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Abstract. Combining microlocal methods and a cohomological theory developed by J. Taylor, we
define for Anosov R� -actions a notion of joint Ruelle resonance spectrum. We prove that these
Ruelle–Taylor resonances fit into a Fredholm theory, are intrinsic and form a discrete subset of C� ,
with � D 0 being always a leading resonance. The joint resonant states at 0 give rise to some new
measures of SRB type and the mixing properties of these measures are related to the existence of
purely imaginary resonances. The spectral theory developed in this article applies in particular to
the case of Weyl chamber flows and provides a new way to study such flows.
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1. Introduction

If P is a differential operator on a manifold M that has purely discrete spectrum as an
unbounded operator acting on L2.M/ (e.g. an elliptic operator on a closed Riemannian
manifoldM ), then the eigenvalues and eigenfunctions carry a huge amount of information
about the dynamics generated by P . Furthermore, if P is a geometric differential oper-
ator (e.g. Laplace–Beltrami operator, Hodge Laplacian or Dirac operators), the discrete
spectrum encodes important topological and geometric invariants of the manifold M .

Unfortunately, in many cases (e.g. if the manifold M is not compact or if P is non-
elliptic) the L2-spectrum of P is not discrete anymore but consists mainly of the essential
spectrum. Still, there are certain cases where the essential spectrum of P is non-empty,
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but where there is a hidden intrinsic discrete spectrum attached to P , called the resonance
spectrum. To be more concrete, let us give a couple of examples:

� Quantum resonances of Schrödinger operators P D � C V with V 2 C1c .R
n/ on

M D Rn with n odd (see for example [18, Chapter 3] for a textbook account of this
classical theory).

� Quantum resonances for the Laplacian on non-compact geometrically finite hyperbolic
manifolds M D �nHnC1: here P D �M is the Laplace–Beltrami operator on M [32,
33, 44].

� Ruelle resonances for Anosov flows [8, 16, 21, 25]: here P D iX with X being the
vector field generating the Anosov flow.

The definition of the resonances can be stated in different ways (using meromorphi-
cally continued resolvents, scattering operators or discrete spectra on auxiliary function
spaces), and also the mathematical techniques used to establish the existence of reso-
nances in the above examples are quite diverse (ranging from asymptotics of special func-
tions to microlocal analysis). Nevertheless, all three examples above share the common
point that the existence of a discrete resonance spectrum can be proven via a parametrix
construction, i.e. one constructs a meromorphic family of operators Q.�/ (with � 2 C)
such that

.P � �/Q.�/ D IdCK.�/;

whereK.�/ is a meromorphic family of compact operators on a suitable Banach or Hilbert
space. Once such a parametrix is established, the resonances are the � where IdCK.�/
is not invertible, and the discreteness of the resonance spectrum follows directly from
analytic Fredholm theory.

In general, being able to construct such a parametrix and define a theory of resonances
involves non-trivial analysis and pretty strong assumptions, but they lead to powerful
results on the long time dynamics of the propagator eitP , for example in the study of
dynamical systems [22, 43, 47] or for evolution equations in relativity [35]. Furthermore,
resonances form an important spectral invariant that can be related to a large variety of
other mathematical quantities such as geometric invariants [33,53], topological invariants
[10,12,17,41] or arithmetic quantities [6]. They also appear in trace formulas and are the
divisors of dynamical Ruelle and Selberg zeta functions [7, 16, 22, 25, 48].

The purpose of this work is to use analytic and microlocal methods to construct a
theory of joint resonance spectrum for the generating vector fields of Anosov R�-actions.
In terms of PDE and spectral theory, this can be viewed as the construction of a good
notion of joint spectrum for a family of � commuting vector fieldsX1; : : : ;X� , generating
a rank � subbundle E0 � TM , when their flow is transversely hyperbolic with respect to
that subbundle. These operators do not form an elliptic family and finding a good notion
of joint spectrum is thus highly non-trivial. Our strategy is to work on anisotropic Sobolev
spaces to make the non-elliptic region “small” and then obtain Fredholmness properties.

However, this involves working in a non-self-adjoint setting, even if the Xk’s were
to preserve a Lebesgue type measure. We are then using Koszul complexes and a coho-
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mological theory developed by Taylor [55, 56] in order to define a proper notion of joint
spectrum in these anisotropic spaces, and we will show that this spectrum is discrete.

We emphasize that, in terms of PDE and spectral theory, there are important new
aspects to be considered and the results are far from being a direct extension of the � D 1
case (the Anosov flows). But also outside the spectral theory of linear partial differen-
tial operators the theory we develop might be helpful: the classical examples of such
Anosov R�-actions are Weyl chamber flows for compact locally symmetric spaces of rank
� � 2, and it is conjectured by Katok–Spatzier [39] that essentially all non-product R�-
actions are smoothly conjugate to homogeneous cases. Despite important recent advances
[54], the conjecture is still widely open and it is important to extract as much informa-
tion as possible on a general Anosov R�-action in order to address this conjecture: for
example, having an ergodic invariant measure with full support plays an important role in
this direction (see e.g. [37] where the existence of such a measure is a central assumption
on which the results are based; see also the discussions in the recent preprint [54]). Based
on the spectral theory developed in this article, we show in a follow-up paper [29] the
existence of such ergodic measures of full support for any positively transitive1 Anosov
action.

Let us summarize the main novelties of this work and its first applications:

(1) We construct a new theory of joint resonance spectrum for a family of commuting dif-
ferential operators by combining the theory of Taylor [56] with the use of anisotropic
Sobolev spaces for the study of resonances; as far as we know, this is the first result
on joint spectrum in the theory of classical or quantum resonances.

(2) All the Weyl chamber flows on locally symmetric spaces and the standard actions of
Katok–Spatzier [39] are included in our setting, and our results are completely new
in that setting where representation theory is usually one of the main tools. This gives
a new, analytic way of studying homogeneous dynamics and spectral theory in higher
rank.

(3) We show that the leading joint resonance provides a construction of a new Sinai–
Ruelle–Bowen (SRB) invariant measure � for all R�-actions. In a companion paper
[29] based on this work, we show that our measure � has all the properties of SRB
measures of Anosov flows (rank 1 case), and it has full support if the Weyl chamber
is positively transitive, an important step in the direction of the rigidity conjecture.

(4) We show in [29] that the periodic tori of the R�-action are equidistributed in the
support of � and that � can be written as an infinite sum over Dirac measures on the
periodic tori, in a way similar to Bowen’s formula in rank 1. These results are new
even in the case of locally symmetric spaces and give a new way to study periodic
tori (also called flats) in higher rank.

(5) Based on the present paper, the last two authors of this paper together with L. Wolf
[34] proved a classical-quantum correspondence between the joint resonant states of

1See [29, Definition 2.9].
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Weyl chamber flows on compact locally symmetric spaces �nG=M of rank � and the
joint eigenfunctions of the commutative algebra of invariant differential operators on
the locally symmetric space �nG=K. This gives a higher rank version of [14].

Another expected consequence of this construction would be a proof of the expo-
nential decay of correlations for the action and a gap of Ruelle–Taylor resonances under
appropriate assumptions, with application to the local rigidity and the regularity of the
invariant measure �. These questions will be addressed in a forthcoming work.

1.1. Statement of the main results

Let us now introduce the setting in more detail and state the main results. Let M be a
closed manifold, let AŠ R� be an abelian group and let � W A! Diffeo.M/ be a smooth
locally free group action. If a WD Lie.A/ Š R� , we can define a generating map

X W a! C1.MITM/; A 7! XA WD
d

dt

ˇ̌̌̌
tD0

�.exp.tA//;

so that for each basis A1; : : : ; A� of a, ŒXAj ; XAk � D 0 for all j; k. For A 2 a we denote
by 'XAt the flow of the vector field XA. Notice that, as a differential operator, we can
view X as a map

X W C1.M/! C1.MI a�/; .Xu/.A/ WD XAu:

It is customary to call the action Anosov if there is an A 2 a such that there is a
continuous d'XAt -invariant splitting

TM D E0 ˚Eu ˚Es; (1.1)

where E0 D span.XA1 ; : : : ; XA� /, and there exist C; � > 0 such that for each x 2M,

8w 2 Es.x/;8t � 0; kd'
XA
t .x/wk � Ce��jt jkwk;

8w 2 Eu.x/;8t � 0; kd'
XA
t .x/wk � Ce��jt jkwk:

Here the norm on TM is fixed by choosing any smooth Riemannian metric g on M. We
say that such an A is transversely hyperbolic. It can be easily proved that the splitting
is invariant by the whole action. However, we do not assume that all A 2 a� have this
transversely hyperbolic behavior. In fact, there is a maximal open convex cone W � a

containing A such that for all A0 2 W , XA0 is also transversely hyperbolic with the same
splitting as A (see Lemma 2.2); W is called a positive Weyl chamber. This name is moti-
vated by the classical examples of such Anosov actions that are the Weyl chamber flows
for locally symmetric spaces of rank � (see Example 2.3). There are also several other
classes of examples (see e.g. [39, 54]).

Since we now have a family of commuting vector fields, it is natural to consider a joint
spectrum for the family XA1 ; : : : ; XA� of first order operators if the Aj ’s are transversely
hyperbolic with the same splitting. Guided by the case of a single Anosov flow (handled
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in [8, 16, 21]), we define E�u � T
�M to be the subbundle such that E�u.Eu ˚ E0/ D 0.

We shall say that �D .�1 : : : ; ��/ 2 C� is a joint Ruelle resonance for the Anosov action
if there is a non-zero distribution u 2 C�1.M/ with wavefront set WF.u/ � E�u such
that2

8j D 1; : : : ; �; .XAj C �j /u D 0: (1.2)

The distribution u is called a joint Ruelle resonant state (from now on we will denote
by C�1

E�u
.M/ the space of distributions u with WF.u/ � E�u ). In an equivalent but more

invariant way (i.e. independently of the choice of basis .Aj /j of a), we can define a joint
Ruelle resonance as an element � 2 a�C of the complexified dual Lie algebra such that
there is a non-zero u 2 C�1

E�u
.M/ with

8A 2 a; .XA C �.A//u D 0:

We notice that we also define a notion of generalized joint Ruelle resonant states and
Jordan blocks in our analysis (see Proposition 4.17). It is a priori not clear that the set of
joint Ruelle resonances is discrete – or non-empty for that matter – nor that the dimension
of joint resonant states is finite, but this is a consequence of our work.

Theorem 1. Let � be a smooth abelian Anosov action on a closed manifold M with
positive Weyl chamber W . Then the set of joint Ruelle resonances � 2 a�C is a discrete set
contained in \

A2W

¹� 2 a�C j Re.�.A// � 0º: (1.3)

Moreover, for each joint Ruelle resonance � 2 a�C the space of joint Ruelle resonant states
is finite-dimensional.

We remark that this spectrum always contains �D 0 (with uD 1 being the joint eigen-
function) and that for locally symmetric spaces it contains infinitely many joint Ruelle
resonances, as is shown in [34, Theorem 1.1].

We also emphasize that this theorem is definitely not a straightforward extension of
the case of a single Anosov flow. It relies on a deeper result based on the theory of joint
spectrum and joint functional calculus developed by Taylor [55, 56]. This theory allows
us to set up a good Fredholm problem on certain functional spaces by using Koszul com-
plexes, as we now explain.

Let us define X C �, for � 2 a�C , as an operator

X C � W C1.M/! C1.MI a�C/; ..X C �/u/.A/ WD .XA C �.A//u:

We can then define for each � 2 a�C the differential operators dXC� W C1.MIƒja�C/!

C1.MIƒjC1a�C/ by setting

dXC�.u˝ !/ WD ..X C �/u/ ^ ! for u 2 C1.M/; ! 2 ƒja�C:

2See [36, Chapter VIII.1] for the definition and properties of the wavefront set.
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Fig. 1. Schematic sketch of the location of the resonances in a�C . Note that in order to draw the
at least four-dimensional space a�C the imaginary direction ia� has been reduced in the drawing to
a one-dimensional line. The blue cone depicts the positive Weyl chamber W and the green region
illustrates the region (1.3) in which the resonances can occur. The leading resonances discussed in
Theorem 3 are located at the tip of this region.

Due to the commutativity of the family of vector fields XA for A 2 a, it can be easily
checked that dXC� ı dXC� D 0 (see Lemma 3.2). Moreover, as a differential operator,
dXC� extends to a continuous map

dXC� W C
�1

E�u
.MIƒja�C/! C�1

E�u
.MIƒjC1a�C/

and defines an associated Koszul complex

0! C�1
E�u

.M/
dXC�
����! C�1

E�u
˝ƒ1a�C

dXC�
����! � � �

dXC�
����! C�1

E�u
.M/˝ƒ�a�C! 0: (1.4)

We prove the following results on the cohomology of this complex:

Theorem 2. Let � be a smooth abelian Anosov action3 on a closed manifold M with
generating map X . Then for each � 2 a�C and j D 0; : : : ; �, the cohomology

ker dXC�jC�1
E�u

.M/˝ƒj a�C
=ran dXC�jC�1

E�u
.M/˝ƒj�1a�C

is finite-dimensional, and non-trivial only at a discrete subset of ¹� 2 a�C j Re.�.A// � 0,
8A 2 Wº.

We want to remark that not only is the statement about cohomology in Theorem 2
stronger than Theorem 1, but also the cohomological setting is in fact a fundamental

3We actually prove Theorems 1 and 2 in the more general setting of admissible lifts to vector
bundles, as defined in Section 2.2.
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ingredient in proving the discreteness of the resonance spectrum and its finite multi-
plicity. Our proof relies on the theory of joint Taylor spectrum (developed by J. Taylor
[55, 56]), defined using such Koszul complexes carrying a suitable notion of Fredholm-
ness. In our proof of Theorem 2 we show that the Koszul complex furthermore pro-
vides a good framework for a parametrix construction via microlocal methods. More pre-
cisely, the parametrix construction is not done on the topological vector spaces C�1

E�u
.M/

but on a scale of Hilbert spaces HNG , depending on the choice of an escape function
G 2 C1.T �M/ and a parameter N 2 RC, by which one can in some sense approxi-
mate C�1

E�u
.M/. The spaces HNG are anisotropic Sobolev spaces, which roughly speak-

ing allow HN .M/ Sobolev regularity in all directions except in E�u where we allow
H�N .M/ Sobolev regularity. They can be rigorously defined using microlocal analysis,
following the techniques of Faure–Sjöstrand [21]. By further use of pseudodifferential
and Fourier integral operator theory we can then construct a parametrix Q.�/, which is a
family of bounded operators on HNG ˝ƒa�C depending holomorphically on � 2 a�C and
fulfilling

dXC�Q.�/CQ.�/dXC� D IdCK.�/: (1.5)

Here K.�/ is a holomorphic family of compact operators on HNG ˝ ƒa�C for � in a
suitable domain of a�C that can be made arbitrarily large by letting N !1. Even having
this parametrix construction, the fact that the joint spectrum is discrete and intrinsic (i.e.
independent of the precise construction of the Sobolev spaces) is more difficult than for an
Anosov flow (the rank 1 case): this is because holomorphic functions in C� do not have
discrete zeros when � � 2 and we are lacking a good notion of resolvent, while for one
operator the resolvent is an important tool. Due to the link with the theory of the Taylor
spectrum, we call � 2 a�C a Ruelle–Taylor resonance for the Anosov action if for some
j D 0; : : : ; � the j -th cohomology is non-trivial,

ker dXC�jC�1
E�u

.M/˝ƒj a�C
=ran dXC�jC�1

E�u
˝ƒj�1a�C

6D 0;

and we call the non-trivial cohomology classes Ruelle–Taylor resonant states. Note that
the definition of joint Ruelle resonances precisely means that the 0-th cohomology is
non-trivial. Thus, any joint Ruelle resonance is a Ruelle–Taylor resonance. The converse
statement is not obvious but turns out to be true, as we will prove in Proposition 4.15: if
the cohomology of degree j > 0 is not 0, then the cohomology of degree 0 is not trivial.

We continue with the discussion of the leading resonances. In view of (1.3) and Fig-
ure 1, a resonance is called a leading resonance when its real part vanishes. We show that
this spectrum carries important information about the dynamics: it is related to a special
type of invariant measures as well as to mixing properties of these measures.

First, let vg be the Riemannian measure of a fixed metric g on M. We call a � -invariant
probability measure� on M a physical measure if there is v 2C1.M/ non-negative such
that for any continuous function f and any open cone C � W ,

�.f / D lim
T!1

1

Vol.CT /

Z
A2CT

Z
M

f .'
�XA
1 .x//v.x/ dvg.x/ dA; (1.6)
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where CT WD ¹A 2 C j jAj � T º, and j � j denotes a fixed Euclidean norm on a. In other
words, � is the weak Cesàro limit of a Lebesgue type measure under the dynamics. We
prove the following result.

Theorem 3. Let � be a smooth abelian Anosov action with generating map X and let W

be a positive Weyl chamber.

(i) The linear span over C of the physical measures is isomorphic .as a C-vector space/
to kerdX jC�1

E�u

, the space of joint Ruelle resonant states at �D 0 2 a�C; in particular,

it is finite-dimensional.4

(ii) A probability measure � is a physical measure if and only if it is � -invariant and
WF.�/ � E�s , where E�s � T

�M is defined by E�s .Es ˚E0/ D 0.

(iii) Assume that there is a unique physical measure � .or by (i) equivalently that the
space of joint resonant states at 0 is one-dimensional/. Then the following are equiv-
alent:

� The only Ruelle–Taylor resonance on ia� is zero.

� There exists A 2 a such that 'XAt is weakly mixing with respect to �.

� For any A 2 W , 'XAt is strongly mixing with respect to �.

(iv) � 2 ia� is a joint Ruelle resonance if and only if there is a complex measure �� with
WF.��/ � E�s satisfying for all A 2W and t 2 R the following equivariance under
push-forwards of the action: .'XAt /��� D e

��.A/t��. Moreover, such measures are
absolutely continuous with respect to the physical measure obtained by taking v D 1
in (1.6).

(v) If M is connected and there exists a smooth invariant measure � with supp� DM,
then for any j D 0; : : : ; �,

dim
�
ker dX jC�1

E�u
.M/˝ƒj a�C

=ran dX jC�1
E�u
˝ƒj�1a�C

�
D

�
�

j

�
:

We show that the isomorphism stated in (i) and the complex measures in (iv) can be
constructed explicitly in terms of spectral projectors built from the parametrix (1.5). We
refer to Propositions 5.4 and 5.10 for these constructions and for slightly more complete
statements.

In the case of a single Anosov flow, physical measures are known to coincide with
SRB measures (see e.g. [59] and references therein). The latter are usually defined as
invariant measures that can locally be disintegrated along the stable or unstable foliation
of the flow with absolutely continuous conditional densities.

We prove in [29] that the microlocal characterization in Theorem 3 (ii) of physical
measures via their wavefront set implies that the physical measures of an Anosov action
are exactly those invariant measures that allow an absolutely continuous disintegration
along the stable manifolds. We show in [29, Theorem 2] that for each physical/SRB mea-

4The dimension can be expressed more concretely in dynamical terms; see [29, Theorem 3].
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sure, there is a basin B �M of positive Lebesgue measure such that for all f 2 C 0.M/,
all proper open subcones C � W and all x 2 B , we have the convergence

�.f / D lim
T!1

1

Vol.CT /

Z
A2CT

f .'
�XA
1 .x// dA: (1.7)

Moreover, we prove in [29, Theorem 3] that the measure � can be written as an infinite
weighted sum over Dirac measures on the periodic tori of the action, showing an equidis-
tribution of periodic tori in the support of �. Finally, we show that this measure has full
support in M if the action is positively transitive in the sense that there is a dense orbitS
A2W '

XA
1 .x/ for some x 2M. As mentioned before, the existence of such a measure is

considered as an important step towards the resolution of the rigidity conjecture of [39].

1.2. Relation to previous results

The notion of resonances for certain particular Anosov flows appeared in the work of
Ruelle [50], and was later extended by Pollicott [49]. The introduction of a spectral
approach based on anisotropic Banach and Hilbert spaces came later and allowed the def-
inition of resonances in the general setting, first for Anosov/Axiom A diffeomorphisms
[4, 5, 20, 26], then for general Anosov/Axiom A flows [8, 15, 16, 21, 25, 43, 45]. It was
also applied to the case of pseudo-Anosov maps [19], Morse–Smale flows [11], geodesic
flows for manifolds with cusps [30] and billiards [2]. This spectral approach has been
used to study SRB measures [5, 8] but it also led to several important consequences on
the dynamical zeta function [15,16,23,25] of flows, and links with topological invariants
[10, 12, 17].

