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Abstract. We show that surface groups are flexibly stable in permutations. This is the first non-
trivial example of a non-amenable flexibly stable group. Our method is purely geometric and relies
on an analysis of branched covers of hyperbolic surfaces. Along the way we establish a quantitative
variant of the LERF property for surface groups which may be of independent interest.

Keywords. Stability in permutations, flexible stability, surface groups, LERF, CAT.�1/,
combinatorial group theory

1. Introduction

Stability in group theory studies when almost-actions of groups are close to honest
actions. This recent notion has been investigated for various types of actions and groups.
Of particular interest is the stability of actions by permutations on finite sets, as motivated
by the outstanding open problem of whether every group is sofic. For more on the relation
to soficity and existing results we refer to the end of this introduction.

Flexible stability

Let G be a finitely presented group with set of generators †. Let F† be a free group with
basis† and �† W F†! G be the natural quotient map. Consider the space Hom.F†;SN /
of homomorphisms from F† into the finite symmetric group SN for some N 2 N.

Roughly speaking, the group G is flexibly stable if any � 2 Hom.F†;SN / that almost
factors through �† is close to some �0 2 Hom.F†; SM / that actually factors through �†
for some M 2 N potentially slightly larger than N .
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To make the above notion precise equip the symmetric group SN with the bi-invariant
normalized Hamming metric dN given by

dN .�1; �2/ D
1

N
j¹i 2 ¹1; : : : ; N º W �1.i/ ¤ �2.i/ºj

for any pair of elements �1; �2 2 SN . The space Hom.F†; SN / then admits the corres-
ponding metric

dN .�1; �2/ D
X
�2†

dN .�1.�/; �2.�//

for any pair of homomorphisms �1; �2 2 Hom.F†;SN /. Consider the map

EMN W Hom.F†;SN /! Hom.F†;SM /

defined for N;M 2 N with N � M by extending a given permutation representation
of F† to act trivially on the extra M �N points.

Definition. The groupG is flexibly stable in permutations if it admits a finite presentation
G D h†jRi with the following property: for any " > 0 there is some ı D ı."/ > 0 such
that for any N 2 N and � 2 Hom.F†;SN / satisfying

dN .�.r/; idN / < ı 8r 2 R

there existsM 2N withN �M � .1C "/N and �0 2Hom.F†;SM / that factors through
�† and satisfies

dM .EMN .�/; �
0/ < ":

We remark that if the above property holds with respect to one finite presentation of
the group G then indeed it holds for all such presentations [1].

The following is our main result.

Theorem 1.1. Let S be a closed orientable surface of genus g � 2. Then the fundamental
group �1.S/ is flexibly stable in permutations.

In fact, our proof of Theorem 1.1 gives an explicit relation between " and ı: up to
constants, " D ı ln.1=ı/. This means that ı D o."/ and "2 D o.ı/ in the limit as both "
and ı go to 0.

On our method

Our approach to proving flexible stability is purely geometric.
We use covering space theory to reformulate the problem in terms of certain branched

covers of S . In this language the goal is to convert a given branched cover of S into
an unramified one by performing an amount of changes controlled by the total branch-
ing degree. For more information we refer the reader to Theorem 2.1 and the discussion
leading to it.
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We dissect a given branched cover X of S along a carefully constructed embedded
graph � with vertices at singular points of X and with geodesic edges. In fact, � is taken
to be a subgraph of the Delaunay graph with respect to the singular points. It is chosen in
such a way that every resulting connected component of X n � has locally convex bound-
ary and that the total length of all boundary curves is controlled by the total branching
degree of X (see Theorem 4.1).

The desired unramified cover of S is obtained by individually embedding every con-
nected component ofX n� into an unramified cover of S with controlled area. This relies
on the following result, which seems to be of independent interest.

Theorem 1.2. Let S be a closed hyperbolic surface. Let R be a surface with boundary
which is isometrically embedded in some cover of S . If the boundary @R is locally convex
then R can be isometrically embedded in a cover Q of S such that the diagram

R Q

S

(A)

commutes and
Area.Q nR/ � bS l.@R/

where bS > 0 is a constant depending only on the surface S .

Surface groups are locally extended residually finite (LERF). This fact was established
by Scott [14, 15]. It implies that any surface R as above isometrically embeds in some
finite cover of S . Therefore Theorem 1.2 can be regarded as a certain quantitative variant
of the LERF property for surface groups. As such it is closely related to and is inspired
by Patel’s work [13]. It is however crucial for our purposes that the upper bound depends
on l.@R/ rather than on Area.R/.

A finitely presented group is strictly stable in permutations if it satisfies the definition
of flexible stability with M being exactly equal to N . The methods we use towards prov-
ing Theorem 1.2 will in general increase the total area. For this reason we are only able
to establish flexible rather than strict stability.

This note includes an appendix on Voronoi cells and Delaunay graphs constructed on
“hyperbolic planes with singularities”.

Soficity, stability and related works

There has been a significant recent interest in the notion of sofic groups. Roughly speak-
ing, a group is sofic if it can be approximated by almost-actions on finite sets; see e.g.
[8, 16] for formal definitions. Groups known to be sofic include amenable and residually
finite ones. An outstanding open problem asks: is every group sofic?

A part of the interest in stability stems from the observation made in [9] that a non-
residually-finite group which is stable in permutations cannot be sofic. This observation
extends to flexible stability.
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Groups that are currently known to be strictly stable in permutations include finite
groups (Glebsky and Rivera [9]), finitely generated abelian groups (Arzhantseva and
Păunescu [1]) and polycyclic and Baumslag–Solitar BS.1; n/ groups (Becker, Lubotzky
and Thom [4]).

Becker and Lubotzky [3] proved that a group G with Kazhdan’s property (T) is not
strictly stable by removing a single point from an action of G on a finite set. This strategy
has led Becker and Lubotzky to introduce the flexible notion of stability in permutations
and ask whether some Kazhdan groups might still be stable in the flexible sense. The
question of strict and flexible stability for surface groups is discussed in [3] as well.

The importance of the question concerning flexible stability for some Kazhdan groups
is highlighted by the recent work of Bowen and Burton [6]. They prove the existence of a
non-sofic group, conditioned on the assumption that the group PSLd .Z/ is flexibly stable
for some d � 5.

The fundamental group of a closed orientable surface with constant non-negative
curvature is either finite or abelian and as such stable respectively by [9] and [1]. Our
Theorem 1.1 completes the picture for all closed orientable surfaces, at least as far as
flexible stability is concerned.

Free non-abelian groups are clearly stable in a void sense. On the other hand, there
exist small cancellation hyperbolic groups that are not even flexibly stable [3]. Interest-
ingly, while hyperbolic surface groups are possibly the simplest example of non-free
hyperbolic groups, the question of stability for these groups is not trivial. To the best
of the authors’ knowledge it is not known whether surface groups are stable in permuta-
tions in the strict sense. The problem of adapting our present approach to deal with this
question seems challenging.

Finally, we point out that it was recently shown by Becker and Mosheiff [5] that
for the free abelian group Zd the parameter ı D ı."/ goes to zero at least as fast as a
polynomial of degree d in ". So in some quantitative sense hyperbolic surface groups are
“more stable” than free abelian ones.

2. �-covers and geometric stability

We develop a geometric framework for the study of flexible stability of surface groups in
terms of branched covers of surfaces.

�-covers of surfaces

Let S be a closed surface. Endow S with a metric of constant sectional curvature. Recall
that a finite branched cover of S is a continuous surjection p W X ! S where every point
b 2 S admits a neighborhood b 2 Vb � S with p�1.Vb/ D U1 t � � � t Unb and such that
p W Ui � Vb is topologically conjugate to the complex map z 7! zd of some degree
d 2 N depending on i . The degree is equal to 1 unless b belongs to a finite subset of S
called the branch set.
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Definition. A �-cover of S is a compact surfaceX admitting a branched cover p WX! S

with branch set consisting of a single branch point � 2 S .

Let p W X ! S be a �-cover. In general X is not required to be connected. We pull
back the metric from S to every connected component of X so that p is a local isometry
away from p�1.�/.

The total angle ˛x locally at any point x 2 X is an integer multiple of 2� . In fact,
˛x is equal to 2�dx where dx 2 N is the degree (or index) of the point x 2 X .

The singular set of X is s.X/ D ¹x 2 X W dx > 1º. Clearly s.X/ � p�1.�/ and in
particular s.X/ is discrete. The branching degree of X is ˇ.X/ D

P
x2s.X/.dx � 1/.

We say that the �-cover X is unramified if s.X/ D ;, or equivalently ˇ.X/ D 0. This
happens if and only if p is a covering map. We emphasize that covers are not required to
be connected.

The degree jX j of the �-cover p W X ! S is equal to jp�1.x/j for any x 2 S n ¹�º.

