally discrete, free

group of rank 3 that acts minimally and such that:

• f has exactly three fixed points: one parabolic, one hyperbolic attracting and one
hyperbolic repelling;

• g has exactly two fixed points, one hyperbolic attracting and one hyperbolic rep-
elling;

• h has exactly one fixed point, which is parabolic.

See Figure 3.7.

Note that, even if an action can be described by inequivalent ping-pong partitions,
Example 3.35 is indeed different from Example 3.33. In this case, this can be checked
combinatorially by counting the different orbits of gaps of the partition, which is an
invariant for the action (see also the related work [22]). For the action in Example 3.33
there are 6 such orbits, while the action in Example 3.35 has 4 such orbits.

4. Dynamical properties of DKN partitions

4.1. The DKN partition for free groups

In the case of locally discrete free subgroups G � Diff!C.S
1/, the ping-pong parti-

tions given by Theorem A are a straightforward consequence of the work of Deroin,
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f

g

h

Figure 3.7. Ping-pong partition for Example 3.35.

Kleptsyn, and Navas [9]. In this case a marking is simply a choice of a free, symmetric
generating system S for G. We will say that .G; S/ is a marked free group. We will
denote by k � k the word-length onG with respect to the generating system S . For any
s 2 S , consider the subset Ws of G defined by

Ws D ¹g 2 G j g D s` � � � s1 in normal form, with s1 D sº; (4.1)

and then consider the subset Us of the circle defined by

Us D
®
x 2 S1 j 9 neighbourhood Ix 3 x s.t. lim

n!1
sup

g…Ws ; kgk�n

jg.Ix/j D 0
¯
: (4.2)

Remark 4.1. The definition (4.2) of the subsets Us is the one given in [1] and it
slightly differs from the one used in [9]. We refer to Appendix A for a comparison
between the two different definitions (see in particular Proposition A.6).

The following properties of the collection of subsets ¹Usºs2S have essentially
been proved in [9], see also [1, Theorem 3.1] and discussions therein. See also App-
endix A.

Theorem 4.2 (Deroin, Kleptsyn, and Navas). Let .G; S/ � Diff!C.S
1/ be a finitely

generated, locally discrete, marked free group of real-analytic circle diffeomorphisms,
with minimal invariant set ƒ. Consider the collection ¹Usºs2S defined in (4.2). We
have:

(1) every subset Us is open;

(2) every subset Us has finitely many connected components;

(3) any two different subsetsUs have empty intersection inside the minimal invari-
ant set ƒ;
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(4) the union of the subsets Us covers all but finitely many points of ƒ;

(5) if s; t 2 S , are such that t ¤ s then s.Ut / � Us�1 .

Note that Theorem 4.2 does not imply that the collection of subsets ¹Usºs2S is a
ping-pong partition, in the sense of Definition 2.4, as two distinct elements of ¹Usºs2S
may have non-empty intersection outside the minimal invariant compact set ƒ � S1.
For this reason, for every s 2 S we introduce a subset yUs � Us defined by the fol-
lowing procedure: if an endpoint of a connected component of Us belongs to a gap
J � S1 nƒ (that is, a connected component of the complement S1 nƒ), we remove
Us \ xJ from Us . As Us has finitely many connected components, we only have to
do this operation finitely many times. Keeping the terminology of [1], we refer to
the collection of subsets ¹Usºs2S as to the DKN partition, whereas ¹ yUsºs2S is the
DKN ping-pong partition for .G; S/ (which is a ping-pong partition in the sense of
Definition 2.4).

The following notion plays a crucial rôle in the proof of Theorem 4.2, and it will
also be useful here.

Definition 4.3. Let .G;S/�Diff!C.S
1/ be a finitely generated, locally discrete, marked

free group of real-analytic circle diffeomorphisms, and let ¹Usºs2S be the associated
DKN partition. Let s 2 S and let I be a connected component of Us . A non-trivial
element g 2 G, written in normal form as g D s` � � � s1, is wandering (with respect
to I ) if the following conditions are satisfied:

(1) s1 ¤ s, or equivalently g … Ws;

(2) the intermediate images sk � � � s1.I / for k 2 ¹0; : : : ; ` � 1º, are pairwise dis-
joint.

