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Collapsed Anosov flows and self orbit equivalences

Thomas Barthelmé, Sergio R. Fenley, and Rafael Potrie

Abstract. We propose a generalization of the concept of discretized Anosov flows that covers
a wide class of partially hyperbolic diffeomorphisms in 3-manifolds, and that we call collapsed
Anosov flows. They are related to Anosov flows via a self orbit equivalence of the flow. We
show that all the examples from Bonatti, Gogolev, Hammerlindl, and Potrie [Geom. Topol. 24
(2020), 1751–1790] belong to this class, and that it is an open and closed class among par-
tially hyperbolic diffeomorphisms. We provide some equivalent definitions which may be more
amenable to analysis and are useful in different situations. Conversely, we describe the isotopy
classes of partially hyperbolic diffeomorphisms that are collapsed Anosov flows associated with
certain types of Anosov flows.

1. Introduction

For about 15 years Pujals’ conjecture [19] has served as a blueprint and motivation
for the understanding and classification of partially hyperbolic diffeomorphisms in
dimension 3. In most 3-manifolds, that is, those with non-virtually solvable funda-
mental group (see, e.g., [47] for the case of manifolds with virtually solvable fun-
damental group), the conjecture affirmed that, up to iterates and finite lifts, a tran-
sitive partially hyperbolic diffeomorphism had to behave like the discretization of
an Anosov flow: the diffeomorphism should globally fix each orbit of an associated
Anosov flow, moving points along the orbits.

In the past few years, Pujals’ conjecture was disproved: Examples built in [15,16]
(see also [18,20]) gave a plethora of new partially hyperbolic diffeomorphisms. All of
these new examples are such that they have infinite order in the mapping class group
of their underlying manifolds, contradicting Pujals’ conjecture.

Thanks to a criterion developed in [15] called '-transversality (Definition 2.11),
these new examples – as well as the older examples of [19] – can be described in
the following way: Start with an Anosov flow �t on a manifold M . Then find a dif-
feomorphism ' of M that preserves the transversality of the bundles of the Anosov
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splitting (more precisely, such that the flow �t is '-transversal to itself, see Defini-
tion 2.11). Finally, compose ' with a very large time of the flow �t and obtain a
partially hyperbolic diffeomorphism.

Finding good diffeomorphisms ' is generally the difficult step, but one type of
map that does work (as chosen in [19]) is a smooth symmetry of the Anosov flow.

In this article we show that, while not obvious from the constructions, all of the
new examples of partially hyperbolic diffeomorphisms are related to symmetries (self
orbit equivalences to be precise) of the initial flow.

More generally, the main goal of our article is to introduce, a new class of partially
hyperbolic diffeomorphisms in dimension 3, that we call collapsed Anosov flows. A
partially hyperbolic diffeomorphism is a collapsed Anosov flow if there exists a global
collapsing map, homotopic to the identity, that semi-conjugates a self orbit equiva-
lence of a topological Anosov flow with the diffeomorphism.

This class of diffeomorphisms has very interesting properties. In particular, we
show the following (formalized below as Theorems A and C).

Informal statement. Collapsed Anosov flows form an open and closed class of par-
tially hyperbolic diffeomorphisms in dimension 3 that contains all known examples in
manifolds with non-virtually solvable fundamental group.

Since our goal is in part to lay down the basis for a future study of this class, we
introduce four definitions: Three of them (collapsed Anosov flow, strong collapsed
Anosov flow and leaf space collapsed Anosov flow, Definitions 2.7, 2.10 and 2.13
respectively) have to do with how restrictive one wants the semi-conjugacy to be in
terms of its behavior with respect to either center curves or the branching foliations of
the partially hyperbolic diffeomorphisms. The last definition (quasigeodesic partially
hyperbolic diffeomorphisms, Definition 2.16) is different as it instead asks for the
center foliation to be by quasigeodesics inside each center stable and center unstable
leaf.1

Under some orientability conditions, we prove equivalence between quasigeo-
desic partially hyperbolic diffeomorphisms, strong collapsed Anosov flows and leaf
space collapsed Anosov flows (Theorems B and D). We believe that these equiv-
alences will show themselves to be quite useful: For instance, the proof, obtained
in [37], that every hyperbolic 3-manifold that admits a partially hyperbolic also admits
an Anosov flow relies on these equivalences.

In light of the fact that the known counter-examples to Pujals’ conjecture are all
collapsed Anosov flows, it is natural to ask the following (thus extending [16, Ques-
tion 1] and making [64, Question 12] precise).

1It also requires the center stable/unstable branching foliations to be by Gromov-hyperbolic
leaves.
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Question 1. Let M be a 3-manifold with non-virtually solvable fundamental group
and f WM !M a (transitive) partially hyperbolic diffeomorphism. Is f a collapsed
Anosov flow?

One interest of Pujals’ conjecture was to suggest that the classification of par-
tially hyperbolic diffeomorphisms in dimension 3 could be done up to classification
of Anosov flows. If the question above admits a positive answer, then that view behind
Pujals’ conjecture may still be true, as it seems possible to understand all the self orbit
equivalences of Anosov flows without having a full classification of the flows2.

While we will not suggest an answer to Question 1 in full generality, there are
several contexts where we can say more:

(i) When M is hyperbolic, the answer is proven to be positive in [37].

(ii) When the partially hyperbolic diffeomorphism is homotopic to the identity,
the answer is likely positive; see [9, 10].

(iii) For Seifert manifolds, current work in progress by the second and third auth-
ors also indicates a positive answer.

Another potential interest we see in collapsed Anosov flows is that it may allow
one to successfully decouple the dynamical study of partially hyperbolic diffeomor-
phisms from the question of their classification. Indeed, one may be able to obtain fine
dynamical properties when restricting to particular types of collapsed Anosov flows.

This strategy has previously been successfully used in [3,13,25,32,38,45] for dis-
cretized Anosov flows, or similar concepts. Discretized Anosov flows were introduced
in [9] (although related notions appeared previously, for instance in [17,19]). One can
view them as collapsed Anosov flows where the self orbit equivalence is trivial, mean-
ing that it fixes every orbit of the flow; see Section 5. By [9, 10], discretized Anosov
flows represent a very large class of partially hyperbolic diffeomorphisms. An exam-
ple of a dynamical consequence is [38], where it is shown that discretized Anosov
flows are always accessible unless they come from suspensions (in particular, smooth
volume preserving ones are ergodic). In fact, another, albeit slightly weaker, accessi-
bility result is obtained for some specific collapsed Anosov flows in [38] (but without
using our terminology), and it seems plausible that such results could be achievable
for other classes of collapsed Anosov flows. 3

2Prior to the present article, self orbit equivalences of Anosov flows were only understood in
very specific cases: for geodesic flows as can, for instance, be deduced from [59], or for self orbit
equivalences that are homotopic to identity [12]. In Section 11, we describe self orbit equiva-
lences of the Franks–Williams example. After the completion of this article, the first author and
K. Mann also obtained a general result that can be used to classify self orbit equivalences for
any R-covered Anosov flow [8].

3After the completion of this work, the second and third authors proved accessibility of
collapsed Anosov flow under the assumption that the non-wandering set is everything [36].
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Finally, we can use the interaction of collapsed Anosov flows with self orbit
equivalences of Anosov flows to classify them up to isotopy. Over the years, a deep
knowledge of the orbit space of Anosov flows in dimension 3 has been attained. This
in turn gives restrictions on how a self orbit equivalence can act. For instance, self
orbit equivalences that are homotopic to the identity were classified in [12], showing
that there are at most two types of actions in that case. Knowing restrictions about
self orbit equivalences (for instance which isotopy classes can support them) directly
implies restrictions on possible collapsed Anosov flows.

On the other hand, a general method to build self orbit equivalences of Anosov
flow has not yet been developed. The construction methods of [15] together with
Theorem A gives one such method.

We illustrate what consequences this interaction gives us in a few specific cases.
In particular, we give a complete description of collapsed Anosov flows up to isotopy
in the following cases:

(1) when the manifold is the unit tangent bundle of a surface;

(2) when the associated flow is the Franks–Williams example [42]; or

(3) when the collapsed Anosov flow is homotopic to the identity (see Section 11).

The conceptualization of the notion of collapsed Anosov flows that we introduce
here has been in part motivated by [37] (and to a lesser extent by [9,10]). The indebt-
edness we have to these previous works does not translate, however, into their direct
use in the present article. Indeed, the scope, as well as most of the techniques we use
here, are different in nature from those in the aforementioned works.

2. Collapsed Anosov flows

In this paper, M will always denote a closed three-dimensional manifold. It is pos-
sible that some notions make sense in higher dimensions but we will repeatedly use
facts about foliations and Anosov flows in dimension 3 that are unknown in higher
dimensions and we have not checked to which extent arguments extend (even if only
in part) to higher dimensions.

In this section, we will make precise the different definitions of collapsed Anosov
flows alluded to earlier and formally state the main results of this article.

First we review the notion of topological Anosov flows, in order to be able to
introduce collapsed Anosov flows.
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2.1. Anosov flows and topological Anosov flows

Recall that an Anosov flow is a flow �t WM ! M generated by a vector field X such
thatD�t preserves a splitting TM D Es ˚RX ˚Eu and there exists a; b such that,
for all t > 0,

kD�tv
s
k < aebtkvsk for all vs 2 Es;

kD��tv
u
k < aebtkvuk for all vu 2 Eu:

It is well known that this property implies that the splitting is continuous. More-
over, it follows that the bundles Es and Eu are uniquely integrable into �t -invariant
foliations F s and F u tangent respectively to Es and Eu (see [2]) called the strong
stable and strong unstable foliations of �t . One obtains �t -invariant foliations F ws

and F wu called the weak stable and weak unstable foliations by taking the saturation
of the previous foliations by the flow. Note that these foliations are the unique folia-
tions tangent respectively to Ews WD Es ˚RX and Ewu WD RX ˚Eu [2]; see [51]
or [31, Section 4] and references therein for more details.

The following definition generalizes Anosov flows.

Definition 2.1. A topological Anosov flow is a continuous flow �t WM ! M that
satisfies the following:

(i) The flow �t is generated by a continuous, non-singular, vector field X . In
particular, the orbits of �t are C 1-curves in M .

(ii) The flow �t preserves two continuous, topologically transverse, 2- dimen-
sional foliations F ws and F wu.

(iii) Given any x 2 M and y 2 F ws (resp. y 2 F wu), there exists a contin-
uous increasing reparametrization hWR ! R such that d.�t .x/; �h.t/.y//
converges to 0 as t !C1 (resp. t ! �1).

(iv) There exists " > 0 such that for any x 2M and any y 2 F ws
" .x/ (resp. y 2

F wu
" .x/), with y not on the same orbit as x, then for any continuous increas-

ing reparametrization hWR! R, there exists a t � 0 (resp. t � 0) such that
d.�t .x/; �h.t/.y// > ".

Remark 2.2. Historically, topological Anosov flows were first considered as the class
of pseudo-Anosov flows, as introduced by Mosher [60, 61], that did not have any sin-
gular orbits. Since then, many different versions of the definition have been used
in the literature. As we will see in Section 5, thanks to the works of Inaba and
Matsumoto [53] and Paternain [62], one can now make a very succinct definition of
topological Anosov flow as an expansive flow, tangent to a non-singular continuous
vector field, and preserving a foliation; see Theorem 5.9. Our definition is equivalent
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to this, but we express it in a way that is convenient for the statements of our results,
in particular, as we will later explain, it is equivalent to the definition used in [67].

An orbit equivalence between (topological) Anosov flows

�1t WM !M and �2t WN ! N

is a homeomorphism ˇWM ! N sending orbits of �1t to orbits of �2t preserving the
orientation. In other words, there exists a reparametrization �2

u.x;t/
of �2t such that ˇ

is a conjugation,4 i.e.,
ˇ.�1t .x// D �

2
u.t;x/.ˇ.x//;

where u.t; x/ is monotone increasing for fixed x.

Remark 2.3. It has been recently proved that every transitive topological Anosov
flow is orbit equivalent to a (smooth) Anosov flow [67].

There are several reasons why we choose to consider topological Anosov flows,
despite Shannon’s result. First, from a philosophical stand point, this article aims to
relate the topological classification problem for partially hyperbolic diffeomorphisms
to that of the topological classification of Anosov flows, making topological Anosov
flow the more natural setting. But, more importantly, in some of our results (specif-
ically in Theorem D) we only obtain a topological Anosov flow. For the generic
partially hyperbolic diffeomorphisms that we consider, the associated topological
Anosov flow has no reason to be transitive, thus it is yet unknown whether the topo-
logical Anosov flows that we obtain can be taken to be orbit equivalent to a smooth
Anosov flow. We will however show that under some general assumptions on the
partially hyperbolic diffeomorphism f (for instance f -minimality of one of the foli-
ations; see Section 4.3), the corresponding Anosov flow is transitive, hence can be
taken to be a smooth Anosov flow up to orbit equivalence.

Definition 2.4. A self orbit equivalence of an Anosov flow �t is an orbit equivalence
between �t and itself.

Self orbit equivalences homotopic to the identity have been studied in [12] to
understand fiberwise Anosov dynamics, but in fact there are self orbit equivalences of
certain Anosov flows which are not homotopic to the identity.

Definition 2.5. We say that a self orbit equivalence ˇ is trivial if there exists a con-
tinuous function � WM ! R such that ˇ.x/ D ��.x/.x/. Two self orbit equivalences
˛; ˇ are said to be equivalent (or that they belong to the same class) if ˛ ı ˇ�1 is a
trivial self orbit equivalence.

4In order for �2
u.x;t/

to be a flow, the function u must satisfy the following cocycle condi-
tion: u.x; t C s/ D u.�1t .x/; s/C u.x; t/; see, e.g., [55, Section 2.2].
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2.2. Partially hyperbolic diffeomorphisms

A partially hyperbolic diffeomorphism is a diffeomorphism f WM !M such thatDf
preserves a splitting TM D Es ˚Ec ˚Eu into non-trivial bundles such that there is
` > 0 verifying that for every x 2M and unit vectors v� 2 E� .x/ (� D s; c; u), one
has

kDf `vsk <
1

2
min¹1; kDf `vckº and kDf `vuk > 2max¹1; kDf `vckº:

As in the Anosov flow case, this condition implies that the bundles are continu-
ous. It also implies unique integrability of the bundles Es and Eu into foliations W s

and Wu, called strong stable and strong unstable foliations, respectively; see [31]. We
denote by Ecs D Es ˚Ec and Ecu D Ec ˚Eu.

Remark 2.6. It follows that given an Anosov flow, its time one map is partially hyper-
bolic and Ec coincides with the bundle generated by the vector field tangent to the
flow.

When necessary, we will denote the dependence of bundles or foliations on the
maps with a subscript, e.g., Es

f
or F s

� .

2.3. Collapsed Anosov flows and strong collapsed Anosov flows

We are now ready to give the formal definition of a collapsed Anosov flow.

Definition 2.7 (Collapsed Anosov flow). A partially hyperbolic diffeomorphism f of
a closed three-dimensional manifold M is said to be a collapsed Anosov flow if there
exists a topological Anosov flow �t , a continuous map hWM !M homotopic to the
identity and a self orbit equivalence ˇWM !M of �t such that:

(i) the map h is differentiable along the orbits of �t and maps the vector field
tangent to �t to non-zero vectors tangent to Ec ;

(ii) for every x 2M , one has that f ı h.x/ D h ı ˇ.x/.

As noted earlier, discretized Anosov flows (as defined in [9], see Section 5.5) are
collapsed Anosov flows, where h can be taken to be the identity and ˇ is a trivial self
orbit equivalence.

Remark 2.8. The name of this class was chosen as a natural extension of the class of
discretized Anosov flows. We stress that these collapsed Anosov flows are diffeomor-
phisms, and not flows, and apologize in advance if it leads to any confusion. Other
possible names that we considered, but decided against, were “of collapsed Anosov
flow type” or “collapsed self orbit equivalences”.
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Another case, discussed previously, that is easily seen to be a collapsed Anosov
flow is when an Anosov flow �t commutes with a smooth map ˇ (as in [19, Propo-
sition 4.5], for instance), then ˇ ı �1 is a collapsed Anosov flow (with self orbit
equivalence ˇ ı �1 and h the identity). However, we show (Proposition 10.10) that
these examples are always “periodic” in the sense that a power of the diffeomorphism
is a discretized Anosov flow (or, equivalently, a power of the self orbit equivalence is
trivial).

In contrast, the examples in [15] will give, thanks to Theorem A, collapsed Anosov
flows associated with self orbit equivalences of infinite order. Indeed, from a topolog-
ical point of view, the examples built in [15] are of two forms: Either the manifoldM
is toroidal with a torus T transverse to an Anosov flow and the examples are in the
isotopy class of a Dehn twist on T (or a composition of such). Or the manifold is the
unit tangent bundle T 1S of a surface and the examples are in the isotopy class of the
differential of any diffeomorphism of the base S .

Remark 2.9. The definition of a collapsed Anosov flow forces the center direction
of f to be orientable, since we can induce an orientation from the orientation of
the flow direction via h. To see this, suppose that Ec is not orientable, and suppose
that ˛ is a closed curve starting at x in M that reverses the local orientation of Ec .
Let  be the deck transformation associated to ˛. Lift x to zx in zM . Let zh be a lift
of h which is a lift of a homotopy of h to the identity. Then zh commutes with every
deck transformation. Since h is homotopic to the identity it is degree one, so there
is zy in zM such that zh.zy/ D zx. Let � be a curve in zM from zy to .zy/. Along zh.�/
the projection of the flow lines of z�t by zh induces a non-zero vector tangent to Ec .
Since  commutes with zh the final vector is the tangent to Ec in the direction induced
by  . But  was supposed to reverse the direction of Ec so this is a contradiction to
the fact that the tangent vectors toEc are changing continuously along the curve zh.�/.

Note that we require more from a collapsed Anosov flow than just being semi-
conjugated to a self orbit equivalence of an Anosov flow. Indeed condition (i) of
Definition 2.7 asks that the semi-conjugacy h at least sends the flow direction to the
center direction.

There are several reasons for this condition: First, going back to at least [51], an
overarching idea has been that any kind of classification for partially hyperbolic dif-
feomorphisms should be “up to center dynamics” (where the precise meaning of this
can be taken to be more or less strong, and somehow has to be adapted to the partic-
ular situation of study). Therefore, we see condition (i) as the minimal requirement
in order to keep to the spirit of this paradigm. A second, less philosophical, reason
is that a collapsed Anosov flow thus defined is a natural extension of the concept
of discretized Anosov flow introduced in [9] (see Section 5.5, in particular Proposi-
tion 5.26). Finally, Definition 2.7 provides us with a model of the dynamical behavior
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of the partially hyperbolic diffeomorphism to compare it with. Moreover, since some
features of the dynamics of a self orbit equivalence ˇ can be readily understood, we
hope that Definition 2.7 is enough to understand some of the dynamical properties of
a collapsed Anosov flow, as has been the case for discretized Anosov flows.

There is an issue one quickly runs into when one wants to extract more geometri-
cal or topological information about the partially hyperbolic diffeomorphism from the
collapsed Anosov flow definition: The map h sends orbits of the Anosov flow to center
curves (i.e., curves tangent to the center direction) of the diffeomorphism f . However,
it is usually difficult in partially hyperbolic dynamics to extract much knowledge
about the behavior of center stable and center unstable (branching) foliations from
coarse information about center curves. In fact, the center curves obtained via h may,
a priori, not even be inside the intersection of a center stable and center unstable leaf.5

One can resolve this issue, while preserving the interest of the class of partially
hyperbolic diffeomorphisms thus defined, by requiring that the semi-conjugacy h
somehow sends the weak stable and unstable directions of the flow to the center stable
and unstable directions of the diffeomorphism. This leads us to our next definition.

Definition 2.10 (Strong collapsed Anosov flow). A partially hyperbolic diffeomor-
phism f of a closed 3-manifold M is called a strong collapsed Anosov flow if there
exists a topological Anosov flow �t , a continuous map hWM ! M homotopic to
identity and a self orbit equivalence ˇWM !M of �t such that:

(i) The map h is differentiable along orbits of �t and maps the vector field tan-
gent to �t to non-vanishing vectors tangent to Ec .

(ii) The image by h of a leaf of F ws
� (resp. F wu

� ) is a C 1-surface tangent to Ecs

(resp. Ecu).

(iii) The map h is transversally collapsing: Given a lift zh of h to the universal
cover zM , then for any leaf zF of zF ws

� (or zF wu
� ) and any orbit  of z�t on F ,

the map zh sends  to a curve c in zh.F / that separates zh.F / in two. Moreover,
zh sends the open half-spaces inside the closed half-spaces. More precisely,
the image by zh of one of the connected component of F X  is contained in
the closure (in zh.F /) of exactly one connected component of zh.F / X c.

(iv) For every x 2M one has that f ı h.x/ D h ı ˇ.x/.

By being a C 1-surface tangent to Ecs we mean that if zh is a lift of h to zM and L
is a leaf of zF ws

� then zh.L/ is a C 1, properly embedded plane in zM tangent to Ecs .

5It is not even known if a collapsed Anosov flow necessarily admits invariant center sta-
ble or center unstable branching foliations, as the existence result of Burago–Ivanov [24], see
Section 3, requires some orientability conditions.



T. Barthelmé, S. R. Fenley, and R. Potrie 10

Clearly, a strong collapsed Anosov flow is a collapsed Anosov flow, but we do not
know whether those definitions are distinct or equivalent.

Notice that a strong collapsed Anosov flow automatically admits a pair of invariant
center stable and center unstable branching foliations (see Section 3 for the precise
definition) by looking at the image under h of the weak foliations of the Anosov
flow. Indeed, the “transversally collapsing” condition in the definition ensures that the
images of the leaves under hmay merge but do not topologically cross. Definition 2.7
on the other hand does not directly require the existence of such branching foliations.
But even if one assumes that a collapsed Anosov flow has branching foliations (or
even true foliations), it is not clear that it is enough to make it a strong collapsed
Anosov flow. Part of the issue arising here is that, in general, the center direction
of a partially hyperbolic diffeomorphism is not uniquely integrable (even when it
integrates to a foliation; see [66]).

Let us mention here, that we obtain some results about unique integrability of the
center direction in Section 10.2.

2.4. First results and examples

In [15] a notion of transversality was introduced that allows to produce new examples
of partially hyperbolic diffeomorphisms. This encompasses results proved in previous
papers [16, 18, 20].

Definition 2.11. Let �t WM !M be an Anosov flow generated by a vector fieldX in
a closed 3-manifold and preserving a splitting TM DEs˚RX ˚Eu and 'WM!M

a diffeomorphism. We say that �t is '-transverse to itself if D'.Eu/ is transverse to
Es ˚RX and D'�1.Es/ is transverse to RX ˚Eu.

Note that this notion makes sense more generally when considering any partially
hyperbolic diffeomorphism instead of an Anosov flow �t ; see [15].

Using this notion, [15] proves the following proposition.

Proposition 2.12 ([15, Proposition 2.4]). If an Anosov flow �t is '-transverse to
itself, then there exists T > 0 such that, for all t > T , the map ft WD �t ı ' ı �t

is6 partially hyperbolic.

Not only does [15] give that criterion for building partially hyperbolic diffeomor-
phisms, but it also gives many examples (using results of [16, 18, 20]) of maps ' and
Anosov flows �t that are '-transverse to themselves.

6Note that we wrote it this way for convenience, since ft is smoothly conjugate to �2t ı '
and to ' ı �2t .
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The proof of this criterion is an almost immediate application of the classical cone
criterion: Given a, say, strong unstable cone Cuu for �t , the transversality ofD'.Eu/
with Es ˚ RX ensures that, for some large enough t , D�tCuu will also be a cone
family for the map ft . A drawback of this proof is that one does not get any precise
information about the dynamics.

Hence, while great at providing examples, this criterion fails, at least directly, to
give any concrete understanding of the structure that these maps may enjoy. Indeed, it
is a priori not obvious, and it may even seem contradictory, how these examples may
act: On the one hand, many of them are not homotopic to the identity, while when t is
large, the dynamics seems to be governed by the Anosov flow �t .

Our first main result gives an understanding of how the behaviors of ' and �t
must play together and makes clear the structure of these examples.

Theorem A. Let �t WM ! M be an Anosov flow on a closed 3-manifold and let
'WM !M be a diffeomorphism such that �t is '-transversal to itself. Then, there
exists t0 > 0 such that for all t > t0 the diffeomorphism ft D �t ı ' ı �t is a strong
collapsed Anosov flow of the flow �t .

With the help of Theorem A one can prove that all the partially hyperbolic dif-
feomorphisms built in [15] are collapsed Anosov flows.7 This not only gives a wealth
of examples, but also shows that all known constructions of partially hyperbolic dif-
feomorphisms on 3-manifolds with non-virtually solvable fundamental group are col-
lapsed Anosov flows. Note that the non-virtually solvable fundamental group assump-
tion is necessary: Aside from the examples of partially hyperbolic diffeomorphisms
on T3, where no Anosov flow can exist, there are, as pointed out by a referee, some
examples built similarly to those in [66], which are partially hyperbolic diffeomor-
phisms on the mapping torus of an Anosov automorphism, but are not collapsed
Anosov flows; see Section 4.2.

In the examples that we advertised earlier, i.e., the discretized Anosov flows and
the examples of [19], the map h of Definition 2.10 could always be taken to be a home-
omorphism (in fact, the identity). Now, some of the collapsed Anosov flows obtained
through Theorem A show why we cannot always ask for the collapsing map h to be a
homeomorphism: Indeed, if h is injective, then the image by h of the weak stable and
weak unstable foliations of the Anosov flow �t are center stable and center unstable
foliations of the strong collapsed Anosov flow f . In particular, f must be dynami-

7To be precise, one proves that all examples à la [15], understood as any example obtained
via Proposition 2.12, are collapsed Anosov flows by applying Theorems A and C together; see
Remark 10.4.
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cally coherent.8 Since some examples built in [15] are shown to be non-dynamically
coherent, the associated map h must be non-injective.

It is an interesting question to try to determine when the map h can be a homeo-
morphism, or equivalently when a strong collapsed Anosov flow may be dynamically
coherent. Some examples built in [18, 20] are dynamically coherent and associated
with a non-periodic self orbit equivalence. But the associated Anosov flow is non-
transitive.

So far, the only collapsed Anosov flows associated with a transitive Anosov flow
that are known to be dynamically coherent are such that the self orbit equivalent is
periodic (i.e., such that a power is a trivial self orbit equivalence).

2.5. Leaf space collapsed Anosov flows

Although not explicit, the definition of a strong collapsed Anosov flow implies the
existence of center stable Wcs and center unstable Wcu branching foliations (we defer
their precise definitions to Section 3) that are invariant under f . By taking the inter-
section of these branching foliations (in an appropriate way), one gets an invariant
one-dimensional center branching foliation Wc .

It is possible to generalize the definition of a leaf space of a true foliation to the
branching case (see Section 3 or [10]), and we thus obtain the center leaf space Lc ,
on which any lift zf of f to the universal cover acts naturally.

For a collapsed Anosov flow which preserves branching foliations, this center leaf
space Lc should be the same as the orbit space of an Anosov flow, and the action of zf
should correspond to the action of a lift of a self orbit equivalence. This idea is made
precise in the next definition of a leaf space collapsed Anosov flow.

For a topological Anosov flow �t WM ! M we denote by O� the orbit space of
the flow z�t which is the lift of �t to zM . We recall that O� is homeomorphic to R2

and �1.M/ acts naturally on O� ; see [4, 33].9

Definition 2.13 (Leaf space collapsed Anosov flow). We say that a partially hyper-
bolic diffeomorphism f of a closed 3-manifold is a leaf space collapsed Anosov flow
if it preserves center stable and center unstable branching foliations Wcs and Wcu

and there exists a topological Anosov flow �t and a homeomorphism H WO� ! Lc

which is �1.M/-equivariant.

8A partially hyperbolic diffeomorphism f is called dynamically coherent if it preserves a
pair of foliations tangent to respectively Es ˚Ec and Ec ˚Eu.

9Technically, the references [4,33] only deal with smooth Anosov flows, however the proofs
rely only on the existence of weak foliations and the behavior of orbits inside them, so apply
directly to the topological Anosov setting. Formally, a proof for topological Anosov flow is
contained in [35], where that result is proven for any pseudo-Anosov flow.
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That H is �1.M/-equivariant means that if  2 �1.M/ is a deck transformation,
then, H.o/ D H.o/, for any o 2 O� .

Remark 2.14. Notice that the branching foliations Wcs and Wcu are an integral part
of the data needed to define a leaf space collapsed Anosov flow: The center leaf
space Lc is defined using the branching foliations Wcs and Wcu; see Section 3. In
fact, we do not know the answer to the following questions in full generality: If f pre-
serves two pairs of branching foliations W

cs;cu
1 and W

cs;cu
2 , is the center leaf space

obtained from W
cs;cu
1 homeomorphic to that build from W

cs;cu
2 ? And if f is a leaf

space collapsed Anosov flow for W
cs;cu
1 , is it also a leaf space collapsed Anosov flow

for W
cs;cu
2 ? Even assuming that f is a leaf space collapsed Anosov flow for W

cs;cu
1

and for W
cs;cu
2 , are the two associated center leaf spaces homeomorphic? Are the two

associated Anosov flows orbit equivalent?
We further emphasize that the map H WO� ! Lc in the definition above is a

homeomorphism, and not just a surjective continuous map as hWM !M was in Defi-
nitions 2.7 and 2.10. We can require this because, although distinct center leaves may
merge, they always represent different points in the center leaf space Lc .

Remark 2.15. Note that Definition 2.13 does not involve a self orbit equivalence
explicitly. However, it is easy to note that there is a self orbit equivalence class asso-
ciated to a leaf space collapsed Anosov flow since the action of a lift zf of f to zM
induces a permutation of leaves of Lc which via H induces a permutation of orbits
of �t . The fact that from this one can actually construct a self orbit equivalence fol-
lows from a standard averaging argument; see, for instance, [4, Theorem 3.4].

The homeomorphism H of Definition 2.13 identifies the center leaf space of a
leaf space collapsed Anosov flow f with the orbit space of an Anosov flow �t . The
difficulty to go from there to a strong collapsed Anosov flow (Definition 2.10) is to
build a map h on the manifold from the map H which is only on the orbit/center
leaf space. This is done (in Section 9) using a standard averaging argument (although
made harder by the existence of branching).