Geometric stability

The geometric notion of stability is defined in terms of certain graphs embedded into
�-covers. Recall that a graph is a simplicial 1-complex. We let �.0/ denote the vertex set
of the graph � .

Definition. A �-graph on X is an embedded graph � such that �.0/ � p�1.�/ and the
edges of � are geodesic arcs.

The fact that � is embedded means that two edges of � may intersect only at the vertex
set �.0/. If � is a �-graph on X then any closed curve 
 contained in � is a piecewise
geodesic closed curve in X . Given a �-graph � let l.�/ denote the total length of all of
its edges.

Definition. The �-cover p W X ! S is "-reparable if X admits a �-graph � with l.�/ �
"Area.X/ such that the complement X n � isometrically embeds into a cover C of S
such that the diagram

X n � C

S
p

(B)

commutes and
Area.X/ � Area.C / � .1C "/Area.X/:

We emphasize that the complement X n � as well as the cover C are in general
allowed to be disconnected.

Definition. The surface S is flexibly geometrically stable if for every " > 0 there is some
ı D ı."/ > 0 such that any �-cover X with ˇ.X/ < ıArea.X/ is "-reparable.

Our main result can be reformulated in the language of �-covers.
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Theorem 2.1. Every closed orientable hyperbolic surface is flexibly geometrically stable.

In the remaining part of this section we show that geometric stability implies algebraic
stability in permutations; see Proposition 2.4 below.

Permutation representations and covering theory

Consider the punctured surface S n ¹�º. Fix a base point x0 2 S n ¹�º and let F D
�1.S n ¹�º; x0/ so that F is a free group. Note that X n p�1.�/! S n ¹�º is a cover-
ing map of degree jX j. Enumerate the fiber p�1.x0/ by fixing an arbitrary identification
with the finite set ¹1; : : : ; jX jº. Covering space theory [10, p. 68] shows how to associate a
natural permutation representation �X W F ! SjX j to the coveringX n p�1.�/! S n ¹�º.

In what follows it is convenient to fix a specific presentation for the fundamental
group of S . Since the notion of flexible stability is known to be independent of the chosen
presentation we may do so without any loss of generality.

Let P be a compact fundamental domain for the action of the fundamental group
�1.S; x0/ on the universal cover zS . Assume that P is a polygon with finitely many
geodesic sides and that the vertices of P are all lifts of the point � 2 S . Moreover, assume
that the lift of the point x0 lies in the interior of P .

Let † be the finite generating set of �1.S; x0/ consisting of a single element � from
any pair ¹�; ��1º � �1.S; x0/ such that �P \ P is a geodesic side of P . We may
identify F with the free group F† on the generators †. There is a natural quotient homo-
morphism �† W F†! �1.S; x0/. The surface group �1.S; x0/ admits a presentation with
generating set † and a single relation r 2 F†.

In particular, we may let the fundamental domain P be a 4g-sided polygon so that
† D ¹a1; b1; : : : ; ag ; bgº and r D

Qg
iD1 Œai ; bi �.

Proposition 2.2. Given any � 2Hom.F†;SN /withN 2N there exists a �-coverX�!S

with jX�j DN and �X� D �. Moreover, ˇ.X�/=N � dN .�.r/; idN /where r is the defining
relation of �1.S; x0/ as above.

Note that dN .�.r/; idN / is equal to 1 � jFix.�.r//j=N where Fix.�.r// is the set of
fixed points of the permutation �.r/ 2 SN .

Proof of Proposition 2.2. Let X 0� be the punctured surface covering S n ¹�º that corres-
ponds to the permutation representation � W F† ! SN . Let p W X� ! S be the �-cover
obtained by completing X 0� at the punctures. It is clear that jX�j D N and �X� D �.

Consider the cycle decomposition o1 � � �om of the permutation �.r/ in its action on the
set p�1.x0/ Š ¹1; : : : ;N º. Let li denote the length of the cycle oi . We claim that without
loss of generality p�1.�/ D ¹y1; : : : ; ymº and dyi D li . This would imply the required
upper bound on ˇ.X�/ because

ˇ.X�/

N
D

1

N

X
y2p�1.�/

.dy � 1/ D
1

N

mX
iD1

.li � 1/ � dN .�.r/; idN /:
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Let 
 be a simple closed curve in S n ¹�º based at x0 and representing the element r
of F†. The preimage of the curve 
 in X 0� is a disjoint union of simple closed curves.
Every such curve corresponds to an orbit oi of �.r/ in its action on p�1.x0/ and bounds
a disc in X� that contains a single point yi from p�1.�/ in its interior. Moreover, the
degree dyi is equal to the size li of the orbit oi . The claim follows.

Geometric stability implies algebraic

We show that geometric stability in the sense of Theorem 2.1 implies our main result
Theorem 1.1. We continue using the presentation �1.S; x0/ Š h†jri constructed above
and in particular the polygon P .

Proposition 2.3. Let � be a �-graph on X with N D jX j. Assume that the complement
X n � isometrically embeds into some cover C of S of degree M D jC j such that dia-
gram (B) commutes. Regard the two permutation representations �X and �C as mapping
respectively into the symmetric groups SN and SM . Then

dM .EMN .�X /; �C / � aS

�
l.�/C .Area.C / � Area.X//

Area.C /

�
where aS > 0 is a constant depending only on the surface S .

Recall that the map EMN W Hom.F†; SN /! Hom.F†; SM / is defined by extending
a permutation representation to act trivially on the extra M �N points.

Proof of Proposition 2.3. The map p W X ! S induces a tessellation T D T .X;P / of
the �-cover X by jX j isometric copies of the polygon P . We claim that every edge ˛ of
the graph � satisfies

j¹D 2 T W D \ ˛ 6� p�1.�/ºj � a0S l.˛/

where a0S > 0 is a constant depending only on the surface S , the choice of the fundamental
domain P and the particular generating set †.

To prove the claim fix an edge ˛ of the graph � . This edge is a geodesic segment
in X such that ˛ \ p�1.�/ D @˛. We want to bound the number of polygons D of the
tessellation T that ˛ meets in its interior.

If ˛ has a subsegment that coincides with a subsegment of an edge of the tessella-
tion T , then ˛ equals that edge (since both are geodesics which end in p�1.�/). In this
case ˛ meets the two polygons incident to this edge, and its length is at least the length `
of the shortest edge of P . Therefore, ˛ satisfies the desired inequality if a0S � 2=`.

Otherwise, ˛ meets the edges of the tessellation T transversely. Consider how ˛ is
cut by the boundary edges of the tessellation T into geodesic segments ˛1; : : : ; ˛k . The
number of polygons that ˛ meets is bounded by k.

Note that since ˛ does not pass through the singular points of X , p ı ˛ is a geodesic
in S (which is not necessarily embedded). Each p ı ˛i is an embedded geodesic in S
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whose boundary is on the edges of Q, where Q is the polygon in S to which P projects
under the universal covering map.

Fix " > 0 smaller than half the injectivity radius of S . There exists ı > 0 (depending
on P and ") such that each p ı ˛i either has length at least ı > 0 or is contained in the
"-neighborhood of �. This shows in particular that l.˛/ � ı. Moreover, since the edges
of Q are geodesic, there exists m such that any geodesic segment in S of length 2" meets
the edges of Q at most m times. It follows that any mC 1 consecutive segments in the
sequence p ı ˛1; : : : ; p ı ˛k must leave the "-neighborhood of �, and therefore must have
length at least ı altogether. This shows that ı k

2mC2
� max ¹ı; ıb k

mC1
cº � l.˛/. So the

edge ˛ satisfies the desired inequality if a0S �
2mC2
ı

. Choosing a0S D max ¹2
`
; 2mC2

ı
º

completes the proof of the claim.
Taking into account the claim and summing over all edges of the graph � gives the

estimate
j¹D 2 T W D \ � 6� p�1.�/ºj � a0S l.�/:

Consider a point x 2 p�1.x0/ and let D 2 T be the polygon containing x in its
interior. The fiber p�1.x0/ is clearly a subset of the fiber q�1.x0/ so that x 2 q�1.x0/.
Given a particular generator � 2† let D� 2 T be the polygon sharing with D the geodesic
side corresponding to � . Then

EMN .�X /.�/.x/ D �C .�/.x/

provided that the �-graph � does not intersect .D [D� / n p
�1.�/. The Hamming metric

between EMN .�X / and �C is therefore bounded above by

dM .EMN .�X /; �C / �
2j†j

M
.a0S l.�/C jq

�1.x0/ n p
�1.x0/j/

and the conclusion follows for an appropriate choice of the constant aS > 0.

Proposition 2.4. Let S be a closed hyperbolic surface. If S is flexibly geometrically stable
then its fundamental group �1.S; x0/ is flexibly stable in permutations.