Moreover, if g also satisfies g.I / \ I ¤ ¿, then we say that g is a first return (to I ).

Remark 4.4. Wandering elements are called admissible elements in the terminology
in [9].

The following facts have been proved in [9, Section 3.4] in the case of min-
imal actions, and in [9, Section 4] for actions with minimal invariant Cantor sets.
Formally speaking (see Remark 4.1), the results in [9] apply to connected compon-
ents of the partition ¹ zMsºs2S , but the proofs can be easily adapted to the partition
¹Usºs2S . Otherwise, the reader can see the discussion in Appendix A, from which it
is possible to deduce all desired results for the partition ¹Usºs2S from those for the
partition ¹ zMsºs2S .

Lemma 4.5. Let .G;S/ � Diff!C.S
1/ be a finitely generated, locally discrete, marked

free group of real-analytic circle diffeomorphisms, and let ¹Usºs2S be the associated
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DKN partition. For any s 2 S and connected component I D .x�; xC/ of Us , the
following properties hold:

(1) two distinct wandering elements g and h have disjoint images:

g.I / \ h.I / D ¿I

(2) there exist two first returns g� and gC fixing x� and xC respectively, such
that gk

˙
.x/! x˙ as k !1 for every x 2 I ;

(3) there exists a non-empty closed interval J � I such that

I D g�.I / t J t gC.I /I

in particular, for every first return g which is distinct from g˙, we have
g.I / � J ;

(4) for every g … Ws , there exists n 2 N such that g can be written uniquely as

g D �gn � � �g1;

where for every i 2 ¹1; : : : ; nº, the element gi 2 G is a first return and the
element � 2 G is either wandering or trivial.

From this we deduce the following proposition.

Proposition 4.6. Let .G; S/ � Diff!C.S
1/ be a finitely generated, locally discrete,

marked free group of real-analytic circle diffeomorphisms, and let ¹Usºs2S be the
associated DKN partition. For any s 2 S and connected component I of Us , one has

lim
n!1

sup
g…Ws ; kgk�n

jg.I /j D 0:

Proof. We use Lemma 4.5 to fix some notation and constants. First, for every ele-
ment g … Ws take the largest k D k.g/ 2 N such that g D zggk0 , with g0 2 ¹g�; gCº
and zg … Ws . If zg is not wandering, there exist a first return g1 ¤ g0, and xg … Ws such
that g D xgg1gk0 . Write I D g�.I / t J t gC.I / as in Lemma 4.5, then the subset

J 0 WD g�.gC.I // [ J [ gC.g�.I //

is a closed subinterval of I . Fix now " > 0. By compactness and the definition (4.2)
of Us , there exists N0 2 N such that

jg.J 0/j � " for every g … Ws with kgk � N0: (4.3)

Since for fixed N 2 N, there are only finitely many elements g 2 G with kgk � N ,
and since they are uniformly continuous on S1, we can fix ı.N / 2 .0; "� such that

jg.I 0/j � " (4.4)
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for every g 2 G with kgk � N and every interval I 0 with jI 0j � ı.N /. Observe also
that from Lemma 4.5, we have

lim
n!1

sup
h wandering;
khk�n

jh.I /j D 0:

In particular, there exists a positive integer N1 2 N such that

jh.I /j � ı.N0/ (4.5)

for every wandering element h of length khk � N1. Finally, if g0 D g˙, we have
jgk0 .I /j ! 0 as k !1, so there exists N2 > 0 such that

jgk0 .I /j � ı.N0 CN1/ (4.6)

for every k � N2. Fix now N WD N0 CN1 CN2 max¹kg�k; kgCkº, take an element
g … Ws with kgk � N , and write g D zggk0 as at the beginning of the proof.

Case 1. zg is wandering.

Proof in Case 1. Remark that we must have kzgk � N0CN1 or k � N2. Assume first
that kzgk � N0 CN1, so that by (4.5) we have

jzggk0 .I /j � jzg.I /j � ı.N0/ � ":

If otherwise kzgk � N0 CN1, then k � N2 and we deduce from (4.6) that

jgk0 .I /j � ı.N0 CN1/:

As kzgk � N0 CN1, then jzggk0 .I /j � " by (4.4).