Concerning the notion of joint spectrum in dynamics, there are several cases that have
been considered but they correspond to a different context of systems with symmetries
(e.g. [3]).

Higher rank Anosov R�-actions have in particular been studied mostly for their rigid-
ity: they are conjectured to be always smoothly conjugate to several models, mostly of
algebraic nature (see e.g. the introduction of [54] for a precise statement and a state of
the art on this question). The local rigidity of Anosov R�-actions near standard Anosov
actions5 was proved in [39], and an important step of the proof relies on showing

ker dX jC1.M/˝ƒ1a�C
=ran dX jC1.M/ D C� :

The main tools are based on representation theory to prove fast mixing with respect to the
canonical invariant (Haar) measure. It is also conjectured in [38] that, more generally, for
such standard actions one has, for j D 1; : : : ; � � 1,

ker dX jC1.M/˝ƒj a�C
=ran dX jC1.M/˝ƒj�1a�C

D C.
�
j/:

This can be compared to (v) in Theorem 3, except that there the functional space is
different. Having a notion of Ruelle–Taylor resonances provides an approach to obtain

5This class, defined in [39], consists of Weyl chamber flows associated to rank � locally sym-
metric spaces and variations of those.
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exponential mixing for more general Anosov actions by generalizing microlocal tech-
niques for spectral gaps [47, 57] to a suitable class of higher rank Anosov actions, and by
using the functional calculus of Taylor [55, 58]. We believe that such tools might be very
useful to obtain new results on the rigidity conjecture.

We would like to conclude by pointing out a different direction: on rank � > 1 locally
symmetric spaces �nG=K, there is a commuting algebra of invariant differential opera-
tors that can be considered as a quantum analogue of Weyl chamber flows. If the locally
symmetric space is compact, this algebra always has a discrete joint spectrum of L2-
eigenvalues. Its joint spectrum and relations to trace formulae have been studied in [13].
In [34], it is shown that a subset of the Ruelle–Taylor resonances for the Weyl chamber
flow are in correspondence with the joint discrete spectrum of the invariant differential
operators on �nG=K, giving a generalization of the classical/quantum correspondence of
[14, 31, 42] to higher rank.

1.3. Outline of the article

In Section 2 we introduce the geometric setting of Anosov actions and the admissible lifts
that we study. In Section 3 we explain how to define the Taylor spectrum for a certain
class of unbounded operators and discuss some properties of this Taylor spectrum. In
Section 4 we prove Theorems 1 and 2, using microlocal analysis. A sketch of the central
techniques is given at the beginning of Section 4. The last Section 5 is devoted to the proof
of Theorem 3. In Appendix A, we recall some classical results of microlocal analysis
needed in this paper.

2. Geometric preliminaries

2.1. Anosov actions

We first want to explain the geometric setting of Anosov actions and the admissible lifts
that we will study.

Let .M; g/ be a closed, smooth Riemannian manifold (normalized with volume 1)
equipped with a smooth locally free action � W A! Diffeo.M/ of an abelian Lie group
A Š R� . Let a WD Lie.A/ Š R� be the associated commutative Lie algebra and exp W
a! A the Lie group exponential map. After identifying A Š a Š R� , this exponential
map is simply the identity, but it will be quite useful to have a notation that distinguishes
between transformations and infinitesimal transformations. Taking the derivative of the
A-action one obtains the infinitesimal action, called an a-action, which is an injective Lie
algebra homomorphism

X W a! C1.MITM/; A 7! XA WD
d

dt

ˇ̌̌̌
tD0

�.exp.At//: (2.1)

Note that X can alternatively be seen as a Lie algebra morphism into the space Diff1.M/

of first order differential operators. By commutativity of a, ran.X/ � C1.MI TM/ is a
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�-dimensional subspace of commuting vector fields which span a �-dimensional smooth
subbundle which we call the neutral subbundle E0 � TM. Note that this subbundle is
tangent to the A-orbits on M. It is often useful to study the one-parameter flow generated
by a vector field XA, which we denote by 'XAt . One has the obvious identity 'XAt D

�.exp.At// for t 2 R. The Riemannian metric on M induces norms on TM and T �M,
both denoted by k � k.

Definition 2.1. An element A 2 a and its corresponding vector field XA are called trans-
versely hyperbolic if there is a continuous splitting

TM D E0 ˚Eu ˚Es (2.2)

that is invariant under the flow '
XA
t and such that there are �; C > 0 with

kd'
XA
t vk � Ce��jt jkvk; 8v 2 Es; 8t � 0; (2.3)

kd'
XA
t vk � Ce��jt jkvk; 8v 2 Eu; 8t � 0: (2.4)

We say that the A-action is Anosov if there exists an A0 2 a such that XA0 is transversely
hyperbolic.

Given a transversely hyperbolic element A0 2 a we define the positive Weyl cham-
ber W � a to be the set of A 2 a which are transversely hyperbolic with the same
stable/unstable bundle as A0.

Lemma 2.2. Given an Anosov action and a transversely hyperbolic element A0 2 a, the
positive Weyl chamber W � a is an open convex cone.

Proof. Let us first take the '
XA0
t -invariant splitting E0 ˚ Eu ˚ Es and show that it is in

fact invariant under the Anosov action � . Let v 2 Eu and A 2 a. Using ŒXA0 ; XA� D 0,
for each t0 2 R fixed and all t 2 R we find

d'
XA0
�t d'

XA
t0
v D d'

XA
t0
d'

XA0
�t v: (2.5)

In particular, kd'
XA0
�t d'

XA
t0
vk decays exponentially fast as t ! C1. This implies that

d'
XA
t0
v 2 Eu and the same argument works with Es . Next, we choose an arbitrary norm

on a. There exist C;C 0 > 0 such that for each v 2 Eu we have, for t � 0,

kd'
XA
�t vk � kd'

XA�A0
�t d'

XA0
�t vk � Ckvke��tkd'

XA�A0
�t k � Ckvke��teC

0tkA�A0k:

This implies that by choosing kA � A0k small enough, Eu is an unstable bundle for A as
well. The same construction works for Es and we have thus shown that W is open.

By re-parametrization, it is clear that W is a cone, so that only the convexity is left to
be proved. Now, take A1; A2 2 W and let C1; �1; C2; �2 be the corresponding constants
for the transverse hyperbolicity estimates (2.3) and (2.4). Then for s 2 Œ0; 1� and v 2 Eu
we can again use commutativity to obtain

kd'
XsA1C.1�s/A2
�t vk � C1C2e

��1st��2.1�s/tkvk; (2.6)

and this shows that sA1 C .1 � s/A2 2 W .
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Here we emphasize that the Weyl chamber W only depends on the Anosov splitting
associated to A0 but not on A0 itself. Notice also that in general there are other Weyl
chambers W 0 associated to a different Anosov splitting. In the standard example of Weyl
chamber flows they are images of W by the Weyl group of the higher rank locally sym-
metric space, explaining the Weyl chamber terminology (see for example [34] for details).
In general the structure of Weyl chambers can be quite complicated (see for example the
example of non-total Anosov actions given in [54, Section 6.3.4]). In that case, the Ruelle–
Taylor spectrum that we shall define has no reason to be the same for W and for W 0.

There is an important class of examples given by the Weyl chamber flow on Rieman-
nian locally symmetric spaces.

Example 2.3. Consider a real semisimple Lie group G, connected and of non-compact
type, and let G D KAN be an Iwasawa decomposition with A abelian, K the maximal
compact subgroup and N nilpotent. Then A Š R� and � is called the real rank of G. Let
a be the Lie algebra of A and consider the adjoint action of a on g which leads to the
definition of a finite set of restricted roots � � a�. For ˛ 2 � let g˛ be the associated
root space. It is then possible to choose a set �C � � of positive roots and with respect
to this choice there is an algebraic definition of a positive Weyl chamber:

W WD ¹A 2 a j ˛.A/ > 0 for all ˛ 2 �Cº:

If one now considers a torsion-free, discrete, cocompact subgroup � < G, one can define
the biquotient M WD �nG=M where M�K is the centralizer of A in K. As A commutes
with M, the space M carries a right A-action. Using the definition of roots, it is direct
to see that this is an Anosov action: all elements of the positive Weyl chamber W are
transversely hyperbolic elements sharing the same stable/unstable distributions given by
the associated vector bundles:

E0 D G �M a; Es D G �M n; Eu D G �M n:

Here n WD
P
˛2�C

g˛ and n WD
P
�˛2�C

g˛ are the sums of all positive, respectively
negative, root spaces, and n coincides with the Lie algebra of the nilpotent group N.

Note that there are various other constructions of Anosov actions and we refer to
[39, Section 2.2] for further examples.

2.2. Admissible lifts

We want to establish the spectral theory not only for the commuting vector fields XA
that act as first order differential operators on C1.M/ but also for first order differential
operators on Riemannian vector bundles E !M which lift the Anosov action.

Definition 2.4. Let M be a closed manifold with an Anosov action of AŠR� and gener-
ating mapX . Let E!M be the complexification of a smooth Riemannian vector bundle
over M. Denote by Diff1.MIE/ the Lie algebra of first order differential operators with
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smooth coefficients and scalar principal symbol, acting on sections of E. Then we call a
Lie algebra homomorphism

X W a! Diff1.MIE/

an admissible lift of the Anosov action if it satisfies the following Leibniz rule: for any
section s 2 C1.MIE/ and any function f 2 C1.M/ one has, for all A 2 a,

XA.f s/ D .XAf /s C f XAs: (2.7)

A typical example to have in mind would be whenE is a tensor bundle (e.g. an exterior
power ƒmT �M of the cotangent bundle or the bundle ˝mS T

�M of symmetric tensors),
and

XAs WD LXAs

where L denotes the Lie derivative. This admissible lift can be restricted to any subbundle
that is invariant under the differentials d'XAt for all A 2 a and t > 0. Another class of
examples comes from flat connections. More generally, the above examples can be seen
as a special case where the A-action � on M lifts to an action z� on E which is fiberwise
linear. Then one can define an infinitesimal action

XAs.x/ WD @tz�.exp.�At//s
�
�.exp.At//x

�ˇ̌
tD0

(2.8)

which is an admissible lift.

3. Taylor spectrum and Fredholm complex

The Taylor spectrum was introduced by Taylor [55, 56] as a joint spectrum for commut-
ing bounded operators, using the theory of Koszul complexes. While there are different
competing notions of joint spectra (see e.g. the lecture notes [9]), the Taylor spectrum is
from many perspectives the most natural notion. Its attractive feature is that it is defined
in terms of operators acting on Hilbert spaces and does not depend on the choice of an
ambient commutative Banach algebra. Furthermore, it comes with a satisfactory analytic
functional calculus developed by Taylor and Vasilescu [55, 58].

3.1. Taylor spectrum for unbounded operators

Most references introduce the Taylor spectrum for tuples of bounded operators. In our
case, we need to deal with unbounded operators. Additionally, working with a tuple
implies choosing a basis, which should not be necessary. Let us thus explain how the
notion of Taylor spectrum can easily be extended to an important class of abelian actions
by unbounded operators.

We start with a smooth complex vector bundle E !M over a smooth manifold M

(not necessarily compact), an abelian Lie algebra a Š R� and a Lie algebra morphism
X W a! Diff1.MIE/. For the moment we do not have to assume that M possesses an
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Anosov action. Note that X extends by linearity to X W aC ! Diff1.MIE/ and for the
definition of the spectra we will need to work with this complexified version. Using the
map X we define

dX W C
1
c .MIE/! C1c .MIE/˝ a�C; u 7! Xu;

where we have set .Xu/.A/ WD XAu for each A 2 aC . This will be the central ingredient
to define the Koszul complex which will lead to the definition of the Taylor spectrum.
In order to do this we need some more notation: we denote by ƒa�C WD

L�
`D0 ƒ

`a�C
the exterior algebra of a�C – this is just a coordinate-free version of ƒC� . Given a
topological vector space V we use the shorthand notation Vƒ` WD V ˝ ƒ`a�C and
Vƒ WD V ˝ ƒa�C . As ƒa�C is finite-dimensional, Vƒ is again a topological vector
space. We notice that since ƒa�C is a finite-dimensional vector space, we can view it
as a trivial bundle M � ƒa�C ! M, and when V D C1c .MIE/, V D Lp.MIE/ or
V D D 0.MIE/, elements in V ˝ ƒ`a�C can be identified respectively with sections of
V D C1c .MIE ˝ƒa�C/, L

p.MIE ˝ƒa�C/ or D 0.MIE ˝ƒa�C/. We shall freely make
this identification as this will sometimes be useful when we use pseudodifferential opera-
tors.

We have the contraction and exterior product maps

� W aC � Vƒ
`
! Vƒ`�1; .A; v ˝ !/ 7! �A.v ˝ !/ WD v ˝ .�A!/;

^ W Vƒ` �ƒra�C ! Vƒ`Cr ; .v ˝ !; �/ 7! v ˝ .! ^ �/:

We can then extend dX to a continuous map on C1c ƒ WD C1c .MIE/ ˝ ƒa�C (resp.
C�1ƒ WD C�1.MI E/ ˝ ƒa�C) by setting, for each u 2 C1c .MI E/ (resp. u 2
C�1.MIE/) and ! 2 ƒ`a�C ,

dX W u˝ ! 7! .dXu/ ^ !:

Similarly, for each A 2 a we will also extend XA on these spaces by setting

XA.u˝ !/ WD XAu˝ ! D .�AdXu/˝ !:

Remark 3.1. Choosing a basis A1; : : : ; A� 2 a provides an isomorphism ƒa� Š ƒR� .
One checks that under this isomorphism the coordinate free version dX W V ˝ ƒ

`a� !

V ˝ ƒ`C1a� of the Taylor differential transforms to the Taylor differential dX W V ˝
ƒ`R� ! V ˝ƒ`C1R� of the operator tuple X D .XA1 ; : : : ;XA� / defined as

dX .u˝ ei1 ^ � � � ^ eij / WD

�X
kD1

.XAku/˝ ek ^ ei1 ^ � � � ^ eij (3.1)

if the basis .ej /j of R� is identified with the dual basis of .Aj /j in a�.

Lemma 3.2. For each A 2 aC one has the following identities as continuous operators
on C1c ƒ and C�1ƒ:

(i) �AdX C dX�A D XA;
(ii) XAdX D dXXA;

(iii) dXdX D 0:
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Proof. Let u˝ ! 2 C1c ƒ or u˝ ! 2 C�1ƒ. Then by definition

�AdX.u˝ !/ D �A..dXu/ ^ !/ D .XAu/˝ ! � dXu ^ .�A!/ D .XA � dX�A/.u˝ !/;

which yields (i). In order to prove (ii) it suffices, by definition of dX, to prove the identity
as a map C1c .MIE/! C1c .MIE/˝ a�C . Take arbitrary A; A0 2 aC and note that by
definition �A0XA D XA�A0 . Then for u 2 C1c .MIE/ we get

�A0.XAdX � dXXA/u D .XAXA0 � XA0XA/u D 0;

which proves the statement. Note that we crucially use the commutativity of the differen-
tial operators XA in this step.

For (iii) we first conclude from (i) and (ii) that �AdXdX D dXdX�A. Using this identity
we deduce that for u 2 C1c ƒ

` and arbitrary A1; : : : ; A`C1 2 aC ,

�A1 : : : �A`C1dXdXu D 0;

which implies dXdXu D 0.

As a direct consequence of Lemma 3.2 (iii) we conclude that

0! C1c ƒ
0 dX
�! C1c ƒ

1 dX
�! � � �

dX
�! C1c ƒ

�
! 0 (3.2)

and
0! C�1ƒ0

dX
�! C�1ƒ1

dX
�! � � �

dX
�! C�1ƒ� ! 0 (3.3)

are complexes.
We now want to construct a complex of bounded operators on Hilbert spaces which

lies between the complexes on C1c ƒ and C�1ƒ. For this, we consider a Hilbert space H

with continuous embeddings C1c .MIE/ � H � C�1.MIE/ such that C1c .MIE/ is
a dense subspace of H . If we fix a non-degenerate Hermitian inner product h�; �ia�C , then
this induces a scalar product h�; �iHƒ and gives a Hilbert space structure on Hƒ. While
the precise value of h�; �iHƒ obviously depends on the choice of the Hermitian product
on a�C , the finite-dimensionality of a�C implies that all Hilbert space structures on Hƒ

obtained in this way are equivalent. Note that on the Hilbert spaces Hƒ` the operators dX

will in general be unbounded operators. However, we have the following result.

Lemma 3.3. For any choice of a non-degenerate Hermitian product on a�C , the vector
space D.dX/ WD ¹u 2 Hƒ j dXu 2 Hƒº becomes a Hilbert space when endowed with
the scalar product

h�; �iD.dX/ WD h�; �iHƒ C hdX �; dX �iHƒ: (3.4)

Furthermore, all scalar products obtained this way are equivalent and induce the same
topology on D.dX/. Finally, dX is bounded on D.dX/.

Proof. We have to check that D.dX/ is complete with respect to the topology of
h�; �iD.dX/. Suppose un is a Cauchy sequence in D.dX/. Then un and dXun are Cauchy
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sequences in Hƒ and we denote by v0; v1 2 Hƒ their respective limits. By the continu-
ous embedding H � C�1.MIE/ and the continuity of dX on C�1.MIE/ we deduce

v1 D lim
n!1

dXun D dX lim
n!1

un D dXv0

inC�1.MIE/, which proves the completeness. For the boundedness, we take u2D.dX/

and we compute

kdXuk
2
D.dX/

D kdXuk
2
Hƒ C kdXdXuk

2
Hƒ � kuk

2
D.dX/

:

To be able to use the usual techniques, it is crucial that C1c .MIE/ is not only dense
in H but also in D.dX/ – on this level of generality, this is not a priori guaranteed. For
this reason, we say the a-action X has a unique extension to H if

C1c .MIE/ƒ
D.dX/

D D.dX/: (3.5)

We note that by [21, Lemma A.1], if M is a closed manifold and H D A.L2.MIE/ƒ/

for some invertible pseudodifferential operator A on M with A�1dXA 2 ‰1.MIE ˝ƒ/

(see Appendix A for the notation), then C1.MIEƒ/ƒ is dense in D.dX/ and there is
only one closed extension for dX.

In order to finally define the Taylor spectrum in an invariant way, we consider � 2 a�C
as a Lie algebra morphism

� W aC ! Diff0.MIE/ � Diff1.MIE/; �.A/.u/ WD �.A/u:

In this way we can define X� � W aC!Diff1.MIE/ and the associated operator dX�� on
C1c ƒ and C�1ƒ. Since dX��D dX � d�, and d� is bounded on Hƒ, D.dX��/ does not
depend on �. Furthermore, note that from Lemma 3.2 we know that d2X�� D 0 on C1c ƒ
and by density of C1c .M; E/ƒ � D.dX/ and boundedness of dX�� W D.dX/! D.dX/

we deduce d2X�� D 0 on D.dX/. For k D 0; : : : ; �, we write Dk.dX/ WD D.dX/ \Hƒk

and we gather the results above in the following lemma.

Lemma 3.4. For an a-action X with a unique closed extension to H , for any � 2 a�C ,

0! D0.dX/
dX��
���! D1.dX/

dX��
���! � � �

dX��
���! D�.dX/! 0 (3.6)

defines a complex of bounded operators, and the operators dX�� depend holomorphically
on � 2 a�C .

Recall from the discussion above that the unique extension property was crucially
used to get dX�� ı dX�� D 0, thus to have a well-defined complex of bounded operators.

We introduce the notation

kerHƒ dX�� WD kerD.dX/!D.dX/ dX��;

ranHƒ dX�� WD ranD.dX/!D.dX/ dX��;

kerHƒj dX�� WD kerDj .dX/!DjC1.dX/
dX��;

ranHƒj dX�� WD ranDj�1.dX/!Dj .dX/
dX��:

(3.7)
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Now, following the previous discussion of the Taylor spectrum, we can make the follow-
ing definition.