Proof. The algebraic property of flexible stability in permutations does not depend on the
choice of a particular presentation. This is proved in [1] for the strict notion of stability
using only the fact that any two finite presentations for G are related by a finite sequence
of Tietze transformations [11, II.2.1]. Exactly the same argument goes through in the
flexible case as well. It will be convenient to verify the definition with respect to the
presentation �1.S; x0/ Š h†jri.

Let " > 0 be given. Denote "0 D min ¹"; "
2aS
º. According to our assumption there is

some ı D ı."0/ such that any �-coverX with ˇ.X/ < ıArea.X/ is "0-reparable. We claim
that the condition of flexible stability in permutations for the group �1.S; x0/ is satisfied
with respect to the given " > 0 and this particular ı.

Consider someN 2N and � 2 Hom.F†;SN / with dN .�.r/; idN / < ı. Making use of
Proposition 2.2 we find a �-coverX�!S with ˇ.X�/ < ıN and �X� D �. ThereforeX� is
"0-reparable, which means it admits an embedded �-graph � with l.�/� "0Area.X�/ and
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such that the complement X� n � isometrically embeds into some cover C of S making
diagram (B) commute and satisfying

Area.X�/ � Area.C / � .1C "0/Area.X�/:

Consider the permutation representation �0 D �C so that �0 2 Hom.F†; SM / where
M D jC j. Since C is unramified, the homomorphism �0 factors through �† W F† !
�1.S; x0/. Roughly speaking, the two permutation representations � and �0 agree on
points lying on the subsurface X n � of C away from the �-graph � . To be precise, it
follows from Proposition 2.3 that

dM .EMN .�/; �
0/ � aS

�
l.�/C .Area.C / � Area.X�//

Area.C /

�
� 2aS"

0
� ":

Finally, the degree M satisfies

N �M � .1C "0/N � .1C "/N

as required.

The remainder of this work is dedicated to establishing Theorem 2.1.

3. Hyperbolic planes with singularities

Let S be a compact hyperbolic surface and consider a fixed �-cover p W X ! S . We
discuss the geometry of the universal cover ofX . We then discuss the Voronoi tessellation
and its dual, the Delaunay graph. This graph will be used in Section 4 to construct the
�-graph as required in the definition of flexible geometric stability.

The geometry of the universal cover of X

Let q W zX ! X denote the universal cover of X equipped with the pullback length met-
ric d zX . Topologically speaking zX is homeomorphic to the plane.

The singular set of zX is s. zX/ D q�1.s.X//. The space zX is locally isometric to
the hyperbolic plane H away from its singular set. The group �1.X/ acts freely on zX
admitting the surfaceX as a quotient. The singular set s. zX/ is discrete in zX . In fact, s. zX/
is co-bounded provided s.X/ is not empty.

Recall that the Cartan–Hadamard theorem admits a generalization due to Gromov
to complete geodesic metric spaces. See [7, Theorem II.4.1] for reference. This result
implies that zX is a CAT.�1/-space. In particular, zX is uniquely geodesic and every local
geodesic in zX is a geodesic.

Let 
 be a continuous path in zX . The path 
 is a local geodesic provided it is a local
geodesic in the sense of hyperbolic geometry away from the singular set s. zX/ and its
angle �x at every singular point x 2 s. zX/ along 
 satisfies � � �x � ˛x � � where ˛x
is the local angle at x. This local characterization implies that zX is geodesically complete
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in the sense that any geodesic segment can be extended to a bi-infinite geodesic line. The
geodesic extension need not be unique since a geodesic segment terminating at a singular
point admits many extensions.

Convex subsets of the universal cover zX

Recall the following useful consequence of the Cartan–Hadamard theorem [7, Theorems
II.4.13 and II.4.14].

Lemma 3.1. Let N1 and N2 be connected complete non-positively curved metric spaces
and f W N1 ! N2 be a local isometry. Then f� W �1.N1/! �1.N2/ is injective and any
lift F W zN1 ! zN2 of the map f is an isometric embedding.

Here is an example of a straightforward application of Lemma 3.1.

Corollary 3.2. Let C � zX be a convex subset such that VC \ s. zX/ D ;. Then C is iso-
metric to a contractible subset of the hyperbolic plane H.

Proof. Since C is a convex subset of zX , it is a CAT.�1/-space in its own right. The
corollary follows by applying Lemma 3.1 with N1 D C; N2 D S and f D p ı q. The
lift F gives the required isometric embedding into H.

Let 
 be a bi-infinite geodesic path in zX . A half-space in zX is the closure of a con-
nected component of zX n 
 . Note that a half-space is convex.

Voronoi cells and the Delaunay graph

Assume that the singular set s.X/ is non-empty. We define the Voronoi cells and the
Delaunay graph with respect to the set of points s. zX/. These are natural generalizations
of the parallel notions in the classical Euclidean and hyperbolic cases.

Definition. The Voronoi cell Av at the singular point v 2 s. zX/ is

Av D ¹x 2 zX W d zX .x; v/ � d zX .x; u/ 8u 2 s.
zX/º:

The family of Voronoi cells is equivariant in the sense that gAv D Agv for every
g 2 �1.X/ and v 2 s. zX/.

We remark that it is not a priori clear that the Voronoi cells form a tessellation. This
turns out to be true and will be established as a consequence of Proposition 3.4 below. The
difficulty has to do with the fact that for two singular points v; u 2 s. zX/ the intersection
of the two sets ¹x 2 zX W d zX .x; v/ � d zX .x; u/º and ¹x 2 zX W d zX .x; v/ � d zX .x; u/ºmight
have a non-empty interior in general.

Definition. The vertex set of the Delaunay graphD is the singular set s. zX/. Two vertices
v1 and v2 of the Delaunay graph D span an edge whenever there is a closed metric ball
B � zX with VB \ s. zX/ D ; and B \ s. zX/ D ¹v1; v2º.
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We summarize a few basic properties of Voronoi cells and their relationship with
the Delaunay graph. These are quite elementary in the classical Euclidean or hyperbolic
cases. Extra caution is required in the presence of singular points – some of the following
statements are false unless the Voronoi cells are taken with respect to a set of points
containing all singularities, which is always the case here.

The proofs of Propositions 3.3, 3.4, 3.6 and 3.7 are postponed to Appendix A ded-
icated to this topic. The proofs are similar to the classical case by repeatedly relying on
Corollary 3.2 to embed the relevant local picture into the hyperbolic plane.

Proposition 3.3. Let v 2 s. zX/ be a vertex of the Delaunay graphD. Consider the Voronoi
cell Av . Then

(1) Av is homeomorphic to a closed disc and Av \ s. zX/ D ¹vº,

(2) Av is convex and the boundary @Av is piecewise geodesic,

(3) Av is equal to the intersection of the sets ¹x 2 zX W d zX .x; v/ � d zX .x; u/º where
u 2 s. zX/ ranges over the vertices adjacent to v in the graph D.

The following proposition describes the intersection of two Voronoi cells.

Proposition 3.4. Let v; u 2 s. zX/ be a pair of distinct vertices of the Delaunay graph.
Consider the two Voronoi cells Av and Au.

� If Av \ Au ¤ ; then Av \ Au is either a single point or a common geodesic side.

� Av and Au have a common geodesic side if and only if v and u span an edge in the
Delaunay graph.

As a consequence of Proposition 3.4 we deduce that the family of Voronoi cells Av
for v 2 s. zX/ forms a tessellation of zX called the Voronoi tessellation. Moreover, the
Delaunay graph D is dual to this tessellation. These facts are well-known in the classical
Euclidean and hyperbolic situations.

Corollary 3.5. Let v 2 s. zX/ be a vertex of the Delaunay graph. Then the interior of the
Voronoi cell Av embeds into X via the restriction to Av of the covering map q W zX ! X .

Proof. It suffices to observe that g VAv \ VAv D VAgv \ VAv D ; for every g 2 �1.X/ with
g ¤ id.

The geometric realization of the Delaunay graph

From now on we regard the Delaunay graph D as being geometrically realized in zX .
More precisely, we identify the vertices of D with the singular set s. zX/ and realize every
edge of D by the corresponding geodesic arc in zX .

Proposition 3.6. The Delaunay graph D is embedded in zX . The projection q.D/ is
embedded in the surface X .
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The above statement means that geodesic arcs realizing two distinct edges of D may
intersect only at a vertex incident to both. In particular,D is planar. Likewise two distinct
edges of q.D/ may intersect only at a common singular point of s.X/.

Proposition 3.7. Any connected component of the complement of the Delaunay graph
in zX has locally convex boundary.

An estimate for the area of Voronoi cells

Recall that a subset L of a metric space M is r-separated if dM .x1; x2/ � r for any two
distinct points x1; x2 2 L. Moreover, recall that we defined a half-space in zX to be the
closure of a connected component of the complement of some bi-infinite geodesic line
in zX .