Case 2. zg is not wandering.

Proof in Case 2. We write g D xgg1gk0 as at the beginning of the proof. Remark that
we must have kxgk � N0 or kg1k � N1 or k � N2. Assume first kxgk � N0, and note
that as g1 ¤ g0, then we have g1gk0 .I / � J

0. Hence,

jxgg1g
k
0 .I /j � jxg.J /j � "

by (4.3). Next, assume kxgk < N0 and kg1k � N1, and note that by (4.5), we have

jg1g
k
0 .I /j � jg1.I /j � ı.N0/:

As kxgk < N0, we conclude by (4.4) that jxgg1gk0 .I /j � ". Finally, the case where
kzgk � N0 CN1 and k � N2 follows from (4.6) and (4.4) as in Case 1.

The list of cases being exhaustive, this proves that if g …Ws is such that kgk �N ,
then jg.I /j � ", as desired.
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4.2. Multiconvergence property

In this subsection we prove Theorem E and its consequences. We first observe that it
is enough to consider the case of free groups.

Lemma 4.7. Let G � HomeoC.S1/ be a group of circle homeomorphisms, and let
H � G be a subgroup of finite index. The following statements are equivalent:

(1) the group G has the multiconvergence property;

(2) the subgroup H has the multiconvergence property.

Proof. The only non-trivial implication is (2)) (1). That is, we assume that H sat-
isfies the multiconvergence property with a uniform constant K 2 N. Let ¹gnºn � G
be an infinite sequence of distinct elements. AsH � G has finite index, there exists a
coset Ht to which infinitely many elements of the sequence ¹gnºn belong. By finite-
index assumption, upon extracting, we can assume that ¹gnºn is contained in a single
coset Ht , and we write gn D hnt , with hn 2 H . Clearly the sequence ¹hnºn � H
consists of distinct elements, and up to passing to a subsequence, we can assume that
there exist finite subsets A and R � S1 with #A D #R � K for which the sequence
of restrictions ¹hn�S1nRºn converges to the locally constant map h1, with discon-
tinuities at R and values in A, as in Definition 1.3. Then the sequence of restrictions
¹gn�S1nt�1.R/ºn converges to the map h1t , which is locally constant on S1 n t�1.R/,
and whose image is A. Therefore, G satisfies the multiconvergence property, with the
same uniform bound K 2 N as for the subgroup H .

Proof of Theorem E. After Lemma 4.7, it is enough to assume that G is a free group,
freely generated by a finite symmetric set S ; we denote by k � k the corresponding
word-length function. Consider the corresponding DKN partition, given by the sub-
sets Us as in (4.2). We will prove that G verifies the multiconvergence property with
K D maxs2S b0.Us/, where b0.Us/ stands for the zeroth Betti number (number of
connected components) of the open subsetUs . For this, let us take an infinite sequence
¹gmºm of distinct elements of G. Up to passing to a subsequence if necessary, we can
assume that ¹gmºm converges monotonically to a point of the boundary @G of the free
group G: there exist a monotone sequence of integers ¹nmºm � N and a sequence
¹snºn � S of generators such that for every n 2 N, sn ¤ s�1nC1 and for every m 2 N,
one has

gm D snm
snm�1 � � � s1:

First, we find the repelling subset R. We start by the following elementary observa-
tion.

Claim 1. For every n 2 N, we have

s�11 � � � s
�1
n .UsnC1

/ � s�11 � � � s
�1
n�1.Usn/:
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Proof of Claim 1. Indeed for every n 2N we have snC1 ¤ s�1n so by Theorem 4.2 (5)
we have s�1n .UsnC1

/ � Usn : So the claim follows by precomposing by the element
s�11 � � � s

�1
n�1:

As a consequence of Claim 1, the subsetsRn WD s�11 � � � s
�1
n�1.Usn/ form a decreas-

ing sequence of non-empty compact subsets in Us1 . So the intersection

R WD
\
n2N

Rn

is a non-empty compact subset.

Claim 2. The number of connected components of R is bounded above by K D
maxs2S b0.Us/.

Proof of Claim 2. Indeed for every n 2 N, the subset Rn has the same number of
connected components as the subset Usn , which is less than or equal to K by our
choice of K.