Definition 3.5. Let X W a! Diff1.MIE/ be a Lie algebra morphism and H a Hilbert
space such that the a-action X has a unique extension to H . Then we define the Taylor
spectrum �T;H .X/ � a�C by

� 2 �T;H .X/ ” ranHƒ dX�� 6D kerHƒ dX��:

This is equivalent to saying that (3.6) is not an exact sequence. The complex is said to
be Fredholm if ranHƒ dX�� is closed and the cohomology kerHƒ dX��= ranHƒ dX�� has
finite dimension. In this case we say that � is not in the essential Taylor spectrum � ess

T;H .X/
of X and define the index by

index.X � �/ WD
�X
`D0

.�1/` dim.kerHƒ` dX��=ranHƒ` dX��/: (3.8)

As the usual Fredholm index for a single operator, the Fredholm index in the Taylor
complex is also a locally constant function of � (see [9, Theorem 6.6]).

Note that the non-vanishing of the zeroth cohomology kerHƒ0 dX�� of the complex
is equivalent to

9u 2 D0.dX/ n ¹0º; .XAj � �j /u D 0;

which corresponds to .�1; : : : ; ��/ being a joint eigenvalue of .XA1 ; : : : ;XA� /. Obviously,
on infinite-dimensional vector spaces the joint eigenvalues do not provide a satisfactory
notion of joint spectrum. Recall that for a single operator, � 2C is in its spectrum if X� �
is either not injective or not surjective. In terms of the Taylor complex for a single operator
.� D 1/ the non-injectivity corresponds to the vanishing of the zeroth cohomology group
whereas the surjectivity corresponds to the vanishing of the first cohomology group.

Remark 3.6. So far we always started with a Lie algebra morphism X W a!Diff1.MIE/,
then considered the action of Diff1.MI E/ on some topological vector space V (e.g.
C1c .M/) in order to define the Taylor complex and the Taylor spectrum. This will also be
our main case of interest. However, we notice that the construction of the operator dX and
the complex associated to dX works exactly the same if we take instead any Lie algebra
morphism

X W a! L.V /;

where V is a topological vector space and L.V / denotes the Lie algebra of continuous
linear operators on V with Lie bracket ŒA; B� WD AB � BA. We shall call the complex
induced by dX on Vƒ the Taylor complex of X on V . If V is a Hilbert space, we define
the Taylor spectrum of X on V by

� 2 �T;V .X/ ” ranVƒ dX�� 6D kerVƒ dX��:

Such Lie algebra morphisms that do not directly come from differential operators will
occasionally show up within the parametrix constructions in Sections 4 and 5.
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3.2. Useful observations

For the reader not familiar with the Taylor spectrum, and for our own use, we have gath-
ered in this section several observations that are helpful when manipulating these objects.
First, we shall say that an operator P W C�1.MIE/˝ƒa�C ! C�1.MIE/˝ƒa�C is
ƒ-scalar if there is an operator P 0 W C�1.MIE/! C�1.MIE/ such that

8u 2 C�1.MIE/; ! 2 ƒa�C; P.u˝ !/ D .P 0u/˝ !:

As usual with differential complexes, we have a dual notion of divergence complex.
For this, we need a way to identify a with a�, i.e. a scalar product h�; �i on a, extended to
a C-bilinear two-form. If one chooses a basis, the implicit scalar product is given by the
standard one in that basis. In any case, A 7! A0 WD hA; �i is an isomorphism between a

and a�. If
Y W a! L.C1c .MIE//

satisfies ŒYA1 ;YA2 � D 0 for any A1; A2 2 a, then we can define the action Y0 W a� 7!
L.C1c .MIE// by setting, for u 2 C1c .MIE/ and A0 2 a�, if A is dual to A0,

Y0A0u WD YAu:

In this fashion, dY0u WD Y0u is an element of C1c .MIE/˝ a, while dYu is an element
of C1c .MIE/˝ a�. We can thus define the divergence operator associated to Y by

ıY W C
1
c .MIE/˝ƒ

ja�C ! C1c .MIE/˝ƒ
j�1a�C; u˝ ! 7! �{Y0u!: (3.9)

In an orthonormal basis .ej /j of a for h�; �i and .e0j /j the dual basis in a�, we get, for
u 2 C1c .MIE/ and ! D e0i1 ^ � � � ^ e

0
i`

,

ıY.u˝ !/ D
X̀
jD1

.�1/j .Yeij u/e
0
i1
^ � � � ^ce0ij ^ � � � ^ e0i` :

We see directly that for A0 2 a�,

A0 ^ ıY.u˝ !/C ıY.A
0
^ .u˝ !//D�A0 ^ {Y0u! � {Y0u.A

0
^ !/D�.A0.Y0u//˝ !:

It follows from similar arguments as before that

YAıY D ıYYA; ıYıY D 0:

We have the following result.

Lemma 3.7. Let X W a! Diff1.MIE/ be an admissible lift and Y W a!L.C1c .MIE//

satisfying YB1YB2 D YB2YB1 for any B1; B2 2 a, such that XAYB D YBXA for any
A;B 2 a. If we fix an inner product h�; �i on a and a corresponding orthonormal basis .ej /j
and if Xi WDXei and Yj WDYej , then we have, as continuous operators on C1c .MIE/ƒ,

ıYdX C dXıY D �
� �X
kD1

XkYk
�
˝ Id :
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The sum does not depend on the choice of basis, because it is the trace of the matrix
representing XY under h�; �i.

Proof. Let e0i be the dual basis to the chosen orthogonal basis ei . For I D .i1; : : : ; i`/ let
e0I WD e

0
i1
^ � � � ^ e0i` . Then for u 2 C1c .MIE/ we compute

dXıY.u˝ e
0
I /

D �

�X
k2I

.XkYku/˝ e0I C
X
k…I; j

.�1/j�1.XkYij u/˝ e
0
k ^ e

0
i1
^ � � � ^ce0ij ^ � � � ^ e0i`�;

ıYdX.u˝ e
0
I /

D �

�X
k…I

.YkXku/˝ e0I C
X
k…I; j

.�1/j .YijXku/˝ e0k ^ e
0
i1
^ � � � ^be0ij ^ � � � ^ e0i`�:

Using the commutation ŒXi ;Yj � D 0, we obtain the result.

As an illustration, let us recall the following classical fact.

Lemma 3.8. Let X1; : : : ; X� be commuting operators on a finite-dimensional vector
space V . Then �T;V .X/ D ¹joint eigenvalues ofX1; : : : ; X�º � C� .

Proof. By the basic theory of weight spaces (see e.g. [40, Proposition 2.4]) V can
be decomposed into generalized weight spaces, i.e. there are finitely many �.j / D

.�
.j /
1 ; : : : �

.j /
� / 2C� and a direct sum decomposition V D

L
j Vj which is invariant under

all X1; : : : ; X� and there are nj such that

.Xi � �
.j /
i /nj jVj D 0; 8i D 1; : : : ; �; 8j:

Commutativity and the Jordan normal form then imply that the �.j / are precisely the joint
eigenvalues of the tupleX . Now let�¤ �.j / for all j . We have to prove that�… �T;V .X/.
Since � ¤ �.j / we deduce that for any j there is at least one 1 � kj � � such that
�kj ¤ �

.j /

kj
and again by Jordan normal form, Xkj � �kj W Vj ! Vj is invertible. Setting

zVk WD
L
kjDk

Vj , we can thus find an X -invariant decomposition V D
L�
kD1
zVk such

thatXk ��k W zVk! zVk is invertible. Let…k be the projection onto zVk with respect to the
above direct sum decomposition. Now set Yk WD .Xk � �k/�1…k W V ! V . Then the Yk
satisfy all the assumptions of Lemma 3.7 and

ıY dX�� C dX��ıY D � Id :

Consequently, the Taylor complex (3.6) is exact.

In the particular case thatX D .X1; : : : ;X�/ are symmetric matrices, using the spectral
theorem we can reduce the problem to the case that X1; : : : ; X� are scalars acting on
some Rm. From this we deduce that for � 2 �T;Rm.X/,

dim.kerƒj dX��=ranƒj dX��/ D dim.Rm ˝ƒjR�/ D m

�
�

j

�
;
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and we check that

index.X � �/ D m
�X

jD1

.�1/j
�
�

j

�
D 0:

Our next step is to give a criterion for dX�� to be Fredholm. We first notice that since
ran dX�� � ker dX��, the closedness of ran dX�� in D.dX/ and in Hƒ is equivalent.
Below, if F � C�1.MIE/ƒ is a vector subspace, we shall denote ranF dX WD ¹dXu j

u 2 F º and kerF dX WD ¹u 2 F j dXu D 0º: We shall use the following criterion for the
dX-complex to be Fredholm.

Lemma 3.9. Let X be an a-action with a unique extension to H . Assume that there are
bounded operators Q, R and K on Hƒ, acting continuously on C�1.MIE/ƒ, such
that K is compact, kRkL.Hƒ/ < 1, and

QdX C dXQ D IdCRCK:

Then the complex defined by dX is Fredholm. Denote by …0 the projector on the eigen-
value 0 of the Fredholm operator IdC R C K; it is bounded on D.dX/ and commutes
with dX. Then the map u 7! …0u from ker dX \D.dX/ to ker dX \ ran…0 descends to
an isomorphism

…0 W kerD.dX/ dX=ranD.dX/ dX ! kerran…0 dX=ranran…0 dX: (3.10)

Proof. First, since Q, R and K are continuous on distributions, it makes sense to write
dXQ C QdX D Id C R C K in the distribution sense. Further, from this relation, we
deduce that Q is bounded on D.dX/. Additionally, without loss of generality (by modi-
fying R) we can assume that K is a finite rank operator.

Let us prove that the range of dX is closed. Consider u 2 .ker dX/
? \D.dX/. Since

dXQu 2 ran.dX/ � ker dX, we have

h.IdCRCK/u; uiHƒ D hQdXu; uiHƒ: (3.11)

It follows that there is C > 0 such that for each u 2 .ker dX/
? \D.dX/ we have

.1 � kRk/kukHƒ � kKukHƒ � CkdXukHƒ: (3.12)

Since K is of finite rank, we deduce by a standard argument that dX has closed range
(both in Hƒ and in D.dX/).

The operator F WD IdCRCK is Fredholm of index 0, and since FdX D dXQdX D

dXF on distributions, we deduce that F W D.dX/ ! D.dX/ is bounded. Since F is
Fredholm of index 0, we know that s 7! .F � s/�1 2 L.Hƒ/ is meromorphic in
C n B.1; kRkL.Hƒ// and for s 2 C� D C n ¹0º close to 0 it is analytic. Note that

kFuk2D.dX/
D kFuk2Hƒ C kdXFuk

2
Hƒ

D kFuk2Hƒ C kFdXuk
2
Hƒ � kF k

2
L.Hƒ/kuk

2
D.dX/
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and thus F � s is invertible on D.dX/ for jsj > kF kL.Hƒ/. This implies that
.F � s/�1 WD.dX/!D.dX/ is itself bounded in ¹jsj> kF kL.Hƒ/ºwith dX.F � s/

�1D

.F � s/�1dX, and it extends meromorphically to s 2 C nB.1; kRkL.Hƒ// as an operator

.F � s/�1 W D.dX/! Hƒ. By meromorphic continuation we have, for all u 2 D.dX/

and s 2 C n B.1; kRkL.Hƒ// not a pole of .F � s/�1,

dX.F � s/
�1u D .F � s/�1dXu in C�1.MIE/ƒ:

In particular, for all s close to 0 we get dX.F � s/
�1u 2Hƒ with kdX.F � s/

�1ukHƒ �

k.F � s/�1kL.Hƒ/kukD.dX/, i.e. .F � s/�1 W D.dX/ ! D.dX/ is bounded, and
dX.F � s/

�1 D .F � s/�1dX on D.dX/.
In that case, the spectral projector…0 of F for the eigenvalue 0 commutes with dX, is

bounded on D.dX/, and since D.dX/ is dense in Hƒ and…0 has finite rank, its image is
contained in D.dX/. Further, we can write F D .F C…0/.Id�…0/, and zF WD F C…0

is invertible on Hƒ and D.dX/, and commuting with dX, so that on D.dX/,

dX zF
�1QC zF �1QdX D Id �…0: (3.13)

In particular, for u 2 ker dX \D.dX/, we have

u D dX zF
�1QuC…0u: (3.14)

Since …0 and dX commute, u 7! …0u descends to a homomorphism (3.10) in cohomol-
ogy. This map in cohomology is obviously surjective since ran…0 � D.dX/. To prove
that it is injective, we need to prove that if …0u 2 dX ran…0 for u 2 ker dX \D.dX/,
then u 2 dXD.dX/. This actually follows directly from (3.14) by using the fact that both
zF �1 and Q are bounded on D.dX/.

We can also deduce the following.

Lemma 3.10. Under the assumptions of Lemma 3.9, if F WD IdCK C R is of the form
F D F 0 ˝ Id where F 0 is an operator on H .i.e. F is ƒ-scalar), then 0 2 �T;H .X/ if and
only if there exists a non-zero u 2 D.dX/ \H such that Xu D 0.

Proof. From Lemma 3.9, we deduce that 0 2 �T;H .X/ if and only if the complex given
by dX is not exact on ran…0 (recall that dX commutes with …0). However, if F is ƒ-
scalar, then…0 D…

0
0 ˝ Id with…00 the spectral projector at 0 of F 0 on H , and ran…0 D

.ran…00/ ˝ ƒa�C . It follows that dX restricted to ran…0 is exactly the Taylor complex
of the operator X on ran…00 in the sense of Remark 3.6. We are thus reduced to finite
dimension and we can apply Lemma 3.8.

The version of the Analytic Fredholm Theorem for the Taylor spectrum is the follow-
ing statement.

Proposition 3.11. Let X be an a-action with a unique extension to H . Then the set
�T;H .X/ n � ess

T;H .X/ is a complex analytic submanifold of C� n � ess
T;H .X/.
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Proof. As the complex (3.6) is an analytic Fredholm complex of bounded operators on
C� n � ess

T;H .X/, the statement is classical and a proof can be found in [46, Theorem 2.9].

In general, the question of whether the spectrum is discrete does not seem to have
a very simple answer. For example, a characterization can be found in [1, Corollary 2.6
and Lemma 2.7]. Such a criterion is particularly adapted to microlocal methods and it
can actually be used in our setting. However, it turns out that an even simpler criterion is
sufficient for us.

Lemma 3.12. Under the assumptions of Lemma 3.9, assume in addition that Q D ıQ

for some Lie algebra morphism Q W a ! L.H / such that QA acts continuously on
C�1.MIE/ and ŒQA;XB � D 0 for all A; B 2 a. Then Lemma 3.10 applies, and the
Taylor spectrum of X on H is discrete in a neighborhood of 0.

Proof. Let A1; : : : ; A� 2 a be an orthonormal basis for h�; �i and let Qj WD QAj . We
observe from Lemma 3.7 that for � 2 a�C the following identity holds on D.dX/:

dX��QCQdX�� D .�XA1Q1 � � � � � XA�Q�„ ƒ‚ …
DF 0

C �1Q1 C � � � C ��Q�„ ƒ‚ …
D��Q

/˝ Id :

Thus, denoting F 0.�/ WD F 0 C � �Q on H and F.�/ WD F 0.�/˝ Id on Hƒ, we see that
Lemma 3.10 indeed applies.

Next, we observe two things. The first is that F 0 and � �Q commute. The second is
that for � small enough, F 0.�/ can still be decomposed in the form IdC R.�/C K.�/
with kR.�/kL.H/ < 1 and K.�/ compact, because Q is bounded. It follows that dX�� is
Fredholm for � close enough to 0.

From Lemma 3.9, we know that the cohomology of dX�� on D.dX/ is isomorphic to

kerran…0.�/ dX��=ranran…0.�/ dX��;

and the isomorphism is given by Œu� 7! Œ…0.�/u� if …0.�/ denotes the spectral projector
of F.�/ at 0 and Œ�� denotes cohomology class. Let us now describe a sort of sandwiching
procedure. Assume that we have a projector …2 bounded on D.dX/, commuting with
dX��. Then the mapping Œu� 7! Œ…2u� is well-defined and surjective as a map

kerD.dX/ dX��=ranD.dX/ dX�� ! kerran…2 dX��=ranran…2 dX��: (3.15)

In general, there is no reason for this map to be injective. However, if we further assume
that …2 and …0.�/ commute, and ran…0.�/ � ran…2, then we can see …0.�/ as a pro-
jector on ran…2. The mapping Œ…2u� 7! Œ…0.�/u� for u 2 kerD.dX/ dX��=ranD.dX/ dX��
is well-defined as a map

kerran…2 dX��=ranran…2 dX�� ! kerran…0.�/ dX��=ranran…0.�/ dX��

by using ker…2 � ker…0.�/, and it has to be surjective. Using this and the surjectivity
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of (3.15) we deduce the bounds

dim.kerD.dX/ dX��=ranD.dX/ dX��/

� dim.kerran…2 dX��=ranran…2 dX��/ � dim.kerran…0.�/ dX��=ranran…0.�/ dX��/:

Since we have proved above that the lower and upper bounds are equal, (3.15) is actually
an isomorphism.

Let us write zF 0 WD F 0 C…00 where …00 is the spectral projector of F 0 at 0. We have
the following identity on H :

zF 0�1F 0.�/ D Id �…00 C zF
0�1� �Q:

For u 2 kerF 0.�/, we have .Id�…00/uD� zF
0�1� �Qu. Since zF 0�1� �Q commutes with

…00 (as F 0 commutes with � �Q), we deduce that, for u 2 kerF 0.�/ � H ,

.Id �…00/u D .Id �…
0
0/
2u D � zF 0�1� �Q.Id �…00/u:

For � small enough IdC zF 0�1� �Q is invertible on H , which implies that .Id�…00/uD 0.
In particular, u2 ran…00, so that kerF 0.�/� kerF 0 and ran…00.�/� ran…00. But certainly
…00 and …00.�/ commute. So we can apply the argument above with …00 playing the role
of …2, and deduce that for � sufficiently small,

kerD.dX/ dX��=ranD.dX/ dX�� ' kerran…0
0
dX��=ranran…0

0
dX��:

Since ran…00 is a fixed finite-dimensional space, the Taylor spectrum of X is discrete near
zero by Lemma 3.8.

4. Discrete Ruelle–Taylor resonances via microlocal analysis

In this section, M is a compact manifold, equipped with a vector bundle E ! M and
an admissible lift X of an Anosov action (see Definition 2.4). We have seen in Sec-
tion 3.1 how to define the Taylor differential dX which acts in its coordinate free form
on C1.MIE/˝ ƒa�. We have furthermore seen how dX can be used to define a Tay-
lor spectrum �T;H .X/ � a�C . We take coordinates whenever it is convenient. In that case,
we will use the notation dX to avoid confusion. In what follows, it will be convenient to
pass back and forth between these versions and we will mostly use the shorthand nota-
tion C1ƒ, leaving open which version we currently consider.

The Ruelle–Taylor resonances that we will introduce will correspond to a discrete
spectrum of �X on some anisotropic Sobolev spaces. From a spectral-theoretic point
of view this sign convention might seem unnatural. However, from a dynamical point
of view this convention is very natural: given the flow 'Xt of a vector field X , the one-
parameter group that propagates probability densities with respect to an invariant measure
is given by .'X�t /

� and thus is generated by the differential operator �X . We will there-
fore from now on consider the holomorphic family of complexes generated by dXC� for
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� 2 a�C (respectively � 2 C� after a choice of coordinates). Let us denote by e�tXA the
1-parameter family generated by XA, solving @te�tXAf D�XAe�tXAf with e�tXAf jtD0
D f . Since we work with spaces that are deformations of L2.M/, we will compare our
results with the growth rate of the action on L2.M/, defined for A 2 a as

CL2.A/ WD lim sup
1

t
log ke�tXAkL.L2/: (4.1)

Naturally, the spectrum of XA on L2 is contained in ¹s 2 C j Re s � CL2.A/º.
The goal of this section is to show the following:

Theorem 4. Let � be a smooth abelian Anosov action with generating map X and X an
admissible lift. Let A0 2 W be in the positive Weyl chamber. There exists c > 0, locally
uniform with respect to A0, such that for each N > 0, there is a Hilbert space HN con-
taining C1.M/ and contained in C�1.M/ such that the following holds true:

(1) �X has no essential Taylor spectrum on the Hilbert space HN in the region

FN WD ¹� 2 a�C j Re.�.A0// > �cN C CL2.A0/º:

(2) For each � 2 FN one has an isomorphism of finite-dimensional spaces

ker dXC�jDj
N
.dX/

=ran dXC�jDj�1
N

.dX/

D ker dXC�jC�1
E�u

.M/˝ƒj a�C
=ran dXC�jC�1

E�u
.M/˝ƒj�1a�C

with D
j
N .dX/ WD ¹u 2HN ˝ƒ

ja�C j dXu 2HN ˝ƒ
jC1a�Cº, showing that the coho-

mology dimension is independent of N and A0.