There is however a wrinkle to smooth out before this: Suppose f is a partially
hyperbolic diffeomorphism, preserving two branching foliations Wcs and Wcu, that is
a leaf space collapsed Anosov flow. Then the map H of Definition 2.13 is not explic-
itly required to behave well with respect to the center stable and unstable (branching)
foliations. That is, H is not assumed to identify the weak (un)stable leaf space of �t
with the leaf space of Wcs (Wcu). However, thanks to the fact that pairwise transverse
foliations invariant by an Anosov flow are unique (see Proposition 5.5), H will auto-
matically identify the weak (un)stable leaf space of the Anosov flows with the center
(un)stable leaf space of the diffeomorphism (Proposition 5.6).

Thus we obtain the following equivalence.
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Theorem B. If a diffeomorphism f is a strong collapsed Anosov flow then it is a leaf
space collapsed Anosov flow. Moreover, if Es or Eu are orientable, the converse also
holds.

In order to prove Theorem A, we will prove that the examples are leaf space
collapsed Anosov flows and use Theorem B (some additional work allows to bypass
the orientability condition in Theorem B).

2.6. The space of collapsed Anosov flows

It is classical, thanks to the cone criterion, that being partially hyperbolic is a C 1-open
condition among diffeomorphisms. Based on a result of [51], that we expand upon in
Appendix B, we are able to obtain a global stability result for collapsed Anosov flows.

Theorem C. The space of collapsed Anosov flows for a given Anosov flow �t and
self orbit equivalence class ˇ is open and closed among partially hyperbolic diffeo-
morphisms on a given 3-manifold. Similarly, the space of leaf space collapsed Anosov
flows is open and closed among partially hyperbolic diffeomorphisms.

Similar statements for other classes of systems have been obtained in [40, 63].
This result has also been announced for discretized Anosov flows in any dimension
in [58].

In terms of classification, Theorem C gives us that any partially hyperbolic dif-
feomorphism in a connected component of a collapsed Anosov flow (in the space of
partially hyperbolic diffeomorphisms) is also a collapsed Anosov flow, for the same
flow and the same self orbit equivalence class. In particular, two leaf space collapsed
Anosov flows in the same connected component have center leaf spaces that can be
chosen to be homeomorphic (i.e., there exists a pair of branching foliations making
the associated center leaf space homeomorphic) and act equivariantly on them.

However, to stay even closer to the spirit of the first efforts at a classification of
partially hyperbolic diffeomorphisms, as in [51] or Pujals’ conjecture [19], we may
want to ask more: One may hope that inside a connected component, not only are
the center leaf spaces homeomorphic, but so is the structure of branching of center
leaves. More precisely, suppose that f1 and f2 are two leaf space collapsed Anosov
flows associated with an Anosov flow �t and the same self orbit equivalence class ˇ.
Then Lc

1 the center leaf space of f1 is homeomorphic to Lc
2, via the composition

H2 ıH
�1
1 , where the Hi are as in Definition 2.13. However, it may a priori happen

that two center leaves c1; c01 2 Lc
1 merge (i.e., have a non-empty intersection in zM ),

while their images by H2 ıH�11 do not.
We show (in Section 5.5) that this issue does not arise for discretized Anosov flows

(or, as a consequence, for collapsed Anosov flows for which the self orbit equivalence
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class is periodic), but, in general, we do not know whether the branching structure is
completely determined by the Anosov flow and the self orbit equivalence class.

Question 2. Is the branching locus10 of a collapsed Anosov flow determined by the
Anosov flow �t and the self orbit equivalence class (or, at least, is the branching locus
constant in a connected component of partially hyperbolic diffeomorphisms)?

Related questions can be found in [51, Section 7].
A first step towards Question 2 could be to prove that, if a collapsed Anosov flow

is dynamically incoherent, then all collapsed Anosov flows in its connected compo-
nent are also dynamically incoherent. This is true in certain manifolds, or classes of
partially hyperbolic diffeomorphisms (e.g., hyperbolic manifolds [10, Theorem B], or
Seifert manifolds when the action on the base is pseudo-Anosov [11]). One natural,
seemingly simple, but far from well understood, class of examples where this is not
known is for partially hyperbolic diffeomorphisms in Seifert manifolds which act as
a Dehn-twist on the base.

2.7. Quasigeodesic partially hyperbolic diffeomorphisms

The last definition we introduce describes a class of partially hyperbolic diffeomor-
phism that are, in some sense, geometrically well behaved.

As before, we consider f WM !M a partially hyperbolic diffeomorphism which
preserves branching foliations Wcs and Wcu tangent respectively to Ecs and Ecu;
cf. Section 3.

We say that a curve in a leaf L of the lifted branching foliation zWcs (or zWcu) is a
quasigeodesic if it admits a parametrization �WR! L such that

cjt � sj C c0 � dL.�.t/; �.s// � c
�1
jt � sj � c0

for some c > 1; c0 > 0, where dL is the path metric induced on L by the pullback
metric from zM . A family of curves is uniformly quasigeodesic if the constants c; c0

can be chosen independently of the curve and the leaf. Following common usage in
the field, we say that a curve ˛ in a leaf L of Wcs or Wcu is a quasigeodesic, if a lift z̨
to a leaf zL in zM is a quasigeodesic.

10To be precise, consider O� to be the orbit space of the lift z�t of �t to the universal cover.
We can define the branching locus as a function BWO� �O� ! ¹0; 1º such that B.o1; o2/D 1
if and only if the corresponding center leaves intersect in zM . One could define more refined
notions taking into account how many connected components of intersection they have, or the
direction on which center curves branch, etc. All these things could a priori be determined by
the data of the flow and the self orbit equivalence class and be independent of the partially
hyperbolic diffeomorphism that realizes this as a collapsed Anosov flow.
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Definition 2.16 (Quasigeodesic partially hyperbolic diffeomorphism). Consider a par-
tially hyperbolic diffeomorphism f WM !M . We say that f is quasigeodesic if it
preserves center stable and center unstable branching foliations with Gromov-hyper-
bolic leaves such that the center curves are uniform quasigeodesics inside center stable
and center unstable leaves.

Note that this definition is independent of the choice of Riemannian metric onM ;
cf. Proposition A.5.

For true foliations, deciding whether their leaves are Gromov-hyperbolic can be
done via Candel’s uniformization theorem; see [30, Section I.12.6], although Candel’s
theorem is stated for foliations with smooth leaves, it extends to foliation with less
regular leaves thanks to [26]. While Candel’s theorem does not directly apply to
branching foliations, it may be used when these branching foliations are well approx-
imated by true foliations (see Appendix A.3), as occurs for example in the existence
theorem of Burago–Ivanov (Theorem 3.3). In particular, one can prove that, when the
branching foliations are minimal and the manifold has fundamental group with expo-
nential growth, then the leaves are Gromov-hyperbolic [38, Section 5.1]. Notice that
the weak stable and weak unstable foliations of Anosov flows always have Gromov-
hyperbolic leaves [33].

It turns out that quasigeodesic partially hyperbolic diffeomorphisms and leaf space
collapsed Anosov flows are one and the same class (at least under some orientabil-
ity conditions), thereby giving a nice geometrical description of (strong) collapsed
Anosov flows.

Theorem D. A leaf space collapsed Anosov flow is a quasigeodesic partially hyper-
bolic diffeomorphism. Moreover, if the bundles Es and Eu are orientable, the con-
verse holds.

Although we do not use it to prove Theorem A, this characterization can be used
to prove that some partially hyperbolic diffeomorphism are collapsed Anosov flows,
as is done in [37]. (In fact, [37] motivated some of the results in this article, including
Theorem D.)

Remark 2.17. Use of leafwise quasigeodesic behavior and the Morse Lemma to
prove stability results have a long and fruitful history. While not directly applica-
ble, some of our techniques share a similar philosophy as those previously used by,
for instance, Ghys [44], or, more recently, by Bowden and Mann [21].

The geometric description we obtain for collapsed Anosov flows is in fact more
precise than this: We show that the center leaves of a quasigeodesic partially hyper-
bolic diffeomorphism must form a quasigeodesic fan inside each center stable or
unstable leaf, as is the case for orbits of Anosov flows; see Theorem 6.11. In addition,
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we prove that the branching of center leaves, if it exists, is fairly well behaved; see
Lemma 10.5.

A parallel can be made between the cases studied here and the classification of
partially hyperbolic diffeomorphisms on 3-manifolds with (virtually) nilpotent fun-
damental group: On these manifolds, while the branching foliations are not Gromov
hyperbolic, the center leaves may be quasigeodesics inside their branching center
(un)stable leaves. Determining when this is the case turned out to be a successful
strategy for the classification; see [47, 48].

Remark 2.18. Both Theorem C and Theorem D, giving the equivalence between
strong collapsed Anosov flows, leaf space collapsed Anosov flows and quasigeodesic
partially hyperbolic diffeomorphism require some orientability conditions for one of
their directions. The knowledgeable reader might surmise that this is linked to the the-
orem of Burago–Ivanov (Theorem 3.3), giving the existence of branching foliations
under some orientability conditions of the bundles. This is only partly true: each of the
Definitions 2.10, 2.13 and 2.16 assumes already the existence of branching foliations,
but what we do need for some arguments from Burago–Ivanov Theorem is that these
branching foliations are well approximated by true foliations.

While we think it likely that both Theorem C and Theorem D would hold without
the orientability assumptions, we are not able to prove it at this time.

In particular, one step that would be very helpful to solve this problem, would be
to prove uniqueness of the invariant branching foliations tangent to the center stable
and center unstable bundles for partially hyperbolic diffeomorphisms; see Question 4.

The uniqueness question, which has a very wide scope of potential applications,
is completely open in general. Here we prove it for the examples of Theorem A in
Proposition 10.3.

2.8. Realization of self orbit equivalences

One way of looking at the definition of collapsed Anosov flows is as a partially hyper-
bolic realization of a self orbit equivalence of an Anosov flow.

Quite clearly, not every self orbit equivalence of an Anosov flow can be a par-
tially hyperbolic diffeomorphism: Just consider a trivial self orbit equivalence �h.�/
of an Anosov flow �t WM ! M , where hWM ! R is such that h.x0/ D 0 for some
x0 2M , which therefore cannot be partially hyperbolic. However, if we consider the
equivalence class of a trivial self orbit equivalence, then that class has an element that
can be represented as a partially hyperbolic diffeomorphism.

Therefore, the following natural problem presents itself.

Question 3. Is every self orbit equivalence class of an Anosov flow realized by a
collapsed Anosov flow?
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Notice that a positive answer would, in particular, imply that there exists exam-
ples of partially hyperbolic diffeomorphisms in hyperbolic 3-manifolds which are not
discretized Anosov flows, even up to finite powers; see [10, Theorem B].

While not complete enough to fully answer Question 3, the constructions of [15]
lead, via Theorem A, to the realization of many classes of self orbit equivalences. In
fact, for some Anosov flows, their construction is enough to realize (virtually) all self
orbit equivalence classes.

On the other hand, a basic understanding of the self orbit equivalences of Anosov
flows, such as the one obtained in [12] for those homotopic to the identity, directly
leads to restrictions on possible collapsed Anosov flows (up to isotopy).

We choose to illustrate both of these principles on three specific, but important,
examples.

In Theorem 11.1, we completely describe strong collapsed Anosov flows that are
homotopic to identity (this result is obtained from [12, Theorem 1.1], which describes
the self-orbit equivalences of Anosov flows that are homotopic to identity).

In Theorem 11.2 and Theorem 11.6, we show that, on the unit tangent bundle of
a hyperbolic surface and when considering the Franks–Williams example (or some
generalizations of it) the answer to Question 3 is (virtually) positive and we describe
all possible collapsed Anosov flows up to isotopy.

2.9. Organization of the paper

In Section 3, we recall the definition of branching foliation and the existence theorem
of Burago–Ivanov. We also state a more precise existence theorem for true foliations
that approximate branching foliations. This precision can be extracted from the origi-
nal proof of Burago–Ivanov and we explain how to do that in Appendix A.

In Section 4, we prove Theorem C. To prove it, we first recall some results that
can be extracted from [51], as explained in Appendix B.

In Section 5, we prove some general facts on topological Anosov flows and show
that discretized Anosov flows (in the sense of [9, 10]) are (strong) collapsed Anosov
flows.

In Section 6, we prove (Theorem 6.11) that the center leaves of a quasigeodesic
partially hyperbolic diffeomorphism must make a quasigeodesic fan in each center
(un)stable leaf. To prove this, we study general subfoliations by quasigeodesic leaves
of a foliation and obtain some results that apply in the general case.

In Section 7, we prove Theorem D.
In Section 8 and Section 9, we prove both directions of Theorem B.
In Section 10, we prove Theorem A. We also (see Section 10.2) prove a result

about the uniqueness of center stable and center unstable branching foliations, in the
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setting of the examples of Theorem A, as well as a (branching) version of unique
integrability of their center curves (Proposition 10.6).

Finally, in Section 11, we prove some classification results about collapsed Anosov
flows and self orbit equivalences.

2.10. On some simplifying assumptions

Some elements of this article are technical in nature, in part because of the broad
generality of our context. So we mention here a simplifying assumption that the reader
could make.

If all partially hyperbolic diffeomorphisms are assumed to preserve branching
foliations that are f -minimal (that is, the only closed, non-empty, f -invariant set
that is foliated by center stable or center unstable leaves is the whole manifold), then
the following occurs:

(i) If one of the branching foliations is f -minimal and f is any version of col-
lapsed Anosov flow, then the associated topological Anosov flow will be
transitive; see Remark 4.9. Hence, Shannon’s result [67] applies and, up to
an orbit equivalence, the topological Anosov flow can then be assumed to be
a smooth Anosov flow.

(ii) In Section 6, which contains the key for the proof of Theorem D, Section 6.4
can be skipped as Proposition 6.17 then follows trivially from Proposition 6.9.

The f -minimality of branching foliations follows readily from any of the fol-
lowing assumptions on f : f is (chain)-transitive, f is volume preserving, the man-
ifold M is hyperbolic ([10]), or if f is in the same connected component (among
partially hyperbolic diffeomorphisms) from a transitive one; see Proposition 4.8.

3. Branching foliations and leaf spaces

In this section we review the notion of branching foliations introduced in [24] and
their leaf spaces. Under some orientability assumptions, partially hyperbolic diffeo-
morphisms always preserve branching foliations which are well approximated by
foliations, so it makes sense to consider partially hyperbolic diffeomorphisms pre-
serving some branching foliations. We assume basic familiarity with foliations in
3-manifolds; see, e.g., [9, Appendix B] and references therein.

Given a plane field E in a 3-manifold M we call complete surface tangent to E
a C 1-immersion 'W U ! M from a simply connected domain U � R2 into a 3-
manifold M which is complete for the pullback metric and such that Dp'.R2/ D
E.'.p// at every p 2 U .
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Definition 3.1 (Branching foliation). A branching foliation F of a 3-manifold M
tangent to E is a collection of complete surfaces tangent to E such that:

(i) every point x 2M belongs to (the image of) some surface,

(ii) the surfaces pairwise do not topologically cross (see below),

(iii) the family is complete, i.e., it contains all the limits of its leaves in the pointed
compact open topology (see below),

(iv) it is minimal in the sense that one cannot remove any surface from the col-
lection and still satisfy properties (i) to (iii).

The condition of no topological crossing is quite subtle, since the crossing may
take place far in the manifold (it cannot be defined locally, and it is part of the reason
surfaces are defined in terms of simply connected domains). Following [24, Sec-
tion 4], given two complete surfaces 'WU ! M and  W V ! M tangent to E we
say that they topologically cross if there is a curve  W .0; 1/! U , a C 1-immersion
‰WV � .�"; "/!M such that‰.�; 0/D  , and a map z W .0; 1/! V � .�"; "/ whose
image intersects both V � .0; "/ and V � .�"; 0/ such that ' ı  D‰ ı z . This notion
is well defined and symmetric on the surfaces.

Remark 3.2. The key difference between branching foliations defined above and the
branched laminations introduced in [51, Section 6.B] is the additional assumption (ii)
that there are no topological crossing between surfaces. Of course, this added notion
only makes sense in the codimension one setting.

The notion of completeness of the family stated in the definition of branching
foliation should be understood in the following sense: Let 'nWUn!M be a sequence
of complete surfaces tangent to E in the family. Suppose that 'n.pn/! x for some
points pn 2 Un. Then, there exists a surface 'WU !M in the family that verifies the
following. Given a point p 2 U , there is an arbitrarily large ball around p and large
balls around each pn 2 Un on which the map ' is C 1-close to some reparametrization
(see next paragraph) of the maps 'n; see also [24, Lemma 7.1].

Note that condition (iv) above is not stated explicitly in [24], but can be easily
deduced by choosing one leaf in each equivalence class (up to topological reparam-
etrization). There is a lot of ambiguity for the choice of parametrizations and since
we want to focus on their images, we want to avoid it. For that, we will say that
two complete surfaces 'WU ! M and  W V ! M tangent to E are the same up to
reparametrization if there is a homeomorphism hWU ! V such that ' D  ı h.

It is standard in the literature to abuse notation and talk about leaves of a branching
foliation F to refer either to the complete surface 'WU !M up to reparametrization,
or to its image. In this article, we will try to avoid this for clarity. In fact, some of our
results a posteriori help justifying this classical abuse; see the end of Remark 3.6.
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In [24, Theorem 7.2], it is shown that branching foliations can be approximated
arbitrarily well by true foliations. The statement of [24, Theorem 7.2] does not state
explicitly some properties of the approximation that we will need. Precisely, item (ii)
below is not stated in [24, Theorem 7.2], but we explain in Proposition A.1 of the
appendix how it follows from its proof.

Theorem 3.3. Let F be a branching foliation tangent to a transversely orientable
distribution E on a closed 3-manifold M . Then, for every " > 0 there exists a folia-
tion F" with smooth leaves and a continuous map h"WM !M such that the following
conditions hold:

(i) the angle between E and TF" at every point is smaller than ";

(ii) for every surface 'WU !M in F there is a unique leaf L of the foliation F"

such that h" is a local C 1-diffeomorphism from L to the surface: That is, for
every x 2 L there is a neighborhood V of x in L and an open subsetW � U
such that '�1 ı h"WV ! W is a diffeomorphism;

(iii) d.h".x/; x/ < " for every x 2M .

Remark 3.4. While the theorem of Burago and Ivanov, a priori only gives an approx-
imating foliation with C 1-leaves, thanks to work of Kazez and Roberts [56], any
foliation with C 1-leaves can be approximated by a foliation with smooth (C1) leaves
with the same properties. Hence, one can then obtain a family of foliations with
smooth leaves that approximates the branching foliations.

The uniqueness of the correspondence between leaves of the true and branching
foliations, given by item (ii) above, allows to simplify the definition of the leaf spaces
of the center stable, center unstable and center (branching) foliations given in [10,
Section 3].

Let f WM !M be a partially hyperbolic diffeomorphism and assume that f pre-
serves branching foliations Wcs and Wcu tangent respectively to Ecs D Es ˚Ec

and Ecu D Ec ˚ Eu. That f preserves the branching foliation means that each sur-
face of the collection is mapped, up to reparametrization, to another surface in the
collection.

Remark 3.5. We pause here to emphasize the different assumptions about the respec-
tive smoothness of the foliations we consider in this article. While all our foliations
and branching foliations are assumed to be only continuous transversally, the assumed
regularity of their leaves is different depending on the context:

• If F ws is the weak (un)stable foliation of a topological Anosov flow, then the
leaves of F ws are only assumed to be C 0. In particular, they may not even be
rectifiable, which leads to some technicalities in Section 5.
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• If Wcs is a branching foliation of a partially hyperbolic diffeomorphism, then the
leaves of Wcs are assumed to be at least C 1.

• If F" is an approximating foliation for a branching foliation Wcs , then the leaves
of F" are assumed to be smooth (C1).

The reason for these different regularity assumptions, is that we chose to take the
broadest, and most “natural”, definitions for each categories of objects.

Remark 3.6. By [24, Lemma 2.3], there is no closed contractible curve everywhere
transverse to Ecs . Indeed, thanks to Novikov theorem, a closed transversal would
imply the existence of a Reeb component for some of the approximating foliations.
Now, a Reeb component would force disks inside to be sent into themselves by the
unstable holonomy (see [24, Lemma 2.2]), and thus one would obtain a closed curve
tangent to Eu which is impossible. This also has the important consequence that the
approximating foliation F cs

" given by Theorem 3.3, for small ", is Reebless. The same
holds for Ecu and Wcu and F cu

" . Notice that once one knows that the branching foli-
ation is Reebless, one can simplify a bit its treatment, in particular, when lifting to the
universal cover, there is no ambiguity in identifying surfaces up to reparametrization
with their images.

Remark 3.6 and Palmeira’s theorem imply that the universal cover zM of M is
homeomorphic to R3 and that the leaf space of the lifted foliations zF cs

" and zF cu
"

of F cs
" and F cu

" respectively are one-dimensional simply connected (possibly non-
Hausdorff) manifolds. Theorem 3.3 implies that all of these leaf spaces zF cs

" for " > 0
are independent of " > 0 and are naturally bijective with the leaf space of zWcs . It
allows one to put a topology on the leaf space Lcs D zM= zWcs which is the same as
the topology on zM= zF cs

"
independently of "> 0. In the same way, we define a topology

on Lcu D zM= zWcu . It also allows to define the action of zf , a lift of f on these spaces,
since zf preserves the lifted branching foliations zWcs and zWcu.

The same holds for every deck transformation  2 �1.M/ that acts on these leaf
spaces canonically. Using these identifications there is a canonical action on the leaf
spaces of zF cs

" ; zF cu
" by either lifts of f or deck transformations.

We obtain also a way to define a leaf space Lc for the center branching foliation.
A center leaf in zM is a connected component of the intersection of a leaf L of zWcs

and a leaf U of zWcu. The center leaf space is this set with the natural topology
induced from the quotient of the subset of the Cartesian product of the two orig-
inal leaf spaces. Another way to see this is using the identification of leaf spaces
of zWcs; zF cs

" ; and zWcu; zF cu
" to define the center leaf space as the leaf space of the

foliation zF c
" obtained as the intersection of the foliations zF cs

" and zF cu
" . This is again

well defined independently of " and there is a well-defined action of �1.M/ on this
leaf space as well as an action of any lift, zf , of f to zM .



Collapsed Anosov flows and self orbit equivalences 23

Remark 3.7. The notions of leaf spaces of zWcs and zWcu coincide with the ones
studied in [10, Section 3] where we did not rely on the approximating foliations.
The definition of the center leaf space Lc taken here may however differ slightly11

from the one defined in [10, Section 3] which is a quotient of this definition: In [10,
Section 3] if two connected components c1 ofL1 \U1 and c2 ofL2 \U2 (Li in zWcs ,
Ui in zWcu) are the same set in zM , then they produced a single center leaf. Here we
do not identify them. So the center leaf space defined in [10] is a quotient of the one
we define here.

In the cases we will be interested in, there will be a nice topological structure in
the leaf space Lc which will be homeomorphic to R2. Notice that in this setting, the
foliations induced in Lc by zWcs; zWcu (or by zF cs

" ; zF cu
" using the above identifica-

tions) are (topologically) transverse and invariant under the action of �1.M/ and zf .
The assumption that a partially hyperbolic diffeomorphism of a 3-manifold pre-

serves branching foliations is justified, since it always holds up to finite cover and
iterate as the following fundamental result of [24] shows.

Theorem 3.8 (Burago–Ivanov). Let f WM ! M be a partially hyperbolic diffeo-
morphism with splitting TM D Es ˚ Ec ˚ Eu such that the bundles are oriented
and Df preserves their orientation. Then, there are f -invariant branching foliations
Wcs and Wcu tangent respectively to Ecs D Es ˚Ec and Ecu D Ec ˚Eu.

To be precise, the invariance by f of the branching foliations means the following:
If .';U / is a leaf of Wcs , then .f ı ';U / is also a leaf of Wcs modulo reparametriza-
tion.

Notice that the branching foliations constructed in [24] are invariant under every
diffeomorphism that preserves the bundles Ecs and Ecu and preserves orientations
of the bundles Ec ; Es and Eu. Some other consequences of their construction is
explored in Appendix A. One goal being to better understand the uniqueness proper-
ties these foliations may have.

Notation 3.9. Given a branching foliation F on M , we use the notation .'; U / 2 F

to refer to the surface 'WU !M . If f WM !M is a diffeomorphism that preserves
the branching foliation F , then we write f .';U / for the leaf . ; V / 2 F , which is a
reparametrization of .f ı ';U /.

11We do not know whether there exists examples where the two definitions are actually
different, but, at least formally, they are not the same.
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4. The space of collapsed Anosov flows

We want to show Theorem C. First we recall some results from [51] that we need.

4.1. Graph transform method

The structural stability results of Hirsch, Pugh and Shub [51] provide conditions
implying that perturbations of a partially hyperbolic diffeomorphisms preserving a
foliation tangent to the center direction are leaf conjugate to the original one. Their
classical stability result (see [51, Section 7]) requires the center bundle to be integrable
plus a technical condition called plaque expansivity. We refer the reader to [51] for
the precise definitions of these notions since we do not use them here.

In [51, Section 6] the authors develop a more general theory that permits leaves to
merge; see also [31, Theorem 4.26]. The more general theory allows one to remove
the technical conditions at the expense of not knowing if centers remain disjoint after
perturbation. Since in our case this is what usually happens, this is precisely what we
need.

We will use a couple of variants of [51, Theorem 6.8] (which is part of [51, Theo-
rem 6.1]). The version we need here is a uniform version of the results there. The key
observation is that the proof given in [51] provides uniform estimates that depend,
rather than on the diffeomorphism, on some of its properties which hold in uniform
neighborhoods of a given partially hyperbolic diffeomorphism. We will provide a
sketch of the proof in Appendix B. We state the results in dimension 3 where we will
use them, but similar results should hold in any dimension; see [58].

We first need some definitions from [51]. A C 1-leaf immersion is a C 1-immer-
sion, {W V ! M , of a manifold V (which is typically a disjoint union of possibly
uncountably many connected complete manifolds) to M whose image is a closed set
inM . To give a metric to V we consider the metric in each connected component of V
and declare distance equal to1 between points in different connected components.12

For a diffeomorphism gWM ! M , a C 1-leaf immersion {WV ! M is said to be
g-invariant if there exists aC 1-diffeomorphism {�gWV !V verifying { ı {�g D g ı {.
Two C 1-leaf immersions {; {0 from V to M are said to be C 1-close if they are uni-
formly C 1-close, meaning that there exists " > 0 such that for every x 2 V , we have13

d.{.x/; {0.x// < " and kDx{ �Dx{
0
k < ":

12Technically this is not a metric, but it serves well for notions such as being uniformly close,
etc.

13To make sense of the difference of derivatives, one can for instance, embedM in some Rk

with large k.
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Theorem 4.1. Let f0WM!M be a partially hyperbolic diffeomorphism. There exists
a C 1-neighborhood U of f0 such that if g; g0 2 U and {g W V ! M is a g-invariant
C 1-leaf immersion tangent to Ecg , then there exists {g0 W V ! M a g0-invariant C 1-
leaf immersion tangent to Ecg0 and C 1-close to {g and a homeomorphism � WV ! V

which is C 0-close to the identity14 verifying that .{g/�g.x/ D .{g0/�g
0.�.x// for

every x 2 V .

We will also need a version of the result above for branching foliations.15

Definition 4.2. If gWM ! M and g0WM ! M are partially hyperbolic diffeomor-
phisms preserving respectively branching foliations Wcs

g and Wcs
g0 tangent to Ecsg

and Ecsg0 . We say that Wcs
g and Wcs

g0 are "-equivalent if:

(i) there exists a �1.M/-invariant homeomorphismH from Lcs
g to Lcs

g0 , the leaf
spaces of zWcs

g and zWcs
g0 in zM , respectively;

(ii) there are lifts zg and zg0 of g and g0 respectively such that the actions on Lcs
g

and Lcs
g0 are conjugate via H , that is, H ı zg D zg0 ıH ;

(iii) given LD .';U / 2Lcs
g a leaf of zWcs

g , we have that the leafH.L/D . ;V /
of zWcs

g0 is uniformly "-C 1-close to L. This means that there exists a diffeo-
morphism �WU ! V such that the maps ' and  ı � are uniformly "-close
as well as their derivatives.

We can now state the result we will need.

Theorem 4.3. Let f0WM !M be a partially hyperbolic diffeomorphism of a closed
3-manifold M . There exists an open neighborhood U of f0 in the C 1-topology and
" > 0 with the property that every g 2 U is partially hyperbolic and if Wcs

g is a
branching foliation tangent to Ecsg and invariant under g, then for every g0 2 U,
there is a branching foliations Wcs

g0 , invariant under g0 and "-equivalent to Wcs
g .

The proof of both Theorem 4.1 and Theorem 4.3 are the same as the ones given
in [51] with some simplifications (due to the fact that we are only interested in part
of their statement). The key difference is that we are claiming that the size of the
neighborhoods where the results of [51, Section 6] hold are uniform and depend only
on some constants of the diffeomorphism (like the C 1-norm, the angle between the
bundles and the contraction/expansion rates) and not the diffeomorphism itself.

14In particular, it preserves connected components.
15See [51, Section 6.B] for the related notion of branched lamination (which is also inti-

mately related to the statement of Theorem 4.1) which differs from the notion of branching
foliations we use in this paper. The latter has to do with codimension one phenomena and
features the non-topological crossing condition that makes no sense in the setting of [51, Sec-
tion 6.B].
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For the convenience of the reader, we will include a short sketch of the proof
of Theorem 4.3 in Appendix B (part of the justification for this appendix is the fact
that [51, Section 6] proves many other results and what we need is not always easily
separated from what we do not need). The sketch will also serve to show how the uni-
form estimates, which are the main tool we will use follow from the same arguments
(and how the non-crossing condition is automatically satisfied). This will also allow
us to explain how Theorem 4.1 follows from [51].

Remark 4.4. As remarked by a referee, it is possible that some of the arguments in
the proofs of Theorem 4.1 and 4.3 can be made to show that the maps obtained for
the stability vary continuously with respect to parameters if one makes a deformation
of the original partially hyperbolic map (that is, a curve ft of partially hyperbolic
diffeomorphisms so that f0 is the original map). There is some difficulty in the fact
that the leaf conjugacies are not really canonical, but it is true that understanding this
further could provide useful information on how the collapsing maps vary with respect
to the map. We do not enter into this problem in this paper.