Lemma 3.8. Let Av be the Voronoi cell associated to the singular point v 2 s. zX/. Let H

be a half-space in zX with v 2 @H. Assume that s. zX/ is r-separated and that d zX .v;u/�R
for every singular point u 2 H \ s. zX/ distinct from v. Then

Area.H \ Av/ � 2' sinh2.R=4/

where ' > 0 is a constant depending only on the distance r .

The expression appearing on the right-hand side of the above estimate is the area of
the hyperbolic sector with central angle ' and of radius R=2. Throughout the following
proof and given a point p 2 zX it is convenient to introduce the notation

F.p/ D ¹x 2 zX W d zX .x; v/ � d zX .x; p/º:

Proof of Lemma 3.8. Let us first determine the angle ' > 0 as follows. Let l1 and l2
be a pair of geodesic lines in the hyperbolic plane H such that dH.l1; l2/ D r . Let m
be the midpoint of the geodesic arc perpendicular to both l1 and l2. Then ' is the angle
between the two geodesic rays emanating from the pointm towards the ideal points l1.1/
and l2.1/.

Consider the bi-infinite geodesic � W R! zX parametrized by arc length and such that
�.R/ D @H. Assume that v D �.0/ and denote vt D �.t/ for all t 2 R.

Let WR
r be the subset of zX given by

WR
r D H \F.v�r / \F.vr / \ B zX .v; R/:

As a consequence of Corollary 3.2, the two convex sets B zX .v; r/ and H \ B zX .v; R/ are
isometric to a hyperbolic ball of radius r and a hyperbolic sector of radius R and angle � ,
respectively. Let Q';R=2 be the hyperbolic sector of angle ' and radius R=2 which is
based at the vertex v and contained in WR

r . The lemma will be established by showing
that WR

r and therefore Q';R=2 is contained in H \ Av .
Let u1; : : : ; un with n 2 N be the vertices of the Delaunay graph D adjacent to the

vertex v. For every i 2 ¹1; : : : ; nº let wi be the point along the geodesic arc from v to ui
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v vrv�r

'

R=2

Av

H

F.v�r / F.vr /

Q';R=2

Fig. 1. The Voronoi cell Av based at the vertex v.

such that d zX .v; wi / D r . The convexity of the metric [7, Proposition II.2.2] implies that
F.wi / � F.ui / and likewise F.v˙r / � F.v˙2r /.

Claim. Let ui be one of the Delaunay vertices adjacent to v. If ui … H then

WR
r � F.wi / � F.ui /:

Proof of Claim. Consider a point x 2 WR
r . We need to show that x 2 F.wi /. Note that

wi and x lie on opposite sides of the bi-infinite geodesic �. Both wi and x belong to the
following locally convex and contractible and hence convex set:

B zX .v; r/ [
�
F.v�2r / \F.v2r / \ H \ B zX .v; R/

�
:

Therefore the intersection point z of � with the geodesic arc from wi to x lies along the
geodesic arc from v�r to vr . This relies on the fact that r � R (which follows from the
assumptions) and on the observation that F.v�2r / \ F2r \ � is equal to the geodesic
segment from v�r to vr .

Assume without loss of generality that in fact the intersection point z lies along the
geodesic arc from v to vr . Consider the two geodesic triangles

T1 D 4.v; vr ; wi / and T2 D 4.x; vr ; wi /:

The triangles T1 and T2 have no singular points in their interior. Therefore T1 and T2 are
isometric to their respective comparison hyperbolic triangles according to Corollary 3.2.
The triangle T1 is isosceles with d zX .v;wi / D d zX .v; vr / D r . Observe that the respective
angles of T1 and T2 at the vertices wi and vr satisfy

]T1wi � ]T2wi and ]T1vr � ]T2vr :

The hyperbolic law of sines [2, Section 7.12] implies

d zX .x; vr / � d zX .x; wi /:

Finally, since x 2 F.vr / we have d zX .x; v/ � d zX .x; vr / and so x 2 F.wi /.
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Denote I D ¹i 2 ¹1; : : : ; nº W ui 2 Hº and J D ¹1; : : : ; nº n I . The above Claim
implies that WR

r �
T
j2J F.uj /. On the other hand, the assumptions of Lemma 3.8 imply

that B zX .v; R=2/ �
T
i2I F.ui /. Recall that the Voronoi cell Av in question is equal toTn

iD1 F.ui /. Combining the above statements gives WR
r � H \ Av .

4. Cut graphs on branched covers

Let S be a compact hyperbolic surface. Consider an arbitrary �-cover X of S . To prove
that S is flexibly geometrically stable we need to construct a �-graph � on X so that the
complement X n � embeds into some cover of S . In addition the total length of � should
be controlled by the branching degree of X when both quantities are normalized relative
to the size of X . This motivates the following.

Definition. Let X be a �-cover of S . A c-cut graph for some c > 0 is a �-graph � on X
satisfying

(1) the singular set s.X/ is equal to the vertex set �.0/,

(2) if e1 and e2 are two edges incident at the vertex x 2 �.0/ and consecutive in the cyclic
order on the link of the graph � at the vertex x induced by its embedding in X , then
the angle between e1 and e2 at x is at most � ,

(3) the total edge length l.�/ is bounded above by c Area.X/.

A cut graph on X is a c-cut graph for some c > 0.

The above condition .2/ is equivalent to saying that every connected component of
X n � has locally convex boundary.

The main goal of the current section is the following.

Theorem 4.1. For every c > 0 there is a ı D ı.c/ > 0 such that any �-cover X with
ˇ.X/ < ıArea.X/ admits a c-cut graph.

The graph � will be constructed by considering the Delaunay graph and then carefully
removing some of its edges until the graph-theoretical degree at each vertex is roughly
proportional to the local branching degree. The function c will depend on the topology
and the metric of the surface S .

Proof of Theorem 4.1. Let p W X ! S be a �-cover whose branching degree satisfies
ˇ.X/ < ıjX j for some sufficiently small ı > 0 to be determined below. Recall that the
branching degree ˇ.X/ is defined to be

P
v2s.X/.dv � 1/ where dv is the index of the

point v.
We may assume that the singular set s.X/ is non-empty for otherwise the empty

graph is a c-cut graph for any c > 0. Consider the singular set s. zX/ D q�1.s.X//. Since
s. zX/ � .p ı q/�1.�/, this set is r-separated for some constant r > 0 depending only on
the injectivity radius of the compact surface S .

Consider the family of Voronoi cells in zX with respect to the vertex set s. zX/. The
interior of every cell Azv with zv 2 s. zX/ embeds intoX according to Corollary 3.5. Denote



Surface groups are flexibly stable 15

Av D q.Azv/ where v 2 s.X/ and zv is any vertex in q�1.v/. The family of the Av’s with
v 2 s.X/ forms a tessellation of X and satisfiesX

v2s.X/

Area.Av/ D Area.X/: (I)

Recall that a half-space in zX is the closure of a connected component of the com-
plement of some bi-infinite geodesic line in zX . A half-cell C at the vertex v 2 s.X/ is
q.Azv \ H/ for some half-space H at any vertex zv 2 q�1.v/.

Let D be the geometric realization of the Delaunay graph in zX with respect to the
vertex set s. zX/. This notion is discussed in Section 3 above. Let E denote the projection
q.D/ of the Delaunay graph to the �-cover X . It follows from Proposition 3.6 that E is
a �-graph in X . This �-graph satisfies condition (1) by its construction and condition (2)
according to Proposition 3.7. The required cut graph will be obtained by discarding some
of the edges of E while making sure condition (2) continues to hold.

LetLv denote the set of edges of the graph E incident at the vertex v 2 s.X/. Our next
step is to find a subsetMv ofLv of size jMvj � 4dv that continues to satisfy condition .2/
of cut graphs and such that

'
X
e2Mv

sinh2.l.e/=4/ � 2Area.Av/ (II)

where ' > 0 is the constant given in Lemma 3.8 with respect to the parameter r .
Consider the subset Kv of Lv consisting of all edges e such that

2' sinh2.l.e/=4/ � Area.Ce/

for some half-cell Ce at v containing the edge e in its interior. We claim that Kv satisfies
condition .2/ of cut graphs. If this was not the case then there would exist a half-cell C at v
which does not contain any edge of Kv in its interior. However, at least one edge e 2 Lv
is contained in C and therefore no such edge is inKv . Hence 2' sinh2.l.e/=4/ > Area.C/
for every edge e 2 Lv contained in the half-cell C. This contradicts Lemma 3.8.

Take Mv to be a subset of Kv minimal with respect to inclusion that still satisfies
condition .2/ of cut graphs. The minimality of Mv implies that any half-cell C at v con-
tains at most two edges from Mv . Since Av is the union of 2dv half-cells at v it follows
that jMvj � 4dv . Therefore any point x of the Voronoi cell Av belongs to at most four
half-cells from the family ¹Ceºe2Mv , and inequality .II/ follows.