(3) The Taylor spectrum of �X contained in FN is discrete and contained in\
A2W

¹� 2 a�C j Re.�.A// � CL2.A/º:

(4) An element � 2 FN is in the Taylor spectrum of �X on HN if and only if � is a joint
Ruelle resonance of X.

The Hilbert space HN will be rather written HNG below, where G is a certain weight
function on T �M giving the rate of Sobolev differentiability in phase space. We use this
notation in order to emphasize the dependence of the space on G.

The central point of the proof will be a parametrix construction for the exterior dif-
ferential dXC�. We will prove in Proposition 4.7 that there are holomorphic families of
operators Q.�/; F.�/ W C�1ƒ! C�1ƒ such that

Q.�/dXC� C dXC�Q.�/ D F.�/:

The operators Q.�/ and F.�/ will be Fourier integral operators and independent of any
Hilbert space on which the operators act. However, the crucial fact is that for these
operators there exists a scale of Hilbert spaces C1 � HNG � C

�1 (with N � 0 and
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G 2 C1.T �M/ a weight function) and domains FNG � a�C with a�C D
S
N>0 FNG

such that for � 2 FNG the operatorsQ.�/ WHNG !HNG are bounded and the operators
F.�/ WHNG!HNG are Fredholm and can be decomposed asF.�/D IdCR.�/CK.�/
with K.�/ compact and kR.�/kL.HNGƒ/ < 1=2. Then by Lemma 3.9 we directly con-
clude that the Taylor complex on HNGƒ is Fredholm at � 2 FNG . The fact that the
construction of the operator family F.�/ W C1ƒ! C�1ƒ is independent of the spe-
cific Hilbert spaces on which they act will be the key for proving in Section 4.3 that
the Taylor spectrum of dXC� is intrinsic to the Anosov action, i.e. independent of the
spaces HNG constructed. The flexibility which we will have in the construction of the
escape function G will furthermore allow us to identify this intrinsic spectrum with the
spectrum of dXC� on the space C�1

E�u
ƒ of distributions with wavefront set contained in

the annihilator E�u � T
�M of Eu ˚ E0 (see Proposition 4.10). Finally, we will see that

the choice of Q.�/ can be made more geometric, to enable the use of Lemma 3.12 and
prove that this intrinsic spectrum is discrete in a�C .

The construction of the parametrix Q.�/ and the Hilbert spaces HNG will be
done using microlocal analysis. Appendix A contains a brief summary of the necessary
microlocal tools. Section 4.1 will be devoted to the construction of the anisotropic Sobolev
spaces. With these tools at hand we will construct the parametrix (Section 4.2), and prove
that the spectrum is intrinsic (Section 4.3) as well as discrete (Section 4.4).

4.1. Escape function and anisotropic Sobolev spaces

In this section we define the anisotropic Sobolev spaces. Their construction will be based
on the choice of a so-called escape function for the given Anosov action. We first give
the definition for such a function and then prove the existence of escape functions with
additional useful properties.

Given any smooth vector field X 2 C1.MI TM/ with flow 'Xt we define the sym-
plectic lift of the flow and the corresponding vector field by

ˆXt W T
�M! T �M; .x; �/ 7! .'Xt .x/; ..d'

X
t /
�1/T �/;

XH WD
d

dt

ˇ̌̌̌
tD0

ˆXt 2 C
1.T �MIT .T �M//;

(4.2)

where ..d'Xt /
�1/T is the transpose of the inverted differential .d'Xt /

�1. The
notation XH is chosen because it is the Hamilton vector field of the principal sym-
bol �1p .X/.x; �/ D i�.X.x// 2 C1.T �M/ of X (see Example A.2). Recall from
Example A.2 that for an admissible lift of an Anosov action, the principal symbols of the
lifted differential operator XA and that of the vector fieldXA tensorized with IdE coincide.
This will turn out to be the reason why we do not have to care about the admissible lifts for
the construction of the escape function. We will denote by ¹0º WD ¹.x;0/ 2 T �M j x 2M º
the zero section.

Definition 4.1. Let cX > 0, A 2 W , and let �E�
0
� T �M be an open cone containing

E�0 satisfying �E�
0
\ .E�u ˚E

�
s / D ¹0º. Then a function G 2 C1.T �MIR/ is called an
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escape function for A compatible with cX and �E�
0

if there is R > 0 with the following
properties:

(1) G.x; �/ D 1 for j�j � R=2, and for j�j > 1 one can write G.x; �/ D m.x; �/ log.1C
f .x; �//. Here m 2 C1.T �MI Œ�1=2; 8�/ and for j�j > R, m is positively homoge-
neous of degree 0, with m � �1=4 in a conic neighborhood of E�u and m � 4 in a
conic neighborhood of E�s . Furthermore, f 2 C1.T �MIRC/ is positively homoge-
neous of degree 1 for j�j > R. We call m the order function of G.

(2) XHA m.x; �/ � 0 for all j�j > R.

(3) XHA G.x; �/ � �cX for � … �E�
0

with j�j > R.

Below (see Proposition 4.3), we will prove the existence of escape functions for
Anosov actions. First, let us explain how we can build anisotropic Sobolev spaces based
on an escape function. Given an escape function G, property (1) of Definition 4.1 implies
thatm 2 S01 .M/ and for anyN > 0, eNG 2 SNm1� .M/ is a real elliptic symbol. According
to [20, Lemma 12 and Corollary 4] there exists a pseudodifferential operator

OANG 2 ‰
Nm
1� .MIE/ (4.3)

such that

(1) �Nmp . OANG/ D e
NG IdE mod SNm�1C1� ,

(2) OANG W C
1.MIE/! C1.MIE/ is invertible,

(3) OA�1NG 2 ‰
�Nm
1� .MIE/ and ��Nmp . OA�1NG/ D e

�NG IdE mod S�Nm�1C1� .

We can now define the anisotropic Sobolev spaces

HNG WD
OA�1NGL

2.MIE/ with scalar product hu; viHNG WD h OANGu; OANGviL2 :

Note that the scalar product hu; viHNG depends not only on the choice of the escape
function but also on the choice of its quantization OANG . However, by L2-continuity
(Proposition A.9), these different choices all yield equivalent scalar products on the given
vector space HNG . For that reason we can suppress this dependence in our notation.

We want to study the Taylor spectrum of the admissible lift of the Anosov action on
these anisotropic Sobolev spaces. Recall from Section 3.1 that due to the unboundedness
of the differential operators we have to verify the unique extension property:

Lemma 4.2. For any escape function G the a-action of an admissible lift has a unique
extension .in the sense that (3.5) holds/ to the anisotropic Hilbert space HNG .

Proof. Let us consider the Taylor differential dX as an unbounded operator on HNGƒ

with domain C1.MIE ˝ ƒ/. Then, in the language of closed extensions, the desired
equality (3.5) corresponds to the uniqueness of possible closed extensions. By unitary
equivalence we can instead study the conjugate operator P WD OANG dX OA

�1
NG acting as

an unbounded operator on L2.MIE ˝ ƒ/. We want to apply [21, Lemma A.1] which
states that any operator in‰11.MIE ˝ƒ/ has a unique closed extension as an unbounded
operator on L2 with domain C1. By Proposition A.3 and since OANG has scalar principal
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symbol we can write P D dX C Œ OANG ; dX� OA
�1
NG , where the first summand is obviously

in ‰11.MIE ˝ ƒ/ and the second one in ‰0C1� .MIE ˝ ƒ/. Now, by Definition A.1 of
symbol spaces, one checks that S0C1� .MIE ˝ ƒ/ � S

1
1 .MIE ˝ ƒ/. We conclude that

P 2 ‰11.MIE ˝ƒ/ and we can apply [21, Lemma A.1], which completes the proof.

Let us now turn to the existence of escape functions.

Proposition 4.3. Fix an arbitrary A0 2 W � a, an open cone �reg � T
�M which is

disjoint from E�u , and a small conic neighborhood �0 of E�0 such that �0 \ .E�s ˚ E
�
u/

D ¹0º. Then there is a cX > 0, an open conic neighborhood �E�
0
� �0 of E�0 , and R > 0

such that there is an escape function G for A0 compatible with cX and �E�
0

with the
additional property that the order function satisfies

m.x; �/ � 1=2 for .x; �/ 2 �reg and j�j > R: (4.4)

Proof. This follows from [10, Lemma 3.2]: indeed, first we note that the proof there
only uses the continuity of the decomposition T �M D E�0 ˚ E

�
u ˚ E

�
s and the con-

tracting/expanding properties of E�s , E�u but not the fact that E�0 is one-dimensional. It
suffices to take, in the notations of [10], N1 D 4, N0 D 1=4 and �reg D T

�M n C uu.˛0/

with ˛0 > 0 small enough. Although it is not explicitly written in the statement of [10,
Lemma 3.3], the order functionm constructed there satisfies XHA0m.x; �/ � 0 for j�j large
enough and �E�

0
is arbitrarily small if ˛0 > 0 is small (see [10, Section A.2]).

In the proof of the fact that the Ruelle–Taylor spectrum is discrete, we shall also need
an escape function that works for all A in a neighborhood U � W of a fixed element
A1 2 W .

Lemma 4.4. Let A1 2 W be fixed. Then there is an escape function G for A1, a conic
neighborhood ��E0 � T

�M of E�0 such that �E�
0
\ .E�u ˚E

�
s /D ¹0º, a constant cX > 0

and a neighborhood U � W of A1 such that G is an escape function for all A 2 U

compatible with cX > 0 and �E�
0

. Moreover, G can be chosen to satisfy XHA G � 0 in
¹j�j � Rº for some R � 1.

Proof. In a first step we need to construct an order function m that has all properties of
Definition 4.11 and additionally XHA m � 0 for j�j � R for all A close enough to A1.
To obtain it, we can follow exactly the construction for Anosov flows given in [28, Sec-
tion 2]. It works mutatis mutandis in our case as the proof simply uses the continuity
of the decomposition T �M D E�0 ˚ E

�
s ˚ E

�
u and the expanding/contracting properties

of E�s and E�u , but not the fact that dimE�0 D 1.
We can then define the function G as in [21, Lemma 1.2] by setting G.x; �/ D

m.x; �/ log.1C f .x; �//, where f > 0 is positively homogeneous of degree 1 in � for
j�j > R, satisfies f .x; �/ D j�.XA1/j near E�0 \ ¹j�j � 1º, and

XHA f < �c1.1C f / .resp. XHA f > c1=.1C f // (4.5)

in a conic neighborhood of E�s (resp. of E�u ) for some c1 > 0. To construct such f
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near E�s , we can use the construction from [16, Lemma C.1]: for .x; �/ in a conic neigh-
borhood Ns of E�s , set

f .x; �/ WD

Z T

0

je
�tXH

A1 .x; �/j dt; T > 0;

so that, if A D A1 C "A0 with jA0ja � 1, one has XHA D X
H
A1
C "XHA0 ,

XHA f .x; �/ D j�j � je
�TXH

A1 .x; �/j C "

Z T

0

XHA0 je
�tXH

A1 .x; �/j dt

D j�j � je
�TXH

A1 .x; �/j CO."eCT j�j/

for some C > 0 uniform with respect to A0 as above, the last term following from the
classical estimate maxj˛jCjˇ j�1 sup.x;�/; j�jD1 @

˛
x@
ˇ

�
je�tX

H
A .x; �/j � CeC jt j and the homo-

geneity in �. Fix T large enough that j�j � je�TX
H
A .x; �/j � �2j�j for all j�j > 1 in Ns .

Once T has been fixed, one can choose 0 < " < e�CT so that XHA f .x; �/ � �j�j in
Ns \ ¹j�j > 1º. Since 1 C f .x; �/ > c�11 j�j in Ns \ ¹j�j > 1º for some c1 > 0, we
obtain (4.5). The same construction applies near E�u . We then extend f to a positively
homogeneous function of degree 1 in ¹j�j � Rº in a smooth fashion (its value far from
E�u [ E

�
s [ E

�
0 will not matter). The proof of [21, Lemma 1.2] (using the fact that

XHA j�.XA1/j D 0 as ŒXA; XA1 � D 0) shows that XHA G � 0 for all j�j � R if R is large
enough and that G is an escape function for all A 2 U WD A1 C ¹"A

0 2 a j jA0ja � 1º

compatible with some cX > 0 and some �E�
0

.

4.2. Parametrix construction

The goal of this section is to construct an operator Q.�/ as in Lemma 3.9 for the com-
plex dXC�, and so thatQ will be bounded on the anisotropic Sobolev spaces HNGƒ. The
construction will be microlocal in the elliptic region and dynamical near the characteristic
set. In Section 4.4 we will provide an alternative construction of a Q.�/ which is purely
dynamical, i.e. which is a function of the operators XAj .

Recall the notation E ˝ ƒ D E ˝ ƒa�. We will also freely identify operators P W
C1.MIE/! C�1.MIE/ with their ƒ-scalar extensions on sections of E ˝ƒ.

Lemma 4.5. Let P 2 ‰0.MIE/ be such that WF.Id � P / does not intersect a conic
neighborhood of E�u ˚ E

�
s , and we make it act as a ƒ-scalar operator. There exists a

holomorphic family of pseudodifferential operators Qell.�/ 2 ‰
�1.MIE ˝ ƒa�C/ for

� 2 a�C such that Qell.�/ W C
1.MIE ˝ƒka�C/! C1.MIE ˝ƒk�1a�C/ for all k and

dXC�Qell.�/CQell.�/dXC� D .Id � P /C S1.�/C S2.�/ (4.6)

with S1.�/ 2 ‰�1.M; E ˝ ƒ/ holomorphic in � satisfying WF.S1.�// � WF.P / \
WF.Id � P / and S2.�/ 2 ‰�1.MIE ˝ƒ/, also holomorphic in �.
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Proof. We will use an arbitrary choice of basis A1; : : : ;A� in a and consider the commut-
ing differential operators XA1 ; : : : ;XA� . Recall that the corresponding divergence operator
ıXC� on C1.MIE/˝ƒa� is defined by

ıXC�.u˝ ei1 ^ � � � ^ ei`/ D
X̀
jD1

.�1/j .XAij C �ij /u˝ ei1 ^ � � � ^beij ^ � � � ^ ei` ;
where �j WD �.Aj / 2 C (here .ej /j is a dual basis to Aj in a�). Thus, using the commu-
tations ŒXAj C �j ;XAk C �k �D 0 and Lemma 3.7 with Yj D XAj C �j , we find that the
operator �XC� WD dXC�ıXC� C ıXC�dXC� is ƒ-scalar and given for each ! 2 ƒa� by
the expression

�XC�.u˝ !/ D �
� �X
kD1

.XAk C �k/
2u
�
˝ !:

This shows that �XC� 2 ‰
2.MI E ˝ ƒ/ with principal symbol given by (see

Example A.2)

�2p .�XC�/.x; �/ D k�E0k
2 IdE˝ƒ with k�E0k

2
WD

�X
kD1

�.XAk /
2:

It is an operator which is microlocally elliptic outside E�u ˚ E
�
s (i.e. ell2.�XC�/ D

T �M n .E�u ˚ E
�
s /). Thus, by Proposition A.7, if P 0 2 ‰0.M; E ˝ƒ/ is ƒ-scalar and

has WF.P 0/ contained in a conic open subset of T �M not intersecting E�u ˚ E
�
s , then

there exists a ƒ-scalar pseudodifferential operator Q�.�/ 2 ‰�2.MIE ˝ƒ/ holomor-
phic in � with WF.Q�.�// �WF.P 0/ such that

�XC�Q�.�/ D P
0
C S 0.�/

with S 0.�/ 2 ‰�1.MIE ˝ ƒ/ holomorphic in � and ƒ-scalar. We now choose P 0 so
that WF.P 0/ \ .E�u ˚ E

�
s / D ; and WF.Id � P 0/ \WF.Id � P / D ;; in other words,

P 0 D Id microlocally on WF.Id � P /. Note that dXC��XC� D �XC�dXC� implies that

�XC�
�
Q�.�/dXC� � dXC�Q�.�/

�
D ŒP 0; dXC��C ŒS

0.�/; dXC��:

Using microlocal ellipticity of �XC� outside E�u ˚E
�
s and the fact that

WF.ŒP 0; dXC��/ DWF.ŒId � P 0; dXC��/ �WF.P 0/ \WF.Id � P 0/;

WF.ŒS 0.�/; dXC��/ D ;;

we deduce from (A.1) that WF.ŒQ�.�/; dXC��/�WF.P 0/\WF.Id�P 0/. In particular,
since P 0 D Id microlocally on WF.Id � P /, this implies that ŒQ�.�/; dXC��.Id � P / 2
‰�1.MI E ˝ ƒ/. Thus, with Qell.�/ WD ıXC�Q�.�/.Id � P / (mapping C1ƒk to
C1ƒk�1) we obtain

dXC�Qell.�/CQell.�/dXC�

D �XC�Q�.�/.Id � P /C ıXC�ŒQ�.�/; dXC��.Id � P /C ıXC�Q�.�/ŒdXC�; P �

D .Id � P /C S1.�/C S2.�/
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with S2.�/ 2 ‰�1.MIE ˝ƒ/ and

S1.�/ WD ıXC�Q�.�/ŒdXC�; P � D �ıXC�Q�.�/ŒdXC�; Id � P � 2 ‰�1.MIE ˝ƒ/

has wavefront set contained in WF.P / \WF.Id � P /.

A second ingredient for the construction of the parametrix will be the following esti-
mates of the essential spectral radius of the propagator on the anisotropic Sobolev spaces.
We recall that if Y is a bounded operator on a Hilbert space H ,

ress.Y / WD max ¹j�j j � 2 �ess.Y /º:

The proof of the following lemma is inspired by the argument in [20] for Anosov diffeo-
morphisms.

Lemma 4.6. Let P 2 ‰0.MIE/ be such that WF.P / is disjoint from E�0 , and choose
an arbitrary constant C 0P > CP WD lim supj�j!1 k�

0
p .P /.x; �/k and some T > 0. Let

A 2 W � a, let �reg be an open cone disjoint from E�u � T
�M, and let �0 � T �M be

a small conic neighborhood of E�0 . By Proposition 4.3, associated to �reg there exists an
escape functionG forA0 WDA and an open conic set �E�

0
� �0 such thatG is compatible

with cX and �E�
0

in the sense of Definition 4.1. If in addition �E�
0
\ˆ

XA
t .WF.P // D ;

for all 0 � t � T , then for all 0 � t � T the operator

e�tXAP W HNG ! HNG

is bounded and can be decomposed as

e�tXAP D RN;G.t/CKN;G.t/

with kRN;G.t/kL.HNG/ �C
0
P e
�cXNtke�tXAkL.L2/ andKN;G.t/ compact on HNG . Both

RN;G.t/; KN;G.t/ depend on N; G. As a consequence, the essential spectral radius of
e�tXAP W HNG ! HNG is bounded by C 0P e

�cXNtke�tXAkL.L2/.