4.2. Proof of Theorem C

Recall (cf. Remark 2.15) that a leaf space collapsed Anosov flow induces naturally a
self orbit equivalence class (i.e., a self orbit equivalence up to trivial self orbit equiv-
alences).

Proposition 4.5. Let f WM ! M be a partially hyperbolic diffeomorphism. There
exists a neighborhood U of f such that if there is g 2 U which is a leaf space col-
lapsed Anosov flow associated to a topological Anosov flow �t WM ! M and a self
orbit equivalence class Œˇ� the following holds: every g0 2U is a leaf space collapsed
Anosov with respect to �t and Œˇ�.

Proof. Let U be a neighborhood given by Theorem 4.3. Then, for any g0 2 U, we
obtain a pair of branching foliations Wcs

g0 and Wcu
g0 with the same dynamics as g in

their leaf spaces.
Let zWcs

g0 and zWcu
g0 be the lifted foliations to the universal cover. For each leaf F

of zWcs
g there is a unique leaf F 0 DH.F / of zWcs

g0 which is " close to it, and vice versa;
recall Definition 4.2 (iii).

Let c be a center leaf of g. It is a connected component of the intersection of a
leaf F of zWcs

g and L of zWcu
g . Hence, there is a unique component c0 of the intersec-

tion of H.F / and H.L/ which is "-close to c. So the center leaf spaces of g and g0

are equivariantly homeomorphic. So one gets Definition 2.13 for g0 which implies
that g0 is a leaf space collapsed Anosov flow with respect to the flow �t . Moreover,
H conjugates the respective actions of lifts of g and g0 on their center leaf spaces.
Hence, their corresponding self orbit equivalence are equivalent; cf. Remark 2.15.
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This proposition implies Theorem C for leaf space collapsed Anosov flows. The
open property is immediate. In order to see that it is a closed property consider
fnWM ! M leaf space collapsed Anosov flows converging to a partially hyperbolic
diffeomorphism f WM ! M . If we apply Proposition 4.5 to f , we get a neighbor-
hood U such that if g 2 U is leaf space collapsed Anosov flow, then every g0 2 U is
leaf space collapsed Anosov flow. Since fn ! f it follows that for large n we have
that fn 2 U and so we can apply the proposition with g D fn and g0 D f .

An analogous proof, below, will give Theorem C for collapsed Anosov flows
using Theorem 4.1 instead of Theorem 4.3. This case is however much more involved
because we need to construct a map in the manifold and not just on the leaf space
level.

Proposition 4.6. The space of collapsed Anosov flows is open and closed among
partially hyperbolic diffeomorphisms.

Proof. Let f0WM !M be a partially hyperbolic diffeomorphism. We will show that
there is a neighborhood U of f0 satisfying that if there is g 2U which is a collapsed
Anosov flow, then every f 2 U is a collapsed Anosov flow. This shows that being
collapsed Anosov flow is an open and closed property among partially hyperbolic
diffeomorphisms as explained above.

For such a f0WM ! M we will take U to be the neighborhood given by Theo-
rem 4.1 and assume that there is g 2 U which is a collapsed Anosov flow. That is,
there exists an Anosov flow �t WM !M , a continuous map hWM !M homotopic to
the identity as in Definition 2.7 and a self orbit equivalence ˇ such that g ı hD h ı ˇ.
We want to construct, for g0 2 U a map h0WM ! M and a self orbit equivalence ˇ0

of �t which verify Definition 2.7.
First, we will consider a leaf immersion {g W V ! M induced by h and �t . This

is defined as follows: Consider V to be the disjoint union of orbits of �t , each one
with the smooth structure induced by the length of the curves in M . Note that even
if V is a disjoint union, we can think of points in V as points of M so we can apply
both h and ˇ to these leaves. We define {g.x/ D h.x/. This is a well-defined C 1-leaf
immersion since leaves can be lifted to the universal cover where the lift of g acts and
induces a map from V to V which is exactly ˇ. In particular, we get that .{g/�g D ˇ.

We now consider g0 2U, Theorem 4.1 gives us a C 1-leaf immersion {g0 WV !M

and a homeomorphism � WV ! V which is globally C 0-close to the identity such that

.{g/�g.x/ D .{g0/�g
0.�.x//:

We need to construct h0 and ˇ0 using this map.
Note that for 'W V ! V a C 1-diffeomorphism we get that {g0 ı ' is also a C 1-

leaf immersion with the same properties, so we need to show that there is a choice
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of ' which makes h0WM !M continuous when defined as h0.x/ D {g0 ı '.x/ where
we identify V with M as a set. The subtlety here is that even though V and M are
identified as sets, their topologies are completely different. In particular, V has many
more open sets.

To obtain h0; ˇ0 we will take advantage of the fact that {g was defined using h
which is continuous and that {g0 and {g are uniformly C 1-close. First some local
considerations. The curves ig.˛/ where ˛ is a component of V are all integral curves
of Ecg and likewise those of ig0 are integral curves of Ecg0 . In a fixed small scale one
can choose local coordinates .x; y; z/ so that the curves ig.˛/ are all "0 C 1-close to
vertical curves, with fixed "0. The same happens for ig0.˛/. Hence in a local box, for
a fixed point z in ig0.˛/ there is a unique point denoted by �.z/ in the corresponding
local sheet of ig.˛/which is the closest point to z. This defines a function �. Switching
the roles, this implies that this function is locally injective. Finally, this function has
derivative which is non-zero everywhere.

So, given x 2 V we consider Ix the "-neighborhood around x with the metric
of V (induced by M ), in particular this is contained in the same component of V .
Consider `x D {g.Ix/. Take '0.x/ to be the preimage by {g restricted to `x of the
closest point in `x to {g0.x/. The map '0W V ! V is continuous and close to the
identity. By integrating in Ix and using the orientation, one can make it to be a C 1-
diffeomorphism ' of V . We claim that {g0 ı '�1 works as a choice of h0. Consider
xn ! x a converging sequence in M . It follows that `xn ! `x uniformly in the C 1-
topology. We get that {g0.'�1.xn// is the closest point in average to `xn in {g0.Ixn/

and this point varies continuously. This shows that {g0 ı '�1 is continuous seen as a
map from M to M .

Once we have the leaf immersion {g0 ı '�1, that we will now just rename as {g0

to simplify notation, we can also define ˇ0WM !M viewingM as the disjoint union
of the components of V . We set

ˇ0.x/ D .{g0/�g
0.x/ 2 V

and consider this to be in M . The map ˇ0 is bijective since it is bijective in each
component of V and maps components to components bijectively. We need to check
that ˇ0 is continuous with the topology of M (which is weaker than the one of V ).
But the continuity of ˇ0 is a direct consequence of the continuity of g0 which forces
the maps .{g0/�g

0 in different components of V to be close when the components are
close in M .

The equation g0 ı h0 D h0 ı ˇ0 is automatically verified.

Remark 4.7. We can also show that being a quasigeodesic partially hyperbolic dif-
feomorphism is an open and closed property: If f is a quasigeodesic partially hyper-
bolic diffeomorphism, in a finite cover, an iterate of f is a leaf space collapsed Anosov
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flow; cf. Theorem D. Suppose that fn ! f is a sequence of quasigeodesic partially
hyperbolic diffeomorphisms converging to a partially hyperbolic diffeomorphism f .
Using the neighborhood U of f given by Theorem 4.3, it follows that there are
f -invariant branching foliations tangent to Ecs; Ecu. Let g be a lift of a finite iter-
ate f i of f to a finite cover M1 of M so that the lifted bundles Ec ; Es; Eu in M1

are orientable and g preserves the orientations. Let gn be the lifts to M1 of f in which
converge to g. Since gn converges to g and g preserves orientations of the bundles
then the same happens for gn for n big enough. We assume it is true for all n. It
now follows from Theorem D that the gn are leaf space collapsed Anosov flows. By
Theorem C it follows that g is a leaf space collapsed Anosov flow. Hence using Theo-
rem D again, it follows that g is a quasigeodesic partially hyperbolic diffeomorphism.
Since f itself preserves branching foliations, it now follows that f is a quasigeodesic
partially hyperbolic diffeomorphism, because the foliations of g obtained, up to taking
subsequences, as limits of the branching foliations of gn, are lifts of foliations of f
(which are limit of the branching foliations of fn). This proves that being a quasi-
geodesic partially hyperbolic diffeomorphism is a closed property among partially
hyperbolic diffeomorphisms. The open property is proved analogously.

As mentioned in Section 1, we may wonder whether a collapsed Anosov flow is
automatically a strong, or leaf space, collapsed Anosov flow. Notice that, if not, then
Theorem C implies that there is at least one entire connected component of partially
hyperbolic diffeomorphisms on which all maps are collapsed Anosov flows, but none
are leaf space collapsed Anosov flows.

To try to decide whether all collapsed Anosov flows are leaf space collapsed
Anosov flows, one tool that would greatly help is if the following was true.

Question 4. Let M with non-virtually solvable fundamental group and f WM ! M

a collapsed Anosov flow. Suppose that the bundles Ec ; Es; Eu are orientable. Is the
invariant branching foliation of f tangent to the center stable (resp. the center unsta-
ble) bundle unique?

Notice that this question also naturally arises in the existence theorem of Burago–
Ivanov (Theorem 3.3), as their construction yields two, a priori distinct, center (un)-
stable branching foliations; see also Appendix A. For manifolds with virtually solv-
able fundamental group, there are examples where this question admits a negative
answer [66] (i.e., one can create dynamically coherent examples which also admit
other branching foliations).16 In the other extreme, for hyperbolic 3-manifolds, we

16In fact, as pointed out by a referee, a very interesting example can be made in the spirit
of [66] showing that a partially hyperbolic diffeomorphism may leave invariant a foliation with
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know that the answer to the question is affirmative; see [37, Section 10]. More evi-
dence that could indicate a positive answer to Question 4 in manifolds with non-
virtually solvable fundamental group is in Section 10.

But the scope of potential use, if Question 4 were to be true, is much greater:
When studying partially hyperbolic diffeomorphisms in dimension 3, if one wants to
use branching foliations (which so far have been the main tool to understand partially
hyperbolic diffeomorphisms geometrically or topologically), then one has to use the
existence result of Burago–Ivanov. Now that result comes with an orientability con-
dition, thus forcing one to take a finite lift and finite power to ensure the existence of
such foliations. Knowing uniqueness of such foliations would then allow to prove that
they can project to the original manifold. Hence, one may hope to obtain geometrical
consequences for the original map as well as for its lifts and powers.

4.3. Another application of Theorem 4.3

We will give another application of Theorem 4.3 that may be useful to simplify some
of the arguments of the rest of the paper in some particularly relevant cases. We recall
from [10] the following notion for an f -invariant branching foliation. If f WM !M

is a diffeomorphism preserving a branching foliation F , we say F is f -minimal if
every non-empty, closed and f -invariant F -saturated set is all of M ; see [10, Defini-
tion 3.23].

A direct consequence of Theorem 4.3 is the following.

Proposition 4.8. Let f WM !M be a partially hyperbolic diffeomorphism admitting
an f -invariant branching foliation Wcs

f
tangent to Ecs

f
which is f -minimal. Then,

for every gWM ! M that can be connected to f by a path of partially hyperbolic
diffeomorphisms, the map g admits a g-invariant branching foliation Wcs

g tangent
to Ecsg , which is g-minimal.

Proof. Fix a path ft WM ! M of partially hyperbolic diffeomorphisms such that
f0 D f and f1 D g. Let A � Œ0; 1� be the set of t 2 Œ0; 1� such that ft verifies that
it admits a ft -invariant branching foliation which is f -minimal. The set A contains 0
and thus is non-empty. It is open thanks to Theorem 4.3 and [10, Lemma B.1].

To see that it is closed, fix an accumulation point t of A. It follows that ft has a
neighborhood U where Theorem 4.3 holds. There is t 0 2 A such that ft 0 2 U, and

C 0-leaves which admits a flow orbit equivalent to an Anosov flow, while not being a collapsed
(nor discretized) Anosov flow in our definition (in particular, the center bundle of this example
is not orientable). These examples are not known to exist if the fundamental group of M is not
virtually solvable.
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thus we can apply Theorem 4.3 to deduce that t 2 A. This shows A is closed and thus
A D Œ0; 1�, in particular g D f1 verifies the desired property.

Remark 4.9. A leaf space collapsed Anosov flow f will have its branching foliations
f -minimal if and only if the corresponding Anosov flow is transitive, so the previous
proposition implies that this will be the case for all partially hyperbolic diffeomor-
phisms in the connected component of f . In particular, if f is a leaf space collapsed
Anosov flow with respect to an Anosov flow which is not transitive, we deduce that f
cannot be in the same connected component as a partially hyperbolic diffeomorphism
which is chain recurrent.17 Since transitive topological Anosov flows are orbit equiv-
alent to true Anosov flows [67], one can ignore the distinction between topological
Anosov flows and smooth Anosov flows when working in the connected component
of a partially hyperbolic diffeomorphism which is transitive or volume preserving, for
instance.

5. Some results about topological Anosov flows

5.1. Foliations of Anosov flows

Let �t WM ! M be a topological Anosov flow on a closed 3-manifold M . We study
here the �t -invariant foliations saturated by orbits. We say that a foliation F is �t -
saturated if for every leaf L 2 F and x 2 L we have that �t .x/ 2 L for all t 2 R.

Proposition 5.1. Let F be a foliation by surfaces which is saturated by orbits of �t
and such that F ws

� ¤ F . Then there is an attractor of �t on which F D F wu
� .

Proof. We use the spectral decomposition of Anosov flows (see [39, Section 5.3]),
which also works for topological Anosov flows using essentially the same arguments.
This implies that the set of points in M whose !-limit set is contained in an attractor
of the topological Anosov flow is open and dense. Note that the set of points on which
F ws
� ¤ F is open, therefore, there is an open set U of points whose !-limit set is

contained in an attractor A �M of the flow �t and such that F ws
� ¤ F .

In particular, there is a point x 2 U which belongs to the stable manifold F ws
� of

a periodic orbit o.

Claim 5.2. Let S be a surface intersecting F ws
� .o/ but not contained in F ws

� .o/,
where o is a periodic point of �. Then, any point of F wu

� .o/ is a limit of points
in �t .S/ as t !C1.

17We recall that being chain recurrent means that there is no proper open subset U �M such
that f . xU/ � U . This is implied for instance when f is volume preserving, or transitive.
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Proof. The fact that the surface S is not contained in F ws
� .o/ means that (up to iter-

ating forward) there is a small transversal D to the flow through o on which the trace
of S contains a curve not contained in the trace of F ws

� .o/ withD. The Poincaré first
return map to D is conjugate to a fixed saddle on o \D and its forward iterates then
make S converge to the trace of F wu

� .o/ by forward iteration.

Since the foliation is continuous, this implies that the leaf F wu
� .o/ is contained

in F . Since this leaf is dense in the attractor A it follows that F coincides with F wu
�

in A as announced.

A direct corollary is as follows.

Corollary 5.3. Let �t be a transitive topological Anosov flow, then, there are exactly
two �t -saturated foliations, which are F ws

� and F wu
� .

Proof. Note that if �t is transitive, then M is the unique attractor and repeller.

Remark 5.4. If �t is not transitive, then Corollary 5.3 does not hold. Indeed, it is pos-
sible to construct several �t saturated foliations which coincide with the weak-stable
and unstable foliations in subsets of the non-wandering set, but which are different
from both of these foliations in the wandering region. Indeed, to make a concrete
example, consider the Franks–Williams [42] Anosov flow �t WM !M with an attrac-
tor A and a repeller R such that every orbit not in A [ R intersects a C 1-smooth
torus T transverse to �t and choose a foliation G of T which is transverse18 to both

F ws
� \ T and F wu

� \ T:

If one considers the orbit of G by �t one gets a �t -saturated foliation onM X .A [R/
that can be completed to a �t -saturated foliation by taking the foliation F wu

� in A
and F ws

� in R. Notice that one can construct uncountably many such foliations.
Other examples can be constructed along the same lines using the zoo of examples
from [14].

Notice, however, that while non-transitive (topological) Anosov flows may have
several flow saturated foliations, one cannot choose them to be pairwise transverse as
we will show the following proposition.

Proposition 5.5. Let �t be a topological Anosov flow and let F1 and F2 be two
topologically transverse �t -saturated foliations. Then, up to relabeling, one has that

F1 D F ws
� and F2 D F wu

� :

18Notice that these foliations are indeed C 1, so one can take any foliation generated by a
vector field between the two tangent spaces.
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Proof. The proof is very similar to that of Proposition 5.1. In the transitive case the
result follows directly from Corollary 5.3, so we will assume that �t is non-transitive.

Consider a point x 2 M such that its forward orbit accumulates in an attractor A
and its backward orbit in a repeller R. Then, we claim that in a neighborhood of x the
foliations must coincide with F ws

� and F wu
� . If this were not the case, then, say F1

does not coincide with either of them in a neighborhood of x. Assume that F2 does
not coincide with F ws

� in a neighborhood of x (if it does not coincide with F wu
� one

makes a symmetric argument). Then, it follows by the argument in Proposition 5.1
that both F1 and F2 must coincide with F wu

� in A, so they cannot be transverse.
Now, notice that points whose forward orbit accumulates in an attractor and back-

ward orbit in a repeller are an open and dense subset of M in [39, Section 5.3] this is
proven for hyperbolic flows, but the proof also applies to topological Anosov flows).
This completes the proof.

5.2. Leaf space collapsed Anosov flows respect weak foliations

Recall that, given a topological Anosov flow �t , we denote by Ows
� and Owu

� the one-
dimensional foliations of O� induced respectively by zF ws

� and zF wu
� , the weak stable

and weak unstable foliations of z�t which are precisely the lifts of the foliations F ws
�

and F wu
� to zM: We also denote by Ocs

f
and Ocu

f
the foliations induced in Lc by the

center stable and center unstable branching foliations.
We now show that the map H , in the definition of a leaf space collapsed Anosov

flow (Definition 2.13), respect the weak foliations.

Proposition 5.6. If f is a leaf space collapsed Anosov flow (Definition 2.13) associ-
ated with Anosov flow �t and map H WO� ! Lc , then, up to taking ��t instead, the
map H maps Ows

� to Ocs
f

and Owu
� to Ocu

f
.

Proof. Assume that f verifies Definition 2.13. Here H is the map H WO� ! Lc

which is �1.M/-invariant. Consider the preimage under H of the center stable and
center unstable foliations Ocs

f
and Ocu

f
in Lc . These clearly project to foliations inM

by the �1.M/-invariance, and provide different foliations which are �t saturated.
It follows from Proposition 5.5 that one must be F ws

� and the other F wu
� . Thus,

up to changing the flow �t to the flow �t defined by �t D ��t , the homeomorphismH

must map the foliations Ows
� and Owu

� to Ocs
f

and Ocu
f

, respectively.

5.3. Expansive flows and topological Anosov flows

We first recall the notion of expansive flow.
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Definition 5.7. A non-singular flow �t WM !M is expansive if for every " > 0 there
exists ı > 0 such that if x; y 2 M and � WR! R is an increasing homeomorphism
with �.0/ D 0 such that d.�t .x/; ��.t/.y// � ı for every t 2 R, then y D �s.x/ for
some jsj < ".

Remark 5.8. The use of " in the definition of expansivity is to account for the recur-
rence of the flow in M itself and so that orbits that auto-accumulate also separate. If
one knows that the flow �t WM !M has properly embedded orbits19 then to establish
expansivity it is enough to show that there is some ı such that different orbits cannot
be Hausdorff distance less than ı from each other. In such cases we will call ı an
expansivity constant for �t . We refer the reader to [22] for more on expansive flows.

The following is a direct consequence of [53, Theorem 1.5] or [62, Lemma 7].

Theorem 5.9. Let �t WM !M be a flow tangent to a non-vanishing vector field, such
that �t is expansive and preserves a foliation. Then �t is a topological Anosov flow.

Proof. The results [53, Theorem 1.5] or [62, Lemma 7] show that an expansive flow
preserves transverse singular two-dimensional foliations (one weak stable and one
weak unstable) whose singularities consist of periodic orbits whose local structure is
of a p-prong with p � 3.

We claim that prong singularities of singular stable and unstable foliations are
incompatible with preserving a foliation. Suppose that �t preserves a foliation F

and �t has a singular p-prong orbit ˛. Let L be the leaf of F through ˛. While we
cannot use Proposition 5.1 at this stage (since we do not yet know � is a topological
Anosov flow), the arguments in its proof apply equally well to show that, on each side
of ˛, the leaf L has to agree with a prong of a stable or an unstable leaf of �t .

Now, looking transversely, since there are at least six prongs of �t at ˛ (at least
three stable and at least three unstable), then locally transversally one component
of M X L intersects at least one stable and one unstable prong of ˛. A nearby leaf L0

of F intersecting that component will intersect a stable and an unstable prong of ˛.
Flowing forward along �t preserves L0, brings it closer to ˛ along the stable of ˛ and
farther from ˛ along the unstable of ˛. This forces L0 to topologically cross itself,
which is impossible for a foliation.

This contradiction shows that the weak stable and unstable foliations of �t cannot
have any singularities. Therefore, �t is a topological Anosov flow.

19This cannot happen if M is compact, but will sometimes be easy to know for instance,
when lifting the flow to the universal cover.
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Remark 5.10. Notice that the previous Theorem does not require the foliation invari-
ant by the flow to coincide with the weak stable and unstable foliations of the topolog-
ical Anosov flow; cf. Remark 5.4. If �t preserves two transverse foliations then these
must coincide with the weak stable and unstable foliations of the topological Anosov
flow thanks to Proposition 5.5.

The next result follows quickly.

Corollary 5.11. Suppose that 't is orbit equivalent to a topological Anosov flow.
Then it has weak stable and unstable foliations. In other words, any flow that is
orbit equivalent to a topological Anosov flow satisfies conditions (ii) to (iv) of Defini-
tion 2.1, but may fail to satisfy condition (i).

Proof. A topological Anosov flow is expansive, and any orbit equivalence preserves
the property of being expansive. Therefore 't has weak stable and unstable possibly
singular foliations. In addition, 't preserves a two-dimensional foliation – the image
of the stable foliation under the orbit equivalence. The arguments of the previous
theorem show that this is incompatible with singularities in the stable and unstable
foliations of 't . Hence, the stable and unstable foliations of 't do not have singular
orbits, proving the result.

5.4. Smoothness, Gromov hyperbolicity and the quasigeodesic property

Let �t be a topological Anosov flow on a closed 3-manifold M . The definition of a
topological Anosov flow assumes very little regularity. In particular, the weak stable
or unstable leaves may only be C 0, and may not have the structure of a path metric
space. Up to an orbit equivalence we will show that one can assume more regularity
(for at least one of the foliations) and prove the following properties: The leaves of
one of the weak foliations are Gromov hyperbolic and the flow lines are quasigeodesic
within each leaf (these properties were proved in [33, Section 5] for Anosov flows,
but we need a different argument in our setting).

Note that, if �t is transitive, then Shannon [67] proved that �t is orbit equivalent
to an Anosov flow. Hence, [33, Section 5] implies the results in that case. What we
prove here applies also to the non-transitive case and is independent of Shannon’s
result.

In order to prove our results, we go through an intermediary flow, that is not quite
a topological Anosov flow: Specifically it lacks property (i) of Definition 2.1, but
satisfies all the other properties.

Recall that Corollary 5.11 shows that any flow that is orbit equivalent to a topolog-
ical Anosov flow admits weak stable and unstable foliations (with proper asymptotic
behaviors as described in conditions (iii) and (iv) of Definition 2.1). Thus we can start
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our first step in building an orbit equivalence from �t to one with smooth weak stable
leaves.

Lemma 5.12. Let �t be a topological Anosov flow. Then �t is orbit equivalent to a
flow 't , such that the weak stable leaves of 't are smooth (C1-) surfaces.

Proof. This directly follows from a result of Calegari in [26]: He shows that F ws
� is

isotopic to a foliation with smooth leaves. The isotopy produces a homeomorphism
from M to itself which is isotopic to the identity. This homeomorphism induces an
orbit equivalence from �t to another flow 't so that the weak stable leaves of 't are
smooth. As remarked above 't has weak stable and unstable foliations.

We stress that the flow 't has smooth weak stable leaves, but a priori only C 0-
weak unstable leaves. Of course one can do the same procedure with the weak unsta-
ble foliation instead of the weak stable foliation.

Remark 5.13. One could use Calegari’s work in a different way: It is also shown
in [26] that one can change the smooth structure of M , to make the weak stable
leaves of �t smooth for that new smooth structure. This is not the way we choose to
proceed and hence emphasize that the smooth structure of M is fixed throughout this
article.

The issue we have to deal with here is that, after the orbit equivalence, the orbits
of 't may not be tangent to a vector field, in fact, a priori, they may not even be
rectifiable. So technically 't may not be a topological Anosov flow, but it still has the
weak stable and unstable foliations, which are denoted the same way.

Proposition 5.14. Suppose that 't is a flow in M which verify conditions (ii) to (iv)
of Definition 2.1. Suppose that the weak stable leaves of 't are smooth. Then they
are Gromov hyperbolic and the orbits of z't are uniform quasigeodesics in each leaf
of zF ws

' .
Moreover, writing S1.L/ for the Gromov-boundary of L, there exists a unique

� 2 S1.L/ such that every forward ray of z't ends at �, and for any � 2 S1.L/, � ¤ � ,
there exists a unique orbit of z't that has � and � as its endpoints.

The reason we are working with flows preserving smooth weak stable or unsta-
ble foliations is so that we can consider the induced path metric on the leaves. The
result stays true for any orbit equivalent flows if one considers the metric in the leaves
induced by the homeomorphism realizing the orbit equivalence.

5.4.1. Proof of Proposition 5.14. In order to prove Proposition 5.14, we will “dis-
cretize” the flow in a given leaf L obtaining an oriented tree that we will show is
quasi-isometric to L and such that any orbit of z't on L is quasi-isometric to a unique
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oriented path in that tree. One important thing is that all the constants of quasi-
isometry are uniform, i.e., depend only on the flow, not on the leaf L.

First, as z't is expansive in zM , it admits an expansivity constant, say � > 0. More-
over, we can pick � so that if two forward (resp. backwards) rays in zM are at distance
less than � apart then they are in the same weak stable (resp. unstable) leaf. (This
is because the “"-stable manifold” of a point x is a regular neighborhood of x in its
stable leaf; see, e.g., [53].)

We pick a constant "> 0much smaller than �. We will choose two finite coverings,
one contained in the other. First choose a finite covering ¹Ciº of M by flow boxes of
the following form:

Ci D
[
jt j<"

't .Ei /;

where Ei are pairwise disjoint transversals to the flow of diameter less than "=10. In
the same way choose a finite covering ¹Biº of M of the form

Bi D
[
jt j<"

't .Di /;

whereDi are also pairwise disjoint transversals of diameter less than ". We chooseDi
so that Ei � Di and the distance from any point in @Ei to @Di is at least "=4.

Now, given a leaf L 2 zF ws , we call ¹ zBL˛ º the connected components of the inter-
section of lifts of the Bi with L. Note that ¹ zBL˛ º is an "-dense, locally finite, open
cover of L. For each ˛, we call I˛ � zBL˛ the transversal obtained as the intersection
of the corresponding lift of Di with L. For this choice of I˛ , we have:

• each zBL˛ is of the form
S
jt j<" z't .I˛/;

• the distance between two different I˛ is bounded below and above by some con-
stants a; b > 0. (Note that these constants only depends on our choice of open
cover of M by the flow boxes, not on the leaf L).

Similarly we define the sets zCL˛ . A standard consequence of expansivity is the
following; see [53, 62] for similar results.

Lemma 5.15. There exists T > 0 (independent of L) such that, for every I˛ there is
some Iˇ such that, for every x 2 I˛ , there exists tx 2 ŒT �1; T � with z'tx .x/ 2 Iˇ .

Proof. Now, assuming the statement is not true, we can find sequences of points
xn; vn 2 I˛n such that, for times tn!1, we have that zn WD z'tn.xn/ is in Iˇn \ zC

L
ˇn

,
but z'Œ0;1/.vn/ does not intersect Iˇn . So the distance in L from this flow ray to
Iˇn \

zCL
ˇn

is � "=4 (this is where the two covers are used). Therefore, we can then
choose wn 2 Iˇn with d.zn; wn/ 2 Œ"=4; �� so that z'.�1;0�.wn/ intersects I˛n in a
point, denoted by yn. (Recall that � is the expansivity constant.) Let sn > 0 be such
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that z'sn.yn/D wn. Notice that sn!1 as n!1. Using connectedness of the tran-
versal, we have that the distance between the pieces of orbits induces a distance in
the transversal. We can then, up to changing xn; yn, pick tn and sn so that for every
t 2 Œ0; tn�, there is s 2 Œ0; sn� such that z't .xn/ and z's.yn/ are in the same flow box
and at distance less than �. In addition, d.zn; wn/ � "=4. Without loss of generality
we can assume that � is smaller than the size of foliation boxes of the weak stable
foliation.

Up to the action under deck transformations and taking subsequences, we can pick
n 2 �1.M/ so that n � zn and n � wn converge to points z1 and w1. The points
n � zn and n � wn lie in the same leaf in a foliation box thus z1 and w1 lie on
the same stable leaf, but in distinct orbits (because the transversal distance of n � zn
and n � wn is larger than "=4).

Now, by construction the backwards rays of z1 andw1 are at distance less than �
apart, so they must be on the same unstable leaf. But they are already on the same
stable leaf, thus they should be on the same orbit, a contradiction.

Now, we choose a point (for instance, the mid point) x˛ 2 I˛ for every ˛. We
define a directed graph T whose vertices are the points x˛ and there is a directed edge
x˛ ! xˇ if

• for every x 2 I˛ , there is some tx 2 ŒT �1; T � such that z'tx .x/ 2 Iˇ ;

• Iˇ is the first transversal verifying the previous property, that is, if I also veri-
fies the previous property, then, for every x 2 I˛ we have that the orbit of z't .x/
intersects Iˇ before intersecting I .

We give T a distance given by assigning length 1 to each edge and defining the
distance between two vertices to be the minimal length path from one to the other.
Note that the distance does not take into account the direction of the arrows.

Remark 5.16. Notice that the construction of T depends on L. However, the con-
stants we will find depend only on the initial construction (i.e., our choice of the finite
covering by flow boxes) and thus will be independent on the leaf L.