Consider the sub-�-graph � of the �-graph E embedded in X with vertex set s.X/
and edge set

S
v2s.X/Mv . Observe that conditions (1) and .2/ of cut graphs hold true. It

remains to bound the total length l.�/ from above as in condition (3) and to determine
the precise value of ı.

Let E denote the set of edges of � . Since 1
2

P
v2V jMvj � jEj �

P
v2V jMvj and

2dv � jMvj � 4dv for every v 2 V , we have

ˇ.X/ � ˇ.X/C js.X/j � jEj � 4.ˇ.X/C js.X/j/ � 8ˇ.X/:
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Making use of the area formula .I/ and summing .II/ over all vertices v 2 s.X/ gives

'
X
e2E

sinh2.l.e/=4/ � 2Area.X/:

The function sinh2.�=4/ is convex. Jensen’s inequality gives

' sinh2
�
l.�/

4jEj

�
�
2Area.X/
jEj

and after rearranging

l.�/ � 4jEj arcsinh
�s

2

'

Area.X/
jEj

�
:

To conclude the proof define the function c W ı 7! cı by

cı D 32ı arcsinh
�s

2

'ı

�
:

Note that c is monotone and that limı!0 cı D 0. Finally, observe that

l.�/ � c ˇ.X/
Area.X/

Area.X/ � cı Area.X/:

Therefore � is a c-cut graph provided ı is so small that cı < c.

5. Boundaries and non-separating closed curves

Let S be a compact hyperbolic surface with a non-separating family of disjoint simple
curves. We study a necessary and a sufficient condition due to Walter D. Neumann [12,
Lemma 3.2] for the existence of a cover for S such that the preimages of the given family
of curves have prescribed degrees.

1-manifolds

A connected closed 1-manifold is homeomorphic to S1. A closed compact 1-manifold
is a disjoint union of finitely many homeomorphic copies of S1. The set of connec-
ted components of a 1-manifold B is denoted �0.B/. 1-manifolds are orientable and
admit 2j�0.B/j orientations.

The boundary @F of a compact surface F is a closed 1-manifold. If the surface F is
oriented then @F inherits an induced orientation.

The Neumann lemma

We use �.F / to denote the Euler characteristic of the surface F . Fix a degree N 2 N.
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Lemma 5.1 ([12, Lemma 3.2]). Let F be a compact connected orientable surface of
positive genus. Let p W B ! @F be a covering map for some closed 1-manifold B . The
following two statements are equivalent:

(1) There exist a connected surface R with @R Š B and a covering map r W R ! F of
degree N with rjB D p.

(2) j�0.B/j has the same parity as �.F /N and for every connected component 
 of @F
the total degree of the covering map p on p�1.
/ is N .

The implication (1))(2) holds true even without assuming that F has positive genus, or
that R is connected.

We remark that in [12] the equivalence of (1) and (2) is proved under the assumption
of positive genus. However, the proof of the direction (1))(2) clearly applies in any
genus.

We obtain the following consequence of Lemma 5.1. It will be used towards the proof
of Theorem 1.2 presented in Section 6.

Corollary 5.2. Let S be a closed hyperbolic surface. Let p W B ! A be a covering map
of closed compact and oriented 1-manifolds where A is embedded and is non-separating
in S . Then there exist

� a covering map r W C ! S ,

� an oriented subsurface R of C such that @R Š B as an oriented 1-manifold with the
induced orientation and with rjB D p

if and only if j�0.B/j is even and B D BC [ B� where

� pC D pjBC is orientation preserving,

� p� D pjB� is orientation reversing,

� for every connected component ˛ of A the total covering degrees of pC and of p� on
p�1.˛/ are equal to each other.

If the latter conditions are satisfied then the cover r can be taken of degree equal to
four times the maximum of the total degree of p over any connected component of A.

We consider a topological reduction needed to apply Neumann’s lemma towards the
proof of Corollary 5.2. The main issue is to allow for the degree of p to vary over the
different connected components ˛ of A.

Let NS denote the completion of S nA. In particular, NS is a compact connected orient-
able surface with boundary. Consider the quotient map f W NS ! S with

f .@ NS/ D A:

Choose orientations for the two surfaces S and NS such that f is orientation preserving
on the interior of NS . Equip @ NS with the boundary orientation induced from that of NS . In
particular,

@ NS D NAC q NA�
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in such a way that the restriction of f to NAC and to NA� is, respectively, orientation pre-
serving and orientation reversing.

Observe that if q W NC ! NS is any orientation preserving cover and NE � @ NC is any con-
nected closed 1-manifold then the composition f ı q W NE ! A is orientation preserving
if and only if q. NE/ � NAC. Finally, let � W @ NS ! @ NS be the homeomorphism determined
by

�. NAC/ D NA� and f ı � D f:

The main ideas of the following proof are summarized in Figure 2.

˛˛�˛C

B�˛

B
C
˛

ˇˇ�ˇC

B
C

ˇ

B�
ˇ

NDˇ

ND0
ˇ

NR

NR0

R

q

SNS

r

f

CNC

g

NB�˛

NB
C
˛

NB
C

ˇ

NB�
ˇ

Fig. 2. The maps r and q are covers, the maps f and g are quotients, and the diagram is commutat-
ive. In this example AD ¹˛;ˇº and NA˙ D ¹˛˙; ˇ˙º. The curve ˛ satisfies N˛ DM and the curve
ˇ satisfies Nˇ < M .

Proof of Corollary 5.2. The “only if” direction. Consider a cover r W C ! S and a sub-
surface R of C with @R Š B as in the statement of Corollary 5.2.

Let NC denote the compact surface with boundary obtained as the completion of
C n r�1.A/. Note that NC is disconnected. There is a natural quotient map g W NC ! C

as well as a covering map q W NC ! NS satisfying

f ı q D r ı g:

Denote NE D @ NC so that NE is a compact closed 1-manifold and f ı q W NE ! A is a
covering map of 1-manifolds. In particular, @R Š B is a 1-submanifold of g. NE/.

Let NR be the subsurface of NC corresponding to R. We may apply Lemma 5.1 to the
restricted covering map q W NR! NS and to the boundary @ NR D NR \ NE. The result follows
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in this direction by letting

BC D g.q�1. NAC// \ B and B� D g.q�1. NA�// \ B:

Observe that the restrictions of r to BC and to B� are orientation preserving and
orientation reversing respectively. The connected components of the 1-manifold ND D
NE n g�1.@R/ occur in matching pairs ıC and ı� with g.ıC/D g.ı�/. Therefore the total

degrees of pC D pjBC and of p� D pjB� agree over every connected component of A,
and j�0.B/j is even.

The “if” direction. Assume first that the surface NS has positive genus. Assume that
j�0.B/j is even and that there exists a decomposition B D BC [ B� as in the statement.
For each connected component ˛ ofA, letN˛ 2N denote the common total degree of pC

and of p� over ˛. Denote M D maxN˛ taken over all such ˛’s.
We first enlarge B to a 1-manifold NE with a covering map t W NE ! @ NS such that

over every component of A the degree is the same. If ˛ is a component of A satisfying
N˛ < M , let D˛ denote the disjoint union of two circles DC˛ and D�˛ , equipped with
covering maps t˙˛ W D

˙
˛ ! N̨

˙ of degree M � N˛ (where N̨˙ are the two components
of f �1.˛/). Denote D D DC [D� where D˙ D

S
˛ D

˙
˛ with the union being taken

over all components ˛ of A satisfying N˛ < M .
Let NE be the disjoint union of B and D, and let t W NE ! @ NS be the covering map

defined by t˙˛ on each component D˙˛ of D, and on B by

t .BC/ D NAC; t .B�/ D NA�; and f ı t D p:

The covering map t from NE to @ NS has total degreeM over every connected component
of @ NS . We may apply Lemma 5.1 with respect to the surface NS and the covering map t to
obtain a connected surface NR with @ NR Š NE and a covering map q W NR! NS of degree M
with q

j NE D t . Note that the parity hypothesis of Lemma 5.1 is satisfied since both j�0.B/j
and �. NS/ are even.

Let NE 0 D B 0 [D0 be a homeomorphic copy of the 1-manifold NE considered with
the twisted covering map t 0 D � ı t . This covering map t 0 has degree M . We may apply
Lemma 5.1 again with respect to the covering map t 0 to obtain a corresponding surface
cover q0 W NR0 ! NS .