Claim 3. The subset R � S1 is finite, and thus by Claim 2 it has at most K points.

Proof of Claim 3. A connected component I of R is the decreasing intersection of
connected components In of Rn. We must prove that jInj ! 0 as n!1.

By the pigeonhole principle, there exist s 2 S , a connected component J of Us
and a sequence ¹mkºk � N such that for every k 2 N, smk

D s and

Imk
D s�11 � � � s

�1
mk�1

.J /:

Now since by hypothesis s�1mk�1
¤ smk

, it follows from Proposition 4.6 that

lim
k!1

jImk
j D 0:

As the intervals In are nested, this gives the desired conclusion.

We now turn to the construction of the attracting subset A. Note that by Claim 2,
there exists N0 2 N such that the number of connected components of Rn does not
depend on n�N0 (this number equals #R). Without loss of generality, we can assume
that the sequence of elements ¹gmºm is such that nm � N0 for all m 2 N.

By construction and Theorem 4.2 (5), for every m 2 N, the image gm.S1 nRN0
/

is contained in Us�1
nm

and has #R connected components. Let J0 be a connected com-
ponent of g0.S1 nRN0

/, let I be the connected component of Us�1
n0

containing it and
let Jm denote gmg�10 .J0/ � Us�1

m
for every m 2 N. By Proposition 4.6, we have

jJmj � jgmg
�1
0 .I /j ! 0 as m!1:
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Let xm denote the midpoint of Jm. By compactness of S1, upon passing to a sub-
sequence if necessary, we may assume that xm converges to a point a 2 S1. Running
the argument for every connected component of g0.S1 nRN0

/, and upon considering
a subsequence, we can also assume that there exists a finite subset A such that for
every y 2 S1 nRN0

, we have

gm.y/! a as m!1

for some a 2 A. By construction #A � #R.
Now for n � N0 and m such that nm � n the subset gm.S1 n Rn/ is contained

in Us�1
m

and each of its connected components contains a unique connected com-
ponent of gm.S1 n RN0

/. Using the argument above, we see that the length of such
a component tends to 0 as m tends to infinity so for every y 2 S1 n Rn, we have
gm.y/! a as m!1 for some a 2 A. Finally, since n is arbitrary, this fact holds
for every y 2 S1 nR. This proves the multiconvergence property.

Remark 4.8. We observe that if G � HomeoC.S1/ has the multiconvergence prop-
erty, then it is always possible to choose (with the notation as in Definition 1.3) the
subsets A and R such that #A D #R. Indeed, if we have #A < #R, then there exist a
point r 2 R and a point a 2 A such that if J� and JC are the two connected compon-
ents of S1 nR adjacent to r , we have

gnk
.y/! a as k !1

for every y 2 J� [ JC. In particular, we also have gnk
.r/! a as k !1 and we

may remove r from R.

Lemma 4.9. Let G � HomeoC.S1/ be a subgroup with the multiconvergence prop-
erty. Then the number of fixed points of a non-trivial element in G is uniformly
bounded.

Proof. Let K 2 N be the constant from Definition 1.3 of multiconvergence property.
Assume that g 2G is an element of infinite order and consider the sequence ¹gkºk2N .
As a consequence of the multiconvergence property the cardinality of any finite invari-
ant cannot exceed #RD #A�K. This means in particular that g has at most 2K fixed
points.

Proof of Corollary F. Direct consequence of Theorem E and Lemma 4.9.

Proof of Corollary H. As we mentioned in Section 1.2, Matsuda proved in [23] that
subgroups of Diff!C.S

1/with finite rotation spectrum are locally discrete. The converse
implication follows from Corollary F and the fact that finitely generated virtually free
groups have bounded torsion. We propose an alternative and simpler argument to
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prove this direction (which does not rely on the multiconvergence property, but on
Theorem 4.2 only).

First, it is enough to consider free groups since if G is virtually free, it contains a
normal free subgroup H of finite index k (by the so-called Poincaré lemma). Hence
for every g 2 G, we have gk 2H and k rot.g/D rot.gk/ 2 rot.H/. So if the rotation
spectrum rot.H/ is finite, then so is rot.G/ (in fact, a finite-index normal subgroup
H C G can be obtained from the function rotation number, see the proof of [1, The-
orem C]).