Remark that, by construction of T together with Lemma 5.15, every point x˛ has
a unique successor in T . Notice also that, by definition of a topological Anosov flow,
given any two points y; z 2 L, we can find t1; t2 such that z't1.y/ and z't2.z/ are
close. Thus the orbits of y and z will eventually hit the same transversal. Hence, T is
connected. Moreover, since orbits cannot intersect a transversal twice (by Poincaré–
Bendixson’s theorem), we have the following lemma.

Lemma 5.17. The graph T is a tree, in particular, it is Gromov hyperbolic.
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Now, we can map T insideL. The vertices are already points inL, and we identify
the oriented edge between x˛ and its successor xˇ with the segment of orbit of z't
from x˛ to Iˇ . Thus we obtain a map i WT !L. (Note that this map has discontinuities
at the vertices, but that is not an issue.)

Since the distance in L between two consecutive vertices x˛ and xˇ is bounded
above by some uniform constant b > 0 it follows that

bdT .x˛; xˇ / � dL.x˛; xˇ /;

because any path in T induces a path in L whose length is at most b times the number
of vertices it passes through.

The key point is that there is an inverse estimate.

Lemma 5.18. The graph T is quasi-isometric toL (more precisely, the map {WT !L

is a quasi-isometry). Moreover, the quasi-isometry constant is independent on L.

Proof. The vertices of T are "-dense in L for the distance on zM . Now, since we
built T by taking points inside small flow boxes, the distance in L, dL, restricted to
each box is bi-Lipschitz to the distance in zM , with a factor as close to 1 as we want
(the factor only depends on the size of the box, not on L). So we can assume that the
vertices of T are 2"-dense in L for the distance dL.

Thus the map {W T ! L is coarsely surjective. Hence, we only have left to show
that there exists b0 > 0, independent of L, such that

dT .x˛; xˇ / � b
0dL.x˛; xˇ /:

To do this let us consider a path � in L joining x˛ to xˇ so that

length.�/ D dL.x˛; xˇ / WD D:

Since the image of T is 2" dense in L, we can cut � in a sequence of points
p1; : : : ; pk , where each pi is a point in the image of (the inclusion of) T and such
that

• p1 D x˛; pk D xˇ ,

• dL.pi ; piC1/ < 4",

• D=" � k.

Note that these constants are independent of L. Now, it is then enough to prove
the following claim.

Claim 5.19. There exists C > 0 such that given two points in T which are at distance
less than 1 in L their distance in T is less than C .
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Proof. Note that if the transversals are at distance less than 2 in L then it takes a uni-
form amount of time for both to be contained in the same transversal; cf. Lemma 5.15.
It follows that the directed path forward from each will reach the same transversal in
a uniform amount of time, equivalently, there exists a uniform C (independent on L)
so that the distance between the transversals in T is bounded by C .

Given the previous claim, it then follows that D � k" � "
C
dT .p1; pk/, which

gives the desired estimate.

This result readily implies that leaves of the weak stable foliation in the univer-
sal cover are uniformly Gromov hyperbolic.20 We will now study the relationship
between orbits of the flow inside a leaf and directed paths in T .

Lemma 5.20. There is some uniform constant c > 0 such that, for every directed
path in T , there is x 2 L such that its forward ray remains at Hausdorff distance less
than c from the directed path.

Moreover, for every orbit of z't in L there is a unique bi-infinite directed path in T

that remains at bounded distance from the orbit.

Proof. First consider a directed path ¹p1;p2; : : : ;pn; : : :º in T and choose any point x
in the transversal corresponding to p1. From the construction of the graph it follows
that the forward orbit of x intersects the transversals corresponding to each pi and
the time it takes to go from one to the other is bounded between T �1 and T for some
T > 0. This allows to construct some c with the desired property since the transversals
have bounded length and the flow is continuous.

Now, if ¹: : : ; p�n; : : : ; p0; p1; : : : ; pn; : : :º is a bi-infinite directed path in T

then we can pick points xn in the transversal corresponding to p�n and consider the
point yn in the transversal corresponding to p0 so that yn is the intersection of this
transversal with the orbit of xn. Since the transversal is compact, we can assume that
yn ! y1 and it follows that the orbit of y1 is bounded distance from the directed
path as desired.

Finally, given x 2 L we can take points xn D z'tn.x/ and define for each xn a
directed path ¹pn0 ; p

n
1 ; : : : ; p

n
k
; : : :º defined by taking pn0 to correspond to the first

transversal intersected by the forward orbit of xn and then taking the directed path
associated to it (recall that each vertex has a unique successor). It follows that this
directed path is distance less than c from the forward orbit of xn. It also follows that
the sequence of directed paths stabilizes, by this, we mean that if n > m it follows
that pm1 ; : : : ; p

m
k
; : : : is contained in the directed path induced by xn (note that the first

20Note that this fact could also have been obtained from Candel’s uniformization theorem,
since there are no transverse invariant measures for F ws .
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point may not be in the path since it could be that it does not have predecessors). This
way, we can define a bi-infinite directed path in T , which is unique and well defined
by construction. Moreover, any other directed path in T has to be infinite distance
away, showing the stronger form of uniqueness.

We can finally finish the proof of Proposition 5.14.
We have already shown that the leaves of F ws are Gromov-hyperbolic. Now,

given an orbit of z't in L, Lemmas 5.18 and 5.20 imply that it is a uniform quasi-
geodesic of dL. Moreover, each orbits inL converge to the same point, that we denote
by � on S1.L/, the Gromov-boundary of L.

Furthermore, if � 2 S1.L/ is the backward endpoint of a directed path in T , then
there exists a unique orbit of z't which admits � as its backwards endpoints (thanks to
Lemma 5.20).

Since orbits of z't are quasigeodesics in L, the usual Morse lemma states that they
are a bounded distance away from a unique geodesic (for dL). In fact, this bound is
uniform.

Remark 5.21 (Uniform bound). There is a positive constant k > 0 such that for any
flow line, `, of z't in a leaf L of zF ws

' , if ỳ is the geodesic in L with the same endpoints
as ` in S1.L/, then the Hausdorff distance, dH , in L, satisfies dH .`; ỳ/ < k.

Moreover, for any x; y 2 `, denoting by ỳx;y the geodesic segment in L from x

to y and by `x;y the compact segment in ` from x to y, then dH .`x;y ; ỳx;y/ < k;
see [23, Theorem III.H.1.7].

This uniform bound implies that the backwards endpoints of orbits of z't in L
move continuously has one moves transversally to the orbits of z't in L. Hence, for
any � 2 S1.L/, � ¤ � , there exists an orbit (which has to be unique) with � has its
backwards endpoints.

This ends the proof of Proposition 5.14.

5.4.2. Building the topological Anosov flow with smooth leaves. We now can build
a new flow, that will be a true topological Anosov flow and orbit equivalent to 't . That
is, we prove the following.

Proposition 5.22. Let �0t be a topological Anosov flow. Then �0t is orbit equivalent to
a topological Anosov flow �2t inM such that the weak stable leaves F ws

�2
are smooth.

In particular, the leaves of F ws
�2

are Gromov hyperbolic, and the flow lines of �2t are
uniform quasigeodesics in the corresponding leaves of F ws

�2
. Finally, the strong stable

leaves of �2t are also smooth.

Proof. By Lemma 5.12 the flow �0t is orbit equivalent to a flow 't inM (that satisfies
conditions (ii) to (iv) of Definition 2.1) for which the weak stable leaves are smooth.
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Moreover, by Proposition 5.14 the leaves of F ws
' are Gromov hyperbolic and the flow

lines of 't are uniform quasigeodesics in their leaves of F ws
' .

The only missing property is that 't is tangent to a non-vanishing vector field.
Now we will build another flow, �2t , that will be orbit equivalent to 't (hence also

to �0t ), with the same weak stable leaves as 't , and tangent to a non-vanishing vector
field.

To simplify notation, in this proof, we let F D F ws
' . Since the leaves of F are

smooth and Gromov hyperbolic, Candel proved that there is a leafwise tensor metric
making each leaf a hyperbolic surface. More precisely, let g denote the induced Rie-
mannian metric in TF , the tangent space of F . Then, there is a function �.x/ in M
so that �.x/g induces a hyperbolic metric in each leaf of F .

When we restrict to a leaf L of F the function � is just a uniformizing conformal
function. In particular, it is smooth when restricted to each leaf; see, for example, [29,
p. 502] or [28, p. 253] where there are explicit formulas for �.x/. These formulas show
that �.x/ is smooth when restricted to leaves, but vary only continuously transversally
to the leaves.

Now we construct the flow �2t . Let g1 D �.x/g be Candel’s leaf-wise smooth
hyperbolic metric. Fix a leaf L of zF . By Proposition 5.14, the flow lines of 't in L
are uniform quasigeodesics in L (for the metric g and hence for the metric g1), they
all share the same forward ideal point, call it zL 2 S1.L/ and their backwards ideal
points are in one-to-one correspondence with S1.L/ X ¹zLº.

Now we define z�2t as the flow (with unit speed in the g1-metric) such that its orbits
on each leaf L are g1-geodesics between y and zL for any y 2 S1.L/ X ¹zLº.

Since the flow lines of 't are uniform quasigeodesics in leaves of zF (independent
of the leaf of zF ), it follows that the forward ideal points of flow lines vary continu-
ously in zM (not just in leaves of zF ).

In particular, z�2t is a continuous flow on zM . As g1 and zF are invariant under the
action of deck transformations, the flow z�2t projects to a flow �2t on M .

Now, thanks again to Proposition 5.14, there is a one-to-one correspondence bet-
ween the flow lines of z't in a given leaf L 2 zF and the flow lines of z�2t . Thus we get
a map � from the orbit space of z't to the orbit space of z�2t .

The map � is a homeomorphism (thanks to the uniform quasigeodesic behavior of
the orbits of 't ), and clearly �1.M/-equivariant. Under these conditions, it follows
that 't is orbit equivalent to �2t . Work on this was first done by Haefliger [46] who
showed that there is a homotopy equivalence sending orbits of 't to orbits of �2t
induced by � . This was upgraded to a homeomorphism sending orbits to orbits by
Ghys [44] and Barbot [5] using averaging techniques.

By construction, the orbits of �2t are smooth (because g1 is a smooth Rieman-
nian metric on each leaf), with constant speed, and their velocity varies continuously
in M (more precisely, the velocity vary smoothly on each leaf and continuously
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transversally, because, as mentioned previously, the forward ideal points vary contin-
uously transversally), thus �2t is tangent to a non-vanishing continuous vector field.
Since it is immediate that �2t is expansive, (and preserves a foliation by construction),
Theorem 5.9 implies that �t2 is a topological Anosov flow.

Now we can just check all the conditions claimed in the statement of the propo-
sition: �t2 is a topological Anosov flow that is orbit equivalent to �0t , its weak stable
foliation is zF , so has smooth leaves, the leaves are Gromov-hyperbolic and the flow
lines are uniform quasigeodesics in each leaf. Finally, the strong stable leaves corre-
sponds to horocycles of the hyperbolic metric g1 in each leaf, hence are smooth.

Along the way we proved the following result.

Corollary 5.23. Let �0t be a topological Anosov flow in a smooth 3-manifold M .
Then �0t is orbit equivalent to a topological Anosov flow �2t such that the leaves of
the weak stable foliation F ws

�2
are smooth, and that satisfy the following additional

properties:

(1) There is a leafwise Riemannian metric g1 in TF ws
�2

, conformal with the in-
duced metric from M , such that leaves of F ws

�2
are hyperbolic surfaces with

the metric g1;

(2) The flow lines of �2t are geodesics in the respective leaves of F ws
�2

with the
hyperbolic metrics given by g1;

(3) The strong stable leaves are projection of horocycles in the respective leaves
of F ws

�2
with the hyperbolic metrics given by g1.

As pointed out before, the metric g1 varies only continuously in M .

5.5. Discretized Anosov flows revisited

Here we show that discretized Anosov flows defined in [9] fit well with all the defini-
tions of collapsed Anosov flows.

Definition 5.24. A partially hyperbolic diffeomorphism f WM !M is a discretized
Anosov flow if there exists a topological Anosov flow �t WM ! M and a continuous
function � WM ! R such that f .x/ D ��.x/.x/ for every x 2M .

In [9, Appendix G] we asked for the function � to be positive, but this is unneces-
sary.

Proposition 5.25. If f is a discretized Anosov flow, then the function � WM ! R

cannot vanish.

Proof. In [9, Proposition G.2], we proved that if f is a discretized Anosov flow,
then f must be dynamically coherent. The argument presented in [9, Proposition G.2]
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assumed that the map � was positive, but we will show below how they can easily be
modified in order not to use this assumption. Once we know that f is dynamically
coherent, we will directly deduce that � cannot vanish.

First, we prove, that the vector field X tangent to the flow �t needs to be in the
center bundle of f .

If X is tangent to Es at some point, then as in [9, Proposition G.2], this implies
that there is an interval along the flow direction totally tangent to Es . Since Es is
uniquely integrable, then this interval in the flow direction is contained in a stable
leaf. Now, the function � is bounded, so the length along a flow line from x to f .x/ is
bounded. Iterating negatively by f increases the stable length exponentially, so first
we can assume that there is x in M such that the interval in the center leaf from x

to f .x/ is contained in a stable leaf. Then again applying negative powers of f ,
produces a contradiction to � being bounded. It follows that X is never tangent to Es .
The symmetric argument implies that it is never tangent to Eu either. Then, as in the
proof of [9, Proposition G.2] one proves, that X is always tangent to Ec and that f is
dynamically coherent.

Since f is dynamically coherent, we can consider the good lift zf obtained via the
lift of the natural homotopy along the flow lines of the lifted topological Anosov flow.
This lift zf cannot have fixed points (see [19, Corollary 3.11] or [9, Lemma 3.13]),
thus � cannot vanish.

The following proposition relates the notion of discretized Anosov flows and col-
lapsed Anosov flows.

Proposition 5.26. If f is a discretized Anosov flow, then it is a strong collapsed
Anosov flow with h being a homeomorphism and ˇ being a trivial self orbit equiva-
lence. Conversely, if f verifies Definition 2.10 with ˇ a trivial self orbit equivalence,
then f is a discretized Anosov flow.

Proof. To prove the direct assertion let us just take h to be the identity. In [9, Propo-
sition G.2] it is shown that the center stable and center unstable foliations of f
correspond to the weak stable and weak unstable foliations of the topological Anosov
flow (in particular, these weak foliations whose leaves are a priori only C 0 have C 1-
leaves). Then ˇ.x/ D ��.x/.x/, which proves the result.

For the converse statement, notice first that since f verifies Definition 2.10 then
the image under h of leaves of F ws

� provides a branching foliation tangent to Ecs ,
and likewise for F wu

� . Finally, the image of any flow line is a curve tangent to Ec ,
providing a branching center foliation. Consider a good lift zf corresponding to lift-
ing ˇ to a homotopy along the flow lines, and using a lift of h lifting a homotopy to the
identity. The equation f ı h.x/D h ı ˇ.x/ then implies that zf preserves every center
leaf in zM . Again the argument of [19, Corollary 3.11] (or [9, Lemma 3.13]) implies
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that the lift to the universal cover cannot have fixed points. Moreover, when lifted to
the universal cover, one has the same situation as in the doubly invariant case, studied
in [10, Section 7.2]. Doubly invariant means that zf fixes every leaf of both the center
stable and the center unstable foliations lifted to zM . This proves that the branching
foliations are actual foliations, proving dynamical coherence of f . Now this immedi-
ately implies that f is a discretized Anosov flow; see also [9, Section 6].

With what we proved so far, we can show that when the self orbit equivalence
is trivial, then the two notions of collapsed Anosov flows (Definition 2.7) and strong
collapsed Anosov flows (Definition 2.10) coincide.

Proposition 5.27. Let f be a collapsed Anosov flow such that the associated self
orbit equivalence ˇ is trivial, then f is a strong collapsed Anosov flows.

Proof. Since ˇ is trivial, the image of the flow line foliation by h is an f -invariant
branching foliation, whose leaves are tangent to Ec . This is a center branching folia-
tion in this case. Moreover, a good lift zf leaves invariant every center leaf.

As in [10, Lemma 7.3] we know that zf moves point a bounded distance in each
center. An argument similar to [10, Lemma 7.4] allows to show that center curves are
disjoint or coincide. This implies that f verifies Definition 5.24.

In view of the above, we can even wonder whether it would be sufficient for a
definition of collapsed Anosov flow to only require the partially hyperbolic diffeo-
morphism to be semi-conjugate to a self orbit equivalence:

Question 5. Let f WM !M be a partially hyperbolic diffeomorphism such that there
exists a (topological) Anosov flow �t WM !M , a self orbit equivalence ˇWM !M

and a map hWM ! M continuous and homotopic to the identity such that f ı h D
h ı ˇ. Is f a collapsed Anosov flow?

6. Quasigeodesic behavior inside foliations

In this section we study some properties of one-dimensional foliations which subfoli-
ate a two-dimensional foliation with Gromov hyperbolic leaves. Then, we restrict to
the partially hyperbolic setting and show Theorem 6.11 that is the key step to obtain
Theorem D which will be shown in the next section.

6.1. One-dimensional foliations inside two-dimensional foliations

Let F be a foliation on a 3-manifold. In this section, we will assume that there is
a metric on M that makes every leaf of F negatively curved. Then we can even
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assume the metric on each leaf is constant curvature �1 by Candel’s uniformization
theorem. This assumption is verified whenever the foliation does not have a transverse
invariant measure of zero Euler characteristic (by Candel’s uniformization theorem;
see [30, Section I.12.6] or [28, Section 8] for a precise statement).

Consider a one-dimensional foliation G , which subfoliates F (i.e., leaves of F are
saturated by leaves of G ). We assume that the leaves of G have continuous parametriz-
ations. In our case, G will be one of two types: Either a foliation with rectifiable leaves
(in which case, the parametrization can be chosen to be arc length), or a foliation by
orbits of a continuous flow (where, while the orbits may not be rectifiable, the flow
itself gives a continuous parametrization).

Definition 6.1. The foliation G is a uniform quasigeodesic subfoliation of F if every
leaf ` 2 G is a quasigeodesic in its corresponding leaf L 2 F with uniform constants.

Let us make precise what we mean by uniform constants in the above definition:
Call zF and zG the lifts of F and G respectively to the universal cover. Let ` be a

leaf of zG in a leaf L of zF . Then ` is a C -quasigeodesic if there is a constant C > 1

such that for every x; y 2 `, we have that

d`.x; y/ < CdL.x; y/C C:

Here dL denotes the distance in L given by a path metric in L and d` denotes the
distance in ` induced by the change in the parameter in the respective leaf.

In Definition 6.1, we require that there exists a constant C > 1 such that, for any
L 2 zF and any ` 2 zG , the leaf ` is a C -quasigeodesic. Note that, by compactness
of M , this definition does not depend on the choice of metric; see Proposition A.5.

Remark 6.2. One can in fact prove, by adapting the proof of [28, Lemma 10.20],
that if G subfoliates F with quasigeodesic leaves, then it is automatically a uniform
quasigeodesic foliation.

By Remark 5.21 any ` leaf of zG in a leafL of zF is a uniformly bounded Hausdorff
distance in L from a geodesic ỳ in L.

Let zG jL be the foliation zG when restricted to L. As is the case for foliations by
geodesics [27, Construction 5.5.4], one can show that foliations by quasigeodesics of
a hyperbolic plane are quite restrictive.

Proposition 6.3. Given L 2 zF , we have that the leaf space L zG ;L D L= zG of the foli-
ation zG is homeomorphic to R and either there is a point p 2 S1.L/ such that every
leaf of zG jL has p as one of its endpoints or there are exactly two points in S1.L/-
invariant under every isometry of L preserving the foliation zG jL. If rn is a sequence
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of rays21 in leaves of zG converging to a ray r , then the ideal points of rn in S1.L/
converge to the ideal point of r .

Proof. We first show that the leaf space L= zG is Hausdorff. Suppose this is not true
and there are `n leaves in zG converging to two distinct leaves `; `0 of zG .

Let x; y be points in `; `0 respectively. Then there are xn; yn in `n converging to
x; y, respectively. Hence, dL.xn; yn/ is bounded. We claim that d`n.xn; yn/ goes to
infinity. Otherwise up to subsequence we would have d`n.xn; yn/ � a0. But using the
local product structure of foliations, we would deduce that y is in `, a contradiction.

Hence, d`n.xn; yn/ must converge to infinity. However, since dL.xn; yn/ is boun-
ded, this contradicts the uniform quasigeodesic behavior. Therefore,L=zG is Hausdorff,
and hence homeomorphic to R.

We now show that the ideal points of rays of leaves of zG in S1.L/ vary contin-
uously. Let xn be a sequence in L converging to x in L, and `n; ` the leaves of zG
through xn and x, respectively.

Let rn be rays in `n starting in xn converging to a ray r in ` starting in x. Let
rn;1; r1 be the ideal points of rn; r , respectively. We want to show that rn;1 con-
verges to r1.

Suppose this is not the case, then, up to taking a subsequence, we can assume
that rn;1 converges to s1 ¤ r1. Since rn converges to r and r has ideal point r1,
then for any n large enough, there exist points un 2 rn very close to r1 in the com-
pactification L[ S1.L/. As rn;1 converges to s1, there are also points vn 2 rn very
close to s1 in L [ S1.L/. Hence, we can choose such points such that un ! r1,
vn ! s1. The compact segments In of ln from un to vn are at most k distant in L
from the geodesic segment connecting them. Since un is very close to r1 and vn is
very close to s1, then all of these geodesic segments intersect a fixed compact set
of L. Hence, up to taking a further subsequence, the segments In must converge to
a leaf `0 of zG . But this leaf is not `, contradicting that L= zG is Hausdorff. Thus, we
proved that ideal points of ray vary continuously.

Identify the leaf space L= zG with R, with parametrization `t ; t 2 R and con-
sider a sequence `tn , tn ! C1. Notice first that the endpoints .`tn/

˙ determine
a weakly nested sequence of intervals in S1.L/ which needs to shrink as n! 1.
If the geodesics gn with ideal points .`tn/

˙ do not shrink to a point, then gn lim-
its to a geodesic g in L. But recall that the `tn are at distance at most k from gn

(cf. Remark 5.21): If the endpoints are trapped by the endpoints of g, then the leaves
are trapped by a neighborhood of size k of g and cannot escape in L, contradiction.

21A ray of a leaf ` of zG in a leaf L 2 zF is the closure of a connected component of ` X ¹xº
for some x 2 `. Each ray has a well-defined ideal point r1 2 S1.L/ which coincides with the
corresponding ideal point of `.



T. Barthelmé, S. R. Fenley, and R. Potrie 48

Figure 1. Some quasigeodesic foliations of the disk which are not quasigeodesic fans (the bot-
tom right one is a weak quasigeodesic fan).

Hence, we get two points of S1.L/ one for t ! C1 and one for t ! �1. If
these two points coincide then we get that every leaf of zG must have that limit point
as a limit point. Otherwise, we get the other condition. Obviously any isometry of L
leaving the foliation invariant has to preserve this pair of ideal points.

We now define some structures related to what follows from the previous propo-
sition.

Definition 6.4. We say that a leaf L 2 zF is a weak quasigeodesic fan for the foli-
ation zG if there is a point p 2 S1.L/ such that every leaf of zG jL has p as one of
its limit points. In this case we call p the funnel point of zG jL. The leaf L 2 zF is a
quasigeodesic fan if moreover, given a point q 2 S1.L/ X ¹pº, there is a unique leaf
of zG jL whose endpoints are p and q. We say that a leaf A of F is a quasigeodesic
fan or a weak quasigeodesic fan if a lift L of it to zM is a quasigeodesic fan or a weak
quasigeodesic fan respectively.

Remark 6.5. Proposition 5.14 gives that the orbits of a topological Anosov flow make
up a quasigeodesic fan in each weak (un)stable leaf.
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Lemma 6.6. If G is a uniform quasigeodesic subfoliation of F then, for every leaf
L 2 zF , we have that there are at most two points in S1.L/ which are not endpoints
of any of the curves in zG jL.

Moreover, if a leaf L 2 zF is a weak quasigeodesic fan, then every point of S1.L/
is the endpoint of a leaf of G ; see Figure 1.

Proof. This fact was essentially done in the proof of Proposition 6.3: Recall that we
can consider ¹ltºt2R a parametrization of the leaf space L= zG , and we proved that
the endpoints of .lt / must be weakly nested and converge to points x; y in S1.L/
as t !˙1.

Moreover, since the leaves are uniform quasigeodesic, the map that sends t to the
endpoints of lt is continuous. So, if x D y, we are in the case of a weak quasigeodesic
fan.

If x ¤ y, then, calling I and J the complementary intervals of x; y in S1.L/,
we must have that each lt has one endpoint in I [ ¹x; yº and the other in J [ ¹x; yº
(because the endpoints are weakly nested). Thus, using continuity of endpoints again,
we see that x and y are the only two points that may not be the endpoints of a leaf.

From Proposition 6.3 we deduce the following.

Corollary 6.7. Suppose that a foliation F by hyperbolic leaves of a 3-manifold
admits a uniformly quasigeodesic one-dimensional subfoliation G . Then every leaf
of F has cyclic fundamental group (thus a leaf is either a plane, an annulus or a
Möbius band).

Proof. Deck transformations ofM act as isometries, so if a deck transformation fixes
some leaf L 2 zF then it is an isometry which preserves zG jL. Note that it must
be a hyperbolic isometry since there is a uniform injectivity radius of leaves of F .
Hyperbolic isometries that fix a given point or a pair of points at infinity commute,
Proposition 6.3 thus ensure that the �1 of L is at most cyclic.

From now on, we assume G to be a uniform quasigeodesic subfoliation of F .
Our next goal will be to show that there are weak quasigeodesic fan leaves of F , and
that the collection of such leaves forms a sublamination of F . This is the analogue
of [27, Lemma 5.3.6], which is done for the case of geodesic subfoliations in leaves
of F , when M is atoroidal; see [27, Lemma 5.5.5].

We first need a technical result, which will be used repeatedly, that produces some
weak quasigeodesic fan leaves from certain configurations.

Lemma 6.8. Suppose that xn is a sequence in zM such that there are disks Dn in
the leaves Ln 2 zF centered at xn with radius converging to infinity and satisfying
the following: There are disks En in Ln of bounded diameter, such that the distance
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in Ln from En to Dn goes to infinity and such that any leaf of zG jLn intersecting Dn
also intersects En. Then, given a sequence of deck transformations n 2 �1.M/ such
that for some subsequence nj ! 1, we have nj xnj ! x, it follows that the leaf
through x is a weak quasigeodesic fan.

Proof. We can assume without loss of generality that xn! x up to changing by deck
transformations and taking a subsequence.

Call a1 > 0 an upper bound of the diameters of the En. Assume by contradiction
that the leaf L of zF through x is not a weak quasigeodesic fan. Then there is a pair of
leaves `; `0 of zG jL which do not share any ideal point in S1.L/. These curves are at
most k distant in L from the corresponding geodesics because of the uniform bound;
see Remark 5.21.

Since `; `0 do not share ideal points, then two properties follow:

(i) there are points y; y0 in `; `0, respectively, attaining the minimum distance a0
between points in `; `0,

(ii) there is t > 0 such that if z 2 `, and z0 2 `0, then if both dL.z;y/ and dL.z0;y0/
are larger than t , we have

dL.z; `
0/; dL.z

0; `/ > 10.a0 C a1 C k C 4/:

The points xn converge to x in L. The distance from x to y; y0 in L is finite, so
up to changing xn in Ln by a bounded distance (and choosing a subdisk of Dn with
radius still going to infinity with n) we may assume that xn converges to y. Since
the foliations zG jLn converge to zGL we see that the foliations in the disk of radius
100.t C a0 C 1/ (recall that t; a0 are fixed) around xn converge to the foliation in
a disk of radius 100.t C a0 C 1/ around y in L. In L on both sides of y; y0 the
leaves `; `0 spread more than 10.a0 C a1 C k C 4/ from each other. So we see this in
some of the leaves of zG jLn as well. This is within fixed distance t . But the property
of En means that these leaves come back within a1 of each after a distance larger
than t if n is big enough.

We now use that these curves are uniform quasigeodesics. Recall their properties:

(i) they are within a0 C 1 from each other near y; y0;

(ii) they are within a1 C 1 from each other when they both intersect En.

This implies that the geodesic segments connecting these pairs of points are within
.a0 C a1 C 2/ throughout. By the uniform quasigeodesic property the segments in
leaves of zG jLn are within .a0 C a1 C 2/C 2k from each other throughout. But we
proved that they have points where the curves are more than 10.a0C a1C 2C kC 2/
apart from each other in between.

This contradiction shows that the limit leaf is a weak quasigeodesic fan and fin-
ishes the proof of the lemma.
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Proposition 6.9. The set of leaves L 2 zF which are weak quasigeodesic fans for zG
is non-empty, closed and �1.M/-invariant. Hence it induces a sublamination of F

in M .

Proof. The �1.M/ invariance property is obvious.
We first show that the set of weak quasigeodesic fan leaves is non-empty. Let L

be a leaf of zF . We will construct sets Dn; En in L satisfying the hypothesis of the
previous lemma. Let `1 be a leaf of zG jL. Let I be the closed interval of leaves of zG jL
all of which share both endpoints with `1. This could be a degenerate interval, that
is, `1 itself. Let ` be a boundary leaf of I . Now consider a leaf `0 sufficiently near `
intersecting a transversal � from x in ` to x0 in `0. In addition, assume that `0 is not
in I . Let E be a disk containing � . Let En D E of fixed diameter.

Since `0 is not in I , it has at least one ideal point z0 which is not an ideal point
of `. Let r 0 be the ray of `0 starting in x0 and with ideal point z0. Let r be the ray of `
starting in x and going in the same direction as r 0.

Recall that the leaf space of zG jL is the reals R. Let V be the complementary region
of r [ � [ r 0 which only contains rays of leaves of zG jL which intersect � . Hence every
leaf of zG jL intersecting V also intersects the fixed set E.

Finally, since r 0 and r do not have the same ideal points and are quasigeodesics we
can findDn a set of diameter greater than n contained in V and such that the distance
in L from Dn to E is greater than n. Taking Ln D L for any n, we can apply the
previous lemma and get leaves of F which are weak quasigeodesic fans. This proves
the first assertion of the proposition.

Now we prove that the set of leaves that are not weak quasigeodesic fan is open.
Let L be a leaf that is not a weak quasigeodesic fan. Then there are leaves `; `0

which do not share any ideal points. As in the previous lemma

(i) there are points y 2 `; y0 2 `0 realizing the minimum distance a0 between
them;

(ii) for any a2 > 0, there is t > 0 such that if distance along ` from y to z is
greater than t then dL.z; `0/ > a2 and vice versa for points in `0.