Denote NC D NR [ NR0. Allowing for a slight abuse of notation, let q W NC ! NS denote
the union of the two covering maps q W NR! NS and q0 W NR! NS . There is a quotient map
g W NC ! C defined by identifying boundary components of NC as follows. Identify DC

with D� and D0C with D0�. Moreover, identify BC with B 0� and B 0C with B�. The
identification is performed respecting the covering map q. In particular, there exists a
resulting covering map r W C ! S with r ı g D f ı q.

The cover C has degree 2M , which is equal to the maximal total degree of p. Let
R D g. NR/. This completes the proof of this direction under the assumption that NS has
positive genus.

Now, assume that the surface NS has genus 0. Let S 0 be the surface obtained by split-
ting S along a curve ˛ 2 A and gluing two copies of the resulting surface along their
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boundaries. Let q0 W S 0 ! S be the obvious covering map mapping the two copies back
to S . Each curve in A lifts to two curves in S 0. Let A0 � q0�1.A/ be a collection of curves
containing exactly one lift for each curve in A. Note that q0

jA0
W A0 ! A is a homeomor-

phism as each curve is covered with degree 1. The completion NS 0 of S 0 n A0 is connected
and has positive genus.

Denote by p0 W B ! A0 the map p0 D .q0
jA0
/�1 ı p. The surface NS 0 has positive genus

and so the previous argument can be applied to get a covering map r 0 W C ! S 0 of
degree 2M and an oriented subsurface R of C such that @R Š B and r 0

jB
D p0. The

composition r D q0 ı r 0 W C ! S is as required, and has degree 4M .

6. Quantitatively capping off surfaces with boundary

Let S be a closed hyperbolic surface of genus g � 2. The goal of the current section is to
prove Theorem 1.2, restated below for the reader’s convenience.

Theorem. Let R be a surface with boundary which is isometrically embedded in some
cover of S . If the boundary @R is locally convex then R can be isometrically embedded in
a cover Q of S making diagram (A) commute and such that

Area.Q nR/ � bS l.@R/

where bS > 0 is a constant depending only on S .

We will deal with the problem of capping off a boundary component of R in a
controlled way by working in a certain combinatorial framework. More precisely, we
will consider surfaces tessellated by isometric copies of a particularly nice fundamental
domain. The generic situation as in the above theorem can be easily reduced to this com-
binatorial framework.

Surfaces with locally convex boundary

We point out the following consequence of Lemma 3.1 and of the Cartan–Hadamard
theorem.

Lemma 6.1. Let R be a surface with boundary. Then the boundary @R is locally convex
and R is isometrically embedded in some cover of S if and only if R admits a local
isometry to S .

Here we use the term local isometry in the metric space rather than Riemannian geo-
metry sense.

Proof of Lemma 6.1. If R is isometrically embedded in some cover p W C ! S and its
boundary @R is locally convex then the restriction of p to R is a local isometry.

Conversely, assume that R admits a local isometry f into S . This implies that the
boundary @R is locally convex. The map f� W �1.R/! �1.C / is injective and f lifts to
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an isometric embedding F W zR! zS ŠH of the universal covers according to Lemma 3.1.
The map F descends to an isometric embedding ofR into the cover of S that corresponds
to the subgroup f��1.R/ � �1.S/.

The family of closed geodesic curves �0; : : : ; �2g�1

Lemma 6.2. The surface S admits a family �0; : : : ; �2g�1 of non-separating simple
closed geodesic curves such that

(1) the geodesic curves �i and �j with i ¤ j are disjoint unless ji � j j D 1, in which
case they intersect at a single point,

(2) the complement S n .�0 [ � � � [ �2g�1/ is a topological disc.

Proof. Consider a family 
0; : : : ;
2g�1 of non-separating simple closed curves positioned
on the surface S as described in Figure 3 below.

e0

e1

e01

e2

e02

e3

e03

e2g�1

Fig. 3. The simple closed curves 
0; : : : ; 
2g�1 are given by 
0 D e0, 
2g�1 D e2g�1, and 
i D
ei Ne
0
i for any other i .

Let �i be the geodesic representative of the simple closed curve 
i for every i in
¹0; : : : ; 2g � 1º. Since geodesic curves are in minimal position we have

j�i \ �j j D

´
1 if ji � j j D 1;

0 if ji � j j > 1;

as required for statement (1) of the lemma. The completion P of the complement
S n .�0 [ � � � [ �2g�1/ is a connected surface with boundary admitting 4.2g � 1/ ver-
tices, 2C 2C 4.2g � 2/ D 8g � 4 edges and a single face. The Euler characteristic of P

is equal to
�.P / D 4.2g � 1/ � .8g � 4/C 1 D 1:

Therefore P is a topological disc as required for statement (2).

Let P denote the completion of the complement S n .�0 [ � � � [ �2g�1/. Then P

is a compact convex hyperbolic .8g � 4/-sided polygon. Moreover, P is isometric to a
fundamental domain for the action of the fundamental group �1.S/ on the hyperbolic
plane. We introduce the following notations for the edges of P (see Figure 3):

� e0 and Ne0 are the two geodesic sides of P that correspond to the curve �0,

� e2g�1 and Ne2g�1 are the two geodesic sides of P that correspond to the curve �2g�1,
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� ei ; e
0
i ; Nei and Ne0i are the four sides of P that correspond to the curve �i for any other

i 2 ¹1; : : : ; 2g � 2º.

The surface S can be recovered by identifying every geodesic side e of the fundamental
polygon P with the geodesic side of opposite orientation denoted Ne.

We will keep the above notations throughout the remainder of Section 6.

Tessellations and P -surfaces

Let T .C;P / denote the induced tessellation of a given cover C of the surface S by
isometric copies of the fundamental polygon P .

The link of every vertex of the tessellation T .C;P / is a cycle graph of size 4. In other
words, locally, exactly four polygons of T .C;P / meet at every vertex. Another crucial
property of the tessellation T .C;P / is that the concatenation of any pair of edges incident
at a given vertex v and not consecutive in the cyclic ordering determined by the link of v
is a local geodesic. Such a concatenation of two edges is, up to edge orientation, of the
form e0e0; e2g�1e2g�1; eie

0
i or e0iei for some i 2 ¹1; : : : ; 2g � 2º.

Definition. A P -surface R is a subsurface of some cover C of the surface S tiled by
polygons from the tessellation T .C;P /. The induced tessellation of R will be denoted
T .R;P /.

We remark that a P -surface could in general be disconnected.

Proposition 6.3. Let R be a P -surface. Then every geodesic arc e of @P appears along
the boundary @R the same number of times with each orientation e and e.

Proof. Every geodesic arc e appears along the boundary of the polygon P once with each
orientation. Moreover, in the tessellation ofR by isometric copies of P every interior edge
is accounted for once with each orientation. The result follows.

Given a P -surface R it follows from the properties of the tessellation T .R;P / dis-
cussed above that @R is locally convex if and only if the link of any vertex v of T .R;P /

that lies on the boundary @R is a path graph of length at most 2. In other words, locally,
at most two polygons meet at a vertex in the boundary, forming together an angle of at
most � . This observation motivates the following.

Proposition 6.4. Let R be a P -surface with locally convex boundary. Let ˛ and ˇ be
two totally geodesic closed curves/maximal geodesic arcs along the boundary @R that
map to the same geodesic curve/arc on S with opposite orientations. Then the surface R0

obtained by identifying ˛ and ˇ is a P -surface with locally convex boundary.

Proof. The fact that R0 has a locally convex boundary is clear when ˛ and ˇ are totally
geodesic boundary curves.

Consider the case where ˛ and ˇ are maximal geodesic arcs. The vertices representing
the end-points of the arcs ˛ and ˇ in the tessellation T .R;P / have links of size 1 in R.
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Therefore the boundary components of R0 that have been modified by the identification
of ˛ and ˇ have links of size at most 2 in R and so remain locally convex as required.

The P -surface structure ofR gives rise to a local isometry f WR! S . It is compatible
with the identification of ˛ and ˇ and descends to a local isometry f 0 WR0! S . It follows
from Lemma 6.1 that R0 isometrically embeds into some cover of S . It is clear that R0 is
tiled by polygons from the tessellation T .C;P /. Therefore R0 is a P -surface.

The notion of P -surfaces is useful for our purposes since a surface with boundary as
in Theorem 1.2 can always be embedded inside a P -surface in an efficient way.

Proposition 6.5. Let R be a surface with boundary which is isometrically embedded
in some cover of S . If the boundary @R is locally convex then R can be isometrically
embedded in a P -surface Q with locally convex boundary making diagram (A) commute
and such that

Area.Q nR/ � dS l.@R/ and l.@Q/ � dS l.@R/

where d D dS > 0 is a constant depending only on the surface S .
Moreover, we may assume, if desired, that any geodesic subarc of @Q has at most two

edges and that no boundary component of @Q is totally geodesic.

The following proof is inspired by and relies on ideas of Patel’s work [13].