Proof. Let m 2 C1.T �MIR/ be the order function of the escape function G (see Defi-
nition 4.1 (1)). Instead of e�tXAP on HNG we consider the operator OANGe

�tXAP OA�1NG
on L2.MIE/ which is a Fourier integral operator. We write this operator as

OANGe
�tXAP OA�1NG D e

�tXA etXA OANGe
�tXA„ ƒ‚ …

DWBt

P OA�1NG : (4.7)

For the newly introduced operatorBt we apply Egorov’s lemma (Lemma A.8) and deduce

that it is a pseudodifferential operator Bt 2 ‰
N.mıˆ

XA
t /

1� .MIE/ with principal symbol

�
N.mıˆ

XA
t /

p .Bt / D e
N.Gıˆ

XA
t / mod SN.mıˆ

XA
t /�1C

1� :

Consequently, BtP OA�1NG 2 ‰
N.mıˆ

XA
t �m/

1� and by Definition 4.1 (2), m ı ˆXAt .x; �/ �

m.x; �/ � 0 for j�j large enough. Thus BtP OA�1NG 2 ‰
0
1�.MIE/ is bounded on L2, and
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we can apply Proposition A.9 to this operator. We calculate its principal symbol:

�0p .BtP
OA�1NG/ D e

N.Gıˆ
XA
t �G/�0p .P /:

Now, using Definition 4.1 (3), our assumption that �E�
0
\ ˆ

XA
t .WF.P // D ; for 0 �

t � T ensures that, for any .x; �/ 2WF.P / and j�j sufficiently large, @t .G ıˆ
XA
t /��cX

for all 0 � t � T . Thus

lim sup
R!1

sup
.x;�/2WF.P /; j�j>R

keN.Gıˆ
XA
t .x;�/�G.x;�//�0p .P /.x; �/k � CP e

�NcX t :

By closedness of �E�
0

and WF.P / this estimate can also be extended to a small conical
neighborhood of WF.P /. On the complement of this neighborhood, by the definition of
the wavefront set, we deduce lim supj�j!1 k�

0
p .P /.x; �/k D 0. We have seen above that

eN.Gıˆ
XA
t �G/ 2 S01�. In particular, this factor is uniformly bounded. Putting everything

together we get
lim sup
j�j!1

k�0p .BtP
OA�1NG/.x; �/k � CP e

�NcX t :

Using Proposition A.9 we can write BtP OA
�1
NG D

zRN .t/ C zKN .t/ with zKN .t/ 2

‰�1.MIE/ and k zRN .t/kL.L2/ � C
0
P e
�NcX t . Now, by (4.7), our operator of interest

can be written as

OANGe
�tXAP OA�1NG D e

�tXA. zRN .t/C zKN .t//;

and we get the desired property by setting RN;G.t/ WD e�tXA zRN .t/ and KN;G.t/ WD
e�tXA zKN .t/.

Recall that CL2.A/ was defined in (4.1). We can now turn to the construction of our
full parametrix for the Taylor complex.

Proposition 4.7. For any A0 2W , any open cone �0 � T �M containingE�0 and satisfy-
ing �0 \ .E�u ˚E

�
s /D ¹0º, there are families of operatorsQ.�/;F.�/ WC1.MIE ˝ƒ/

! C�1.MIE ˝ƒ/ depending holomorphically on � 2 a�C such that

Q.�/dXC� C dXC�Q.�/ D F.�/:

Furthermore, for any escape function G for A0 compatible with cX > 0 and �E�
0
� �0,

and any N > 0 and ı > 0, the following properties hold:

(1) Q.�/ W HNGƒ
j ! HNGƒ

j�1 is bounded for any � 2 a�C and 0 � j � �.

(2) F.�/ can be decomposed as F.�/ D IdC RN;G.�/CKN;G.�/, where KN;G.�/ is
a compact operator on HNGƒ and RN;G.�/ W HNGƒ! HNGƒ is bounded with
kRN;G.�/kL.HNG/ < 1=2, for

� 2 FNG;A0;ı WD ¹� 2 a�C j Re.�.A0// > �NcX C CL2.A0/C ıº � a�C:

Both operators RN;G.�/;KN;G.�/ depend on N;G, while Q.�/ and F.�/ do not.



Y. Guedes Bonthonneau, C. Guillarmou, J. Hilgert, T. Weich 32

Remark 4.8. (1) If there is a smooth volume density � preserved by the Anosov action
(e.g. the Haar measure for Weyl chamber flows), and if we consider the scalar case
XA D XA, then etXA is unitary on L2.M; �/ and the constant CL2.A/ vanishes.

(2) To prove that the Ruelle–Taylor spectrum is independent of the choice of HNG

it will be essential that the operators Q.�/; F.�/ only depend on the choice of A0 and
�E�

0
but not on the choice of the anisotropic Sobolev space HNG as long as the escape

function G satisfies the required compatibility conditions.

Proof of Proposition 4.7. From the definition of CL2.A/, we deduce that there exists
T0 > 0 such that ke�TXA0 k � eT.CL2 .A0/Cı=2/ for T � T0; we fix T so that both T > T0
and T � 2 log.3/=ı. For � 2 a�C we define the operators XA0.�/ WD XA0 C �.A0/ and let

Q0T .�/ WD

Z T

0

e�tXA0 .�/ dt W C1.MIE/! C1.MIE/:

We have the relations

XA0.�/Q
0
T .�/ D Q

0
T .�/XA0.�/ D 1 � e

�TXA0 .�/;

ŒXA;Q0T .�/� D 0 for all A 2 a:
(4.8)

Now we extendQ0T .�/ to an operator C1.MIE/˝ƒ`a�! C1.MIE/˝ƒ`�1a� for
each ` as follows: define the linear map QT .�/ W a! L.C1.MIE// by QT .�/A0 D

Q0T .�/ and Q0T .�/A D 0 if hA;A0i D 0 (recall h�; �i is a fixed scalar product on a), and
let

QT .�/.u˝ !/ WD �ıQT .�/.u˝ !/ D .Q
0
T .�/u/˝ �A0!

for u 2 C1.MIE/ and ! 2 ƒ`a�. Using the relations (4.8) and Lemma 3.7 we get�
QT .�/dXC� C dXC�QT .�/

�
.u˝ !/ D ..1 � e�TXA0 .�//u/˝ !: (4.9)

We observe that by the commutativity of the Anosov action ŒXA; e�TXA0 .�/� D 0, and
therefore on C1.MIE ˝ƒ/ we have

ŒdXC�; e
�TXA0 .�/� D 0: (4.10)

Next, we use the microlocal parametrix in the elliptic region from Lemma 4.5 with a care-
fully chosen microlocal cutoff function. By our assumption that �0 \ .E�u ˚ E

�
s / D ¹0º

and the fact that E�u ˚ E
�
s is a ˆ

XA0
t -invariant subset, there exists a conic neighborhood

�1 � T
�M of E�u ˚ E

�
s such that ˆ

XA0
t .�1/ \ �0 D ; of 0 � t � T . Let us choose a

second, smaller conical neighborhood E�u ˚ E
�
s � �2 b �1. Now we fix a microlocal

cutoff P D Op.p/ 2 ‰0.M;C/ which is microsupported in �1 (i.e. WF.P / � �1) and
microlocally equal to 1 on �2 (i.e. WF.Id � P / \ �2 D ;) and which furthermore has
globally bounded symbol, sup.x;�/ jp.x; �/j � 1. We apply Lemma 4.5 with this choice
of P and multiply (4.6) on the left with e�TXA0 .�/. Using (4.10), we get

dXC�e
�TXA0 .�/Qell.�/C e

�TXA0 .�/Qell.�/dXC�

D e�TXA0 .�/
�
Id � P C S1.�/C S2.�/

�
: (4.11)
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We defineQ.�/ WDQT .�/C e�TXA0 .�/Qell.�/ and obtain, by adding up (4.9) and (4.11),

dXC�Q.�/CQ.�/dXC�DF.�/ with F.�/ WD Id� e�TXA0 .�/
�
P �S1.�/�S2.�/

�
:

Let us now show thatQ.�/ and F.�/ have the required properties. By precisely the same
argument as in Lemma 4.6 (using XHA0m.x; �/ � 0 for j�j large enough) we deduce that
e�tXA0 is bounded on HNG uniformly for t 2 Œ0; T � for any escape functionG associated
to A0 compatible with cX > 0 and �E�

0
� �0. Consequently, QT .�/ and e�TXA0 .�/ are

bounded operators on HNGƒ. As OANGQell.�/ OA
�1
NG 2‰

�2.MIE˝ƒ/, this is a bounded
operator on L2, thus Qell.�/ is bounded on HNGƒ as well. Putting everything together
we deduce that Q.�/ is bounded on HNGƒ for any � 2 a�C . As QT .�/ and Qell.�/

decrease the order in ƒa� by 1, Q.�/ has this property as well.
Let us deal with F.�/: by our choice of �1 we can apply Lemma 4.6 to e�TXA0 .�/P D

e�T�.A0/e�TXA0P and deduce that e�TXA0 .�/P D R0N .�/ C K
0
N .�/ for some R0N .�/

bounded on HNG and K 0N .�/ compact on that space, with

kR0N .�/kL.HNG/ � .1C "/e
T.�NcX�Re.�.A0//CCL2 .A0/Cı=2/

for some " > 0. Consequently, by our choice of T > 2 log.3/=ı and for � 2 FNG;A0;ı we
get kR0N .�/kL.HNG/ � .1C "/=3. Note that S1.�/C S2.�/ 2 ‰�1.MIE ˝ƒ/ is com-
pact on HNG (this can be easily checked by conjugating it with OANG to obtain an operator
in‰�1.MIE ˝ƒ/, thus compact on L2). This completes the proof of Proposition 4.7 by
setting RN .�/ WD �R0N .�/ and KN .�/ WD �K 0N .�/C e

�TXA0 .�/.S1.�/C S2.�//.

As a consequence we get the following.

Proposition 4.9. For A0 2W there exists an escape function G such that for any N > 0

the operator dXC� on HNGƒ defines a Fredholm complex for � 2 FNG;A0;0, i.e.

� ess
T;HNG

.�X/ \ FNG;A0;0 D ;:

Proof. By Proposition 4.3, there is an escape function G that allows us to apply Proposi-
tion 4.7. Then we can use Lemma 3.9 applied to XC � to deduce Fredholmness.

4.3. Ruelle–Taylor resonances are intrinsic

So far we have shown that the admissible lift of an Anosov action X acting as differential
operators on HNG has a Fredholm Taylor spectrum on FNG;A WD FNG;A;0 � a�C , where
A 2 W and G is an escape function associated to A. Further, we have seen that FNG;A
can be made arbitrarily large by letting N !1. However, it is not yet clear whether this
Fredholm spectrum is intrinsic to X or whether it depends on the choice of the anisotropic
Sobolev spaces HNG , i.e. in particular on the choices of N or G.

Let us denote by C�1
E�u

.MIE/ the space of distributions in C�1.MIE/ with wave-
front set contained in E�u . Equipped with a suitable topology, this space becomes a topo-
logical vector space [36, Chapter 8], and the lift X acts continuously on C�1

E�u
.MIE/.
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In particular, it makes sense to consider the complex generated by the operator dXC� on
C�1
E�u

.MIE ˝ƒ/. The main result of this section is the following.

Proposition 4.10. Let A0 2W and N � 0 and let G be an escape function for A0. Then
for any � 2 FNG;A0 one has vector space isomorphisms

kerHNGƒj
dXC�=ranHNGƒj

dXC� Š kerC�1
E�u

ƒj dXC�=ranC�1
E�u

ƒj dXC�:

Using this result, we see that the Ruelle–Taylor spectrum is independent of A0 and of
the anisotropic space HNGƒ in the region FNG;A0 of � 2 a�C where the Taylor complex
dXC� is Fredholm on HNGƒ. We can then define the notion of Ruelle–Taylor resonance
as follows:

Definition 4.11. We define the Ruelle–Taylor resonances of X to be the set

ResX WD ¹� 2 a�C j 9j; kerC�1
E�u

ƒj dXC�=ranC�1
E�u

ƒj dXC� 6D 0º;

and the Ruelle–Taylor resonant cohomology space of degree j of � 2 ResX to be

ResX;ƒj .�/ WD kerC�1
E�u

ƒj dXC�=ranC�1
E�u

ƒj dXC�:

Another consequence of Proposition 4.10 is the following.

Corollary 4.12 (Location of Ruelle–Taylor resonances). One has

ResX �
\
A2W

¹� 2 a�C j Re.�.A// � CL2.A/º:

Proof. Assume that there exists an A 2W such that Re.�.A// > CL2.A/. Then for some
ı > 0, � 2 F0G;A;ı and consequently � 2 ResX iff kerL2ƒ dXC�=ranL2ƒ dXC� ¤ 0. How-
ever, by (4.9) there is a bounded operator QT .�/ W L2.MIE ˝ ƒ/! L2.MIE ˝ ƒ/

such that
dXC�QT .�/CQT .�/dXC� D IdC e�TXAe�T�.A/:

Since Re.�.A// > CL2.A/, the right hand side is invertible on L2.MIE ˝ƒ/ provided
T > 0 is large enough. As furthermore IdC e�TXAe�T�.A/ and its inverse commute with
dXC�, we conclude that kerL2ƒ dXC�=ranL2ƒ dXC� D 0.

The strategy to prove Proposition 4.10 is to show that in each cohomology class
in kerHNGƒ dXC�=ranHNGƒ dXC� one can find a representative that lies already in
kerC�1

E�u

dXC�. To this end we will construct for fixed � a projector …0.�/ of finite rank

such that we can find in each cohomology class a representative in the range of …0.�/.
The fact that the range of …0.�/ is independent of the anisotropic Sobolev spaces and
contained in C�1

E�u
then follows very similarly to the corresponding characterization of

Anosov flows [21, Theorem 1.7] by the flexibility in the choice of the escape function.

Proof of Proposition 4.10. Given A0; N; G and � 2 FNG;A0 , let us first fix ı > 0 such
that � 2 FNG;A0;ı and an open cone �0 � T �M containing �E�

0
(the conic set in Propo-
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sition 4.3) and such that �0 \ .E�s ˚E
�
u/D ¹0º. Then Proposition 4.7 provides operators

Q.�/;F.�/ W C�1.MIE ˝ƒ/! C�1.MIE ˝ƒ/ which only depend on ı; �;A0; �0
and satisfy

dXC�Q.�/CQ.�/dXC� D F.�/: (4.12)

We can thus apply Lemma 3.9, and deduce that if…0.�/ is the spectral projector of F.�/
on its kernel, then

…0.�/ W kerHNGƒdXC�=ranHNGƒdXC�! kerran…0.�/dXC�=ranran…0.�/dXC� (4.13)

is an isomorphism. Here, ran…0.�/ D…0.�/HNG . But since C1 is dense in HNG , and
…0.�/ has finite rank, this range is equal to …0.�/C

1.MIE ˝ ƒ/. We now need the
following lemma.

Lemma 4.13. The projector…0.�/ maps C1.MIE ˝ƒ/ into C�1
E�u

.MIE ˝ƒ/. Addi-
tionally, it has a continuous extension to C�1

E�u
.MIE ˝ƒ/.

Proof. Recall that …0.�/ W HNGƒ! HNGƒ has been defined as the spectral projector
at z D 0 of F.�/ WHNGƒ!HNGƒ, it has finite rank. Since F.�/ and its Fredholmness
do not depend on the choice of N , G as long as � 2 FNG;A0 , neither does its spectral
projector at 0. The image of …0.�/ is thus contained in the intersection of the HN 0G0ƒ

such that � 2 FN 0G0;A0 .
Let us show that this intersection is contained in C�1

E�u
.MIE ˝ ƒ/. We thus take u

in all the HN 0G0 such that � 2 FN 0G0;A0 . By Proposition 4.3 for an arbitrary cone � 0reg
disjoint from E�u , there exists an escape function G0 for A0 compatible with c0X and
� 0
E�
0

� �0 such that microlocally on � 0reg, HN 0G0 is contained in the standard Sobolev

spaceHN 0=2.MIE/. In particular, taking N 0 arbitrarily large, we have � 2 FN 0G0;A0 and
WF.u/ \ � 0reg D ;. Since � 0reg was arbitrary, WF.u/ � E�u .

To prove that …0.�/ has a continuous extension to C�1
E�u

.MI E ˝ ƒ/, it suffices
to observe that C�1

E�u
.MIE ˝ ƒ/ is also contained in the union of all the HN 0G0 such

that � 2 FN 0G0;A0 . This follows from Definition 4.1 (1), since we know that in a conic
neighborhood around E�u we have m.x; �/ � �1=4. As a consequence, …0.�/ is a linear
operator from C�1

E�u
.MIE ˝ ƒ/ to C�1.M; E ˝ ƒ/. It is continuous as it has finite

rank.

To finish the proof of Proposition 4.10, it suffices to apply a variation of the sand-
wiching trick presented in the proof of Lemma 3.12. Indeed, since …0.�/ is a bounded
projector on C�1

E�u
.MIE ˝ƒ/, commuting with dXC�, the map u 7! …0.�/u descends

to a surjective map

kerC�1
E�u

ƒ dXC�=ranC�1
E�u

ƒ dXC� ! kerran…0.�/ dXC�=ranran…0.�/ dXC�: (4.14)

We need to show the injectivity of this map. This will follow from the fact that C�1
E�u

.MI

E˝ƒ/ is contained in the union of the HN 0G0ƒ such that � 2FN 0G0;A0 . We consider u 2
C�1
E�u

.MIE ˝ƒ/ such that dXC�uD 0, and Œ…0.�/u�D 0, i.e.…0.�/uD dXC�…0.�/v
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for some v 2C�1
E�u

.MIE ˝ƒ/. Since u belongs to some HN 0G0ƒ, we then write QF .�/D
F.�/C…0.�/, and observe, just as in (3.13), that

QF .�/�1Q.�/dXC� C dXC� QF .�/
�1Q.�/ D Id �…0.�/;

so that
u D dXC�

�
QF .�/�1Q.�/uC…0.�/v

�
:

It remains to check that QF �1.�/Q.�/u 2 C�1
E�u

.MIE ˝ƒ/. But, sinceQ.�/ and QF �1.�/
are bounded on each HN 0G0ƒ such that � 2 FN 0G0;A0 , this is an element of each such
HN 0G0ƒ, so it is contained in the intersection thereof. We have seen in the proof of
Lemma 4.13 that this intersection is contained in C�1

E�u
.MIE ˝ƒ/.

Finally, the operator F.�/ W HNGƒ ! HNGƒ preserves the order in the Koszul
complex, i.e. F.�/ W HNGƒ

j ! HNGƒ
j , and so do all the subsequent constructions

such as …0.�/ as well. The isomorphism …0.�/ can thus be restricted to the individ-
ual cohomology kerC�1

E�u
ƒj dXC�=ranC�1

E�u
ƒj dXC�, and we have completed the proof of

Proposition 4.10.

4.4. Discrete Ruelle–Taylor spectrum

In this section we show that the Ruelle–Taylor resonance spectrum of the admissible lift
X W a! Diff1.MIE/ of the Anosov action, forE a Riemannian vector bundle, is discrete
in a�C . Our goal is to use Lemma 3.12. In contrast to just obtaining the Fredholm property
of the Taylor complex, this section requires using a parametrix Q.�/ in Proposition 4.7
that is more intrinsically related to the X action, in particular we shall constructQ.�/ as a
function of .X1; : : : ; X�/ D .XA1 ; : : : ;XA� / if Aj 2 W is an orthonormal basis for some
scalar product h�; �i on a. This requires a slightly better escape function of Lemma 4.4 that
provides decay not only in a fixed direction A1 2 W , but also for all other elements in a
small neighborhood U of A1.

Let us now fix an orthonormal basis A1; : : : ; A� 2 U � W of a in the positive Weyl
chamber, and denote the associated scalar product in a by h�; �i. In order to be able to use
Lemma 3.12, we will prove the following.

Lemma 4.14. For each fixed � 2 FNG;A0;ı there is a Lie algebra morphism Q.�/ W
a ! L.HNG/ \ L.C1.MI E// commuting with X.�/ WD X C � in the sense that
ŒXAj .�/;QAk .�/� D 0 for all j; k, such that

dXC�ıQ.�/ C ıQ.�/dXC� D IdCR.�/CK.�/

with R.�/; K.�/ 2 L.HNGƒ/, kR.�/kL.HNG/ < 1=2 and K.�/ compact on HNGƒ.
Moreover, R.�/;K.�/ are ƒ-scalar.