Hence, once a1; a2; t are fixed we obtain for any leaf F sufficiently near L that we
have leaves `F ; `0F in zG jF satisfying this property in F . Specifically this does not
hold for every point z in `F with distance in `F from a fixed point is > t , but for
some points. We choose a2 > a0 C 100k. Fix this pair of leaves `F ; `0F .

Now suppose that F is a weak quasigeodesic fan. We will obtain a contradiction.
For any two leaves �; �0 in zG jF they have a common endpoint in some direction. If
they share both endpoints then they are within 2k of each other. Since, by choice,
a2 > 2k, the pair `F ; `0F cannot be �; �0.



T. Barthelmé, S. R. Fenley, and R. Potrie 52

Next, suppose that �; �0 share one but not both ideal points. The corresponding
geodesics y�; y�0 of F to �; �0 are asymptotic, but disjoint. By negative curvature in
the direction where they are asymptotic, the distance in F between points yt in y�
converging to the common ideal point and y�0 is always decreasing, modulo a bounded
error, and converging to zero. Since �; �0 are k distant from y�; y�0 respectively, then the
distance in F between points yt in � converging to the common ideal point and �0

in F is roughly decreasing modulo an error of at most 4k. But the leaves `; `0 have
points very distant ( at least a2 > a0 C 100k) from the other leaf, then follow along
to points roughly a0 distant, then again some points very distant (> a2). Therefore,
`; `0 cannot be �; �0.

This contradicts the existence of leaves `;`0 in F , which have to be some pair �; �0.
This contradiction finishes the proof that the set of non-weak quasigeodesic fans is
open. This finishes the proof of the proposition.

6.2. Branching foliations

Now consider two transverse branching foliations Wcs and Wcu in M (the names
are given for obvious reasons), which determine a one-dimensional branching foli-
ation Wc by intersection. We consider zWcs , zWcu the lifts to the universal cover.
We assume that Wcs;Wcu are transversely orientable. Let F cs

" ;F cu
" be the approx-

imating foliations from Wcs;Wcu given by Theorem 3.3 for some small " > 0. Let
zF cs
" ; zF cu

" be their lifts to zM . These determine a foliation zF c
" which subfoliates both.

The foliation zF c
" also projects to a one-dimensional foliation F c

" , which subfoliates
both F cs

" ;F cu
" . Since F cs

" ;F cu
" have C 1-smooth leaves, then leaves of F c

" are C 1.
We can then copy the notions above to make the following definition.

Definition 6.10. We say that Wc is by uniform quasigeodesics in Wcs and Wcu if
leaves of F cs

" ;F cu
" are Gromov hyperbolic and zF c

" is a foliation by uniform quasi-
geodesics in both zF cs

" and zF cu
" as in Definition 6.1. Similarly we can define as in Def-

inition 6.4 leaves of zWcs or zWcu (or leaves of Wcs;Wcu) being (weak)-quasigeodesic
fans by the identification between the leaves of zF cs

" and zWcs (resp. zF cu
" and zWcu).

The leaves of zWcs; zWcu have their intrinsic geometry induced from the Riemann-
ian geometry of zM . These leaves are quasi-isometric to the corresponding leaves of
zF cs
" ; zF cu

" . In particular, the notions above are independent of ".

6.3. The partially hyperbolic setting

Here we state the main result of this section:

Theorem 6.11. Let f WM !M be a partially hyperbolic diffeomorphism preserving
branching foliations Wcs and Wcu such that the foliation Wc is by uniform quasi-
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geodesics in each leaf of Wcs; cf. Definition 6.10. Then, the center leaves of Wc form
a quasigeodesic fan in each Wcs and Wcu leaf.

We will split the proof of Theorem 6.11 into two parts. Proposition 6.17 shows
that every leaf of zWcs must be a weak quasigeodesic fan and Proposition 6.19 shows
that different centers in a leaf of zWcs do not have the same pair of points at infinity.
Both proposition follow the same strategy, first we construct an invariant lamination
of good leaves where the property we want holds, and then we apply Proposition 6.12
below to show that every leaf is a good leaf.

There are some very important situations where our proof can be much simplified:
If f is transitive, or more generally if Wcs (or Wcu) is f -minimal then Proposi-
tion 6.12 is immediate as there are no f -invariant sublaminations of Wcs . There
would also be some simplifications if M was assumed to be hyperbolic or Seifert
fibered.

Recall that we proved in Proposition 6.9 that the set P of leaves of zWcs which are
weak quasigeodesic fans is non-empty, �1.M/-invariant, zf -invariant, and closed. We
did that in the (non-branching) foliations setting, but subsection 6.2 implies the result
in the branching foliations setting as well. Let ƒ be the projection of the leaves in P
to M . This is a closed, f -invariant set of Wcs leaves, that is a sublamination of Wcs .
We want to show that these are all the leaves of Wcs .

6.4. A result about invariant laminations

The following result is stated for Wcs , but obviously works for Wcu as well. It is a
statement that will be useful to show that all leaves are weak quasigeodesic fans in
the next subsection (but can be skipped if one is working in the f -minimal case).

Proposition 6.12. Let f WM ! M be a partially hyperbolic diffeomorphism pre-
serving a branching foliation Wcs tangent to Ecs and zf a lift to zM . Suppose the
foliation Wc is by uniform quasigeodesics in each leaf of Wcs . Let P � Lcs be a
closed �1.M/- and zf -invariant subset of the leaf space of zWcs containing P . Then,
for every connected component N of Lcs XP there is  2 �1.M/, a leaf L 2N and
a leaf L0 2 N such that L D L, but L0 ¤ L0.

We can and will assume by taking finite covers and iterates that all the bundles are
orientable and f preserves orientation, this does not result in any loss of generality.

Recall that P is the set of leaves of zWcs which are weak quasigeodesic fans and
ƒ�M the projection ontoM consisting of the projection of leaves of P . The propo-
sition can be restated as saying that every closed f -invariant lamination containing
the weak quasigeodesic fan leaves cannot have trivial holonomy in the complement.
Recall that every leaf projects into a plane or an annulus, so this says that in a com-
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plementary region of such a lamination there must be some annulus and not all leaves
can be homotopic to it. We note that the proposition holds in manifolds with virtually
solvable fundamental group thanks to the classification of such partially hyperbolic
diffeomorphisms [47], so we shall assume throughout this subsection that �1.M/ is
not virtually solvable.

We first obtain a property of annular leaves of Wcs .

Lemma 6.13. Let A be an annular leaf of Wcs . Then A only limits on points in ƒ,
that is, the closure of A is contained in ƒ [ A.

Proof. Let A be an annular leaf of Wcs in the complement ofƒ. Let  be a generator
of �1.A/. Let L be a lift of A to zM -invariant by  .

By Proposition 6.3 (and Lemma 6.6) since L is not a weak quasigeodesic fan, it
follows that points which are not fixed by  in the boundary of L are endpoints of
some rays of the center foliation. Consider then xn 2 A accumulating in some point
y 2 M X A. Fix a fundamental domain of  in L so that its closure in L [ @L is far
from the fixed points of  and take zn points in this fundamental domain so that they
project to xn. We can choose a subsequence so that zn converges to some point � in
the boundary of L and far from the fixed points of  .

Fix a orientation for centers inL. Let ` be a center leaf inLwith one endpoint in �
(say, oriented in the backward direction). Assume first that the other endpoint (in the
forward direction) of ` is a fixed point of  . Then, it follows that every center between
�1.`/ and .`/ has the same endpoint in the forward direction. Since zn ! � , there
exists an !1 so that disks around zn of radius an are contained between �1.`/
and .`/. Centers through points between �1.`/ and .`/ must remain close in the
forward direction thus we can apply Lemma 6.8 to see that the points xn converge
to ƒ.

Now, assume that the endpoint of ` (in the forward direction) is not a fixed point
of  . Since the center leaf space in L is Hausdorff we get that ` separates .`/
from �1.`/. This implies that all three curves separate the fixed points of  . If one
chooses a closed geodesic ˛ � A and lifts it to z̨ in L this gives a geodesic joining
the fixed points of  . It follows that every center curve between .`/ and �1.`/must
intersect z̨ in a fundamental domain of  which is a bounded length interval. Then,
since there are arbitrarily large disks around zn between .`/ and �1.`/ one can
again apply Lemma 6.8 to see that the points xn converge to ƒ. This concludes.

We now begin the proof of Proposition 6.12.
The proof will be by contradiction, assuming that every leaf of N is invariant by

the same deck transformations. Recall that since every leaf has cyclic fundamental
group, then either all are invariant under a fixed cyclic subgroup of �1.M/ or they all
project to plane leaves.
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Consider the approximating foliation F cs
" , with lift zF cs

" and leaf space Lcs
" , which

is canonically equivariantly homeomorphic to Lcs . Let P" be the closed set corre-
sponding to P and N" the open set corresponding to N . Then the set of leaves in N"

projects to an open F cs
" foliated set U in M . Let ƒ" be the lamination of F cs

" corre-
sponding to ƒ. Let also ƒ� be the sublamination of Wcs corresponding to P and ƒ�"
the similar sublamination of F cs

" .
The contradiction assumption means that every leaf in N" is invariant by the same

deck transformations. In particular, the foliation F cs
" restricted to U has trivial holon-

omy (the germ of holonomy of every closed curve in a leaf of F cs
" in U is trivial).

The strategy of the proof of Proposition 6.12 is to control the topology of N to
be able to get a contradiction with a volume vs length argument. In order to control
the topology of N it is useful to show that the leaf space of F cs

" jU is Hausdorff in
the universal cover since then we will obtain a free action on the line and reduce the
possible deck transformations that fix N getting the desired control on its topology
(abelian fundamental group).

Since F cs
" in U has trivial holonomy we would like to apply Sacksteder’s theo-

rem [30, Theorem I.9.2.1]. But Sacksteder’s theorem requires that the foliation is C 2

to avoid exceptional leaves. However, we do not need the full power of Sacksteder’s
theorem, what we want is to prove that the leaf space of zF cs

" in each connected com-
ponent of zU is homeomorphic to R (we say in this case that F cs

" jU is R-covered).
For that we will instead use [52, Theorem 3.1]. This result basically says that if there
is trivial holonomy, then one can extend holonomy along paths with domains open
intervals to holonomy with domains being the closed intervals. In particular, when
lifted to the universal cover the foliation has leaf space homeomorphic to R.

We will use several times the octopus decomposition: Let U be the open set in M
which is the projection of the leaves in N". The completion yU of U has an octo-
pus decomposition (cf. [30, Proposition I.5.2.14]) with a thin part T and a core K
such that K is compact and yU retracts onto K (this last fact is true because leaves
have fundamental group at most cyclic). In particular, we know that �1. yU/ is finitely
generated.

Lemma 6.14. The foliation F cs
" jU is R-covered.

Proof. We will fix a connected component of U which we will still call U for sim-
plicity.

We consider first the case that F cs
" jU has an annular leaf A. Lemma 6.13 shows

that A limits only on ƒ". We consider the octopus decomposition yU D K [ T . The
annular leaf A intersects K in a compact subannulus A0 and intersects T into two
half open annuli A1; A2. Since F cs

" has trivial holonomy in U , then A0 has an open
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neighborhood inK which is product foliated. The same happens for A1; A2 in T so it
follows that A has an open neighborhood in U which is product foliated.

LetZ be the union of the leaves in U which are isotopic toA in U . We just proved
that this set is open. In addition the intersection of any leaf in Z with K is a compact
annulus isotopic to A0 inK. Now use that the set of compact leaves of F cs

" jK inK is
closed, and, in addition, that outside ofK we have products. So now it follows that Z
is also closed in U . As U is connected, it follows that Z D U .

In other words we proved that F cs
" jU is a product foliation, so the leaf space

of F cs
" jU is homeomorphic to R. The same happens in zU . This proves the lemma in

this case.
From now on suppose there are no annular leaves of F cs

" in U . Since F cs
" has

only plane or annular leaves in M it follows that F cs
" has only plane leaves in U .

Fix a flow transverse to F cs
" in M . To do so, just take a smooth vector field X

transverse to Ecs (which is continuous) and integrate it to a flow �WM � R! M .
Pick a point x 2 U in some arm of the octopus decomposition (i.e., far from the core
of U ) so that the flowline through x intersects the boundary in both sides. That is, for
some small t1 < 0 < t2, we have that �.x; .t1; t2// � U , but �.x; t1/ and �.x; t2/
belong to @U . Using that all leaves in U are planes, we can apply [52, Theorem 3.1]
to deduce that for every curve  W Œ0; 1�! M such that .0/ D x and .s/ 2 F cs

" .x/

for all s 2 Œ0; 1� we have a well-defined holonomy from �.x; .t1; t2// to the flow line
�..s/;R/ through .s/. This implies that when we lift to the universal cover (where
flowlines cannot intersect the same leaf twice) the leaf space of zF cs

" in the lift of U
has to be homeomorphic to R as we wanted to prove.

In other words, this result implies that the leaf space of F cs
" in N" is homeomor-

phic to R. In particular, the same is true for the leaf space of zWcs in N .
Our assumption is that either every leaf in N has trivial stabilizer, or that every

leaf of N has exactly the same stabilizer which is Z. Denote by G < �1.M/ the
subgroup of deck transformations fixing N . The group G is the same group which
fixes N". We need the following property:

Claim 6.15. Up to deck transformations N is zf -periodic.

Proof. The projection V of N to M may not be open if Wcs;Wcu are not foliations
and rather branching foliations. Nevertheless, V is not a single leaf and has non-empty
interior, hence contains an open unstable segment � . Let x in � . Iterating positively
by f one gets a limit point of the sequence f n.x/. Since P is zf and �1.M/-invariant
then for some fixed n, f n.V / and V intersect in their interiors. Hence, zf n.N / is a
deck translate of N .

By the claim after taking an iterate of f and perhaps a different lift, we may
assume that zf preserves N . We take such an iterate and lift. We fixed an identification
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of �1.M/ as the group of deck translations of zM , and G is the subgroup of deck
transformations fixing N . Then f acts on G by g ! zf ı g ı . zf /�1, this action is
denoted by f�. We will need some arguments from standard 3-manifold topology. If
the stabilizer of leaves in N" is always trivial, then as it acts freely on R it follows
that G is abelian. By [50, Theorem 9.13], we get that G can be either 0, Z, Z2 or Z3.
Suppose on the other hand that the subgroup stabilizing every leaf of N" is infinite
cyclic, generated by  . It is very easy to see that for any ˛ in G then ˛˛�1 D ˙,
hence hi is a normal subgroup. In addition,G=hi acts freely on R hence it is abelian.
Since ˛˛�1D ˙ it follows thatG has a subgroup of index 2which is abelian. Again
by [50, Theorem 9.13] this subgroup G0 of index 2 can only be Z;Z2;Z3. Notice that
f�./D 

˙, so f� preserves G0. In any case, f� preserves an abelian subgroup G0 of
index at most 2, which can only be 0;Z;Z2;Z3. We need the following claim.

Claim 6.16. The action of f� in G0 does not have eigenvalues of modulus larger
than 1.

Proof. Recall that using the octopus decomposition we saw that �1. yU/ the comple-
tion of U is finitely generated.

In the proof of Lemma 6.14 we analyzed the case that a boundary component
of yU is a plane. In that proof we showed that this implies that yU is homeomorphic
to R2 � Œ0; 1� and the length of unstable segments between the boundary components
of h". yU/ is bounded. But the difference here is that the lamination ƒ� is f -invariant.
In particular, the previous claim showed that up to deck transformations N is zf peri-
odic. This contradicts that lengths of unstable segments between the boundary leaves
is bounded, as f increases unstable lengths by a definite amount.

It follows that boundary components of yU are either tori or cylinders, this uses the
orientability condition on M and the transversal orientability. For each such cylinder
component, the intersection with K is a compact cylinder A. Then there is a cylinder
in @T connecting a boundary component of A with another leaf in @ yU . This other
leaf Z in @ yU must necessarily also be a cylinder and there is an associated compact
cylinderZ \K. One continues this process, after finitely many steps one arrives back
at A. This produces a torus.

We proved that all boundary components of K are tori. Since leaves of zWcs are
properly embedded in zM it follows that either K is a solid torus or that all boundary
components ofK are �1-injective in �1.M/ and hence �1. yU/ injects in �1.M/. Note
that the image is exactly G.

We proved before that G0 can be only 0;Z;Z2;Z3.
The claim is trivial ifG0 is either 0 or Z. IfG0 DZ3, using thatM is prime we can

apply [50, Theorem 9.11] to deduce that M has virtually abelian fundamental group
contradicting that we have assumed that the fundamental group of M is not virtually
solvable.
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Finally, if G0 D Z2, then [50, Theorem 10.5] implies that K is T2 � Œ0; 1� up
to double cover. This case was dealt with in [65]. We explain the main steps: the
leaves of Wcs in the boundary of yU are infinite cylinders. Let ˛ be a generator of the
fundamental group of one of these cylinders. Since f preserves N then up to a power
it preserves this boundary component of yU and up to another power preserves ˛. This
implies that one of the eigenvalues of f� has a power which is one. This implies the
result.

Notice in particular that since f� is invertible, then the above claim implies that
all eigenvalues of f� have modulus 1.

We now complete the proof of Proposition 6.12. The contradiction will be given
by a volume versus length argument that will imply that the action of f� on G0

must have an eigenvalue of modulus larger than one. More precisely, [49, Proposi-
tion 5.2] implies that if there is an open f -invariant setX �M such that the inclusion
{WX �M verifies that {�.�1.X// is abelian and there is a strong unstable manifold
insideX which is at distance� " from the boundary ofX , then f� must have an eigen-
value of modulus larger than 1 in {�.�1.X//. The same proof applies if i�.�1.X// has
a subgroup of index 2 which is abelian and preserved by f�.

We will apply this result from [49] to the following set. Let X be interior of the
projection to M of the closure of N . Here N is the union of the leaves which are
in N . This is an open f -invariant set (after taking the iterate we considered before).
Notice that

{�.�1.X// � {�.�1. yU// D {�.G/:

Let x be a point in @X . Let `x 2 Œ0;1� be the length of the open unstable seg-
ment inside X whose boundaries are in @X and one of them is x. This interval is
possibly trivial giving `x D 0 or a complete ray giving `x D 1. It follows that the
function `x of x cannot be bounded in @X : consider forward iterates which increase
without bound the length of unstable segments. Take a limit of a sequence of such
unstable segments of lengths converging to infinity to obtain a full unstable curve
completely contained in the interior of X . Moreover, the closure of such unstable leaf
must be at positive distance of @X because of local product structure. This completes
the proof of Proposition 6.12.

6.5. Funnel leaves

Here we show the following.

Proposition 6.17. In the setting of Theorem 6.11, we have that every leaf of Wcs

and Wcu is a weak quasigeodesic fan for F c .
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Recall that we proved in Proposition 6.9 that the set P of leaves of zWcs which are
weak quasigeodesic fans is non-empty, �1.M/-invariant, zf -invariant, and closed. We
did that in the (non-branching) foliations setting, but subsection 6.2 implies the result
in the branching foliations setting as well. Let ƒ be the projection of the leaves in P
to M . This is a closed, f -invariant set of Wcs leaves, that is a sublamination of Wcs .
We want to show that these are all the leaves of Wcs .

Notice again that, if we assumed that the branching foliations are f -minimal
(see [9, 10]), which happens for instance when f is transitive, then (by definition
of f -minimality) ƒ would automatically consist of all the leaves of Wcs .

So the rest of this section will deal with the general case, and the reader only
interested in the transitive case can skip this section.

In order to prove that ƒ covers all the leaves of Wcs , we will first consider a
slightly larger lamination such that the leaves in the complementary region are all
planes. This will allow us to apply Proposition 6.12. First we show that annular leaves
which are not in ƒ can only accumulate on ƒ.

We need the following lemma.

Lemma 6.18. Consider the set P0 � Lcs consisting of leaves invariant under some
non-trivial deck transformation. Then, the set P [ P0 is a closed set of leaves of Lcs ,
which is zf - and �1.M/-invariant. In other words, the set of leaves in P [P0 projects
to an f -invariant lamination of Wcs .

Proof. Recall that ƒ is the projection of P to M . We will also use the approximating
foliation F cs

" of Wcs (which can be achieved up to finite lifts; see Theorem 3.3) and
denote byƒ" the lamination in F cs

" induced by the blown up leaves ofƒ. Since leaves
with non-trivial fundamental group are clearly f -invariant, the set P [ P0 is zf - and
�1.M/-invariant. We next show that P [ P0 is a closed subset of Lcs .

Consider the completion yU of a connected component U ofM Xƒ" and its octo-
pus decomposition (cf. [30, Proposition I.5.2.14]) with a thin part T and a core K so
thatK is compact and T D T1 [ : : :[ Tm where each Ti (an arm) is an I -bundle. By
augmenting K we may assume that K is connected.

Lemma 6.13 implies that every annulus leaf B of F cs
" in M X ƒ" accumulates

only in ƒ". Suppose that it is contained in the component U as above. Recall that
yU D K [ T . We choose K big enough so that each component K \ T (which is
also an annulus) is transverse to F cs

" . Then except for a compact subannulus in B ,
the rest of B is contained in T . In particular, since the foliation restricted to each
component of T is a foliated I -bundle, it follows thatB \K is a compact annulusKB .
Using [30, Theorem I.6.1.1], we know that the set of leaves of F cs

" restricted to K
which are compact is a compact set. Notice that the intersection of a leaf B of F cs

"
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in U with K is compact if and only if B is an annulus (the other option is B is a
plane). Hence the set of annuli leaves in F cs

" jK is a compact set.
This shows that P [ P0 is a closed subset, and shows P [ P0 is a sublamination

of Wcs which is f -invariant. This proves the lemma.

We now prove Proposition 6.17.

Proof of Proposition 6.17. Corollary 6.7 shows that every leaf of Wcs is either a plane
or an annulus. Suppose by way of contradiction that P is not all of Lcs .

We use the setup of the previous lemma. Let U be a non-empty connected com-
ponent of M Xƒ".

As in the previous lemma, we have that yU D K [ T .
We consider first the case that every leaf of Wcs in U is annulus. In this case we

show that every leaf in U is invariant under the same deck transformation. This will
directly contradict Proposition 6.12. We first claim that since K is compact, there is a
finite set ¹1; : : : ;kº in �1.K/ such that every leaf inU must be fixed by one of the i .
This is because any such annulus leaf is incompressible in K, and distinct leaves are
disjoint. Hence there are finitely many of these which are pairwise not isotopic [50].
If they are isotopic then they correspond to the same deck transformation.

This gives a partition of K by disjoint compact sets each of which is fixed by
some i . Since these sets are disjoint for distinct i , andK is connected, it follows that
there is a single i . In other words, all leaves in this component U are left invariant
by the same deck transformation. Proposition 6.12 shows that this is impossible.

The other possibility is that not all leaves in U are annuli. In other words the
set Q WD P [ P0 is not Lcs . The previous lemma shows that the set of leaves in Q

projects to an f -invariant sublamination of Wcs . Let N1 be a complementary com-
ponent of Q. Since we took out all leaves which are annuli, it follows that all leaves
of zWcs in N1 have trivial stabilizer. Proposition 6.12, now applied to P D Q shows
that this is impossible. We conclude that this case cannot happen either.

This contradiction shows that the assumption that P is not Lcs is impossible.
Since every leaf in P is a weak quasigeodesic fan, this finishes the proof of Proposi-
tion 6.17.

6.6. Unique centers for given limit points

Here we show the following that, together with Proposition 6.17, completes the proof
of Theorem 6.11.

Proposition 6.19. If every leaf of Wcs and Wcu is a weak quasigeodesic fan, then
they all are quasigeodesic fans.
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We are going to prove Proposition 6.19 by contradiction, dealing with leaves
of Wcu, the case of Wcs being symmetric.

By Lemma 6.6, for any leaf V of zWcu with funnel point p 2 S1.V / and every
point q in S1.V / X ¹pº, there is a center leaf in V with ideal point q. By contradic-
tion, we will assume that there is a leaf V0 of zWcu which has more than one center
curve with the same pair of limit points p; q 2 S1.V0/. Since the leaf V0 is a weak
quasigeodesic fan, the set of center leaves that have p and q as limit points forms a
non-trivial closed interval. Let I be the interior of the interval of leaves of zWcs which
intersects V0 in some of those centers. We think of I as an open interval of Lcs .

We claim that the funnel direction in leaves of zWcs varies continuously. In order
to understand this we put a topology on the circle bundle over Lcs , made up of S1.L/
where L 2 Lcs . We denote this circle bundle by V . Consider an approximating folia-
tion F cs

" , with an associated circle bundle V". There is a canonical bijection between
the two circle bundles. One can also put a Candel metric in F cs

" without changing V".
Let Lcs

" be the leaf space of zF cs
" . The topology in V" is defined as follows: given a

transversal � to zF cs
" consider the topology in

A D
[
¹L 2 Lcs

" ; L \ � ¤ ;º

induced by a natural bijection between the unit tangent bundle of T zF cs
" restricted

to � : For every x in � contained in L leaf of zF cs
" and unit vector v in L at x it

defines a unique geodesic ray r in the hyperbolic metric in L, so that r starts in x
with direction v. The ideal point of r is a point in S1.L/ and it is associated with v.
For details we refer to [28] where it is proved that this topology is independent of the
choice of � and it is invariant under deck transformations. In the same way it is not
hard to prove that the topology induced in V is independent of the approximation F cs

"

and it is also �1.M/-invariant.
The claim is that the funnel direction is continuous as a function of L 2 Lcs . This

is because the funnel direction x 2 S1.L/ in a leaf L of zWcs is the one where center
leaves are eventually within 2k of each other. In the other direction of the center leaves
some of them diverge a lot from each other. So near L one sees in directions close
to x in V , the center leaves which are within 2k C 1 of each other for a long distance,
while in the opposite direction (with respect to centers) they diverge substantially
from each other. This means that the funnel direction in leaves near L is close to the
funnel direction in L when seen in V .

For any L in I the funnel direction in L defines a direction in the center L \ V0.
Since these vary continuously with L, it follows that up to switching p and q, the sta-
ble funnel direction for any L in I is the direction in L \ V0 with ideal point p.
This implies that for any L in I , the rays in the funnel direction of L \ V0 are



T. Barthelmé, S. R. Fenley, and R. Potrie 62

eventually 2k C 1 from each other. This is the fundamental fact here. We let

Q D
[
n2Z

[
2�1.M/

zf n.I /:

This is a non-empty, open zf and �1.M/-invariant subset of Lcs and we con-
sider P D Lcs XQ. Let ƒ be the lamination in M obtained by projecting the leaves
in P to M . We want to show that P is everything, and therefore get a contradiction,
since I and hence Q is not empty. For this, we will again apply Proposition 6.12 to a
lamination ƒ� that contains ƒ; to construct it we need some preliminary results.

We will use the approximating foliation setting. Let ƒ" be the sublamination
of F cs

" associated with ƒ and let U be a connected component of M Xƒ". We will
need the following technical property.

Claim 6.20. Let L1; L2 be two leaves in the same component of Q. Then, there is
a constant K D K.L1; L2/ > 0 such that for every pair of center leaves ci 2 Li
for i D 1; 2, we have that there is a ray r1 of c1 and a ray r2 of c2 both in the funnel
directions of L1 and L2 respectively, such that the Hausdorff distance dH .r1; r2/
in zM is less than K.

Proof. We can cover a path joining L1 and L2 by finitely many translates and iterates
of I . Each translate is a deck translate of an zf iterate of I . Deck translates do not
change the geometry. The map zf has bounded derivatives so distorts distances by
a bounded multiplicative amount. Hence it is enough to prove this for leaves in I .
Let then L1; L2 in I and r1; r2 rays of centers ci in Li such that ri is in the funnel
direction in Li . Then in Li the center ci has in the funnel direction the same ideal
point as V0 \ Li . Hence, ri has a subray with Hausdorff distance in Li less than
2kC 1 from a subray of V0 \Li in the funnel direction of Li . Then in V0, the centers
V0 \ L1, V0 \ L2 have subrays which are less than 2k C 1 in Hausdorff distance
in V0 from each other. Then the ray r1 has a subray less than 2k C 1 in L1 from a ray
of V0 \ L1, which in turn is less than 2k C 1 in V0 from a ray of V0 \ L2 – this is
the fundamental fact referred to above. Finally, there is a subray of V0 \ L2 less than
2kC 1 in L2 from a subray of r2. It follows that r1; r2 have subrays which are 6kC 3
Hausdorff distant from each other in zM . This gives the desired bound.

The main property we need is the following:

Lemma 6.21. Let B be an annular leaf of F cs
" in U . Then B only limits on points

in ƒ". In particular, this shows that Q cannot be all of Lcs .

Proof. Recall that U is a component of M X ƒ". Let A be the leaf in Wcs corre-
sponding to B under the map hcs given by Theorem 3.3. Since B is an annulus, so
is A and we call again  a generator of �1.A/.
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Thanks to Proposition 6.17, every center leaf shares one ideal point (the funnel
point), which is therefore a fixed point of  . We explained before (cf. Corollary 6.7)
that by compactness of M ,  cannot act parabolically on S1.L/, so it must fix two
points on S1.L/. Hence,  fixes a center curve in L, which projects to a closed curve
in A.

Let e be the corresponding closed center curve in B . Let zU be a lift of U to zM .
Suppose that B limits to a point in U . Hence, there are infinitely many lifts Li of B
contained in zU and limit to L leaf in zU . Each such lift Li contains a lift ci of e. The
leaf L is contained in an image  zf n.I /, so there is someK > 0 as in the claim above
that works for any pair E1; E2 in  zf n.I /. The claim also works for the approximat-
ing foliations, taking the intersections of leaves of zF cs

" ; zF cu
" . Hence, for any i; j ,

then ci ; cj have rays a fixed bounded distance K from each other in the funnel direc-
tion in Li ; Lj . But every ci is a lift of a fixed closed curve e. As the bound is the
same, we get a contradiction, since the lifts of e form a uniformly discrete set in zM .
This contradiction proves the first assertion of the lemma.

To prove the second assertion suppose that Q D Lcs . First recall that Wcs has
an annular leaf A. Otherwise all leaves of Wcs are planes. This implies that M is the
3-torus – this was proved by Gabai; see [57, Corollary 1.2]. In particular, �1.M/ is
abelian, which we are assuming is not the case. Hence, Wcs has an annular leaf A.
Since it is non-compact it limits somewhere. If Q D Lcs the argument to prove the
first assertion leads to a contradiction. This shows that Q is not Lcs .