Assume now that G is free and locally discrete, and choose a free, symmetric
generating system S , with associated DKN partition ¹Usºs2S . Let g 2 G be a non-
trivial element. As rotation number is a conjugacy-invariant, we can assume that g
can be written in a cyclically reduced normal form g D sn � � � s1, for some n � 1 (that
is, we assume sn ¤ s�11 ). By Theorem 4.2, we have

g.Us�1
n
/ D sn � � � s1.Us�1

n
/ � Us�1

n
:

By Theorem 4.2, the number q of connected components of Usn is finite. So gq pres-
erves all connected components ofUsn and therefore admits a fixed point: rot.gq/D0.
Since q is uniformly bounded byK Dmaxs2S b0.Us/, we deduce that rot.G/ is finite,
concluding the proof.

A. Comparison of partitions

As we mentioned in Remark 4.1, in [9] the definition of the sets Us (appearing there
as zM
 ) is not exactly the same. Since the present paper relies on the results of [9],
we discuss here differences and similarities of the two definitions. As in Section 4.1,
we consider a locally discrete, marked free group .G;S/ of real-analytic circle diffeo-
morphisms, with minimal invariant set ƒ. The subsets Ws � G and Us � S1 will be
the same as those defined at (4.1) and (4.2), respectively. We recall now the notation
from [9, Section 3.4]. For g 2 G written in normal form as g D s` � � � s1 and x 2 S1,
set

yS.g; x/ WD

`�1X
kD0

.s` � � � s1/
0.x/;

and, for a generator s 2 S , set

zMs WD
®
x 2 S1 j sup

g…Ws

yS.g; x/ <1
¯
:

Note that as soon as one zMs is non-empty (which is one of the most difficult res-
ults established in [9]), then every other zMs0 is non-empty, and their union is dense
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in ƒ (see [9, Lemma 3.20]). Moreover, for any s 2 S , only finitely many connected
components of zMs intersect ƒ (this is [9, Lemma 3.30] in case of minimal actions,
and [9, Lemma 4.7] for the case of actions with minimal invariant Cantor set). It fol-
lows that the union

S
s2S
zMs covers the whole minimal invariant set ƒ, but finitely

many points.

Lemma A.1. Let .G; S/ be a locally discrete, marked free group of real-analytic
circle diffeomorphisms. For every generator s 2 S , we have the inclusion zMs � Us .

Proof. The first part follows directly from the usual control of distortion (namely,
Schwarz’s lemma; see [9, Proposition 2.4]). Let x 2 zMs and

Cx D sup
g…Ws

yS.g; x/ <1:

Then there exists a neighbourhood Ix of x whose size depends only on the generators
ofG and onCx such that for all g …Ws , and y;z 2 Ix , one has g

0.y/
g0.z/
� 2:By definition,

if we restrict ourselves to elements g … Ws , we have

lim
kgk!1

g0.x/ D 0;

so the uniform distortion control implies that limkgk!1 jg.Ix/j D 0. We deduce that
x 2 Us .

Note that this implies that, for every s 2 S , only finitely many connected compon-
ents of Us intersect ƒ, and that

S
s2S Us covers the whole minimal invariant set ƒ

but finitely many points.
We also deduce the following consequence, which is the analogue of Proposi-

tion 4.6. Observe that the proof of Proposition 4.6 relies on Lemma 4.5, which is
stated for the DKN partition ¹Usºs2S but formally only proved in [9] for the partition
¹ zMsºs2S (although the proof can be easily adapted to the partition ¹Usºs2S ).

Proposition A.2. Let .G; S/ be a locally discrete, marked free group of real-analytic
circle diffeomorphisms. For every generator s 2 S and connected component I of zMs ,
one has

lim
n!1

sup
g…Ws ; kgk�n

jg.I /j D 0:

Next, we give a more precise description of the inclusion zMs � Us .

Lemma A.3. Let .G; S/ be a locally discrete, marked free group of real-analytic
circle diffeomorphisms with minimal invariant set ƒ. Fix a generator s 2 S and two
distinct connected components I and I 0 of zMs .
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(1) If both closures xI and xI 0 intersect the closure of a gap of ƒ, then they are
contained in distinct connected components of Us .