Proof of Proposition 6.5. We assume thatR has non-empty boundary for otherwise there
is nothing to prove. Since R is embedded in some cover C of S , we may identify �1.R/
with a certain infinite index subgroup of �1.S/. Let R0 be the cover of S corresponding
to that subgroup. In particular, R is an embedded subsurface of R0 and every connected
component of R0 n R retracts to a boundary component of @R. Let Q0 be the P -surface
consisting of all polygons in T .R0;P / that intersect R non-trivially.

The boundary of the P -surface Q0 need not yet be locally convex, as it may have bad
vertices whose links are paths of length 3. As explained in [13, Theorem 3.1], since R
is locally convex, there are no consecutive bad vertices in @Q0. One can now form the
locally convex P -surface Q00 by attaching polygons along the geodesic subarcs of @Q0

emanating from bad vertices. For the full details we refer the reader to Patel’s argument
in [13, Theorem 3.1].

Remark. We emphasize that, at least formally speaking, there are a few minor differences
between our situation and that of [13]:

� A right-angled pentagon is used in [13] while our polygon P is .8g � 4/-sided and is
not assumed to be right-angled.1

� The quotient of the hyperbolic plane by the action of a single hyperbolic element is con-
sidered in the context of [13, Theorem 3.1] while we consider locally convex boundary
components of P -surfaces.

1In fact, P can be chosen to be right-angled in our case as well. However, making this choice
is not essential to the proof.
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Patel’s arguments rely only on certain properties of links in the tessellation T .R0; P / that
were mentioned above and hold true in our case as well. Namely, all links have size 4, and
the concatenation of any two non-consecutive edges is a local geodesic. The same proof
goes through.

We conclude that the P -surface Q00 has locally convex boundary and satisfies Q0 �
Q00 �R0. Proceeding with the proof of Proposition 6.5, the boundary of the P -surfaceQ00

may contain geodesic arcs longer than two edges or totally geodesic boundary compon-
ents. If desired, this can be overcome simply by attaching an additional layer of polygons
toQ00. Namely, letQ consist of all polygons in T .R0;P / that intersectQ00 or its boundary
non-trivially. The boundary ofQ remains locally convex and satisfies the requirements as
in the statement.

An area estimate analogous to [13, Theorem 4.3] shows that Area.Q0 nR/� d 0S l.@R/
for some constant d 0S > 0. The total boundary length of Q0 is bounded above by the
number of polygons meeting Q0 n R times the perimeter of the polygon P . In particular,
l.@Q0/ � d 00S l.@R/ for some other constant d 00S > 0. Repeating this argument twice for the
pair of P -surfacesQ00 andQ gives the required linear upper bounds on Area.Q nR/ and
l.@Q/ in terms of some positive constant dS > 0.

Capping off boundary components

We now have all the required machinery to complete the proof of Theorem 1.2 of the
introduction.

Proof of Theorem 1.2. Let R be a surface with locally convex boundary which is embed-
ded in some cover of S . Making use of Proposition 6.5 it is possible to find a P -surface
Q1 containing an embedded copy of R such that Area.Q1 n R/ as well as l.@Q1/ are
bounded above by dS l.@R/ where dS > 0 is a positive constant. Moreover, any geodesic
subarc of @Q1 has at most two edges and no component of @Q1 is geodesic. Recall that P

is the convex polygonal fundamental domain obtained as the complement of the system
of curves �0; : : : ; �2g�1 on the surface S .

The boundary components of Q1 are piecewise geodesic and map to the arcs e0; : : : ;
e2g�1. Each geodesic boundary arc of length 1 is labeled by either ei ; e0i or their inverses.
Disregarding edge orientations, each arc of length 2 is labeled by either e0e0, e2g�1e2g�1,
eie
0
i , or e0iei . We say that a geodesic boundary arc has odd label or even label if i is odd

or even, respectively.
The proof proceeds in three steps.

(1) Identifying length 2 geodesic boundary arcs with even labels. Consider a geodesic
boundary arc ˛ of length 2 and even label. We will assume that with the induced orienta-
tion, ˛ reads eie0i with i even. The other cases are treated analogously.

The midpoint of the length 2 arc ˛ has an incident edge contained in the interior ofQ1
and labeled eiC1. Trace a geodesic arc 
 on the surfaceQ1 starting at this edge with labels
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alternating between eiC1 and e0iC1. It runs transverse to geodesic arcs of the two forms
eie
0
i and eiC2e0iC2 until it reaches the boundary of Q1 again, necessarily at the midpoint

of some length 2 geodesic arc.
There are two possibilities to consider. If 
 reaches the boundary ofQ1 at the midpoint

of a geodesic arc ˇ labeled eie0i then we may simply identify the two arcs ˛ and ˇ to
reduce the number of even boundary components of length 2.

The other possibility is that 
 reaches the midpoint of a geodesic arc ˇ labeled
eiC2e

0
iC2. Without loss of generality, assume that the last edge along 
 is labeled eiC1. If

this is the case, let D be the P -surface obtained by gluing two copies of the polygon P

along the edge e0iC1 so thatD has two boundary geodesic arcs labeled eie0i and eiC2e0iC2.
Attach the boundary labeled eiC2e0iC2 inD to the arc ˇ inQ1. The resulting P -surface is
locally convex by Proposition 6.4. The geodesic 
 can now be extended by one edge, so
that it reaches the midpoint of the boundary geodesic arc labeled eie0i in D. We can now
proceed as before.

While this operation might increase the total length of geodesic boundary arcs with
odd labels or the total number of edges with even labels, it will reduce the number of
geodesic boundary arcs of length 2 and even label.

Let Q2 denote the resulting surface. We point out that Q2 is again a P -surface with
locally convex boundary by Proposition 6.4.

(2) Identifying the remaining geodesic boundary arcs of length 1 with even labels. Every
geodesic boundary arc of Q2 with an even label has length 1. Moreover, Q2 has the
same number of edges labeled ei and Nei for every even i by Proposition 6.3. Choose any
bijection between these two sets and identify edges in pairs. Let Q3 denote the resulting
surface. Once again Proposition 6.4 implies that Q3 is a P -surface with locally convex
boundary.

(3) Attaching a surface along the totally geodesic boundary curves with odd labels. Every
boundary geodesic arc of Q3 is locally convex and has an odd label. This implies that
Q3 has totally geodesic boundary and every boundary component maps to a power of
one of the non-separating simple closed geodesic curves �i with some orientation and
i odd.

One direction of Corollary 5.2 to Neumann’s lemma implies that the number of bound-
ary components of Q3 is even and that the total degree over each curve �i with one
orientation is equal to the total degree over �i in the opposite orientation. This fact and
the other direction of Corollary 5.2 allow us to construct a P -surface T with Area.T /
linearly bounded in l.Q3/ whose boundary components are the same as those of Q3 but
with opposite orientation. Let Q be the cover of S obtained by identifying the boundary
of Q3 with that of T in the obvious way.

To conclude observe thatR embeds in the coverQ making diagram (A) commute and
that Area.Q nR/ is bounded above linearly in l.@Q1/ and hence in l.@R/, as required.
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7. Proof of geometric flexible stability

Let S be a compact hyperbolic surface. Consider some �-cover p W X ! S . We rely on
Theorem 1.2 established in the previous section to complete the proof of Theorem 2.1 and
therefore of our main result, Theorem 1.1.

Our strategy is to construct a cut graph � onX and then cap off the complementX n�
to obtain an unramified cover by making use of Theorem 1.2.

Since X need not be a cover in the usual sense, it might contain certain pathological
closed curves that cannot exist on a cover of S . For example, X might admit a simple
closed curve 
 such that a lift of p ı 
 to zS admits self-intersections. It is clear that if X
is "-reparable then such a curve has to be eliminated. This motivates the following.

Proposition 7.1. Let � be a cut graph on X , and C be any connected component of
X n � . Then C embeds in some cover of S as a subsurface with locally convex boundary.

Proof. Let C be a connected component of X n � . It follows from the definition of cut
graphs that C has no singular points of s.X/ in its interior and that its boundary is locally
convex. In particular, C is non-positively curved and the map f D pjC W C ! S is a local
isometry. The result follows from Lemma 6.1.

We are now ready to prove that closed hyperbolic surfaces are flexibly geometrically
stable.

Proof of Theorem 2.1. Let the constant " > 0 be given. Take c > 0 to be sufficiently small
so that c max ¹1; bSº � " where bS is the constant as in Theorem 1.2. Let ı D ı.c/ be
the constant provided by Theorem 4.1 such that any �-cover X with ˇ.X/ < ı Area.X/
admits a c-cut graph.