End of the proof of Proposition 6.19. From Lemma 6.21, we deduce that ƒ is not
empty. Let ƒ0 be the union of the annular leaves of Wcs . For any annular leaf A
not in ƒ, the previous lemma shows that it limits only on ƒ. This is the technical
property that is needed to deduce that ƒ [ ƒ0 is a sublamination of Wcs (as in the
proof of the first assertion of Lemma 6.18).

Hence, we can finish in exactly the same way as Proposition 6.17: ƒ[ƒ0 is lam-
ination such that the complement has no holonomy so we can apply Proposition 6.12
to get that ƒ [ƒ0 is all of Wcs . Now the proof of Proposition 6.17 also applies here
to deduce that ƒ is itself all of Wcs . This contradicts the fact that Q D Lcs X P is
non-empty, and thus ends the proof of Proposition 6.19.

Remark 6.22. Notice that in order to obtain, in Proposition 6.17, that each leaf
of Wcs is a weak quasigeodesic fan, we only needed to use the fact that the center
leaves were uniform quasigeodesic in Wcs (and vice versa for Wcu). To get here that
it is actually a quasigeodesic fan, we need to use the fact that center leaves are uniform
quasigeodesic in both Wcs and Wcu.
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7. A criterion. Proof of Theorem D

In this section we prove Theorem D. We start by proving the converse direction, in
Sections 7.1 and 7.2, and prove the direct implication in Section 7.3.

In particular, we consider f WM !M to be a partially hyperbolic diffeomorphism
preserving branching foliations Wcs and Wcu whose leaves are Gromov hyperbolic
with the induced metric. We assume that centers in each leaf of Wcs and Wcu are
uniform quasigeodesics so that Theorem 6.11 applies.

To show that being quasigeodesic partially hyperbolic diffeomorphism implies
leaf space collapsed Anosov flow we will assume that the bundles Es , Ec and Eu

are orientable. (Note that orientability of Ec is a consequence of the definition and
Theorem 6.11.)

7.1. Constructing an expansive flow

Let f WM !M be a quasigeodesic partially hyperbolic diffeomorphism. We assume
that the bundles Es , Ec and Eu are orientable. Let Wcs and Wcu be the center stable
and center unstable branching foliations given by Definition 2.16. Since the bundles
are assumed to be orientable, we can apply Theorem 3.3 to obtain approximating
foliations F cs

" and F cu
" with maps hcs and hcu. The intersection of F cs

" and F cu
"

gives rise to an orientable foliation F c
" tangent to a vector field Xc .

Note that Theorem 6.11 shows that in each leaf of F cs
" (resp. F cu

" ) we have that
the foliation F c

" is made of uniform quasigeodesics and that no two of them share
both points at infinity. (In fact, Theorem 6.11 implies that inside each leaf of F cs

"

(resp. F cu
" ) the foliation F c

" is a quasigeodesic fan, but we will not need this in the
following.)

Proposition 7.1. The flow �ct WM !M generated by Xc is expansive and preserves
the transverse foliations F cs

" and F cu
" .

Proof. Recall (see Section 6.2) that since f is a quasigeodesic partially hyperbolic
diffeomorphism, the leaves of the approximating foliations F cs

" and F cu
" are also

Gromov hyperbolic (one can even choose these to be by hyperbolic surfaces [28,
Chapter 8]). By hypothesis, the orbits of the flow �ct are quasigeodesics in the leaves
of each of the foliations.

There is ı0 > 0 such that every leaf of zF cs
" and zF cu

" is properly embedded in its
ı0-neighborhood in zM ; see, e.g., [28]. By this, we mean that

(i) any set of diameter less than ı0 is contained in a foliated chart of each of these
foliations; and

(ii) if p is in a leaf L of zF cs
" or zF cu

" then the ball of radius ı0 around p in zM
intersects L only in the local sheet of L through p.
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Now choose ı < ı0 so that if two points x; y in zM are less than ı apart, then
zF cs
" .x/ intersects zF cu

" .y/ in a point less than ı0 from both of them and similarly
for zF cs

" .y/ \ zF cu
" .x/. We will show that ı serves as an expansivity constant for the

flow z�ct , and this implies that the flow �ct is expansive too. Since there is no recurrence
for the flow in zM the definition of expansivity is equivalent to showing that different
orbits cannot remain a bounded Hausdorff distance apart; cf. Remark 5.8.

Assume by contradiction that two different orbits o1 and o2 of z�ct in zM are at
Hausdorff distance less than ı. These orbits correspond to leaves of the intersected
foliation zF c

" between zF cs
" and zF cu

" . Suppose first that they are in the same leaf of L
of zF cs

" (or zF cu
" ). Since they are not the same orbit, they cannot have both ideal points

the same in S1.L/, by Theorem 6.11. Hence they diverge from each other infinitely
in L in some direction. By the choice of ı0 they diverge from each other at least ı0
(and hence at least ı) in zM as well in that direction. Suppose now that o1; o2 are not
the same leaf of zF cs

" or zF cu
" . Let then o3 be the intersection of zF cs

" .o1/ \ zF
cu
" .o2/.

Then o3 is distinct from both o1; o2. Since o1; o2 are always less than ı apart then o3
is less than ı0 apart from either o1 or o2. Since o3; o1 are in the same zF cs

" leaf the first
argument shows that this is a contradiction, that is o1; o3 have to diverge from each
other more than ı0. This shows that ı works as an expansive constant for the flow.

It is obvious that the flow preserves the described foliations.
This finishes the proof of the proposition.

7.2. Deducing that the map is a collapsed Anosov flow

We can now show the following.

Proposition 7.2. The flow �ct is a topological Anosov flow and f is a leaf space
collapsed Anosov flow with respect to �ct .

Proof. Notice first that by Proposition 7.1 and Theorem 5.9 we know that the flow �ct
is a topological Anosov flow. Moreover, by Proposition 5.5 we know that the folia-
tions F cs

" and F cu
" correspond to the weak stable and unstable foliations respectively

(maybe up to changing orientation of the vector field Xc).
Using the maps hcs and hcu given by Theorem 3.3 in the universal cover one

can construct a �1.M/-invariant homeomorphism H from the orbit space of z�ct to
the center leaf space of f as follows: A center leaf in zM is a component c of the
intersection of a leafL of zWcs and a leafG of zWcu. There are unique leavesL0 2 zF cs

" ,
G0 2 zF cu

" , so that zhcs.L0/ D L and zhcu.G0/ D G. There is a unique component ˛ of
the intersection of L0 andG0 (that is, an orbit of z�t ), which is " close to c. The mapH
is the one that sends this orbit ˛ to c. This completes the proof.
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7.3. The quasigeodesic property

Here we show the following proposition.

Proposition 7.3. Let f WM ! M be a leaf space collapsed Anosov flow. Then, the
Wcs-foliation is by Gromov hyperbolic leaves and the center foliation inside each leaf
of Wcs is a quasigeodesic fan.

Proof. We do the proof for Wcs , the same proof works for Wcu.
Up to taking a finite cover and a lift of an iterate of f , we may assume thatEs ,Ec ,

Eu are orientable and f preserves the lifted foliation. Since the quasigeodesic prop-
erties are verified in the universal cover, this does not change the result. In addition,
f is still a leaf space collapsed Anosov flow in the cover. Let �t be the Anosov flow
associated to f . Let H WO� ! Lc be the associated homeomorphism between orbit
space of z�t and center leaf space in zM . Proposition 5.6 implies that H maps Ows

�

to Ocs
f

and Owu
� to Ocu

f
.

Using Theorem 3.3, we can approximate Wcs , Wcu by actual foliations F cs
" ;F cu

" .
The intersection of F cs

" ;F cu
" is a one-dimensional foliation G inM , with lift zG . Given

any flow line ˛ of z�t it is the intersection of a stable leaf L0 with an unstable leaf Z0.
Under H these leaves L0; Z0 map to leaves L1 of zWcs and Z1 of zWcu, respectively.
Thanks to item (ii) of Theorem 3.3, the leavesL1;Z1 are " near some unique leavesL
of zF cs

" and Z of zF cu
" , respectively.

Therefore ˛ is associated with a unique leaf of zG and vice versa. This association
is a homeomorphism from the orbit space O� to the leaf space of zG . This homeomor-
phism is clearly �1.M/ equivariant.

By results of Haefliger, Ghys and Barbot (see [6, Proposition 1.36]), it follows
that there is a homeomorphism � from M to M sending the flow foliation of �t
to the foliation G . We can then orient the foliation G using this homeomorphism.
Hence this foliation becomes the flow foliation of a flow  t . Since the flow �t is
expansive then the flow  t is also expansive. By Theorem 5.9 it follows that  t is
a topological Anosov flow. By the equivalence of the flow foliations of �t and  t it
now follows that the stable foliation of  t is F cs

" . By Proposition 5.14 it follows that
the foliation F cs

" is by Gromov hyperbolic leaves and the flow lines in leaves of F cs
"

are uniform quasigeodesics.
This implies that the leaves of Wcs are Gromov hyperbolic and the center leaves

in leaves of zWcs are uniform quasigeodesics.
This finishes the proof of Proposition 7.3.

This finishes the proof of Theorem D.
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8. Strong implies leaf space collapsed Anosov flow

In this section we show that Definition 2.10 implies Definition 2.13. The main point
is to construct the branching foliations from the map h provided by Definition 2.10.
The rest of the conditions will be rather direct.

Proposition 8.1. If f is a strong collapsed Anosov flow, then it is a leaf space col-
lapsed Anosov flow.

We first show the following lemma.

Lemma 8.2. Let f be a strong collapsed Anosov flow (Definition 2.10), then there
are f -invariant branching foliations Wcs and Wcu tangent to Ecs and Ecu respec-
tively such that the image of each of the leaves of Wcs (resp. Wcu) coincides with
h.F ws

� .x// (resp. h.F wu
� .x//) for some x 2M .

Proof. First note that, if the topological Anosov flow � is orbit equivalent to a topo-
logical Anosov flow �1, via a homeomorphism that is homotopic to identity, then,
since orbit equivalences can always be made smooth along the orbits, f is also a
strong collapsed Anosov flow for the flow �1, via a map h1. Moreover, we have that

h1.F
ws
�1
/ D h.F ws

� /:

Hence, to prove the conclusion of the lemma for Ecs or Ecu we may choose an
appropriate Anosov flow orbit equivalent to � (via a homeomorphism that is homo-
topic to identity).

We do it for Ecs by taking an orbit equivalent Anosov flow that has smooth weak
stable leaves, which exists thanks to Proposition 5.22. Similarly, for Ecu, we would
choose an Anosov flow with smooth center unstable leaves.

We only do the case of Ecs , the other one being analogous. Abusing notation, we
assume that � itself has smooth weak stable leaves.

Take the pullback of the ambient Riemannian metric. For each leaf L 2 F ws
� we

define a continuous local homeomorphism onto its image 'LWUL !M where UL is
the universal cover of the leaf L � M with this intrinsic Riemannian metric. Note
that UL is a complete metric space, homeomorphic to R2.

We work in the universal cover and consider zhW zM ! zM a lift, which is a bounded
distance from the identity (it exists because h is homotopic to the identity). Let QL be
a lift of L to zM . Since QL is a properly embedded plane and zh is a bounded distance
from the identity and maps QL to a C 1-surface tangent to Ecs by assumptions we get
that the image is also a properly embedded plane in zM . This means that when lifted to
the universal cover, there is y'LWUL! zM a C 1-proper embedding tangent toEcs such
that its image coincides with zh ı y'LWUL ! zM . The bounded distance to the identity



T. Barthelmé, S. R. Fenley, and R. Potrie 68

implies that the image of y'L is complete with the metric induced by the embedding.
The non-topological crossing is ensured by the ‘transversally collapsing’ in the defi-
nition of strong collapsed Anosov flow which makes backtracking impossible.

Finally, to show the minimality condition (i.e., item (iv) in Definition 3.1), we need
to show that the image of two different leaves of zF ws

� by zh are different. Suppose then
that L1; L2 are distinct leaves of zF ws

� which are mapped to the same surface by zh.
Suppose first that L1; L2 intersect a common unstable leaf F . In particular, the set
of leaves separating L1 from L2 is an interval. If for some leaf L in this interval, we
have

zh.L/ ¤ zh.L1/;

then since there is no topological crossing between leaves, it also follows that

zh.L1/ ¤ zh.L2/;

which contradicts our assumption. Thus, zh.L/ D zh.L1/.
For any such L, the intersection L \ F is a single flow line ˛L. The above shows

that zh.˛L/ is contained in zh.L1/. Therefore, the region in F made up of the flow
lines between ˛L1 and ˛L2 is mapped into zh.L2/. Therefore this is mapped into a
region tangent to Ecs . This contradicts the fact that F is mapped to a surface tangent
to Ecu because h is close to the identity and the region between ˛L1 and ˛L2 contains
arbitrarily large disks.

For general leaves L1; L2, the region between them is the connected component
of zM � .L1 [ L2/, which limits on both of them. If zh.L1/ D zh.L2/, then for any
leaf L between L1; L2, then

zh.L/ D zh.L1/:

There is a leaf L which is between L1 and L2 and which intersects a common unsta-
ble F with L1. By the first case,

zh.L1/ ¤ zh.L/:

This leads to a contradiction.
This finishes the proof of the lemma.

Proof of Proposition 8.1. We just need to show that there is an equivariant homeo-
morphism between the leaf spaces. Consider the lift zh of h to the universal cover
obtained by lifting the homotopy of h to the identity. Thanks to Lemma 8.2, the
map zh sends the leaves of the weak (un)stable foliations to leaves of the branching
center (un)stable foliations.

We claim that zh induces a bijection between the orbit spaces of the flow �t and
the center leaf space. Assume that there are distinct flow lines o1; o2 of z�t which are
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sent to the same center leaf c1 by zh. Let Li D zF ws
� .oi / and Fi D zh.Li /, which are

leaves of zWcs . In the proof of the previous lemma we showed that F1; F2 have to be
distinct leaves. Suppose first that L2 intersects U1 WD zF wu

� .o1/. Let Zt for 0 � t � 1
be the interval of stable leaves intersecting U1 between L1 and L2. Let Yt D zh.Zt /,
center stable leaves. We consider `t WD zh.Zt \ U1/ which is contained in zh.U1/ a
leaf of zWcu. We have that `0 is already in F2. Since the QZt have to be between F1
and F2, it follows that `t D c1 for all t . But `t D zh.U1/ \ zh.Zt / hence `t is a center
leaf in zh.U1/. This was proved impossible in the previous lemma – using the center
unstable foliation instead of the center stable foliation.

The remaining possibility is as follows: Let U be the open set in zM which is the
union of leaves of zF ws

� intersecting U1. Since L2 is disjoint from U there is a unique
leaf L in the boundary of U which is either L2 or separates L1 from L2. In any case,
c1 is contained in L. There are two possibilities:

(1) L1; L intersect a common transversal;

(2) L1; L are non-separated from each other in the leaf space of zF ws
� .

In case (1) consider G a stable leaf separating L1 from L. Then G intersects U1,
and c1 is contained in zh.G/. So the same proof as in the previous paragraph concludes.
In case (2) consider G a stable leaf intersecting both U1 and U2 WD zF wu

� .o2/. The
separation properties show that zh.G/ has to be between F1 and F2. But then G \ U1
andG \U2 are two distinct orbits that map to c1. This contradicts that zh.G/ intersects
a transversal at most once.

We conclude that zh induces a bijection from the orbit space of z�t to the center
leaf space. This bijection respects center stable and center unstable leaves and their
ordering inside each of the foliations. Therefore, the bijection is a homeomorphism.
This homeomorphism is clearly equivariant (since zh commutes with deck transforma-
tions).

9. Leaf space implies strong collapsed Anosov flow

In this section we will show that Definition 2.13 implies Definition 2.10 under some
orientability assumption. Together with Proposition 8.1 it completes the proof of The-
orem B.

Proposition 9.1. If f is a leaf space collapsed Anosov flow and Ecs is transversally
orientable, then it is a strong collapsed Anosov flow.

The strategy is quite simple, we wish to map each orbit of the Anosov flow to the
corresponding center curve given by Definition 2.13. The difficulty in implementing
the strategy has to do with the fact that we only have a map at the level of leaf spaces,
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so we first need to construct an actual map of the manifold which realizes this equiv-
alence, for this, we first construct a specific realization of the (topological) Anosov
flow that allows us to get this map in a natural way. Once this is done, a standard
averaging argument achieves the local injectivity along orbits of the flow.

9.1. Constructing a convenient realization of the Anosov flow

Let f be a leaf space collapsed Anosov flow with Ecs transversally orientable. We
consider �t WM !M the topological Anosov flow and H WO� ! Lc given by Defi-
nition 2.13.

We will start by applying Theorem 3.3 to Wcs to get an approximating folia-
tion F cs

" . We denote by zWcs and zF cs
" the lifts to zM . As explained in Section A.3

we can consider a metric on M that makes leaves of F cs
" negatively curved. In

Proposition 7.3 we proved that the center leaves inside each leaf of zWcs form a quasi-
geodesic fan. Then we can pull them back to each leaf of zF cs

" to get a funnel point
p.L/ 2 S1.L/ in each leaf L 2 F cs

" .
We consider the flow z t W zM ! zM defined as follows: For a point x 2 L 2 zF cs

" ,
we consider z t .x/ to be moving along the geodesic through x with endpoint the
funnel point of L at unit speed. This definition is clearly �1.M/-invariant, and this
flow descends to M and we denote it by  t .

In Proposition 7.1 we proved the following result.

Proposition 9.2. The flow  t is topologically Anosov and orbit equivalent to �t by
an orbit equivalence homotopic to the identity.

9.2. Averaging to construct the map

We will now construct a map h0WM ! M which maps orbits of  t (cf. Proposi-
tion 9.2) to curves tangent to the center. Later we will modify this map and construct
the self orbit equivalence to verify Definition 2.10. Denote by H0WO ! Lc the
�1.M/-invariant homeomorphism between leaf spaces. Recall that Proposition 5.6
implies that H0 maps the weak-stable/unstable foliations of  t to the center stable
and unstable branching foliations of f .

Construction of a map. For a fixed small " > 0, we denote by hcsWM ! M the
collapsing map from F cs

" to Wcs given by Theorem 3.3.
Pick a point x 2 zM and let `x be the center leafH0.ox/ where ox is the orbit of x

by z . Note that ox is a geodesic in a negatively curved surface, and we can push the
Riemannian metric in Lx WD zF ws

 .x/ D zF cs
" .x/ to zhcs.Lx/ which is a leaf of zWcs .

We can push the metric because hcs is a local diffeomorphism between respective
leaves of F cs

" and Wcs , and this lifts to diffeomorphisms between respective leaves
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of zF cs
" and zWcs . With this metric zhcs.Lx/ is negatively curved, zhcs.ox/ is a geodesic

in zhcs.Lx/ and `x is a quasigeodesic in zhcs.Lx/ with the same endpoints.
We can then define a map px W `x ! zhcs.ox/ by orthogonal projection in zhcs.Lx/.

SinceLx is negatively curved the orthogonal projection is a uniquely defined function
and it is continuous.

Lemma 9.3. The map px is proper, in particular it extends continuously (as the iden-
tity) to the compactification of `x and zhcs.ox/.

Proof. This follows directly from the fact that `x is a quasigeodesic with the same
endpoints as the geodesic zhcs.ox/ with respect to the chosen metric.

In principle, the map px can fail to be injective, so one cannot define an inverse.
But there is a standard procedure of averaging going back at least to [43] (see also [47,
Section 8] for a discussion), which allows to find a natural way to invert px .

We can define from px a map ypx W `x ! R by identifying zhcs.ox/ with R via the
map bx W zhcs.ox/! R such that bx.zhcs. t .x// D t .

For y; z 2 `x , we denote by Œy; z� the segment of `x between y and z. For any
t 2 R, we denote by y C t the point in `x at oriented length t from y. Lemma 9.3
then implies that if we choose an appropriate orientation along Ec we have that the
map ypx verifies that, for every y 2 `x , we have limt!˙1 ypx.y C t / D ˙1.

Let pTx W `x ! R be the map defined by

pTx .y/ D

Z
Œy;yCT �

ypx.z/ dz:

Lemma 9.3 implies that for T > 0 large enough we have that not only pTx is C 1

along `x but also its derivative does not vanish. Indeed, since ypx is continuous, we
have

pTx .y C t / � p
T
x .y/ D

Z
ŒyCT;yCTCt�

ypx.z/ dz �

Z
Œy;yCt�

ypx.z/ dz

� t . ypx.y C T / � ypx.y//:

That is, if ux.t/ D pTx .y C t / for some y 2 `x then u0x.t/ > 0 everywhere. In
addition, the dependence of T on x is lower semi-continuous: if T works for x, then
T C " works for y sufficiently close to x. Therefore, there is T > 0 that works for
all x 2 zM .

It follows that, for any fixed x, we can define an inverse map qx W ox ! `x , which
is a C 1-diffeomorphism preserving orientation, as the inverse of pTx precomposed
with zhcs . We collect some properties of qx in the following statement.
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Lemma 9.4. The map x 7! qx varies continuously in the C 1-topology in compact
parts and is �1.M/-invariant in the sense that for  2 �1.M/, we have that

qx.t/ D qx.t/:

Moreover, there is a C 1-increasing diffeomorphism ux WR! R such that ux.0/ D 0,
and if xt D  t .x/, then qxt .0/ D qx.ux.t//.

Proof. Notice that we used the same T for all x 2 zM . All the objects we considered
depend on continuous and �1.M/-invariant choices. The last property just follows
from the way we defined qx and the fact that qxt also has `x as target since `x D `xt .

Now we can define the map hWM!M . For x2 zM , we define zh.x/ to be qx.0/2`x ,
since this is continuous and �1.M/-invariant it induces a continuous map h in M
homotopic to the identity.

Verifying the properties. We will now verify the sought properties of h.

Lemma 9.5. The map hWM !M is smooth along the orbits of  t and the derivative
maps the vector field to a (positively oriented) non-zero vector tangent to Ec . That is,
h verifies condition (i) in Definition 2.10.

Proof. Fix an orbit ox of z t and we get that by definition for every y 2 ox we have
that `x D `y . Therefore, the map h will map ox to `x . By Lemma 9.4 we deduce that
the image by h of the vector field is a positively oriented vector in Ec .

We can now proceed to prove Proposition 9.1.

Proof of Proposition 9.1. Since the partially hyperbolic diffeomorphism is a leaf space
collapsed Anosov flow it preserves branching foliations Wcs and Wcu. The fact that h
maps every weak stable leaf into a surfaces tangent to Ecs is direct from its construc-
tion since it maps leaves of zF ws

 to surfaces tangent to Ecs .
Now, by Proposition 5.6 we also get that the weak unstable leaves map to surfaces

tangent to Ecu. The lift zh of h to zM maps every weak stable/unstable by construction
into a properly embedded surface in zM respecting the orientation (which implies the
transverse collapsing property).

We now need to construct the self orbit equivalence ˇWM !M which makes the
commutation f ı hD h ıˇ work. We build ˇ in the universal cover zM . Given x 2 zM ,
consider ox the orbit of z through x. Then we set y D zf ı zh.x/ and `y D f ı zh.ox/.
Since zh is injective along orbits of the flow z , we can thus define ž.x/ D .zhj`y /

�1.y/.
Since everything is �1.M/-equivariant, the map ž descends to a map ˇ on M .

One gets that ˇ.x/ is continuous by construction and continuity of h (as well as
continuity of the maps qx; cf. Lemma 9.4). Moreover, ˇ is injective since it is injective
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along orbits as well as maps different orbits to different orbits. Finally, ˇ is surjective
since the equation f ı hD h ı ˇ implies that ˇ has degree one as a map. This implies
that ˇ is a homeomorphism which clearly preserves orbits and its orientation thus a
self orbit equivalence for  t .

The averaging method gives several ways on which a given collapsed Anosov
flow can be realized (different choices of h that affect the choice of ˇ). The follow-
ing remark should also be taken into account if one wants to formulate uniqueness
properties for collapsed Anosov flows.

Remark 9.6. Let f WM !M be a collapsed Anosov flow with respect to a topologi-
cal Anosov flow �t WM !M and the self orbit equivalence ˇWM !M . In particular,
there exists hWM !M homotopic to the identity such that f ı h D h ı ˇ.

Assume that ˛WM ! M is another self orbit equivalence of �t . Then, it follows
that taking yh D h ı ˛ and y̌ D ˛�1 ı ˇ ı ˛ we get that f ı yh D yh ı y̌. Thus, if ˛ is
homotopic to the identity, then f is also a collapsed Anosov flow associated with the
Anosov flow �t via the collapsing map yh and the self orbit equivalence y̌.

Similarly, if  t WM !M is a topological Anosov flow conjugate to �t by a home-
omorphism gWM ! M , that is,  t D g�1 ı �t ı g. Then, if hWM ! M is the map
homotopic to the identity such that f ı h D h ı ˇ, then one has that if yh D h ı g and
y̌ D g�1 ı ˇ ı g, then y̌ is a self orbit equivalence of  t and f ı yh D yh ı y̌. Thus,
if g is homotopic to the identity, then f is also a collapsed Anosov flow associated
with the Anosov flow  t via the collapsing map yh and the self orbit equivalence y̌.

10. On the examples obtained via '-transversality

10.1. Proof of Theorem A

In order to prove Theorem A, we first collect some facts that are easily extracted
from [15].

Proposition 10.1. Let �sWM !M be an Anosov flow generated by a vector field X
and 'WM ! M a diffeomorphism such that �s is '-transverse to itself. Then there
exists t0 > 0 and a function ıW Œt0;1/! R>0 with ı.t/! 0 as t !1 such that for
every t > t0, one has that the diffeomorphism ft D �t ı ' ı �t verifies that:

(i) ft is partially hyperbolic and the bundles Est ; E
c
t and Eut of ft make an

angle less than ı.t/ with the bundles Es� , RX and Eu� , respectively;

(ii) for every immersed22 curve cWR!M everywhere tangent to Ect there exists
x 2M and a homeomorphism uWR! R such that d.c.u.s//; �s.x// < ı.t/

22We require the speed c0 of c to be uniformly away from 0 and1.
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for every s 2 R, moreover, the point x is unique in that if y verifies the same,
then y D �s.x/ for some s 2 R;

(iii) for every x 2M , there is an immersed curve cWR!M everywhere tangent
to Ect such that d.c.s/; �s.x// < ı.t/ for every s 2 R.

Proof. Item (i) is a direct consequence of [15, Proposition 2.4] and [15, Remark 2.6].
Item (ii) follows from the standard shadowing lemma for Anosov flows (see,

e.g., [15, Theorem 5.3]), and item (iii) from its global version (cf. [15, Theorem 5.5]).
Note that [15, Theorem 5.5] is stated for flows, so to do this we apply the trick in [15,
Proposition 5.11]: we lift to a finite cover, take an iterate, so that we can apply The-
orem 3.8 to get branching foliations. Using Theorem 3.3 we construct a flow whose
orbits are arbitrarily close to curves tangent to the center, so we can apply [15, Theo-
rem 5.5] to this flow to get the center curve which then projects to M .

The strong information we get with the previous proposition allows us to show a
result which answers positively Question 4 in the setting of the examples of [15]. We
first need the following lemma.

Lemma 10.2. Consider t > t0 and f D ft as in Proposition 10.1. Let cs; s 2 Œ0; 1�
be a continuous one parameter family of complete curves tangent to Ec D Ect in zM
such that the Hausdorff distance between any of them is finite and bounded and that
all curves are contained in a single leaf of either zWcs or zWcu. Then all curves cs
coincide.

Proof. The proof is by contradiction, assuming that the curves do not all coincide. We
do the proof for the case of all curves contained in a single center stable leaf. From
Proposition 10.1 we see that for each s there is a unique orbit �s of z�t which is ı D ıt
close to cs . If ı is less than half the expansivity constant of �t , then the orbits vs vary
continuously with s. In addition, the orbits �s are all a bounded Hausdorff distance
from each other.

We first prove that the flow lines �s are in fact a single flow line. Suppose that this
is not true. Then either �s are not contained in a single leaf of zF ws

� or not contained in
a single leaf of zF wu

� . Assume that the �s are not in a single leaf of zF wu
� . In particular,

for some s0 in Œ0; 1� and any neighborhood J of s0, the curves vs , s 2 J , are not all
in zF wu

� .�s0/. For each s in J , let

�s D zF
wu
� .�s/ \ zF

ws
� .�s0/:

By hypothesis, not all �s are equal to �s0 D �s0 . Fix a0 > 0 and a basepoint x in �s0 .
Choosing J sufficiently small we can assume that for all s 2 J , there are backward
rays of �s starting near x which are all a0 near corresponding backward rays of �s .
Hence, all backward rays of �s for s in J are a small Hausdorff distance from each
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other. Since they are also in the same weak stable leaf, they have the same endpoint
on the Gromov boundary of zF ws

� .�s0/. Hence, by Proposition 5.14, all the �s must
coincide, which contradicts the assumption.

Similarly, if the �s are not in a single leaf of zF ws
� , then the same argument as

above, switching stable and unstable, applies. Thus the �s are all the same orbit of z�t .
Now apply iterates of f �1. The family ¹f �j .cs/; s 2 Œ0; 1�º is still continuous

in s, in a single center stable leaf, and a bounded Hausdorff distance from each other.
Thus, applying the preceding argument to that new family show that it must also be
associated with a single orbit of z�t .

However, since not all curves cs coincide, for j big enough, the stable length
between some curves of ¹f �j .cs/; s 2 Œ0; 1�º must be greater than 3ı. So item (ii)
of Proposition 10.1 implies that these curves must be associated with distinct orbits
of z�t , contradicting the above.

Proposition 10.3. Let �sWM !M be an Anosov flow generated by a vector field X
and 'WM ! M a diffeomorphism such that �s is '-transverse to itself. Let ft D
�t ı ' ı �t . Assume that the invariant bundles of ft are orientable and that t is suf-
ficiently large. Then, ft is a leaf space collapsed Anosov flow and there is a unique
ft -invariant branching foliation tangent to Ecst and a unique ft -invariant branching
foliation tangent to Ecut .