Proof. Let Tj > 0 for j D 1; : : : ; �, and consider �j 2 C1c .Œ0;1ŒI Œ0; 1�/ non-increasing
with �j D 1 on Œ0; Tj � and supp�j � Œ0; Tj C 1�. Then we set

Q0j .�/ WD

Z 1
0

e
�tjXAj .�/�j .tj / dtj
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and we make it act on C1.MIE/˝ƒa� by zQj .�/ W u˝w 7! .Q0j .�/u/˝ �Aj!. As in
Proposition 4.7, we compute

dX.�/ zQj .�/C zQj .�/dX.�/ D IdCRj .�/;

Rj .�/.u˝ !/ WD

�Z 1
0

e�tjXj .�/u�0j .tj / dtj

�
˝ w;

nd note that Rj .�/ D R0j .�/˝ Id is scalar. We thus have

dX.�/Q.�/CQ.�/dX.�/ D F.�/; F.�/ WD Id � .�1/�
�Y

jD1

Rj .�/; (4.15)

with Q.�/ WD
P�
jD1.�1/

j�1 zQj .�/
Qj�1

kD1
Rk.�/. First we observe that Q.�/ D ıQ.�/

is the divergence associated to the Lie algebra morphism Q.�/ W a ! L.C1.MIE//

defined by

QAj .�/ D .�1/
jQ0j .�/

j�1Y
kD1

Rk.�/:

We notice that QAj .�/ commutes with XAi .�/ for all i; j . As in the proof of Proposi-
tion 4.7, Q.�/maps to L.HNG/ andQ.�/ is bounded on HNGƒ; here we use Lemma 4.4
as it is important that the order functionm satisfies XHAjm � 0 for j�j large enough and all
j D 1; : : : ; �. We take P microsupported in a neighborhood of E�u ˚ E

�
s and WF.P / in

a sufficiently close conical neighborhood of E�u ˚E
�
s , as in the proof of Proposition 4.7,

and follow the arguments given there, which were based on Lemma 4.6: if Tj WD T is
chosen large enough (as in the proof of Proposition 4.7), then

�Y
kD1

Rk.�/P D

Z
ŒT;TC1��

e
�
P�
jD1 tjXAj .�/P

�Y
jD1

�0j .tj / dt

D

Z
ŒT;TC1��

.R.t; �/CK.t; �//

�Y
jD1

�0j .tj / dt;

where kR.t; �/kL.HNG/
Q
j k�

0
j kL1 � 1=2 and K.t; �/ is compact on HNG for all

t 2 ŒT; T C 1�� (both depend on N; G). This shows that the operator .F.�/ � Id/P
decomposes as .F.�/� Id/P D R.�/CK1.�/ with kR.�/kL.HNGƒ/ < 1=2 andK1.�/
compact on HNGƒ. Next, we claim that using the fact that P 2 ‰0.M/ is scalar with
WF.Id�P / not intersecting a conic neighborhood ofE�u ˚E

�
s , we can see thatK2.�/ WD

.F.�/� Id/.Id� P / is a compact operator on HNGƒ. Indeed, let us first take a microlo-
cal partition of Id�P such that .Id�P /�

P�
kD1Pk 2‰

�1.M/with Pk 2‰0.M/ and
WF.Pk/ not intersecting a conic neighborhood of the characteristic set ¹.x; �/ 2 T �M j
�.XAk / D 0º. Let us show that Rk.�/Pk is compact on HNG . First,

Rk.�/PkXAk .�/ D
Z TC1

T

e�tkXAk .�/Pk�
00
k.tk/ dtk CRk.�/ŒPk ;XAk � 2 L.HNG/;

(4.16)
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where we use the fact that ŒPk ;XAk � 2‰
0.M/ and e�tkXAk .�/ is bounded on HNG . Since

Xk.�/ is elliptic near WF.Pk/, we can construct a parametrix Zk.�/ 2 ‰�1.M/ so that
XAk .�/Zk.�/ � P

0
k
2 ‰�1.M/ for some P 0

k
2 ‰0.M/ with P 0

k
Pk � Pk 2 ‰

�1.M/.
We thus obtain

Rk.�/PkXAk .�/Zk.�/ �Rk.�/Pk 2 ‰
�1.M/;

but Zk.�/ being compact on HNG , we find that Rk.�/Pk is compact on HNG using
(4.16). Next, we write� �Y

kD1

Rk.�/
�
.Id � P / �

�X
jD1

� �Y
kD1

Rk.�/
�
Pj 2 ‰

�1.M/:

This operator is compact since all the Rk.�/ are bounded on HNG and commute with
each other and Rk.�/Pk is compact. Putting everything together we deduce that F.�/
has the desired properties by setting K.�/ WD K1.�/CK2.�/.

Remark. We notice that in the proof above, it is sufficient to take only one of the Tj
to be large while the others can be small, as this is sufficient to get the norm estimate
kR.�/kL.HNG/ < 1=2.

As a corollary, using Lemmas 3.12 and 3.10, we deduce the following.

Proposition 4.15. For an admissible lift of an Anosov action X, the Ruelle–Taylor reso-
nance spectrum is a discrete subset of a�C . Moreover, � 2 FNG;A0 \ �T;HNG .�X/ if and
only if there is u 2 HNG such that

.XC �/u D 0:

This completes the proof of Theorem 4. In the scalar case (i.e. when E is the trivial
bundle) we will show in Corollary 4.16 below that part (3) of Theorem 4 can be sharpened
using the dynamical parametrix Q.�/ in Lemma 4.14 (the same argument also works for
admissible lifts under the condition ke�tXAf kL.L1/ � C for all t 2 R).

Corollary 4.16. Let X be an Anosov action. Then

ResX �
\
A2W

¹� 2 a�C j Re.�.A// � 0º:

Proof. Let A 2 W and assume that � 2 a�C satisfies Re.�.A// > 0. We will show that �
cannot be a Ruelle–Taylor resonance. We use the parametrix Q.�/ of Lemma 4.14 with
A1 WD A and .Aj /j 2 W� forming a basis of a with Aj in an arbitrarily small neighbor-
hood of A1 so that Re.�.Aj // > 0 for all j . We see that (4.15) holds with F.�/ having
discrete spectrum near z D 0. Let …0.�/ be the spectral projector of the Fredholm oper-
ator F.�/ at z D 0, which can be written

…0.�/ D
1

2�i

Z
jzjD"

.zId � F.�//�1 dz (4.17)
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for some small enough " > 0. We notice that for f 2 L1.M/,

k.Id � F.�//f kL1 �
Z
.RC/�

ke
�
P�
jD1 tjXAj .�/f kL1

�Y
jD1

.��0j .tj // dt1 : : : dt�

� kf kL1e
�
P�
jD1 Tj�.Aj /

Z
.RC/�

�Y
jD1

.��0j .tj // dt1 : : : dt�

D kf kL1e
�
P�
jD1 Tj�.Aj /:

This shows that by choosing the Tj > 0 (introduced in Lemma 4.14) large enough,
k.Id � F.�//kL.L1/ < 1=2. In particular, F.�/ is invertible on L1 and therefore
…0.�/ D 0 since the expression (4.17) holds also as a map C1.M/! C�1.M/. This
ends the proof.

Let us end the section with a statement about joint Jordan blocks for an admissible
lift X. Given ˛ 2 N� we define X˛.�/ WD

Q�
jD1.XAj C �j / j̨ .

Proposition 4.17. For any Ruelle–Taylor resonance � 2 ResX there is J 2 N� which is
the minimal integer such that, whenever for some u 2 C�1

E�u
.M/ and k 2 N� one has

Xˇ .�/u D 0 for all jˇj D k then X˛.�/u D 0 for all j˛j D J . Moreover, the space of
generalized joint resonant states is the finite-dimensional space given by

¹u 2 C�1
E�u

.M/ j X˛.�/u D 0 for all ˛ with j˛j D J º � ran…0.�/; (4.18)

where …0.�/ is the spectral projector of F.�/ at z D 0, defined in (4.17).

Proof. Let HNG be an anisotropic Sobolev space such that � 2 FNG;A0 . We construct
the parametrix from (4.15),

Q.�/dXC� C dXC�Q.�/ D Id �R.�/˝ Id;

for some appropriate choice of basis A1; : : : ; Aj 2 W � a, and writing  j WD ��0j 2
C1c ..0;1//, Xj WD XAj and �j WD �.Aj / we set

R.�/ D

�Y
jD1

Z
e�tj .XjC�j / j .tj / dtj : (4.19)

We denote by…0.�/ WHNG!HNG the spectral projector on the generalized eigenspace
of R.�/ for the eigenvalue 1. Note that it commutes with Xj for all j , since R.�/ does.

We now show by induction that for any u 2C�1
E�u

.M/with X˛.�/uD 0 for all j˛j D k
we have u2 ran…0.�/�HNG . The base case is easily deduced from (4.19): for u2HNG

with .Xj C �j /u D 0 we deduce

R.�/u D

�Y
jD1

Z
 j .tj /e

�tj .XjC�j /udtj D u;
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thus u 2 ran…0.�/. Next we show that if the property is satisfied at step k then it also is
at step k C 1: if for u 2 C�1

E�u
.M/, X˛.�/uD 0 for j˛j D k C 1 then for jˇj D k we have

XAj .�/.X
ˇ .�/u/D 0 for j D 1; : : : ; �. Thus, by the the same argument as above we know

Xˇ .�/u 2 ran…0.�/. As Œ…0.�/;Xˇ .�/� D 0 we conclude Xˇ .�/.…0.�/u � u/ D 0.
Consequently, by induction hypothesis, …0.�/u � u 2 ran …0.�/ and the claim fol-
lows. The statement of the proposition follows because ran…0.�/ is a finite-dimensional
XAi .�/-invariant subspace.

We also notice that the non-triviality of the space (4.18) (with J minimal) implies that
� is a Ruelle–Taylor resonance, since for u in this space, there is an ˛ with j˛j D J � 1
such that v WD X˛.�/u 6D 0 satisfies v 2 ResX;ƒ0.�/. We also note that equality in (4.18)
does not hold in general. One rather has the following result.

Proposition 4.18. If …0.�/ is the spectral projector of R.�/ from (4.19) then

ran…0.�/ D
M

�2ResX;
Q
j
O j .�i.�j��j //D1

¹u 2 C�1
E�u

.M/ j X˛.�/u D 0 for j˛j D J º;

where J 2 N is the integer from Proposition 4.17.

Proof. First note that ran…0.�/ is finite-dimensional and Xj -invariant, and thus we can
decompose the space into joint generalized eigenstates. If � is such a joint eigenvalue then
Proposition 4.15 implies that � is also a Ruelle–Taylor resonance. Now let u 2 ran…0.�/

be a joint eigenstate of X with eigenvalue �. Then by (4.19),

R.�/u D

�Y
jD1

Z
e�tj .�j��j / j .tj / dtj D

�Y
jD1

O j .�i.�j � �j //u:

Thus u is an eigenstate of R.�/; but as u is also required to be in the generalized
eigenspace of eigenvalue 1, we deduce that

Q
j
O j .�i.�j � �j // D 1. This shows that

the left hand side of the formula in the statement is contained in the right hand side.
For the converse inclusion we note that any joint resonant state uwith .Xj C �j /uD 0

whose joint resonance fulfills
Q
j
O j .�i.�j � �j // D 1 is an eigenstate of R.�/ with

eigenvalue 1 and thus is contained in ran…0.�/. For the generalized eigenstates of higher
order we argue as above in Proposition 4.18 by induction.

5. The leading resonance spectrum

In this section we study the leading resonance spectrum, i.e. those resonances with van-
ishing real part, and show that they give rise to particular measures and are related to
mixing properties of the Anosov action. In this section the bundle E will be trivial.

5.1. Imaginary Ruelle–Taylor resonances in the non-volume-preserving case

In this section, we investigate the purely imaginary Ruelle–Taylor resonances and in par-
ticular the resonance at 0 for the action on functions. We assume that the Anosov actionX
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does not necessarily preserve a smooth invariant measure. We choose a basis A1; : : : ; A�
of a, with dual basis .ej /j in a�, we set Xj WD XAj , and we use dvg , the smooth Rie-
mannian probability measure on M. Let us choose � 2 a� and fix non-negative functions
�j 2 C

1
c .R

C/, equal to 1 on a large interval Œ0; Tj �, with �0j � 0, and use the parametrix
Q.i�/ in the divergence form from Lemma 4.14, so that by (4.15),

Q.i�/dXCi� C dXCi�Q.i�/ D Id �R.i�/˝ Id;

and writing  j WD ��0j 2 C
1
c ..0;1// and �j WD �.Aj / we get

R.i�/ D

�Y
jD1

Z
e�tj .XjCi�j / j .tj / dtj : (5.1)

We proved thatR.i�/ has essential spectral radius< 1 in the anisotropic space HNG , and
the resolvent .R.i�/� z/�1 is meromorphic outside jzj < 1� " for some ", and the poles
in jzj > 1 � " are the eigenvalues of R.i�/. Moreover, for f 2 L1,

kR.i�/f kL1 � kf kL1

�Y
jD1

Z
R
 j .tj / dtj D kf kL1 : (5.2)

Since R.i�/ is bounded, for jzj large enough one has, on HNG ,

.z �R.i�//�1 D z�1
X
k�0

z�kR.i�/k ; (5.3)

but the L1 estimate (5.2) shows that this series converges in L.L1/ and is analytic for
jzj > 1. Therefore, using the density of C1.M/ in HNG , we deduce that R.i�/ has no
eigenvalues in jzj> 1. We will use the notation hu;vi for the distributional pairing associ-
ated to the Riemannian measure dvg fixed on M, which also extends to a complex bilinear
pairing HNG �H�NG ! C; in particular if u; v 2 L2.M/, this is simply

R
M
uv dvg .

Accordingly, we also write hu; viL2 for the pairing
R

M
u Nv dvg and its sesquilinear exten-

sion to the pairing HNG �H�NG ! C.
The next three lemmas (Lemmas 5.1–5.3) characterize the spectral projector of R.i�/

onto the possible eigenvalue 1. Keep in mind that by Lemma 3.9 this spectral projector is
closely related to the Ruelle–Taylor resonant states. Finally, in Proposition 5.4 we will use
the knowledge about this spectral projector to characterize the leading resonance spectrum
and to define physical measures.

Lemma 5.1. Let � 2 a�. If � is an eigenvalue of R.i�/ with modulus 1, it has no associ-
ated Jordan block, i.e. .z �R.i�//�1 has at most a pole of order 1 at z D � .

Proof. We take u 2 HNG such that .R.i�/ � z/�1u has a pole of order > 1 at z D � .
By density of C1 in HNG , we can always assume that u is smooth. Denoting by  .k/ D
 � � � � �  (k-th convolution power), we can write

R.i�/k D

�Y
jD1

Z
R
e�tjXj .i�/ 

.k/
j .tj / dtj :
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Note that R.0/1 D 1. If v is another smooth function, then

jhR.i�/ku; vij D

ˇ̌̌̌Z
R�

�Y
jD1

 
.k/
j .tj /e

�i
P
tj�j

�Z
M

ve�
P
tjXj udvg

�
dt1 : : : dt�

ˇ̌̌̌
� jvjL1 jujL1R.0/

k1 D jvjL1 jujL1 :

We deduce that for jzj > 1,

jhz.z �R.i�//�1u; vij �

1X
kD0

jzj�kjvjL1 jujL1 D jujL1 jvjL1.1 � jzj
�1/�1:

This is in contradiction with the assumption that � is a pole of order > 1.

Then we can prove the following.

Lemma 5.2. For �D
P�
jD1 �j ej 2 a�,R.i�/ has an eigenvalue of modulus 1 on HNG if

and only if i� is a Ruelle–Taylor resonance. In that case, the only eigenvalue of modulus
1 of R.i�/ in HNG is � D 1 and the eigenfunctions of R.i�/ at � D 1 are the joint Ruelle
resonant states of X at �. Moreover, if ….i�/ is the spectral projector of R.i�/ at � D 1,
one has, as bounded operators in HNG ,

lim
k!1

R.i�/k D ….i�/: (5.4)

Proof. First, if i� is a Ruelle–Taylor resonance, Proposition 4.17 implies thatR.i�/ has 1
as an eigenvalue and the resonant states are included in the range of the spectral projector
of R.i�/ at 1.

Conversely, let ….i�/ be the spectral projector of R.i�/ at � 2 S1; it commutes with
the Xj , so we can use Lemma 3.8 to decompose ran….i�/ in terms of joint eigenspaces
forXj . Let u be a joint eigenfunction ofXj in ran….i�/, withXjuD �ju. By Lemma 5.1,
R.i�/ has no Jordan block at � , and thus u 2 HNG is a non-zero eigenfunction of R.i�/
with eigenvalue � 2 S1. Then

�u D R.i�/u D u

Z
R�

�Y
jD1

e�tj .�jCi�j / j .tj / dtj D u

�Y
jD1

O j .�j � i�j /:

For � to have modulus 1, we need
Q�
jD1 j

O j .�j � i�j /j D 1. But since
R

R j D 1 and the
�j ’s have non-negative real part,

j O j .�j � i�j /j �

Z
R
e�tRe.�j / j .t/ dt � 1;

so Re.�j / D 0 and j O j .�j � i�j /j D 1 for all j . But then there is ˛ 2 R such that 1 DR
R  j .t/ D

R
R cos.t.�j C Im.�j //C ˛/ j .t/ dt and thus cos.t.�j C Im.�j //C ˛/ D 1

on supp j since  j � 0. This implies that �j D �i�j and ˛ 2 2�Z. Then we get � D 1.
In particular,

R.i�/ D ….i�/CK.i�/
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withK.i�/….i�/D….i�/K.i�/D 0, andK.i�/ having spectral radius r < 1 on HNG ,
so for all " > 0, there is n0 large such that for all n � n0,

kK.i�/nkL.HNG/ � .r C "/
n:

We can choose r C " < 1, which implies that

8n � n0; R.i�/n D ….i�/CK.i�/n ! ….i�/ in L.HNG/; (5.5)

proving (5.4).
To conclude the proof, we want to prove that .Xj C i�j /….i�/ D 0 for all j D

1; : : : ; �. By the discussion above, 0 is the only joint eigenvalue of .X1 C i�1; : : : ;
X� C i��/ on ran….i�/, i.e. there is J > 0 such that

Q�
jD1.Xj C i�j /

j̨….i�/ D 0

for all multi-indices ˛ 2 N� with length j˛j D J . We already know that R has no Jordan
block, and we want to deduce that this is also true for the Xj ’s. By Proposition 4.17, we
get

ran….i�/ D
°
u 2 C�1

E�u
.M/

ˇ̌̌ �Y
jD1

.Xj C i�j / j̨ u D 0; 8˛ 2 N� ; j˛j D J
±
:

In particular, this space does not depend on the choice of the �j (and thus  j ). The
operator e�

P
j tj .XjCi�j / W ran….i�/! ran….i�/ is represented by a finite-dimensional

matrix M.t/ with t D .t1; : : : ; t�), and R.i�/jran….i�/ D Id (since R.i�/ has no Jordan
block), thus

Id D
Z

R�
M.t/ j .tj / dt1 : : : dt�

for all choices of �j (and  j D ��0j ). We can thus take, for T D .T1; : : : ; T�/, the fam-
ily  j converging to the Dirac mass ıTj and we obtain M.T / D Id. This shows that
M.t/ D Id for all t 2 R�C large enough such that Lemma 4.14 can be applied, and there-
fore .Xj C i�j /….i�/ D 0 for all j . This implies that ran….i�/ is exactly the space of
Ruelle resonant states for X at i�.

From what we have shown in Lemma 5.2, we deduce that we can write the spectral
projector as ….i�/f D

PJ
kD1 vkhf; wkiL2 with vk 2 HNG spanning the space of joint

Ruelle resonant states of resonance i� and wk 2 H�NG ' H�NG . Recall that we have
shown that the space of joint Ruelle resonant states (i.e. the range of ….i�/) is intrinsic,
i.e. does not depend on the precise form of the parametrix. But surely the operator R.i�/
depends on the choice of the cutoff functions  j (see (5.1)) and thus also ….i�/ might
depend on that choice. In order to see that this is not the case, let us consider X�j D
�Xj C divvg .Xj /, which are the adjoints with respect to the fixed measure vg . Note
that by the commutativity of the Xj , the operators X�j also commute and are admissible
operators (in the sense of Definition 2.4) for the inverted Anosov action ��.a/ WD �.�a/,
which is obviously again an Anosov action (with the same positive Weyl chamber after
swapping the stable and unstable bundles). Therefore we can apply the results of Section 4
to the admissible operators X�j , in particular they have discrete joint spectrum on the
spaces H�NG . Using .Xj C i�j /….i�/D 0 and the fact that ŒXj ;….i�/�D 0 we deduce
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that .X�j � i�j /wk D 0 and thus all wk , k D 1; : : : ; J , are joint resonant states of the X�j .
We can even see that they span the space of joint resonant states: one can apply the same
parametrix construction Lemma 4.14 to X�j ,

QX�.i�/dX�Ci� C dX�Ci�QX�.i�/ D Id �RX�.i�/˝ Id;

and if we choose the same cutoff functions as in the parametrix for Xj at the beginning of
this section, we find

RX�.i�/ D

�Y
jD1

Z
e
�tj .X

�
j
Ci�j / j .tj / dtj : (5.6)

In particular, RX�.�i�/D .RX .i�//� as bounded operators on H�NG , where the adjoint
is defined by hRX .i�/f; f 0iL2 D hf; .RX .i�//�f 0iL2 for all f 2 HNG , f 0 2 H�NG .
If …X�.i�/ is the spectral projector of RX�.i�/ onto the eigenvalue 1 then we obtain
…X�.�i�/f D …X .i�/

�f D
PJ
kD1 wkhf; vkiL2 with adjoint defined as above. By

Lemma 3.9 the space ¹w 2H�NG j .X
�
j � i�j /w D 0 for all j º of joint resonant states is

in the range of…X�.�i�/, and consequently thewj span the space of joint resonant states
of X� with joint resonance �i�. Putting everything together, we have the following.