(2) If I and I 0 share a common endpoint, then they are contained in the same
connected component of Us .

Remark A.4. Note that, as a consequence of (1), in the situation (2) the common
endpoint cannot belong to the closure of a gap of ƒ

Proof. We first prove the assertion (1). Assume that both closures xI and xI 0 intersect
the closure of the same gap J of ƒ. Assume that I and I 0 are contained in the same
connected component of Us , so the closure xJ of the gap is inside this component. By
compactness and the definition (4.2) of Us , this implies that

lim
n!1

sup
g…Ws ; kgk�n

jg.J /j D 0: (A.1)

However, using the analogue of Lemma 4.5 for the partition ¹ zMsºs2S , applied to I ,
we get a first return g …Ws which fixes the endpoint of I contained in J (see more spe-
cifically [9, Lemma 4.4]). It follows that g fixes the whole gap J , contradicting (A.1).
Hence, the gap J is not contained in a connected component of Us , and so the two
connected components of Us containing I and I 0 respectively are disjoint.

Assume next that I and I 0 have a common endpoint x, and write

Ix D I [ ¹xº [ I
0;

which is a neighbourhood of x. Note that for every g 2 G, we have

jg.Ix/j D jg.I /j C jg.I
0/j:

From Proposition A.2 applied to I and I 0 individually, we deduce that

lim
n!1

sup
g…Ws ; kgk�n

jg.Ix/j D 0;

and therefore x 2 Us . This proves (2).

Finally, we recall the following fact and its proof, appearing in [1, Lemma 7.6].

Lemma A.5. Let .G; S/ be a locally discrete, marked free group of real-analytic
circle diffeomorphisms. For every two distinct generators s and s0 2 S , we have

Us \ Us0 \ƒ D ¿:
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Proof. Take distinct generators s; s0 2 S , and assume there exists x 2 Us \ Us0 \ƒ.
Then there exists a neighbourhood Ix of x such that

lim
kgk!1

jg.Ix/j D 0

(we use that for all g 2 G, we have g … Ws or g … Ws0 since s ¤ s0). We have
ƒ \ Ix ¤ ¿ so Sacksteder’s theorem implies the existence of a point y 2 ƒ \ Ix
and an element h 2 G such that h0.y/ > 1. This contradicts that

lim
n!1

jhn.Ix/j D 0:

It is now quite straightforward to deduce from the previous lemmas that the two
partitions ¹Usºs2S and ¹ zMsºs2S are “equivalent” in the following sense.

Proposition A.6. Let .G; S/ be a locally discrete, marked free group of real-analytic
circle diffeomorphisms. For every generator s 2 S , we have the inclusion zMs � Us

and the complement Us n zMs consists of intervals entirely contained in closures of
gaps ofƒ and a finite number of points inƒ, which are topologically hyperbolic fixed
points x for some element g in the group, but with derivative g0.x/ D 1.

Proof. Fix a generator s 2 S . Lemma A.1 gives the inclusion Us � zMs . Let C be
a connected component of Us n zMs . Assume first that C D ¹xº is a single point,
then Lemma A.3 (2) gives that this does not belong to the closure of a gap of ƒ, and
moreover, by the analogue of Lemma 4.5 for ¹ zMsºs2S (see, more specifically, [9,
Lemma 3.23] for the case of minimal action, and [9, Lemma 4.4] for the case of
minimal invariant Cantor set) its proof shows that there exists an element g … Ws
fixing x. As x 2 Us , the point x must be a topologically hyperbolic fixed point for g,
and moreover g0.x/ D 1 (this is given by [9, Lemma 3.29] in the case of minimal
action, or by [9, Lemma 4.6] in the case of minimal invariant Cantor set).

Assume next that C is a non-trivial interval, and that C contains a point x ofƒ in
its interior. Then x is an accumulation point for C \ƒ. As

S
s02S

zMs0 coversƒ with
the exception of finitely many points, there must be a different generator s0 ¤ s in S
such that C \ zMs0 \ƒ ¤ ¿. Using Lemma A.1, we deduce that

C \ Us0 \ƒ ¤ ¿;

and since C � Us , we then have Us \ Us0 \ƒ ¤ ¿, contradicting Lemma A.5.
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