Proof. By taking g D f kt , we can assume that g preserves the orientation of the
bundles. So, by Theorem 3.8, there are g-invariant branching foliations Wcs and Wcu

tangent respectively to Ecst and Ecut .
By Proposition 10.1 (iii) for any orbit ox of z�t , there is a center leaf cx which is

ı-close to ox . To show uniqueness of cx , suppose that there are two distinct cx; c0x
which are ı close to ox . Let cx D Lx \ Fx and c0x D L

0
x \ F

0
x , with Lx; L0x 2 zW

cs ,
Fx; F

0
x 2

zWcu. We want to show that

Lx \ F
0
x D L

0
x \ Fx D cx;

which implies that cx D c0x . We argue for Lx \ F 0x since the other case is similar.
Suppose then that

Lx \ F
0
x D c

00
x ¤ cx :

Then the center leaves in Lx between cx and c00x form an interval of curves tangent
to Ec in Lx which vary continuously and are all a bounded distance from each other
in Lx . This contradicts Lemma 10.2. This shows that there is a bijection between the
orbit space of z�t and the center leaf space of g.

The invariance of the bijection under the action of �1.M/ comes from the fact that
Proposition 10.1 (iii) is done in M and the continuity follows from the fact that the
leaves of the foliations vary continuously in compact sets. This shows that g is a leaf
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space collapsed Anosov flow (and therefore is also quasigeodesic partially hyperbolic
by Theorem D).

To complete the proof we must show that the (g-invariant) branching foliations
tangent to Ecst and Ecut respectively are unique. Note that, if we show that these are
the unique g-invariant branching foliations for g, then (since ft .Wcs/ and ft .Wcu/

are g-invariant branching foliations) we will deduce that

ft .W
cs/ D Wcs and ft .W

cu/ D Wcu:

We deal with Ecst . Assume there is a pair of g-invariant branching foliations Wcs
1

and Wcs
2 tangent to Ecst and let Wcu be one g-invariant branching foliation tangent

to Ecut .
Note that applying the constructions above to the pairs .Wcs

1 ;W
cu/, .Wcs

2 ;W
cu/,

we get the structure of a leaf space collapsed Anosov flow for g in two different ways.
If Wcs

1 and Wcs
2 are not equal the following happens: there is a leaf L1 of zWcs

1 which
is not a leaf of zWcs

2 . We work with the maps between the leaf spaces and the orbit
space of z�s , because of the leaf space collapsed Anosov flow structure. By Proposi-
tion 5.6, L1 is associated with a weak stable leaf E of z�s . By the same proposition
the weak stable E is associated with a leaf L2 of zWcs

2 . Since L1 is not a leaf of zWcs
2 ,

there is a center leaf c0 in L1 such that the corresponding center leaf c� under these
identifications is not contained in L1. In other words c0; c� are distinct curves tangent
to the center bundle, but associated with the same orbit ox of z�s . If this is the case,
we still know by Proposition 10.1 (ii) that c0; c� are at distance less than 2ı from each
other.

Let U be a center unstable leaf so that U \ L1 D c0. Then the stable saturation
of c� is not contained in L1 since otherwise using that c� is 2ı close to c0 we would
get that c� is contained inL1. Then the stable saturation of c� intersectsU in a curve c
which is less than say 4ı from c0. Notice that c0; c are tangent to the center bundle
and distinct.

We want to produce a continuous collection of curves tangent to the center bun-
dle, which are a bounded Hausdorff distance from each other, so that we can apply
Lemma 10.2 and derive a contradiction. We fix a transversal orientation to c0 in U .
This induces a transversal orientation to the center bundle in U . First we define two
curves with respect to this transverse orientation:

cC WD sup.c0; c/; c� WD inf.c0; c/;

where the supremum and infimum are taken with respect to this chosen transverse
orientation where the curves are locally graphs.
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If c0; c never intersect, then c is in a complementary component of c0 in U . If
say c is in the plus component, then

cC D c; c� D c0;

if c is in the minus component, then

cC D c0; c� D c:

If c0; c intersect, notice that at each point of intersection they are tangent, as they
are both tangent to the center bundle. For each component of c X c0, it is either in
the plus complementary component of c0 or in the minus complementary component,
and we define the parts of cC; c� in those parts as in the situation where the curves
are disjoint.

Note the following important facts: cC; c� are a bounded Hausdorff distance 4ı
from each other and from c0; cC is contained in the closure of the plus complementary
component of c0; and c� is contained in the closure of the minus complementary
component of c0. This in particular implies that cC; c� do not topologically cross.

We are going to define the continuous family of curves tangent to Ec in U . First
parametrize the center leaves of Wcs \ U as cs , where c0 was already defined, and
s > 0 is on the closure of the plus side of c0 in U . For each s � 0, define

ds WD inf.cs; cC/:

Notice that for each s � 0, we have that cs; cC are both contained in the closure of
the plus complementary component of c0. Since cs varies continuously with t , then so
does ds for s � 0. Also d0 D c0. And finally, all curves ds are between cC and c0. So
they are all a bounded distance from d0. Similarly for s � 0, define ds WD sup.cs; c�/.
They have the same properties as ds for s � 0. Notice also that cs escapes in U
for jsj ! 1, that is, for every compact set C � U for large s the curve cs is not
contained in C . By construction cC; c� are distinct curves. It now follows that ds
cannot be constant with s. So we have a continuous family of curves tangent to Ec

in a center unstable leaf, which are all a bounded Hausdorff distance from each other.
This contradicts Lemma 10.2.

This finishes the proof of Proposition 10.3.

Now we can use the previous proposition to deduce Theorem A.

Proof of Theorem A. Consider t > 0 large enough so that both Proposition 10.1 and
Proposition 10.3 hold.

We can choose a finite normal cover P W yM !M such that the lifts of all bundles
are orientable. An iterate of ft lifts to yM and we can consider a lift g of a possibly
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further iterate so that g preserves the orientation of the bundles. Applying Proposi-
tion 10.3 to g we get that g is a leaf space collapsed Anosov flow and that it admits a
unique pair of g-invariant branching foliations Wcs

0 and Wcu
0 tangent to Ecs and Ecu

respectively.
As explained in Remark A.3 using the uniqueness of branching foliations, we

obtain that Wcs
0 (and Wcu

0 ) must coincide with the uppermost and lowermost branch-
ing foliations constructed in [24]. More specifically the uppermost center stable foli-
ation is the same as the lowermost center stable foliation. This implies that these
branching foliations project to M since given  a deck transformation of yM with
respect to the cover P we get that it preserves the bundles, so it verifies that Wcs

0

and Wcu
0 are branching foliations tangent to Ecs and Ecu and depending on how 

acts on the orientation it preserves the uppermost branching foliation or it maps it into
the lowermost one. Since these are equal by Proposition 10.3 we deduce Wcs

0 DWcs
0

and Wcu
0 D Wcu

0 .
Now denote by Wcs;Wcu the projection of these branching foliations toM . Let B

be the lift of ft .Wcs/ to yM . Since f kt lifts to g in yM , it follows that

f kt .W
cs/ D Wcs:

The foliation g.B/ projects to f kt ı ft .W
cs/, which is then equal to ft .Wcs/, so

g.B/DB. Then the uniqueness of branching foliations in yM implies that B DWcs
0 ,

and we finally conclude that
ft .W

cs/ D Wcs:

Hence, ft preserves branching foliations Wcs;Wcu and ft is also a leaf space
collapsed Anosov flow. By Theorem D we get that ft is also a quasigeodesic partially
hyperbolic diffeomorphism.

To show that ft is a strong collapsed Anosov flow, we point out to the proof of
Theorem B in Section 9.

Theorem A states that ft is also a strong collapsed Anosov flow. However, since
we do not assume that the bundles are orientable, we cannot use Theorem B directly
to deduce this. Instead, we redo and adapt some of the steps of the proof of Theorem B
in Section 9 to these particular examples.

In Section 9 we constructed a map which sent an orbit of an Anosov flow  t

which was orbit equivalent to the original Anosov flow y�t to a curve tangent to Ec .
This worked fine under orientability assumptions, so we get a map yhW yM ! yM with
these properties. Our goal is to show that we can project that map to M .

We consider an orbit equivalence ykW yM ! yM from the flow y�t W yM ! yM (the lift
of �t to yM ) to the flow  t constructed in Section 9. We let yh0 D yh ı yk�1, which maps
orbits of y�t to curves tangent to the centers. If we consider a deck transformation 
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with respect to P W yM !M and an orbit ox of y�t , we claim that

yh0.ox/ D  yh0.ox/:

Indeed, by construction, for any orbit o, yh0.o/ is the unique curve tangent to Ec

which is ı near o. Now  yh0.ox/ is a curve tangent to Ec which is ı near the orbit
.ox/. Hence, the above formula must hold.

Using this we can prove that we can make a quotient map of yh0 to M . Given
a center leaf c in M we say that c is closed if given a lift zc in zM , there is a non-
trivial deck transformation ˛ such that ˛.zc/ D zc. We have already proved that ft is
a leaf space collapsed Anosov flow, which implies that c is closed if and only if it is
associated with a closed orbit of �s . Let 1; : : : ; n be the deck transformations of the
cover yM !M . Given y a point in a non-periodic orbit of �s , let x1; : : : ; xn be the lifts
of y to yM , which are related by the ¹iº. We consider the center leaves in M or yM
which are not closed, or equivalently the non-periodic orbits of �s or y�s . So given y,
there are finitely many xi . For each xi , we compute yh0.xi /, which by the formula
above projects byP to the same center leaf inM . In this center leaf there is an induced
metric given by length along the centers. This metric induces an identification with R.
Using this identification, we can compute the average of P.yh0.xi // for 1 � i � n.
Let h0.y/ be this average. Note that we have used that the center leaf is not closed, as
otherwise it is more complicated to take averages.

Now we use the following properties: There are finitely many i , the length along
center leaves varies continuously, and yh0 is continuous on the non-periodic center
leaves. These properties imply that this function extends to a continuous function in
all of M .

We now obtained the collapsing function h0 sending orbits of �s to curves tangent
to Ec in M . Finally, we need to construct the self orbit equivalence ˇ to satisfy

ft ı h0 D h0 ı ˇ:

The construction is now exactly as in the end of the proof of Proposition 9.1 since no
orientation is needed then. This shows that ft is a strong collapsed Anosov flow.

Remark 10.4. Notice that, in the proof of Theorem A (more precisely, in Proposi-
tion 10.3), the time t1 we require to have so that ft is leaf space collapsed Anosov
flow for all t > t1 may be greater than the time t0 required so that ft is a partially
hyperbolic diffeomorphism for all t > t0.

Hence, Theorem A does not directly say that all the examples à la [15] (meaning
all examples proven to be partially hyperbolic using Proposition 2.12) are (leaf space)
collapsed Anosov flows.
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However, since ft is partially hyperbolic for all t > t0 and leaf space collapsed
Anosov flow for all t > t1 � t0, Theorem C implies that all ft , t > t0 are indeed leaf
space collapsed Anosov flows.

10.2. Uniqueness of curves tangent to the center bundle

In this section we show that under some uniqueness properties of the branching foli-
ations like the ones obtained in Proposition 10.3 we can deduce a stronger form of
uniqueness of integrability of the center bundle. This also motivates Question 4 as a
way to understand finer geometric properties of the center bundle beyond the fact that
it can help to remove orientability assumptions in our results.

We first prove a general fact about quasigeodesic partially hyperbolic diffeomor-
phisms that may be of interest and which essentially states that the center direction
inside center stable (or center unstable) leaves is a semi-flow (i.e., it can only branch
in one direction).

Lemma 10.5. Suppose that f is a quasigeodesic partially hyperbolic diffeomorphism
with branching foliations Wcs and Wcu. Given L a leaf of zWcs suppose that two
center leaves c1; c2 in L intersect in x. Then c1; c2 coincide in the ray from x to the
funnel point in L. The symmetric statement holds for leaves in zWcu.

Proof. Suppose this is not the case. There are two options:

(i) there are y; z in the ray of c1 to the funnel point, so that both belong to the
intersection of c1; c2, but no point in the segment of c1 between them is in c2.
This is called a finite bigon; or

(ii) there is y in c1 \ c2 so that the ray in c1 from y to the funnel point is disjoint
from c2. This is called an infinite bigon.

We first show that option (i) cannot happen. Let B be the bigon formed by the
segments in c1 [ c2 bounded by y; z. Let `i be the segment in ci from y to z. Con-
sider the negative iterate by f of B: Since the stable lengths converge to infinity, the
diameters of f �n.B/ goes to infinity as n! C1. The curves f �n.`i / are uniform
quasigeodesics arcs with same pair of endpoints, hence they are a uniform bounded
distance from each other. Consider points midway in f �n.B/: Up to subsequences
and deck transformations the two boundary center rays converge to distinct center
leaves in the same center stable leaf, and which have the same ideal points. This is
disallowed by Proposition 6.19.

A similar argument rules out option (ii) by considering the infinite bigon B and
taking points at increasing distance from the point where they intersect in the direction
where they converge to the same point. The same argument gives two center leaves
which have the same ideal points. This proves the lemma.
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We can use this to get a precise description of curves tangent to Ec assuming
uniqueness of branching foliations.

Proposition 10.6. Suppose that f is a quasigeodesic partially hyperbolic diffeomor-
phism such that all the bundles are orientable and f preserves the orientations.
Suppose that there is a unique pair of center stable and center unstable branching
foliations that are invariant by f . Then any curve in M which is tangent to Ec is the
intersection of a center stable and a center unstable leaf.

Proof. Let Wcs;Wcu be branching foliations given by Theorem 3.8. As explained in
Proposition A.2, two natural f -invariant branching foliations tangent to Ecs are con-
structed in [24]: the lowermost one in the positive center direction, and the uppermost
one. By hypothesis, these two branching foliations must coincide.

Orient the center bundle to be positive in the center stable funnel direction. Now
suppose that c is a curve in zM tangent to Ec . Let x be a point in c. Consider a ray r
in c starting at x and in the positive direction. Suppose that x is in a center stable
leaf U .

Claim 10.7. The ray r is contained in U .

Proof. Consider U1; U2 the uppermost and lowermost center unstable leaves of zWcu

through x. Since we assumed that center stable and center unstable branching foli-
ations are unique, Wcu is both the lowermost and uppermost branching foliation
of [24]; see Appendix A. In particular, this implies that U2 is the lowermost local
center unstable surface from x in the positive center direction as constructed by
Burago–Ivanov in [24]. Similarly U1 is the uppermost local center unstable surface
through x. If one does a local saturation S of c through stable leaves, then [24,
Lemma 3.1] shows that S is a C 1-surface tangent to Ecu. In particular, S is locally
between U1 and U2. Let L be a center stable leaf containing c. Let ci D Ui \ L.

Now ci are center leaves in L both through x. Lemma 10.5 shows that the rays
of ci starting at x and in the positive direction coincide. In particular, U1; U2 coincide
locally near x and so does U . Hence r is locally contained in U .

This situation has a uniformity: there is fixed "0 > 0 so that one can always get
a segment of length "0 in r contained in U . This yields a point x1 in r at least "0
along r from x. Notice that x1 is in every center unstable leaf in ŒU1; U2�. Now restart
with x1. Get U 11 ; U

1
2 the uppermost and lowermost leaves of zWcs through x1. Notice

that the intervals
ŒU1; U2� � ŒU

1
1 ; U

1
2 �:

Apply the same argument for a length � "0 along r to get second segment in r now
contained in every leaf in ŒU 11 ; U

1
2 �, and hence in U . Then iterate, obtaining points xj

in r escaping in r . This proves the claim.
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Now we prove that there is a zWcu leaf that contains all of c. Let p0 D x. For
each i , we choose a point pi in c that is a distance along c at least 1 from pi�1. We
choose the sequence so that the pi escapes in the direction opposite to the funnel. This
direction is opposite to where the points xj were. Let Ui a zWcu leaf with pi in Ui .
Let ri D Œpi ;C1/ be the ray of c starting in pi and going in the direction of the
funnel. By Claim 10.7 the entire ray ri is contained in Ui . All Ui contain p0. The set
of zWcu leaves through p0 is a compact interval. Up to taking a subsequence, assume
that Ui converges to a leaf V as i !1. Since all Ui for i � j contain pj , then V
contains pj . Hence, V contains all the pi ’s. By the claim, V then contains the entire
curve c.

By the same arguments c is contained in a leaf E of zWcs . This finishes the proof
of the proposition.

Remark 10.8. Note that in the case of the examples obtained via Theorem A we
are able to get that for large enough t > 0 the diffeomorphism ft when lifted to
a finite cover satisfies the hypothesis of Proposition 10.3. Hence, Proposition 10.6
can be applied to deduce that every curve tangent to Ec is obtained (in zM ) as the
intersection of a center stable and a center unstable leaf of the branching foliations.
This is a form of unique integrability of the center bundle, even if different center
curves may merge. Note in particular that if ft is dynamically coherent, this implies
that Ec is uniquely integrable as a bundle. In particular, notice the difference: one can
prove that ft is partially hyperbolic for all t � t1, but to get the unique integrability
of the center bundle as above one needs t � t0, where in theory t0 > t1.

We also note that the property of not having unique f -invariant center stable or
center unstable branching foliations is an open property among partially hyperbolic
diffeomorphisms thanks to Theorem 4.3. The closed property may fail because in the
limit different branching foliations may collapse to a single branching foliation.

However, as a direct consequence of Theorem C we get the following: in the
connected component of partially hyperbolic diffeomorphisms containing some ft ,
we have that ft has to be a collapsed Anosov flow with respect to the same flow
and same self orbit equivalence of the flow (same in terms of the action on the orbit
spaces) for every pair of branching foliations it may have.23

Remark 10.9. The previous remark applies very well to the case of partially hyper-
bolic diffeomorphisms in the connected component of the time one map of an Anosov
flow. Here, by Theorem C the whole connected component of partially hyperbolic

23Technically to get this one needs to show that having branching foliations for which f is
not a collapsed Anosov flow is also an open and closed property, but this follows directly from
Theorem 4.3.
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diffeomorphisms consists of discretized Anosov flows. This uses the last part of the
previous remark as well as Proposition 5.26. Moreover, since the Anosov flow is
generated by a C 1-vector field, the center direction of its time one map is uniquely
integrable. It follows that in the whole connected component of partially hyperbolic
diffeomorphisms, if there were more than one pair of branching foliations, these
should correspond to discretized Anosov flows – again by the last part of the previ-
ous remark. But in [10, Lemma 7.6] using that they are discretized Anosov flows, we
showed that this implies that there is a unique pair of branching foliations. As a con-
sequence we obtain that the center direction is uniquely integrable (since in addition
it integrates to a foliation) in the whole connected component of partially hyperbolic
diffeomorphisms containing the time one map of an Anosov flow.24

10.3. C 1 self orbit equivalences and collapsed Anosov flows

Thanks to the concept of '-transversality of [15] and Theorem A, we can readily
obtain many collapsed Anosov flows. However, finding a map ' for which a flow
is '-transverse to itself is generally not easy; see [15]. But one instance when it is
easy is when one has a map ˇ, which is a (at least) C 1-self orbit equivalence of
a smooth Anosov flow �. Indeed, since ˇ preserves the weak stable and unstable
directions and preserves the flow direction, the flow is trivially ˇ-transverse to itself;
see Definition 2.11.

Hence, for such a ˇ, the map �t ı ˇ ı �t is a collapsed Anosov flow of � thanks
to Theorem A, and it is clearly dynamically coherent as it preserves the weak stable
and weak unstable foliations of �.

The first such examples were constructed in [19], but these examples are such that
a power is a discretized Anosov flow.

One can wonder whether different smooth self orbit equivalences could lead to
genuinely new collapsed Anosov flows (that is, ones such that no power is a dis-
cretized Anosov flow). It turns out that, at least when the Anosov flow is transitive,
this is not the case, as we observe a form of smooth rigidity:

Proposition 10.10. Let ˇ be a C 1-self orbit equivalence of a smooth (at least C 1)
transitive Anosov flow. Then there exists k such that ˇk is a trivial self orbit equiva-
lence. (Moreover, there is an upper bound for k that only depends on the flow and the
manifold.)

Proof. In the proof of [6, Proposition 6.6], Barbot shows that if a map žO on the
orbit space of a smooth Anosov flow � is a �1-equivariant, C 1-diffeomorphism, then

24Or, maybe more generally, a discretized Anosov flow for which the center direction is
uniquely integrable.
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there exist a time-change  of � such that ˇ is a conjugation of  with itself, where
ˇWM !M is a C 1-map such that its lift to the orbit space is žO (or ž2

O
if žO reverses

the direction of the flow). (The flow  is build on the projectivized bundle of the orbit
space; see also [7]).

In other words, ˇ is in the centralizer of  . By [13, Lemma 1.4], the centralizer
of  quotiented out by the elements of the centralizer that act as the identity on the
orbit space is finite. Hence, there exists k, which can be chosen depending only on
the flow and the manifold, such that ˇk is trivial.

We end this section with some comments regarding Question 3. If a self orbit
equivalence ˇ of an Anosov flow �t is smooth, then it follows that one can construct
a collapsed Anosov flow with the technique of [15] by taking �t ı ˇ ı �t with large t .
In general, the previous proposition indicates that we cannot usually expect the self
orbit equivalence to be smooth, therefore, we cannot apply this technique directly.
However, it is reasonable to expect that self orbit equivalences can be smoothed in
order to preserve some transversality between bundles which would give a way to
attack Question 3.

11. Some classification results

In this section we will present some relatively direct results giving settings where one
can use self orbit equivalences to classify all collapsed Anosov flows or vice-versa.
The three settings we will describe are: Collapsed Anosov flows that are homotopic to
the identity, Collapsed Anosov flows on T 1S , the unit tangent bundle of a hyperbolic
surface, and Collapsed Anosov flows associated with the Franks–Williams example.

Those are not the only cases where one can obtain such a complete understanding,
but they are among the easiest and nicely showcase the type of tools one has to prove
such results.

We emphasize that the result below gives a complete picture of self orbit equiv-
alences of certain Anosov flows, but only a classification up to isotopy for collapsed
Anosov flows, as we do not yet know how different two collapsed Anosov flows asso-
ciated with the same self orbit equivalence can be.

11.1. The homotopic to the identity case

In [12], self orbit equivalences of transitive Anosov flows that are homotopic to the
identity were completely classified. Thus, we can translate [12, Theorem 1.1], using
Proposition 5.26, in terms of collapsed Anosov flow to obtain the following.
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Theorem 11.1. If f is a strong collapsed Anosov flow homotopic to the identity asso-
ciated to a transitive Anosov flow �t , then f is either a discretized Anosov flow or a
double translation in the sense of [10].

Moreover, if the associated Anosov flow �t is either not R-covered, or has non-
transversely-orientable weak foliations, then f must be a discretized Anosov flow.

Note that it is still unknown whether double translations exists or not outside of
Seifert manifolds, but in [37] the second and third authors show that any double trans-
lation on a hyperbolic manifold must be a collapsed Anosov flow associated with the
“one-step up” self orbit equivalence of an R-covered Anosov flow.

Proof. Let f be a strong collapsed Anosov flow that is homotopic to the identity,
associated with a transitive Anosov flow �t . Let h and ˇ be the associated collapsing
map and self orbit equivalence. Since f ı h D h ı ˇ and both f and h are homo-
topic to the identity, we deduce that ˇ is also homotopic to the identity. Thus, we can
apply [12, Theorem 1.1].

If the flow �t is not R-covered or has non-transversely-orientable weak foliations,
then items (1) and (3), respectively, of [12, Theorem 1.1] imply that ˇ is trivial, thus f
is a discretized Anosov flow thanks to Proposition 5.26.

If �t is R-covered, then item (4) of [12, Theorem 1.1] gives that either ˇ is trivial,
which gives that f is a discretized Anosov flow, or that ˇ is a power of the “one-step
up” self orbit equivalence �. We will not recall what � is exactly, just that a good
lift of it acts as a translation on both leaf spaces of �t . Let zf be a lift of f to the
universal cover obtained from lifting an homotopy to the identity. Since f is a strong
collapsed Anosov flow, it admits center stable and center unstable branching foliations
that are the images by h of the weak stable and weak unstable foliations of �t . Hence,
a lift zh realizes a semi-conjugacy between the action of ž and the action of zf on the
respective leaves spaces. Since ž acts as a translation, so does zf . So f is a double
translation in the sense of [10].

11.2. Unit tangent bundle of surfaces

When considering unit tangent bundle of surfaces, it is also possible to give a complete
picture of collapsed Anosov flows, at least up to isotopy.

Theorem 11.2. Let T 1S be the unit tangent bundle of a hyperbolic surface S . Let f
be a collapsed Anosov flow on T 1S with associated flow �. Then the isotopy class
of f is in a lift of MCG.S/ to MCG.T 1S/. More precisely, let gt be the geodesic
flow on T 1S for a fixed hyperbolic metric and eW T 1S ! T 1S an orbit equivalence
between � and gt . Let 3MCG.S/�MCG.T 1S/ be the lift of MCG.S/ given by taking
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the derivative. Then the isotopy class of f is inside iŒe�3MCG.S/, the conjugation
of 3MCG.S/ by the isotopy class of e.

Moreover, any isotopy class in iŒe�3MCG.S/ admits a collapsed Anosov flow.
The same statements hold for self orbit equivalences of �.

Remark 11.3. Note that one can choose the orbit equivalence e above such that it
induces a map homotopic to the identity on S .

Remark 11.4. In [15] it is shown that the only partially hyperbolic diffeomorphisms
on T 1S that induce a map homotopic to the identity on S must be homotopic to the
identity on T 1S too (that is, there is no non-trivial gauge transformations of T 1S that
admits a partially hyperbolic representative).

As noted in [15], this also implies that the isotopy classes of partially hyperbolic
diffeomorphisms on T 1S do not form a subgroup of MCG.T 1S/.

However, as we see here, this lack of a group structure is only because there are
many Anosov flows on T 1S that are orbit equivalent to the geodesic flow, but not via
an orbit equivalence that is homotopic to identity. Indeed, once an Anosov flow � is
fixed, the isotopy classes of collapsed Anosov flow associated with � form a subgroup
of MCG.T 1S/.

Remark 11.5. In [37], the second and third authors show that any partially hyperbolic
diffeomorphism f on T 1S that induces a map on S that is homotopic to a pseudo-
Anosov diffeomorphism is a strong collapsed Anosov flow (in fact a, quasigeodesic
partially hyperbolic diffeomorphism). So the only cases that are not yet known to be
collapsed Anosov flows on T 1S are partially hyperbolic diffeomorphisms that act
reducibly (but not trivially) on the base S .

Proof. Let � be an Anosov flow on T 1M and eWM ! M an homeomorphism such
that e�1 ı �t ı e is a time-change of gt .

In [15, Theorem 1.2], it was shown that any isotopy class in 3MCG.S/ admits a
partially hyperbolic diffeomorphism which is, according to Theorem A, a collapsed
Anosov flow associated with gt . Hence, for any class in 3MCG.S/, there exists a self
orbit equivalence ˇ of gt . Thus, e ı ˇ ı e�1 is a self orbit equivalence of �t and such
self orbit equivalences will cover all of iŒe�3MCG.S/.

We can also build a collapsed Anosov flow using the same method, but we would
need to require smoothness of e which does not a priori hold. So instead, we let Ne be a
diffeomorphism in the same isotopy class as e and define x�t D Ne ı gt ı Ne�1. Then, for
any collapsed Anosov flow f associated with gt , the map Ne ı f ı Ne�1 is a collapsed
Anosov flow of x� and the isotopy classes of such collapsed Anosov flow cover all
of iŒe�3MCG.S/.

The other direction can be proven for instance as in [59]: We can show that the
isotopy class of a self orbit equivalence of � is necessarily in iŒe�3MCG.S/. This will
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imply that the isotopy class of a collapsed Anosov flow must also necessarily be
in iŒe�3MCG.S/.

If ˇ is a self orbit equivalence of �, then up to conjugation by e, we can assume
that ˇ is a self orbit equivalence of gt , and we have to show that Œˇ� 2 3MCG.S/. This
follows as in the proof of [59, Proposition 3.6]; see also [15, Theorem 3.6] or [7].

11.3. Collapsed Anosov flows of the Franks–Williams example

The Franks–Williams [42] example is the first, most famous and simplest non-trans-
itive Anosov flow on a 3-manifolds. We denote the Franks–Williams flow by �FW
and by MFW the manifold supporting that flow. Note that �FW is the only non-
transitive Anosov flow up to orbit equivalence on MFW ; see [69]. We will not recall
the construction of �FW (see [42] or, e.g., [14]), but instead list the properties that we
will use:

(i) The manifold MFW decomposes into two atoroidal pieces separated by a
torus T transverse to �FW (which is unique up to isotopy along the flow lines). In
particular, a consequence of Mostow’s rigidity theorem is that the mapping class
group of MFW is up to finite index generated by Dehn twists along the transverse
tori ([54, Corollary 27.6]).25

(ii) The stable and unstable foliations restrict to two transverse foliations on the
transverse torus with four closed leaves (two stable and two unstable leaves) and Reeb
components in between. We denote by ˛ the element of �1.T / representing the closed
leaves;

(iii) Each periodic orbit of �FW is unique in its free homotopy class, except for
the four periodic orbits (two in each atoroidal pieces) associated with the closed leaves
of T which are pairwise freely homotopic.

Theorem 11.6. Up to finite power, any self orbit equivalence or collapsed Anosov
flow of �FW is in the isotopy class of the power of a Dehn twist of T in the direction
of ˛. Moreover, up to a finite power, two self orbit equivalences of �FW in the same
isotopy class are equivalent.

Conversely, any such isotopy classes can be realized by a collapsed Anosov flow
or self orbit equivalence of �FW .

Remark 11.7. One can show that two self orbit equivalences in the same isotopy class
are equivalent without taking a finite power, but the proof is easiest when allowing
finite powers and we leave the more precise statement for a future general study of
self orbit equivalences.

25See, e.g., [15] for the definition of a Dehn twist on a torus in a 3-manifold.
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Remark 11.8. A cosmetic adaptation of the following proof allows to more gener-
ally classify collapsed Anosov flows and self orbit equivalences of Anosov flows that
are obtained in the following way: Create any number of hyperbolic plugs (in the
sense of [14]) by doing a derived from Anosov construction on finitely many orbits
of a suspension of an Anosov diffeomorphism of the torus. Glue the hyperbolic plugs
together in any of the ways allowed to get a (transitive or non-transitive) Anosov flow;
see [14].