We claim that ı is as required in the definition of flexible geometric stability with
respect to the given " > 0. To see this consider a �-cover p W X ! S with ˇ.X/ <
ı Area.X/. We need to show that X is "-reparable. Let � be a c-cut graph on X . In
particular,

l.�/ � c Area.X/ � "Area.X/:

Consider the complement C D X n � . Every connected component of C isometrically
embeds into some cover of S according to Proposition 7.1. Relying on Theorem 1.2 we
find a cover q W Q ! S admitting an isometrically embedded copy of C on which the
restriction of q agrees with the map p, so diagram (B) commutes. Moreover

Area.Q/ � Area.C / � bS l.@C / � bSc Area.X/ � "Area.X/:

This completes the verification that X is indeed "-reparable.

The fact that Theorem 2.1 implies our main result Theorem 1.1 is contained in Pro-
position 2.4.
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Appendix A. Voronoi and Delaunay on singular planes

We generalize some of the basic properties of the Voronoi tessellation and the Delaunay
graph from the classical Euclidean and hyperbolic cases to the framework of a “hyperbolic
plane with singularities”.

In particular, we present the detailed proofs of Propositions 3.3, 3.4, 3.6 and 3.7 that
were merely stated without proof in Section 3.

Hyperbolic planes with singularities

Let S be a compact hyperbolic surface and p W X ! S a fixed �-cover. Let q W zX ! X

denote the universal cover ofX equipped with the pullback length metric d zX . The singular
set of zX is given by s. zX/ D q�1.s.X//. The Voronoi cell Av at any vertex v 2 s. zX/ and
the Delaunay graph D were defined in Section 3.

We find it useful to introduce the following additional notation. Let m.v; u/ denote
the set of midpoints

m.v; u/ D ¹x 2 zX W d zX .x; v/ D d zX .x; u/º

between any two given points v; u 2 zX . It is well-known [2, Section 7.21] that the set of
midpoints of any pair of points in the hyperbolic plane is the perpendicular bisector to the
geodesic arc connecting these two points.

Two vertices v1 and v2 of the Delaunay graph are connected by an edge if and only
if there exists a midpoint x 2 m.v1; v2/ such that d.x; u/ > d.x; v1/ D d.x; v2/ for any
other vertex u 2 s. zX/ n ¹v1; v2º.

Lemma A.1. Let x1; x2; x3 2 zX be three distinct points. Then there is at most a single
closed metric ball B � zX with VB \ s. zX/ D ; and ¹x1; x2; x3º � @B .

Proof. Assume that B � zX is a closed ball as in the statement of the lemma. Let T � zX
be the geodesic triangle with vertices x1; x2; x3. The convexity of the ball B implies that
T � B . Making use of Corollary 3.2 we may regard B as being isometrically embedded
in the hyperbolic plane. The center x0 of the ball B is determined by the triangle T . More
precisely, x0 is the mutual intersection point of the three midpoint bisectors to the edges
of T . The same reasoning shows that any other ball B 0 � zX as in the statement of the
lemma necessarily has the same center as B and must therefore agree with B .

Proposition 3.3 says that every Voronoi cell is homeomorphic to a disc, is convex with
a piecewise geodesic boundary and is determined by its Delaunay neighbors.

Proof of Proposition 3.3. Let v 2 s. zX/ be a vertex of the Delaunay graph. The distance
function d zX .�; u/ is continuous for every point u 2 zX . Therefore the Voronoi cell Av is
closed. It is clear from the definition that Av \ s. zX/D ¹vº. Since the singular set s. zX/ is
co-bounded it follows that Av is bounded and hence compact. Therefore there is a finite
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subset of vertices ¹u1; : : : ; unº � s. zX/ for some n 2 N such that the Voronoi cell Av is
given by

Av D
®
x 2 zX W d zX .x; v/ � d zX .x; ui / 8i 2 ¹1; : : : ; nº

¯
:

If x 2 @Av is a boundary point of Av then at least one of the above inequalities must be
an equality. In other words, @Av � Av \

Sn
iD1m.v; ui /.

For every boundary point x 2 @Av letFx �¹u1; : : : ;unº be the subset given by ui 2Fx
if and only if x 2m.v;ui /. Note that Fx is non-empty for every x 2 @Av . Every boundary
point x 2 @Av admits a closed ball Bx � zX centered at x with VBx \ s. zX/ D ; and
@Bx \ s. zX/DFx [¹vº. This relies on the fact that x 2Av and therefore d.x;v/� d.x;u/
for every vertex u 2 s. zX/.

Every boundary point x 2 @Av admits an open neighborhood Ux such that

Av \ Ux D ¹y 2 Ux W d zX .y; v/ � d zX .y; ui / 8i 2 Fxº:

Assume without loss of generality that Ux is sufficiently small so that Ux � Bx . The
ball Bx is convex and can be regarded as being isometrically embedded in the hyperbolic
plane by Corollary 3.2. We conclude that Av \ Ux can be isometrically identified with a
neighborhood of the point x inside a hyperbolic Voronoi cell.

Note that jFxj D 1 for all but finitely many boundary points x 2 @Av according to
Lemma A.1. This condition is open in the sense that given x 2 @Av with jFxj D 1we have
Fx D Fy for every y 2 Av \ Ux . We conclude that @Av is locally isometric to a geodesic
segment away from finitely many points where jFxj> 1. Moreover, @Av is locally convex
at those points as well. In particular, the boundary of Av is piecewise geodesic.

The above description of the boundary of Av in terms of the local hyperbolic picture
with respect to the open cover Ux shows that Av is locally convex. The Cartan–Hadamard
theorem implies that Av is convex (see e.g. Lemma 3.1). The exponential map at v sets
up a homeomorphism of Av to a disc. This concludes the proof of items (1) and (2).

Note that a vertex u is adjacent to v in the Delaunay graph if and only if u D ui for
some i 2 ¹1; : : : ;nº and there is a boundary point x 2 @Av with Fx D ¹uiº. In other words,
the Delaunay neighbors of v correspond to the geodesic sides of the cell Av , and item (3)
of Proposition 3.3 follows.

Proposition 3.4 says that the interiors of distinct Voronoi cells are disjoint.

Proof of Proposition 3.4. Assume that the intersection Av;u D Av \ Au is non-empty.
Every point x 2 Av;u admits a closed metric ball Bx � zX centered at x with VBx \ s. zX/
D; and ¹v;uº � @Bx . The ballBx is convex and so can be regarded as being isometrically
embedded in the hyperbolic plane by Corollary 3.2.

Hyperbolic geometry implies thatm.v;u/\Bx is a geodesic segment for every point
x 2Av;u. SinceAv;u�m.v;u/, the convexity ofAv;u implies thatAv;u \Bx is a geodesic
segment as well. The compactness of Av;u allows us to extract a finite cover using such
metric balls. It follows that Av;u is a finite union of geodesic segments. Since Av;u is
convex, it must be a single point or a single geodesic segment. In particular, Av;u has
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empty interior and VAv \ VAu D ;. Since both Av andAu are topological discs, this implies
@Av \ VAu D VAv \ @Au D ;. We conclude that Av;u � @Av \ @Au and that Av;u is a
common geodesic side of the Voronoi cells Av and Au.

The second statement of Proposition 3.4 concerning adjacency in the Delaunay graph
follows from the last paragraph of the proof of Proposition 3.3.

Proposition 3.6 deals with the Delaunay graph and shows it is embedded.

Proof of Proposition 3.6. Let v1; u1 and v2; u2 be vertices of the Delaunay graph such
that vi is adjacent to ui . Let x1 and x2 be points in zX such that for i 2 ¹1; 2º there is a
closed metric ball Bi � zX centered at xi and with VBi \ s. zX/ D ; and @Bi \ s. zX/ D
¹vi ; uiº. Let 
i with i 2 ¹1; 2º be the geodesic arc realizing the Delaunay edge between
vi and ui and connecting these two points in zX . In particular, 
i � Bi .

Assume towards a contradiction that the two chords 
1 and 
2 intersect non-trivially
along their interior. Recall that a pair of geodesics in a CAT.�1/-space admit at most
a single intersection point. An examination of the resulting planar diagram shows that
j@B1 \ @B2j > 2. Therefore Lemma A.1 applied with respect to any three distinct points
of the intersection @B1 \ @B2 shows that the balls B1 and B2 must coincide. This is a
contradiction.

The fact that the projection q.D/ is embedded in X follows immediately from the
above discussion combined with the �1.X/-invariance of the Delaunay graph.

Proposition 3.7 shows that the connected components of the complement of the
Delaunay graph have locally convex boundary.

Proof of Proposition 3.7. Assume towards a contradiction that the boundary of some
connected component of zX n D is not locally convex. Equivalently, there is some
Delaunay vertex v 2 s. zX/ and some half-space H with v 2 @H such that no Delaunay
edge incident at v is contained in H. The proof of Lemma 3.8 and in particular the Claim
contained in that proof show that the Voronoi cell Av has infinite area.2 This contradicts
the fact that Av is compact.
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