Lemma 5.3. Let � 2 a� be such that i� is a Ruelle–Taylor resonance of X . Then �i�
is also a Ruelle–Taylor resonance of X� and the spaces of joint resonant states have the
same dimension. If v1; : : : ; vJ 2 C�1E�u .M/ and w1; : : : ; wJ 2 C�1E�s .M/ are such that
they span the space of joint resonant states of X at i� and of X� at �i� respectively and
fulfill hvj ; wkiL2 D ıjk , then we can write ….i�/ D

PJ
kD1 vkh�; wkiL2 . In particular,

….i�/ depends only on the Xj but not on the choice of R.i�/.

We can now identify resonant states on the imaginary axis with some particular invari-
ant measures.

Proposition 5.4. (1) For each v 2 C1.MIRC/, the map

�v W C
1.M/ 3 u 7! h….0/u; vi

is a non-negative Radon measure with mass �v.M/D
R

M
v dvg , invariant by Xj for

all j D 1; : : : ; � in the sense �v.Xju/ D 0 for all u 2 C1.M/.

(2) The space
span ¹�v j v 2 C1.MIRC/º D ….0/�.C1.M//

is a finite-dimensional subspace of C�1
E�s

.M/ and it is precisely the space spanned by
all finite measures � with WF.�/ � E�s that are invariant under the Anosov action.
Here ….0/� W H�NG ! H�NG is a bounded projector for all N � 1.

(3) Let f 2 L1.W I Œ0; 1�/ with compact support contained in W and
R

W
f > 0. Then for

any u; v 2 C1.M/,

�v.u/ D lim
T!1

1

T �
R

W
f

Z
A2W

f

�
A

T

�
he�XAu; vi dA; (5.7)

where dA is the Lebesgue–Haar measure on a.
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(4) Similarly, for � 2 a� and v 2 C1.M/ the map

��v W C
1.M/ 3 u 7! h….i�/u; vi

is a complex-valued measure. These measures are flow-equivariant in the sense that
��v .Xju/ D �i�j�

�
v .u/ and the set ¹��v j v 2 C

1.M/º is finite-dimensional and
coincides with the space of finite complex measures � with WF.�/ � E�s which are
equivariant in the above sense.

(5) Let v1; v2 2 C1.MIRC/ with v1 � Cv2 for some C > 0 and � 2 a� such that i� is
a Ruelle–Taylor resonance. Then ��v1 is absolutely continuous with bounded density
with respect to �v2 D�

0
v2

. In particular, any ��v is absolutely continuous with respect
to �1.

Proof. First R.0/1 D 1 is clear and X has a Ruelle–Taylor resonance at � D 0 by
Lemma 3.10. If u; v 2 C1.M/ are non-negative, we have ak WD hR.0/ku; vi � 0 and

lim
k!1
hR.0/ku; vi D h….0/u; vi � 0:

Note also that for each k, and each u 2 C1.M/ non-negative,

8x 2M; 0 � .R.0/ku/.x/ � .R.0/k1/kukC0 � kukC0 :

This implies that for each v 2 C1 with v � 0, �kv W u 7! hR.0/
ku; vi is a Radon measure

with finite mass �kv.M/ D
R

M
v dvg and thus so is �v as well. The invariance of �v is a

direct consequence of Lemma 5.3. The same holds for property (2). The invariance of the
space spanned by these measures with respect toXj follows from….0/Xj DXj….0/D 0,
obtained from Lemma 5.2.

Let us next show that for an arbitrary Ruelle–Taylor resonance i� 2 ia� we get com-
plex measures ��v , and at the same time prove the absolute continuity statement (5). We
consider u 2 C1.M/ and v1; v2 2 C1.MIRC/ with v1 � v2, and get, for all k,

jhR.i�/ku; v1ij � hR.0/
k
juj; v1i � hR.0/

k
juj; v2i;

thus j��v1.u/j � �v2.juj/. This proves that ��v1 is a complex measure. A priori, ��v1 is
absolutely continuous with respect to �v2 , so it has an L1 density f with respect to �v2 .
This density is actually bounded by 1, or equivalently

j��v1.A/j � �v2.A/ (5.8)

for every Borel set A. If A is a closed set, we can find a sequence of smooth func-
tions gn, valued in Œ0; 1�, which converges pointwise to the characteristic function of A.
By dominated convergence��v1.gn/!��v1.A/, and likewise�v2.gn/!�v2.A/. Taking
products of sequences of functions, or sequences 1 � gn, and using a diagonal argument,
we see that the set of Borel sets A for which (5.8) holds contains closed sets, and is stable
by countable intersection and complement. It is thus equal to the whole tribe of Borel sets,
and the proof of kf kL1 � 1 is complete.
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Let us finally show (5.7). For each f 2 L1.aI Œ0; 1�/ with suppf �W being compact
and

R
f > 0, we want to prove that

Cf .T / WD
1

T �
R

W
f

Z
A2CT

f

�
A

T

�
he�XAu; vi dA! �v.u/ as T !C1: (5.9)

Assume that (5.9) is satisfied for a dense set in L1.W/ of compactly supported functions,
F WD .fi /i2I � Cc.W/. Then, for all ı > 0 small, one can find a sequence fi.n/ 2 F such
that

R
W
jfi.n/=

R
W
fi.n/ � f=

R
W
f j < ı. Then

jCf .T / � Cfi.n/.T /j �

Z
W

jhe�TXAu; vij �

ˇ̌̌̌
f .A/R
f
�

fi.n/R
fi.n/

ˇ̌̌̌
dA � ıkukL1kvkL1 ;

which implies (5.9) for f by our assumption on fi and since ı is arbitrarily small. We
shall then show (5.9) for functions of the form !.t1/q.Nt=t1/ if .t1; Nt / 2 RC � R��1 are
coordinates associated to bases of vectors in small cones C with closure contained in
W [ ¹0º, and ! 2 C1c .0; 1/, q 2 C

1
c .R

��1/ such that supp.!.t1/q.Nt=t1// � C .
We fix a small open cone C � W with arbitrarily small conic section with closure

contained in W and choose a basis .Aj /�jD1 of a so that Aj 2 C . Up to rescaling Aj by
some fixed large T > 0, we can assume that Lemma 4.14 applies with Tj D 1=2 in the
construction of Q.�/ and R.�/. We then identify a Š R� by identifying the canonical
basis .ej /j of R� with .Aj /j , and we define a scalar product on a by declaring that the Aj
are orthonormal. We let † D C \ ¹A1 C

P�
jD2 tjAj j tj 2 Rº be a hyperplane section of

the cone C . Choose  2 C1c ..�1=2; 1=2// non-negative even with
R

R  D 1, and for
each � 2 R� , define  � .t/ WD

Q�
jD1  .tj � �j /. The operators Q.0/; R.0/ constructed

in Lemma 4.14 can be defined, for � close to e1, with the cutoff function �j such that
��0j .tj / D  .tj � �j /. We then denote by Q� ; R� the corresponding operators, which in
turn are locally uniform in � . Then �v is given by �v.u/D limk!1hR� .0/

ku; vi locally
uniformly in � . This means that viewing† as an open subset of e1CR��1 containing e1,
taking any q 2 C1c .†/ with

R
R��1 q.Nt / d Nt D 1 and any ! 2 C1c ..0; 1// with

R 1
0
! D 1,

we have, for �.Nt / WD .1; Nt / 2 †,

�v.u/ D lim
N!1

Z
R��1

1

N

NX
kD1

!

�
k

N

�
hRk

�.Nt/
u; viq.Nt / d Nt : (5.10)

Indeed, if supp! � ."; 1 � "/ for some " > 0, one can writeZ
R��1

1

N

NX
kD1

!

�
k

N

�
hRk

�.Nt/
u; viq.Nt / d Nt � �v.u/

D

Z
R��1

q.Nt /

�
1

N

X
k2."N;.1�"/N/

!

�
k

N

�
.hRk

�.Nt/
u; vi � �v.u//

� �v.u/

�
1 �

1

N

NX
kD1

!

�
k

N

���
d Nt
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and we use 1
N

PN
kD1 !.

k
N
/!

R 1
0
! D 1 as N !1, and hRk�u; vi ! �v.u/ uniformly

in � as k !1, so that we get the result by dominated convergence.
Recall that Rk� is given by the expression

Rk�u D

Z
R�
.e�

P�
jD1 tjXj u/ .k/� .t/ dt;

where  .k/� is the k-th convolution of  � . To prove (5.9) for a dense subset of L1comp.W/

it suffices to combine (5.10) and the following lemma (since the space of finite sums of
functions of the form z!.t1/q.Nt=t1/ is dense in L1comp.W/).

Lemma 5.5. With !; q as above, and z!.r/ WD r1��!.r/, we have, as N !1,Z
R��1

1

N

NX
kD1

!

�
k

N

�
hRk

�.Nt/
u; viq.Nt / d Nt

�
1

N �

Z N

0

Z
R��1
he�

P
j tjXj u; vi z!

�
t1

N

�
q

�
Nt

t1

�
dt1 d Nt ! 0:

Proof of Lemma 5.5. Since for u 2 C1.M/, ke�
P�
jD1 tjXj ukL1 � kukL1 , it suffices to

show that the function

RC �R��1 3 t D .t1; Nt / 7!Z
R��1

1

N

NX
kD1

!

�
k

N

�
 
.k/

�.�/
.t/q.�/d� �

1

N �
z!

�
t1

N

�
q

�
Nt

t1

�
converges as N !1 to 0 in L1.R�/. Let " > 0 be so small that supp! � ."; 1 � "/.
Scaling t ! tN , the above convergence statement is equivalent to showing that

fN .t/ WD N
��1

X
k2Z\."N;.1�"/N/

!

�
k

N

�Z
R��1

 
.k/

�.�/
.tN /q.�/ d�

is such that limN!1 kfN � hkL1.R�/ D 0 if h.t/ WD 1
T
z!. t1
T
/q.T

Nt
t1
/. First, notice that

supp. .k/
�.�/

.N �// � B.0; 2/ for each k � N , and
R
 
.k/

�.�/
.t/ dt D 1. It then suffices to

prove that fN converges in L2.R�/ to h. We proceed using the Fourier transform, with
� D .�1; N�/,

OfN .�/ D
1

N

.1�"/NX
kD"N

!

�
k

N

��
O 0

�
�

N

��k
e�i

k
N �1 Oq

�
k

N
N�

�
:

First, for � fixed, as O 0.�/D 1CO.j�j2/ for small � (since
R
 D 1 and

R
t .t/dt D 0 by

assumption on  ), one has the following pointwise convergence (using Riemann sums):

lim
N!1

OfN .�/ D

Z
R
!.t1/ Oq.t1 N�/e

�it1�1 dt1 D Oh.�/: (5.11)
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To proveL2 convergence, we use the fact that, since � 0 is smooth and satisfies
R
 D 1

and
R
t .t/ dt D 0, there is c0 > 0 such that

j O 0.�/j � .1C c0j�j
2/�1: (5.12)

Indeed, it suffices to prove j O .s/j � .1C c0s2/�1 for some c0 > 0; but there is " > 0 such
that this is true for some c0 D c0."/ when jsj < " small (by Taylor expansion at s D 0
and since j O .s/j < 1 for s 6D 0) and for jsj > 1=" large by integration by parts ( 2 C1c ),
while for jsj 2 Œ"; 1="� there is c00."/ > 0 such that j O .s/j � .1 C c00."/s

2/�1 because
j O j � 1 � ı" on Œ"; 1="� for some ı" > 0. Thus for ı > 0 arbitrarily small, there is C > 0

depending only on k OqkL1 and k!kL1 such thatZ
j�j�N1=2Cı

j OfN .�/j
2 d� � CN �

Z
j�j�N�1=2Cı

j O 0.�/j
2"N d�

� CN �e�c0"N
2ı

Z
j O 0.�/j d� ! 0;

where the second inequality holds for large N and the limit is as N !1. Next, we will
show that for ı > 0 small and ` 2 N, there are N`; C` such that for all N � N`,

8�; j�j 2 Œ1; N 1=2Cı �; j OfN .�/j � C`.j�j
�`
CN�`.1=2�ı//: (5.13)

This will prove the convergence of OfN to Oh in L2, since for all n > 0, there are Tn and
Nn > 0 such that for N � Nn,Z

j�j�Tn

j OfN .�/ � Oh.�/j
2 d� � 1=n

and, using dominated convergence and (5.11),

lim
N!1

Z
R�
j OfN .�/ � Oh.�/j

21Œ0;Tn�.j�j/ d� D 0:

We next show (5.13). We will use discrete integration by parts to get decay of OfN .�/
in the �1 variable. For � 2 C1c ..0; 1//, we define some sequences am

k
, bm
k

for k 2 Z and

m 2 N by induction. First, b0
k
WD e�i

k
N �1 , a0

k
D �.k=N/ for k 2 Z. Next, for m � 1 and

k 2 Z,

bmk WD b
m�1
k

e�i�1=N

1 � e�i�1=N
D e�i�1k=N

�
e�i�1=N

1 � e�i�1=N

�m
; amk WD a

m�1
k � am�1kC1 :

Note also that am
k
D 0 for k < "N �m and k > .1� "/N , and that bm

k
D bmC1

k�1
� bmC1

k
.

Thus,X
k2Z

amk b
m
k D

X
k2Z

amk .b
mC1
k�1
� bmC1

k
/ D �

X
k2Z

bmC1
k

.amk � a
m
kC1/ D �

X
k2Z

bmC1
k

amC1
k

:

Since � is smooth, Taylor expansion gives for each m a constant Cm > 0 such that for
N � 1, jam

k
j �Cmk�kCmN

�m. Up to increasing the value of Cm, we also find that jbm
k
j �
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CmN
m=j�1j

m for j�1j=N � �=2. We deduce that for each m, there exists Cm > 0 such
that for all N large enough,ˇ̌̌ NX

kD1

�.k=N/e�i�1k=N
ˇ̌̌
� N min.Cmk�kCm j�1j�m; k�kL1/: (5.14)

Now, take �.x/ WD Oq.x N�/!.x/exN log. O 0.�=N//, which exists since j O 0.�=N / � 1j � 1=2
for N large enough (since j�j=N is assumed to be small). Since q 2 C1c .R

��1/, for all
` 2 N there is C`;m > 0 such that for all x 2 supp!,

j@mx . Oq.x
N�/!.x//j � C`;m.1C jN�j

2/�`Cm: (5.15)

Since jN log. O 0.�=N //j � C j�j2=N for some uniform C > 0 if j�j=N is small (by using
(5.12) and O 0.�/ D 1 C O.j�j2/), there are C; C 0 such that for all n and j�j=N small
enough,

j@nxe
xN log. O 0.�=N//j �

�
C
j�j2

N

�n
eCxj�j

2=N
� C 0

�
C
j�j2

N

�n
and we finally obtain, by combining this bound with (5.15) (choosing ` D 2m � nC j
for the m � n derivatives), the following bound: for all m; j there are Cm;j ; C 0m;j > 0

such that for N large enough,

k�kCm � Cm;j

mX
nD0

.1C jN�j2/�j
�
C
j�j2

N

�n
� C 0m;j .1C j

N�j2/�j
�
1C
j�j2m

Nm

�
: (5.16)

Combining this bound (by taking j D m) with (5.14) implies that for all m, there are
Cm; C

0
m > 0 such that for all N large enough and j�j 2 Œ1; N 1=2Cı � and j�1j � 1=2,

j OfN .�/j � Cm
1Cj�j2mN�m

.1CjN�j2/m.1Cj�1j/m
� C 0m

�
1

j�jm
C
j�jm

Nm

�
� C 0m

�
1

j�jm
C

1

Nm.1=2�ı/

�
;

which shows (5.13) whenever j�1j � 1=2. If j�j 2 Œ1; N 1=2Cı � and j�1j � 1=2, one has
j N�j � j�j � 1=2 and thus the k�kL1 bound in (5.14) and the bound (5.16) for m D 0 and
j large give

j OfN .�/j � Cj .1C jN�j
2/�j � C 0j .1C j�j

2/�j ;

which again shows (5.13) for j�1j � 1=2.

As noted in the introduction, we will call the measures �v physical measures, and �1
will be called the full physical measure.

5.2. Imaginary Ruelle–Taylor resonances for volume-preserving actions

In this section, we are going to study the dimensions of the Ruelle–Taylor resonance at
�D 0 in the case where there is a smooth measure preserved by the action. First, we want
to prove the following.



Y. Guedes Bonthonneau, C. Guillarmou, J. Hilgert, T. Weich 50

Proposition 5.6. Assume that there is a smooth invariant measure � for the action, i.e.
LXA� D 0 for each A 2 W . Then, for each � 2 ia� imaginary, there is an injective map

kerC�1
E�u

ƒj dXC�=ranC�1
E�u

ƒj dXC� ! kerC1ƒj dXC�=ranC1ƒj dXC�: (5.17)

Proof. We shall use an argument inspired by [20, Section 6] in rank 1. As in [20, Sec-
tion 6], it will be technically convenient to use a semiclassical Weyl quantization Oph
and semiclassical wavefront set, the semiclassical parameter being denoted h > 0. The
interested reader can consult the book [60] for the details on semiclassical calculus, and
[18, Appendix E] that sumarizes all the necessary results used here. For a shorter sum-
mary see also [16, appendix]. We will use the classes of semiclassical operators ‰k

h
.M/

(see [60, Section 14.2]), the semiclassical wavefront set WFh.u/ (resp. WFh.A/) of a
distribution u (resp. of an operator A 2 ‰k

h
.M/) depending on a small parameter h > 0

(see [60, Section 8.4.2] or [18, Sections E.2.1, E.2.3]). The semiclassical wavefront set
is a subset of the fiber radial compactification T

�
M of the cotangent bundle T �M; see

[18, Section E.1.3].
Fix a basis A1; : : : ; A� 2 W close to A1 and write �j WD �.Aj / and XAj .�/ WD

XAj C �j . Let Tj > 0 for j D 1; : : : ; �, let " > 0 be small and consider �j 2
C1c .Œ0;1/I Œ0; 1�/ non-increasing with �j D 1 in Œ0; Tj � and supp �j � Œ0; Tj C "�.
We use the parametrix Q.�/ D ıQ.�/ of the proof of Lemma 4.14 and get (4.15) with
those �j . As in the proof of Lemma 4.14, F.�/� IdD R.�/CK.�/ withK.�/ compact
on HNG and kR.�/k < 1=2, and by the Remark following the proof of Lemma 4.14, we
can choose T1 > 0 large and Tj > 0 small for j D 2; : : : ; � so that this still holds. Using
Lemma 4.13, we deduce ran…0.�/ � C

�1

E�u
.MIƒa�/ if …0.�/ is the spectral projector

of F.�/ at z D 0. We will show that the range of the spectral projector…0.�/ at z D 0 of
F.�/ actually satisfies

ran…0.�/ � C
1.MIƒa�/: (5.18)

Since F.�/ is a scalar operator, we can work on scalar-valued distributions, and we shall
then identify F.�/ with an operator HNG ! HNG for some N > 0 large enough, and
fixed.

Using Lemma 5.1, z D 1 is at most a pole of order 1 of .Id � F.�/ � z/�1, so that
each u 2 ran…0.�/ satisfies F.�/u D 0. Then let u 2 HNG be such that F.�/u D 0.

Recall from [16, (2.6)] that WF.u/ D WFh.u/ \ T �M n ¹0º. We are now going
to show that WFh.u/ \ ¹.x; �/ 2 E�u j j�j 2 Œc1; c2�º D ; for some 0 < c1 < c2 by
using the equation F.�/u D 0, the propagation of semiclassical wavefront sets (Egorov
theorem [60, Theorem 11.12]) and the explicit expression of F.�/ in terms of the propa-
gators e�tXAj .�/.