Such Anosov flows will satisfy a version of each of the items (i), (ii), and (iii)
above. That is, the JSJ decomposition of the manifold has only atoroidal pieces, each
torus is transverse to the flow with two closed center leaves and Reeb components for
each of the weak foliations restricted to the torus, and every periodic orbits aside from
finitely many will be alone in their free homotopy class.26

Proof. We start by proving the converse part of the theorem: Since ˛ 2 �1.T / rep-
resents the free homotopy class of the closed leaves of the weak stable and weak
unstable foliations restricted to T , by [15, Theorem 1.3], the isotopy class of any
Dehn twist in the direction of ˛ admits a partially hyperbolic diffeomorphism. This
diffeomorphism is a collapsed Anosov flow by Theorem A.

Now, suppose that ˇ is a self orbit equivalence of �FW . Since the Dehn twists
on T generate a finite index subgroup of mapping class group ofMFW (see, e.g., [54,
Corollary 27.6]), up to taking a finite power, say k, of ˇ, we can assume that ˇk

preserves both pieces and is isotopic to identity in each pieces.
So ˇk must send each periodic orbit to one freely homotopic to it. By construction

of the Franks–Williams example (see item (iii) above), ˇ2k will then fix every periodic
orbit of �FW . In particular, the isotopy class of ˇ2k must preserve the conjugacy class
of ˛, the element of �1.T / that is freely homotopic to the exceptional periodic orbits
of �FW . Therefore, the isotopy class of ˇ2k must be generated by the Dehn twist
on T in the direction of ˛.

So all we have left to do is show that if two self orbit equivalences are in the same
isotopy class, then they are equivalent. Equivalently, it suffices to show that if ˇ is
homotopic to the identity, then it fixes every orbit of �t .

Let ž be a lift of ˇ to the universal cover obtained by lifting the homotopy to
identity. Recall that by item (iii) above, ž must fix all the lifts of periodic orbits,
except possibly the lift of the four exceptional periodic orbits. Moreover, ž2 must
preserve each half-leaves of lifted periodic orbits. Hence, any orbit obtained as an

26To show that a periodic orbit  crossing one transverse torus T is also alone in its free
homotopy class, remark that, otherwise, it would have to be freely homotopic to the inverse of
another periodic  0 (see, e.g., [34]), but that would imply that  0 has to cross T in the opposite
direction as  , contradicting the transversality of T .
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intersection of a weak stable and weak unstable leaf of a periodic orbit is fixed by ž2.
That set is dense in zM ; see [41]. Therefore, by continuity, ž2 acts as the identity on
the orbit space of �FW , which ends the proof.

A. Branching foliations and prefoliations revisited

In this section we obtain more information about branching foliations. We will assume
some familiarity with the constructions in [24] and repeatedly refer to statements or
proofs in that paper.

A.1. Uniqueness of approximating leaves

The constructions of Burago and Ivanov have a lot of inherent redundancy. What we
mean is that there are a lot of surfaces S W dom.S/! M with the same image. Since
these are not embeddings one has to be more careful with the meaning of “same
image.” We follow Burago–Ivanov and say that two surfaces S1; S2 are equivalent
if there is a homeomorphism gW dom.S1/! dom.S2/ such that S1 D S2 ı g. More
generally, if this works for subsets of the domains we say this is a change of parameter
of the subsurfaces. This is another reason to consider dom.F / to be a plane.

What we call by “leaves” of the branching foliation, are the equivalence classes of
these identifications. With this understanding one can prove the following proposition.

Proposition A.1. Let A be a branching foliation. Let B" be the approximating foli-
ations constructed by Burago–Ivanov. There is a one-to-one correspondence between
the leaves of A and the leaves of B" for any " > 0.

Proof. We will use the notations and terminology of the proof of [24, Theorem 7.2].
They construct a “push off” function F which pushes different branching leaves
through a point apart. Then given any ˛ > 0 they construct a foliation A˛F such
that as ˛ ! 0 the tangent planes to the leaves of A˛F converge to the bundle E.
So B" is A�."/F for some function � which converges to 0 as " converges to 0.

We review the important points to construct F . They consider a smooth vector
field W which is almost perpendicular to the bundle E. Let � be the flow generated
by W . They consider a finite cover ¹Uiº of M by foliated boxes of W and with coor-
dinates .xi ; yi ; zi / such thatE is almost horizontal (i.e., close to the .x; y/ directions)
and W is almost vertical (close to the z direction) in each Ui .

In each Ui they consider Ai the set of pairs .S; x/, where S is an element of A,
x 2 dom.S/ and S.x/ 2 Ui . They define a non-strict total order �i on Ai as follows:
Choose A1; A2 2 Ai , such that A1 D .S1; x1/, A2 D .S2; x2/. There is an intrinsic
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ball
D D Br.x1/ � dom.S1/

such that a piece of A2 is the graph of a C 1-function f WD ! R as follows: The
surface Sf1 WD !M given by

S
f
1 .x/ D �

f .x/.S1.x//; x 2 D

coincides, up to a change of parameter sending x1 to x2 with a region in S2. Let r
be the maximum radius of such a ball (possibly r D 1). Since the surfaces have no
topological crossing, the function f does not change sign. We set A2 �i A1 if f � 0,
and A1 �i A2 if f � 0.

Burago and Ivanov remark that it is possible that both inequalities A1 �i A2 and
A2 �i A1 hold. This means that S1 and S2 coincide up to a parameter change, which
sends x1 to x2, in which case they write A1 Š A2.

We remark that we identified surfaces of A if they have the same image up to
parameter change. Under this identification�i is a total order in Ai , which is denoted
by >i . So the set of equivalence classes of Ai is the same as Ai .

Then [24, Lemma 7.2] shows that .Ai ;>i / is order isomorphic to an open interval
and they pick a homeomorphism �i WAi ! .0; 1/. The important point to understand
here is that �i is different for different branching leaves B1; B2. Even if the leaves
B1; B2 pass through a common point y in Ui , and even if they coincide on a path
through Ui . But if B1; B2 are not the same leaf globally, then �i .B1/ ¤ �i .B2/. That
is, �i differentiates different branching leaves, even if locally (which can be a big set)
they have the same image.

They use the functions �i to define functions Fi which are meant to “push” leaves
of A inside the foliated boxes Ui . The push off is done along flow lines of �. The
functions Fi are averaged to produce a function

F D
1

k

kX
iD1

Fi :

Given ˛ > 0, Burago–Ivanov push leaves of A using the function ˛F and they show
the pushed off leaves form an actual foliation (that is, with no branching). The map h
in the statement of the Burago–Ivanov theorem, which sends leaves of A˛F to leaves
of A is just the opposite of the push off map: The map h slides points back along flow
lines of �.

Now we come to the property we want to prove. Suppose that two leaves B; C
of A˛F project to the same leaf G of A. Since it is the same leaf G, then, by the
discussion above, all the functions �i are specified. Hence the functions Fi are speci-
fied along G and there is only one push off leaf in A˛F associated to G. This shows
that B;C are the same leaf of A˛F . This finishes the proof of the proposition.
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A.2. Properties of some branching foliations

Now we go back to the specific branching foliations associated with partially hyper-
bolic diffeomorphisms, as constructed by Burago and Ivanov.

The next property we want to consider is the local “highest” and “lowest” leaves
from a point. The construction of Burago and Ivanov of the branching foliations for
partially hyperbolic diffeomorphisms starts as follows. Consider a point p inM . They
fix a smooth diskD through p, transversal to the stable foliation, so that Ec is almost
tangent toD. The disk is small to be contained in foliated boxes of all the bundlesEc ,
Es , Eu. The Ecs bundle intersects the tangent bundle to D in a one-dimensional
bundle, call it G. They consider all C 1-curves in D tangent to G. Among all these
tangent curves passing through p there is a lowest curve in the forward direction.
The forward direction is the one given by the orientation on Ec , which is almost
tangent toD; see [24, Section 5]. The local saturation of this is a C 1-surface; see [24,
Proposition 3.1]. Locally it is the “lowest” surface tangent to Ecs through p in the
positive direction. This lowest surface is in fact independent of D.

We prove the following:

Proposition A.2. One can do the construction of the branching foliations of [24]
such that through every point p there is a branching leaf which is the lowest locally in
the positive Ec direction. More specifically, there is a fixed size ı > 0, so for every p
in M the locally lowest forward surface for p containing a half disk of radius at
least ı centered at p is in a leaf of the branching foliation. In addition for the same
foliation for every p there is also a branching leaf which is the highest locally in the
negative Ec direction.

Proof. In fact, we prove that the branching foliations that Burago and Ivanov con-
struct satisfy the conclusions of the lemma. The main result we need is [24, Propo-
sition 4.13]. This result concerns “partial” branching foliations, which satisfy only
the non-topological crossing condition of branching foliations. It extends this partial
foliation in a particular way. This result is proved in [24, Section 6] using results in
dimension 2 developed in [24, Section 5].

In particular, since there may be many leaves through a given point, one has to
keep track of which leaves are “above” other leaves. They introduce a total order in
the set of leaves through a point p and this has to be preserved when one moves
along paths common to both leaves being considered. To introduce a new leaf, they
have to specify where it should be located with respect to already existing order in
the set of leaves through p. A location is given by what they call a “section” of the
leaves through p, which corresponds to a cut in the ordering of all the already existing
leaves through p. The constructed surfaces are called “upper enveloping surfaces”;
see [24, Definition 6.1]. They show that for any section at p one can construct a new
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partial branched surface through p that fits exactly in that section and that does not
cross topologically any of the already existing surfaces.

The beginning step of the induction process is with the empty set. Through every
point the section is empty. In this case (empty section), the upper enveloping surface
(in the positiveEc direction) through a point p is locally the lowest surface through p.
This is because the surface has to be what is called an upper enveloping surface. These
surfaces are locally obtained as stable saturations of curves tangent to the Ec bundle,
which are called upper envelope curves; see [24, p. 558]. The upper envelope is the
supremum of descending curves (see [24, p. 558]) and the definition of descending
curves; cf. [24, Definitions 5.2 and 5.4]. In particular, in the initial step there are no
surfaces so the sections are the empty sections. In this case, [24, Definition 5.2 (2)]
says that the initial step is the lowest forward integral curve from the point.

The local stable saturation of the lowest forward integral curve is the lowest local
surface in the forward Ec direction, tangent to Ecs and through the point p. In addi-
tion, this surface is a “patch”: the edges of the surface are separated by at least a fixed
size ı > 0; see [24, Definition 4.7]. This proves the first assertion of the proposition.

To prove the second assertion, one has to go in the negative direction of Ec . In
the construction of the branching foliations in [24] they go alternatively forward and
backward, constructing patches of surfaces starting at the points.

So the initial step puts in the lowest surface tangent to Ecs through any p in M
and going in the forward direction. In the second step the orientations are reversed, so
going forward now corresponds to going backwards in the original Ec direction, and
lowest is highest in the original partially constructed branching foliation.

This step is done after we already have some partial surfaces and sections through
points. So given a point p consider the empty section of all surfaces through p.
Then [24, Lemma 6.11] shows that there is a forward envelope surface with p in
the boundary and the section is the empty section at p. Since the section at p is
empty, then the initial step is labeled by the empty set again; see [24, Definition
5.2 (3)] for descending curves. This means that locally this is the lowest forward sur-
face through p. But recall that we switched orientations, so forward means backwards
from p in the original orientation, and lowest means highest in the original orientation.
This proves the second property of the proposition thus finishes its proof.

Remark A.3. In the same way, we could have switched the orientation of Eu in
the beginning, but not of Ec . Doing the construction in [24] produces a branching
foliation containing the highest local surface tangent to Ecs in the forward center
direction and the lowest local surface tangent to Ecs in the backwards direction. In
particular, we see that every curve tangent to Ec must be locally contained between
both branching foliations. The reason for this is that if c is any such local center curve
in the forward direction through the point, then its local stable saturation is a C 1-
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surface through the point and tangent to Ecs . As proved in [24] this surface is locally
“above” the lowest surface through the point.

Remark A.4. In general we cannot have both lowest and highest local surfaces (of
fixed size) and in both forward and backwards directions for all p in M as part of
leaves of the foliation. Here is an example one dimension lower in the plane. Consider
the differential equation

dy

dx
D 3y2=3:

It generates a vector field in the direction .1; 3y2=3/. This vector field is not uniquely
integrable along the x-axis. General solutions are made up of pieces of curves y D
.x C c/3 or segments in the x-axis. Outside the x-axis this is uniquely integrable
producing segments of curves y D .x C c/3.

Consider first the curves that are highest forward. For any point p in the plane,
the highest forward curve through that point is contained in the curve y D .x C c/3

through p. Since the requirement is that one has to have a fixed sized ı > 0 of highest
forward for every point, then if p is below the x-axis, but sufficiently close to the
x-axis, the ı size highest forward curve through p is a part of the cubic which crosses
the x-axis. But the highest backward curve of every point in the x-axis is the ray of
the x-axis ending negatively at that point. One has to have at least a size ı for every
point in the x-axis. These two sets of curves cross topologically, so cannot be part of
the same branching foliation.

A.3. Smooth approximation and Candel metrics

The following states that the coarse nature of leaves of the branching foliations with
the metric induced by the manifold is good enough. We refer the reader to [23, Sec-
tion III.H] for the basic notions about Gromov hyperbolic metric spaces.

Proposition A.5. Let F be a branching foliation well approximated by foliations F"

such that F" are by hyperbolic leaves (recall that the approximating foliation can be
chosen to have smooth leaves). Then, for every Riemannian metric in M the pullback
of the metric to the leaves of F makes them Gromov hyperbolic.

Proof. For this, we choose " small enough so that we have nice local product structure
neighborhoods and take a (continuous) Riemannian metric on M by considering the
Candel metric (cf. [29]) on F" on TF" and taking a fixed vector field transverse to an
"-cone around TF to complete an orthonormal basis. For this metric, it is possible to
verify in these local product structure neighborhoods the CAT.�/ condition for some
� < 0, which is a local condition; see [23, Section II.2].
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Now, since being Gromov hyperbolic is invariant under quasi-isometries and M
is compact, we have that changing the metric does not change the fact that leaves are
Gromov hyperbolic; see [23, Section III.H].

Note that in [68, Section 4] it is claimed that one can choose a smooth metric
in M which makes every leaf of F" to have curvature arbitrarily close to �1. For
smooth foliations this is proved in [1, Theorem B] and attributed to Ghys; see also [1,
Remark 6.2]. In our case, leaves of F may be just C 1, so it is more delicate to talk
about curvature but still we only look at coarse geometric properties, so our statement
suffices.

Remark A.6. This implies that there is a well-defined notion of complete geodesics
in leaves, and that through each tangent vector v 2 TxL in a leaf L 2 F there is a
unique geodesic in the leaf through x with velocity v. In particular, one can compact-
ify each leaf with a circle and consider a visual metric in this circle in a natural way;
see also [23, Section III.H.3] for definitions valid for general metric spaces.

B. Graph transform method

Here we revisit the results in [51] to get Theorem 4.3. Then we comment on Theo-
rem 4.1, which is similar. For convenience of the reader, we recall the statement.

Theorem B.1 (Theorem 4.3). Let f0WM ! M be a partially hyperbolic diffeomor-
phism of a closed 3-manifold M . There exists U an open neighborhood of f0 in the
C 1-topology and " > 0 with the property that every g 2 U is partially hyperbolic
and if Wcs

g is a branching foliation tangent to Ecsg and invariant under g, then for
every g0 2U, there is a branching foliation Wcs

g0 invariant under g0 and "-equivalent
to Wcs

g .

If we assume that instead of g it is f0 that possesses an invariant branching folia-
tion, this result follows immediately from [51, Section 6] (except from the part of the
non-crossing of the branching foliation which does not make sense in their setting).
The main difference is therefore the uniformity of the statement. The key observation
is that the method of proof of [51] provides estimates on the size of the neighbor-
hood on which their result hold that depend only on certain properties of the partially
hyperbolic diffeomorphism and which are uniform in a neighborhood of it. Namely, it
depends on the C 1-size of the map, the angle between the bundles, and the strength of
the contraction/expansion on them. We will overview some of the main arguments to
convey the fact that these are the only aspects of the diffeomorphism needed to show
the stability result. (We note that in this specific setting, as remarked by a referee,



Collapsed Anosov flows and self orbit equivalences 95

there are some possible shortcuts. In particular, since g preserves a branching folia-
tion we could use the approximating foliation to get a “simpler” coordinate system
which can be useful to understand the argument in a more direct way. However, we
chose to follow the arguments as they are presented in [51] to be able to refer directly
to it in some places.)

Let f WM ! M be a partially hyperbolic diffeomorphism of a closed 3-mani-
fold M . By considering a different Riemannian metric, we can assume that the bun-
dles Es , Ec and Eu are almost pairwise orthogonal and that expansion, contraction
and domination is seen in one iterate; see [31, Section 2]. We can choose a neighbor-
hood U of f so that every g 2 U is partially hyperbolic and the invariant bundles
of g have the same property with respect to the same Riemannian metric.

We can also chooseE a smooth one-dimensional subbundle of TM which is trans-
verse (and almost orthogonal) to Ecsg for every g 2 U. There exists "0 > 0 such that
if 0 < " < "0 we have that the exponential mapping is a smooth embedding fromE."/

toM , meaning that for every x 2M , if we considerE.x; "/ to be the "-neighborhood
of 0 in the space E.x/ � TxM then the exponential map expx WE.x; "/! M is an
embedding with derivative close to 1.

These are the choices of U and " that one needs to make, and if one follows the
proof in [51, pp. 94–107] one can see that Theorem 4.3 follows. For the convenience
of the reader, we will indicate the main points of the proof sketching some of the key
arguments.

Proof of Theorem 4.3. Consider g2U admitting an invariant branching foliation Wcs
g

tangent toEcsg . Whenever we need to fix some constants, we will argue as for why the
constants we choose only depend on properties that are constant in a neighborhood
of g which is why the arguments will produce a uniform neighborhood. To avoid
confusions, we will use Notation 3.9.

We can consider that the collection of immersions .'; U / 2 Wcs
g as a unique

immersion {WV !M where V is an uncountable union of complete simply connected
surfaces, each connected component corresponding to a leaf of Wcs

g . The immer-
sion { is clearly a C 1-leaf immersion which is normally expanded with respect to g
([51, Section 6]), that is:

(i) the connected components of V with the metric induced by { by pullback are
complete;

(ii) there is a map {�gWV ! V such that g ı { D {�g ı {;

(iii) for every x 2 V , we have that Dx{TxV D Ecsg .{.x//.

The only point which needs some justification is (ii), but this follows rather eas-
ily by considering the lift of Wcs

g to the universal cover where leaves are properly
embedded planes, and therefore it is easy to induce a map from leaf to leaf even when
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these may not be injectively immersed in M . The existence of such an immersion is
the hypothesis of [51, Theorem 6.8] which shows its stability.

Now we want to produce a natural environment where to apply the graph trans-
form argument. Ideally, we would consider neighborhoods of each leaf on which we
can consider other leaves tangent to bundles close to Ecsg as graphs over the original
leaf. One way to do this, would be to work in the universal cover and use the fact that
the leaves Wcs

g are properly embedded there, so we can take a normal neighborhood
using the bundle E to produce such coordinates. Since our manifolds are in general
non-compact (besides being an uncountable union of leaves), and we want to avoid
using information about the structure of our leaves in the universal cover, we choose
some kind of ‘local covering spaces’ where the same argument can be made. This
is achieved by cutting the leaf into pieces and seeing our submanifolds as gluings of
many patches of leaves. This is the purpose of plaquations.

As in [51, Section (6.2)], we can define a plaquation of { consisting of embeddings
¹�WD!V º�2P of the unit diskDD¹v 2R2 W kvk� 1º such that the interiors of �.B/
as � 2 P cover V and such that the family ¹{ ı �º�2P is precompact in Emb1.D;M/.
Precompactness means that one can extract converging subsequences to embeddings
of D in M which are tangent to Ecs which may not belong to the family (but will
then be covered by elements of the family).

Claim B.2. We can choose the plaquation P with the following additional properties:

(i) for every x 2 V , there is a unique plaque � 2 P centered at x, this means,
�.0/ D x;

(ii) if one considers the vector bundleE� induced byE over the image of � (which
is a trivial bundle), we have that the exponential map expWE�."/!M is an
embedding for every " < "0.

Proof. For the second item, notice that since expx WE.x; "/! M is an embedding
tangent to E.x/ at x there is ı > 0 such that if a disk is tangent to a subbundle
making a definite angle with E and the disk has maximal radius smaller than ı then
the exponential map will be an embedding from the bundle E restricted to the disk
for vectors of norm less than ". Now, we can choose a covering of V by disks around
every point which are mapped by { into disks of maximal radius smaller than ı but
minimal radius larger than ı=10. This family will map by { to something tangent
to Ecsg which makes a uniform angle with E and it will be clearly precompact in the
space of embeddings; see [51, Section (6.2)].

Now, to obtain the first point it is enough to choose one plaque of the family at
each point and the property will be verified.
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Now, for each g0 2 U we want to construct using a graph transform argument a
C 1-leaf immersion {g0 WV !M producing a branching27 foliation Wcs

g0 with the same
dynamics as the one of g on Wcs

g .
To describe the strategy, let .'; U / be a leaf of Wcs

g , we want to construct a
new surface .'g0 ; U / which will be part of the branching foliation Wcs

g0 . The sur-
face .'g0 ; U / will be defined as limn.g

0/�n.gn.'; U //. We need to explain what we
mean by this, and this is why the plaquations play a role in the proof: to be able to
define a coordinate system on which to make sense of this limit. The proof follows the
same strategy as [51] and we will emphasize the points where the size of the neigh-
borhood U plays a role in the proof since this is the point on which our statement is
more general than its statement in [51].

As in [51] we will work directly with { and construct {g0 since it allows to treat
all leaves of Wcs

g simultaneously. The plaquation, as well as the transverse bundle E
will allow to cover each leaf by local coordinates where we can see surfaces tangent
to bundles close to Ecsg as graphs over the plaque. These local coordinates of each
plaques (which cover tubular neighborhoods around each plaque), will be the place
where the graph transform will be applied.

Let us construct what we mean by the graph transform. Consider P to be the
plaquation of V as in Claim B.2. Using the bounds on the derivative of g along Ecsg
we can define another plaquation yP which consists on the restrictions of the plaques
� 2 P to yD D ¹v 2 R2 W kvk < yıº, where yı is chosen so that the image of the
plaque y� 2 yP centered at x 2M by g is contained in the interior of the plaque �0 2P

centered at {�g.x/. We will denote by �x and y�x the plaques from P and yP respec-
tively which are centered at x. Since we chose the plaque families so that there is
a unique plaque centered at each point, we get that to each y�x 2 yP we associate
a (unique) element �g.x/ 2 P and it verifies that the image by g of y�x. yD/ is con-
tained in �g.x/.D/. By restricting yı a bit more if necessary, we can assume that the
image by g0 of { ı y�x. yD/ is contained in a small neighborhood of { ı �g.x/.D/ for
every g0 2 U.

Denote Ex (resp. yEx) to be the vector bundle over D (resp. yD) induced by E via
the map { ı �x (resp. { ı y�x). As before, for z 2D (resp. z 2 yD) we denote byEx.z; ı/
(resp. yEx.z; ı/) the interval of length 2ı centered at 0 on the fiber of Ex (resp. yEx)
over z. (Note that we could make the vector bundles to be over { ı �x.D/ for each x,
but we chose to construct them all over the same base D.)

Given a section � of the bundle Ex."/ or yEx."/ (that is, a continuous map fromD

to Ex."/, or yD to yEx."/, such that �.z/ 2 Ex.z; "/ or �.z/ 2 yEx.z; "/) we can define

27The non-topological crossing condition is not discussed in [51] since they work in higher
codimension, but will follow rather directly from the construction in our case.
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its graph as graph.�/ � M to be the image under the exponential map of the image
of � . By the choice of " this is a topologically embedded disk. We fix a cone-field C

around the bundle Ecsg and transverse to Eug such that for every g0 2 U, we have that
.Dg0/�1 maps C strictly in its interior (in particular, Eug0 is transverse to C every-
where), and we say that a section � is Lipschitz if graph.�/ is everywhere tangent
to C .

By our choices of D and yD one can check the following claim.

Claim B.3. Let � be a Lipschitz section of the bundle Ex."/, then for every g02U,
there is a well-defined Lipschitz section .g0/�� of the bundle yEy , where yD.{�g/�1.x/
such that the image by g0 of graph..g0/��/ is contained in graph.�/.

Proof. A section of the bundle Ex."/ consists of a continuous map � W D ! Ex."/

such that for every z 2 D, we have that �.z/ 2 Ex.z; "/.
Fix y�y 2 yP , where y D .{�g/�1.x/. What we need to show is that there is a well-

defined section y�W yD ! Ey."/ such that g0.graph.y�// � graph.�/. But this follows
from the fact that since graph.�/ is tangent to C we have that it is transverse to the
strong unstable foliation of both g and g0. So, when we apply .g0/�1, we have that the
preimage is still transverse toEug0 where it makes sense. In fact, the choice of yD andD
ensure that the preimage by g0 of the exponential of Ex."/ contains the image of the
exponential of yEy.�"/ for some � < 1 (which by the choices we made is independent
on the point or the diffeomorphism). So, it follows that we can write the preimage
by g0 of graph.�/ as the graph of some section of a subset ofD which contains yD and
which is Lipschitz (because the cone-field is contacted by .Dg0/�1). This is what we
wanted to show.

We note that we are not yet claiming that this graph transform is well defined for
global manifolds, just that this work at each plaque (and it is to avoid ambiguity in this
sense that we chose the plaquation to have a unique plaque centered at each point).
The rest of the proof consists of two relevant steps.

(i) Show that if you start with a global manifold partitioned in plaques (we will
call this partition a coherent family of sections) then the image by the graph trans-
form is still a coherent family of sections. This is the way to deal with the boundary
behavior after cutting the surface in pieces given by the plaques.

(ii) Show that the action of the graph transform is a contraction in an appropri-
ate space. This is rather standard; see, for instance, [31, Section 4.2] for a modern
treatment.

We say that a family of Lipschitz sections ¹�xºx2V such that each �x is a section
of Ex."/ is a coherent family of sections of P if whenever the images of �x and �y
intersect it follows that graph.�x/ and graph.�y/ coincide in the image under the expo-
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nential map of the restriction of the section �x to ��1x .�y.D/ \ �x.D// (notice that
this is the same as saying that they intersect in the image under the exponential map
of the restriction of the section �y to ��1y .�y.D/\ �x.D//). Similarly, one can define
a coherent family of sections of yP .

Using Claim B.3, we will construct the graph transform of a coherent family of
sections ¹�xºx2V by gluing together enough images under .g0/� of plaques. There will
be a unique fixed point of this graph transform which will provide the new branching
foliation for g0 with the desired properties.

Given a coherent family of sections ¹�xºx2V of P one can define a coherent fam-
ily of sections of yP by restriction. Similarly, since every plaque of P is covered by
plaques of yP , the coherent property allows to obtain, from a coherent family of sec-
tions ¹y�xºx2V of yP a coherent family of sections ¹�xºx2V by gluing the sections in
a cover of the image of �x.D/ by ¹y�yi . yD/ºi ; this is independent of the choice of the
covering.

We thus get the following.

Claim B.4. Given a coherent family of sections ¹�xºx2V of P one can define a new
coherent family of sections

¹�xºx2V D .g
0/]¹�xºx2V

by gluing the coherent family of sections ¹.g0/��xºx2V over yP .

The map .g0/] is what is called a graph transform and it is a standard argument
(see, e.g., [51, Sections 4 and 5] or [31, Section 4]) to show that one can metrize
the space of Lipschitz sections with bounded Lipschitz constant to get that .g0/] is a
contraction and therefore has a unique fixed point. This fixed point can be showed to
consist on sections whose graphs are tangent to Ecsg0 (and therefore it is C 1). More-
over, the uniqueness of the fixed point is stronger, as every .g0/]-invariant family
of coherent sections must coincide with this fixed point which follows by the fact
that Dg0 expands uniformly the direction generated by E.

This produces a new C 1-leaf immersion {g0 whose leaves are tangent to Ecsg0 and
which are permuted in the same way as g permutes the leaves of {. The dynamics
inside each leaf differs by something that is smaller than the size of the plaques28.

We need to check that leaves do not topologically cross which follows quite
directly since by uniqueness one obtains the branching foliation by iterating by .g0/n

]

the original branching foliation (which corresponds to the family of trivial sections
corresponding to {). Since iterates preserve the local orientation, the limit cannot cre-
ate crossings.

28This is how the notion of plaque expansivity arises naturally.
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Similar arguments allow us to get Theorem 4.1 (this is indeed totally contained
in [51, Section 6]). We refer to [58] for a more modern treatment in a more general
setting.

Comments on the proof of Theorem 4.1. The setup of the proof of Theorem 4.1 is
very similar to the one in Theorem 4.3 except that instead of normal expansion one
has normal hyperbolicity (and naturally one cannot talk about topological crossings
in higher codimension, but this is not so relevant for the proof).

Let us comment on this difference. We emphasize again that this is done in [51,
Section 6], and the only difference is the uniformity of the constants that is not pre-
cisely stated there, so we will only sketch the argument very briefly to try to convince
the reader that the arguments do not require more than a control on the C 1-size of the
partially hyperbolic map and the angles between bundles (to be able to construct the
plaques and set up the graph transform operator).

In particular, one needs to first use the stable manifold theorem to construct sta-
ble manifolds and unstable manifolds through each plaque; this is done with stan-
dard graph transform methods; see [51, Theorem 6.1 (a)]. This gives families of two-
dimensional plaques that now are respectively normally expanded and contracted.
One can apply the same arguments as in Theorem 4.3 to these families and obtain
continuations of these plaques (which will now be coherent only in the center direc-
tion as the images of the center stable plaques need not coincide out of the center
direction). Intersecting these plaques one obtains the desired result. Again, checking
that after cutting the plaques and applying the graph transform gives rise to a new fam-
ily of plaques that is still coherent involves choosing various scales to check that when
plaques intersect, they do it in a coherent way. Moreover, the way the graph transform
is made ensures that the new map does not move points much along the center curves
with respect to the original map, and gives the existence of the homeomorphism
� WV ! V which is C 0-close to the identity verifying that .{g/�g.x/D .{g0/�g

0.�.x//

for every x 2 V .
See [51, Section 6], in particular [51, pp. 94–100] for more details on how the

constants are chosen (note that some parts of the proof there refer to [51, Section 4]
where the computations about contractions of the graph transforms in the appropriate
metrics are performed, an alternative, maybe more modern approach can be found
in [31, Section 4.2]).
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