For T1 > 0 large enough but fixed and T2; : : : ; T� small enough, one can find a closed
neighborhood Wu of E�u \ @T

�
M in the fiber radial compactification of T �M, which is

conic for j�j large, 0 < c1 < c2 such that for all t1 2 ŒT1=2;T1C "� and all tj 2 Œ0; Tj C "�
for j � 2 we have

Wu � e
�
P�
jD1 tjX

H
Aj .Wu/ and ¹.x; �/ 2 E�u j j�j 2 Œc1; c2�º � e

�
P
j tjX

H
Aj .Wu/ nWu:
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E�u

E�s

Wu

Œc1; c2�

e
T1
2 X

H
A1 .Wu/

b D 0

e
�†tjX

H
Aj .Wu/

b D 1

Fig. 2. Schematic sketch of the phase space regions appearing in the proof of Proposition 5.6.

First we choose b0 2 S0.M/ with the following properties: first,

b0 � 0; b0.x; �/ D 1 in T �M nWu; b0.x; �/ D 0 in e
T1
2 X

H
A1 .Wu/I

then, for each t D .t1; : : : ; t�/ with tj 2 ŒTj ; Tj C "� the symbol

0 � b0.x; �/ � b0.e

P�
jD1 tjX

H
Aj .x; �//

is equal to 1 on ¹.x;�/2E�u j j�j 2 Œc1; c2�º; and third, by a partition of unity we can ensure
that there is c0 2 S0.M/ such that b20 C c

2
0 D 1. If B0 D Oph.b0/ and C0 D Oph.c0/ are

the corresponding operators then B0B�0 C C0C
�
0 D IdC hR with R 2 ‰�1

h
.M/. As in

the construction of a parametrix, one can modify the symbols by lower order terms and
get symbols b; c such that for B DOph.b/ and C DOph.c/we have Id�B�B �C �C 2
h1‰0

h
.M/. Indeed, for S2‰�1

h
.M/ with real principal symbol (using Oph.q/�Oph.q/

�

2 h‰0
h
.M/ if q 2 S0.M/ is real-valued), we have

.B0 C hS/.B0 C hS/
�
C .C0 C hS/.C0 C hS/

�
� Id � h.RC 2S.B0 C C0//

2 h2‰�2h .M/

and, as B0 C C0 is semiclassically elliptic, we can invert it microlocally and find s 2
S0.M/ such that S DOph.s/ satisfiesRC 2S.B0CC0/ 2 h‰0.M/ and we gain a power
of h if we correct B0; C0 by hS . This argument can then be iterated. Note furthermore
that the regions where b0 D 0 respectively b0 D 1 are still valid for b.

Note that the escape function G can be chosen so that the order function m is non-
negative in the region T �M n Wu for j�j large enough. Since u 2 HNG , we thus have
Bu 2L2. Let z� 2C1.R�/ be given by z�.t/D .�1/�

Q�
jD1�

0
j .tj /� 0 for t 2R� . Recall-

ing that F.�/ is the operator introduced in (4.15), we can write, using the semiclassical
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Egorov lemma in its simple form of a coordinate change [18, Proposition E19],

Bu D B.Id � F.�//u D
Z
.RC/�

Be
�
P�
jD1 tjXAj .�/uz�.t/ dt1 : : : dt�

D

Z
.RC/�

e
�
P�
jD1 tjXAj .�/Btuz�.t/ dt1 : : : dt�

with Bt �Oph.b ı e
P
j tjX

H
Aj / 2 h‰�1

h
.M/ and WFh.Bt /� e

�
P
j tjX

H
Aj .WFh.B//. This

gives, using ke�tjXj .�/kL.L2/ D 1 because � is invariant, and using Cauchy–Schwarz,

kBuk2
L2
D kB.Id � F.�//uk2

L2
�

Z
.RC/�

kBtuk
2
L2
z�.t/ dt �

Z
.RC/�

z�.t/ dt:

We can then write, since
R
.RC/� z�.t/ dt D 1,Z

.RC/�
.kBuk2

L2
� kBtuk

2
L2
/z�.t/ dt � 0: (5.19)

Next, recall that supp z�.t/ �
Q
j�1ŒTj ; Tj C "�. We claim that for t 2 supp z� there is

et 2 S
0.MI Œ0; 1�/ such that B�B � .B�t Bt C E

�
t Et / 2 h

1‰0
h
.M/ for Et WD Oph.et /

and et .x; �/D 1CO.h/ in ¹.x; �/ 2E�u j j�j 2 Œc1; c2�º. Indeed,Et is microlocally equal

to Ct WD e
P�
jD1 tjXAj .�/Ce

�
P�
jD1 tjXAj .�/ on WFh.Bt / and to B on the complement of

WFh.Bt /. This implies, thanks to (5.19),Z
.RC/�

kEtuk
2
L2
z�.t/ dt D O.h1/:

There are f;gt 2 S0.MI Œ0; 1�/, with f D 1CO.h/ on ¹.x; �/ 2E�u j j�j 2 Œc1; c2�º and f
independent of t , such that for t 2 supp z�, E�t Et � .F

�F CG�t Gt / 2 h
1‰0

h
.M/, where

F D Oph.f / and Gt D Oph.gt /. We thus obtain

kFuk2
L2
�

Z
.RC/�

kEtuk
2
L2
z�.t/ dt CO.h1/ D O.h1/;

which implies that WFh.u/ \ ¹.x; �/ 2 E�u j j�j 2 Œc1; c2�º D ;. We then conclude that
WF.u/ \E�u D ;, which also shows that u 2 C1 and (5.18) holds.

Then we define the following map:

I W kerran…0.�/ dX.�/=ranran…0.�/ dX.�/ ! kerC1ƒ dX.�/=ranC1ƒ dX.�/;

uC ranran…0.�/ dX.�/ 7! uC ranC1ƒ dX.�/;
(5.20)

which is well-defined since ran…0.�/ � C
1ƒ. We claim that this map is injective: Let

u D dX.�/v 2 ran…0.�/ with v 2 C1ƒj . We need to show that u D dX.�/w for some
w 2 ran…0.�/. But it suffices to use ŒdX.�/; …0.�/� D 0 to see that u D …0.�/u D

dX.�/…0.�/v. This proves the claim and concludes the proof of the lemma by using also
the isomorphism (4.14).
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Lemma 5.7. Assume that there is a smooth invariant measure � for the action, i.e.
LXA� D 0 for each A 2 a, and supp� DM. Then the periodic tori are dense in M.

Proof. Since M is compact, the measure is finite, so we can apply Poincaré’s recurrence
theorem: almost every point x of M is recurrent, i.e. its orbit comes back infinitely close
to x infinitely many times (and this for each direction of the action). Katok–Spatzier
[39, Theorem 2.4] proved a closing lemma for Anosov actions: there are C; ı > 0 such
that whenever there are x 2M and t 2 W with d.�.t/x; x/ < ı and ktk > C , then there
is a periodic torus for the action at distance at most 1

ı
d.�.t/x; x/ from x.

Proposition 5.8. Assume that there is a smooth invariant measure � for the action, with
supp� DM. Then

dim
�
kerC�1

E�u
ƒj dX=ranC�1

E�u
ƒj dX

�
D dimƒja� D

�
�

j

�
and the cohomology space is generated by the constant forms e0i1 ^ � � � ^ e

0
i�

if .e0j /j is a
basis of a�.

Proof. In the proof of Proposition 5.6 with �D 0, we have defined an operatorF.0/ that is
Fredholm on HNG and…0.0/ is its spectral projector at zD 0, with ran…0.0/�C

1.M/.
Recall also that F.0/ is scalar and can thus be considered as an operator on functions.
Let us show that ran…0.0/ D R consists only of constants under our assumptions. Pick
u 2 C1.M/ such that F.0/u D 0. Let x 2M belong to a closed orbit in the Weyl cham-
ber, i.e. 'XAt0 .x/D x for some A 2W and t0 > 0. Then it is a classical result that the orbit

Tx WD ¹'
X QA
s .x/ j s 2 R; QA 2 aº is a closed �-dimensional torus (a proof compatible with

the present notation can be found e.g. in [29, Lemma 3.1]). It is isomorphic to R�=Z� by
the map

 x W R
�
3 t 7! �

� �X
jD1

tjA
0
j

�
.x/

for some basis A0i 2 a. Note that  �x .e
P
` s`XA0

`u/.t/ D  �xu.t C s/. Let us restrict the
identity F.0/u D 0 or equivalently R.0/u D u to Tx . We can decompose v WD  �xu into
a Fourier series:

v.t/ D
X
k2Z�

e2i�k:tvk ; t 2 R� :

Recall that the basis for which R.0/ was constructed in Proposition 5.6 was denoted by
A1; : : : ; A� 2 a. We can express this basis in terms of the basis A0j of the periodic torus
via some base change matrix: Aj D

P
iMijA

0
i (using

P�
`D1 s`A` D

P
`;i s`Mi`A

0
i ). The

identity Ru.x/ D u.x/ impliesX
k2Z�

e2i�k:tvk. 
�
xR.0/u/.t/ D

Z
.RC/�

. �xu/.t �Ms/z�.s/ ds

D

X
k2Z�

vke
2i�k:t

Z
.RC/�

e�2i�k:Ms
z�.s/ ds
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with M D .Mij /ij real-valued and z� defined in the proof of Proposition 5.6. This shows
that for each k 2 Z� ,

vk D 0 or
Z
.RC/�

.e�2i�k:Ms
� 1/z�.s/ ds D 0:

Since z� � 0 and z�.s/ > 0 in some open set, andM is invertible, we see that either vk D 0
or kD 0, i.e. v.t/D v.0/ is constant. Therefore u is constant on each periodic torus. Since
u is smooth and the periodic tori are dense, this implies that dXu D 0 and u.'XAt .x// D

u.x/ for each x 2M, t 2 R and A 2 a. Taking A 2 W , there is � > 0 such that for each
t > 0 large enough, jd'XAt vj � e��t jvj for each v 2 Es . Thus

jdux.v/j D jdu'XAt .x/
d'

XA
t .x/vj � kduke��t jvj:

Letting t !1, we conclude that dujEs D 0. The same argument with t < 0 shows that
dujEu D 0 and therefore du D 0. Since F.0/1 D 0, this shows that, when viewed as an
operator on ƒa�, ran…0.0/ is exactly the space of constant forms. We can then use the
isomorphism (4.14) to conclude the proof since it is seen directly that the constant forms
e0i1 ^ � � � ^ e

0
ij

form a basis of ker dX=ran dX on ran…0.0/ (as dX jran…0.0/ D 0).

Note that in [39] Katok–Spatzier study the first cohomology group of dynamical sys-
tems and show that any smooth cocycle is smoothly conjugate to a constant function
[39, Theorem 2.9 (a)]. In our language of Taylor complexes, this result implies that for
standard Anosov actions dim.kerC1ƒ1 dX=ranC1ƒ1 dX /D � and is spanned by the con-
stant forms. Combining this fact with Proposition 5.8, we obtain the following result.

Corollary 5.9. If the Anosov R�-action is standard in the sense of [39], then the map
(5.17) is an isomorphism for j D 1.

5.3. Ruelle–Taylor resonances and mixing properties

In this section we do not assume anymore that a volume measure is preserved, and want
to establish the following relation of Ruelle–Taylor resonances and mixing properties.

Proposition 5.10. Let X be an Anosov action on M. Then the following are equivalent:

(1) There is a direction A0 2 a such that '
XA0
t is weakly mixing with respect to the full

physical measure �1.

(2) 0 is the only Ruelle–Taylor resonance on ia� and there is a unique normalized phys-
ical measure �1.

(3) For each A 2W , 'XAt is strongly mixing with respect to the full physical measure �1.

Proof. Obviously (3))(1). So let us prove (1))(2): Assume that there is either a non-
zero Ruelle–Taylor resonance i� 2 ia� or a non-unique normalized physical measure.
Then by Proposition 5.4 (5) there is a non-constant bounded density f 2L1.M;�1/with
XAf D i�.A/f for allA 2 a (setting �D 0 if the density comes from the non-uniqueness
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of the physical measure). As f is non-constant there exists g 2 L1.M;�1/ with
R
g d�1

D 0 but
R
gf d�1 ¤ 0. With these two functions, we have the correlation function

Cf;g.t IA0/ WD

Z
M

g.'
XA0
�t /�f d�1 �

Z
M

g d�1 �

Z
M

f d�1 D e
�i�.A0/t

Z
M

gf d�1;

so '
XA0
t is not weakly mixing.
We will now prove (2))(3) using the regularity of a joint spectral measure: Let us

first introduce these measures. We consider the space L2.M; �1/. Since the measure �1
is flow-invariant, the flow acts as unitary operators on L2.M;�1/. In particular, for each
A 2 a, XA is skew-adjoint when acting on L2.M;�1/ with domain

D.XA/ D

²
u 2 L2.M;�1/

ˇ̌̌̌
lim
t

1

t
.etXAu � u/ exists

³
D ¹u 2 L2.M;�1/ j XAu 2 L

2.M;�1/º:

Additionally, since the flows commute, the XA are strongly commuting, so that we can
apply the joint spectral theorem [51, Theorem 5.21]. There exists a Borel, L2.M; �1/-
projector-valued measure � on a� such that for u 2 L2.M;�1/,

u D

Z
a�
d�.#/u; XAu D

Z
a�
i#.A/ d�.#/u for all A 2 a:

We will prove the following regularity result for these measures.

Lemma 5.11. LetX be an Anosov action. Assume that there is no non-zero purely imagi-
nary Ruelle–Taylor resonance and there is a unique normalized physical measure. For any
f;g 2C1.M/ with

R
M
f d�1D

R
M
gd�1D 0, consider �f;g.�/ WD h�.�/f;giL2.M;�1/

,
which is a finite complex-valued measure on a�. Then the analytic wavefront set 6 7

WFa.�f;g/ � a� � a fulfills

WFa.�f;g/ \ .a� �W/ D ;:

Before proving this lemma let us show that it implies (3). Take A0 2 W , and f; g as
in the lemma. Then the spectral theorem yields

Cf;g.t IA0/ D

Z
M

g.'
XA0
�t /�f d�1 D

Z
a�
e�i#.A0/t d�f;g.#/:

Given any " > 0, using the fact that �f;g is finite, there is a cutoff function �K 2

C1c .a
�I Œ0; 1�/ equal to 1 on a sufficiently large compact set K � a� such that

6See Folland [24, Section 3.3] for the definition and basic properties of the analytic wavefront
set. In our proof, we need to use a non-quadratic phase, and only the quadratic case is treated by
Folland; however, this is just a slight technical hurdle, as mentioned by Folland at the start of p. 160.
For completeness, however, we will refer to [52] (in French).

7The usual C1 wavefront set is contained in the analytic wavefront set, i.e. WF � WFa; see
[24, Theorem 3.22].
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j
R

a� e
�i#.A0/t .1� �K/ d�f;g.#/j � "=2 uniformly in t . Furthermore, by the fact that the

wavefront set is empty in the direction of the Weyl chamber W we deduce that there is T
such that j

R
a� e
�i#.A0/t�K d�f;g.#/j � "=2 for any t > T , thus limt!1Cf;g.t;A0/D 0.

The passage to arbitrary L2.M; �1/ functions follows by the density of the smooth func-
tions.

Proof of Lemma 5.11. Let us pick any A0 2 W and a basis A1; : : : ; A� 2 W such that
these elements span an open cone around A0. With this basis we identify the joint spec-
tral measure with a measure on R� . Recall the definition of R� .i�/ from the proof of
Proposition 5.4 which was based on the choice of an even, positive 2C1..�1=2;1=2//
with

R
 D 1 and some � 2 R�C. Using the spectral theorem we calculate, for any f; g 2

L2.M; �1/,

hR� .i�/
kf; giL2.M;�1/

D

Z
R�
O‰.# C �/ke�ik�.#C�/ d�f;g.#/; (5.21)

where ‰.t/ WD
Q�
jD1  .tj /. Now let us define the closed subspaces

HNG;0 WD

²
u 2 HNG

ˇ̌̌̌ Z
ud�1 D 0

³
� HNG :

Note that these are well-defined for sufficiently large N because �1 2 H�NG . Further-
more, from the invariance of�1 under the Anosov actions the spaces HNG;0 are preserved
by R� .i�/. Now the assumption that there is no imaginary Ruelle–Taylor resonance
except zero and that there is a unique normalized physical measure imply (together with
the findings of Section 5.1) that R� .i�/ has spectral radius < 1 on HNG;0 for any � 2 R�

and � 2 R�C sufficiently large. Thus there are C�;�; "�;� > 0, locally uniform in �;�, such
that kR� .i�/kkHNG;0 � C�;�e

�"�;�k . Now let f;g be as in the assumption of our lemma.
Then we can estimate

hR� .i�/
kf; giL2.M;�1/

� kR� .i�/
kf kHNG;0kg�1kH�NG � Cf;g;�;�e

�"�;�k :

Let us come back to the expression (5.21) involving the spectral measures. By the prop-
erties of  we deduce that near zero, O‰.�/ D exp.�S.�// with some analytic function
S.�/D aj�j2CO.j�j4/. Furthermore, for any ı > 0, there is "2 > 0 such that O‰.�/ < e�"2

for j�j > ı. Choosing a cutoff function � 2 C1c ..�3ı; 3ı/
�/ with �.�/ D 1 for j�j < 2ı,

by the boundedness of �f;g we get, for an arbitrary fixed �0 2 R� ,ˇ̌̌̌
hR� .i�/

kf; giL2.M;�1/
�

Z
R�
O‰.# C �/ke�ik�.#C�/�.# C �0/ d�f;g.#/

ˇ̌̌̌
� Ce�"2k

uniformly for � 2 R�C, j� � �0j < ı. Putting everything together we getˇ̌̌̌Z
R�
e�kS.#C�/�ik�.#C�/�.# C �0/ d�f;g.#/

ˇ̌̌̌
� QCe�Q"k

with QC ; Q" > 0 locally uniform in j� � �0j < ı and � 2 R�C. In the expression on the left
hand side, we recognize a semiclassical Fourier–Bros–Iagolnitzer (FBI) transform of the
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distribution d�f;g at parameters .�; �/, with h D 1=k. That it decays exponentially as
h! 0, uniformly in � close to �0 and uniformly in � 2 R�C, is the definition of

WFa.d�f;g/ \ ¹�0º �R�C D ;:

Here WFa is the analytic wavefront set of [52, Définition 6.1, Proposition 6.2].
Recall furthermore that we identified a� Š R� by the above choice of the basis Aj ,

thus our result implies that there is no analytic wavefront set in a� � ¹
P
cjAj j cj 2RCº,

but as theAj span an arbitrary subcone of W we also get the absence of analytic wavefront
set in a� �W and we have completed the proof of Lemma 5.11.

Appendix A. Tools from microlocal analysis

We recall here some essentials of microlocal analysis. In this paper, we are working with
pseudodifferential operators acting on C1.MIE/˝ƒa�C Š C

1.MIE ˝ƒa�C/. Note
that by fixing an arbitrary scalar product on a� the bundle E ˝ƒ WD E ˝ƒa�C !M is
again a Riemannian bundle. We will therefore introduce notations for pseudodifferential
operators on general Riemannian bundles E ! M over a compact Riemannian mani-
fold M. Only when we want to exploit some specific structures of E ˝ƒ, will we refer
to this particular bundle.

For more details we refer to standard references such as [27]. For the details concern-
ing anisotropic calculus we refer to [20].

Definition A.1. Let k 2 R and 1=2 < � � 1. Then the standard symbol space Sk� .MIE/
is the space of functions a 2 C1.T �MI End.E// for which in any local chart U � Rn

of M and any local trivialization of the bundle, for any compact set K � U and any
˛; ˇ 2 Nn,

sup
.x;�/2T �U;x2K

k@˛x@
ˇ

�
a.x; �/kh�i�.k��jˇ jC.1��/j˛j/ <1:

Given a zeroth order symbol m.x; �/ 2 S01 .M/, the anisotropic symbol space
S
m.x;�/
� .MIE/ is the space of functions a 2 C1.T �MIEnd.E// for which in any local

chart U � Rn, for any compact set K � U and any ˛; ˇ 2 Nn,

sup
.x;�/2T �U;x2K

k@˛x@
ˇ

�
a.x; �/kh�i�.m.x;�/��jˇ jC.1��/j˛j/ <1:

We furthermore set8

S�1.MIE/ WD
\
k>0

S�k� .MIE/; S1.MIE/ WD
[
k>0

Sk� .MIE/;

SmC� .MIE/ WD
\
">0

SmC"� .MIE/; Sm��.MIE/ WD
[
">0

Sm��".MIE/:

8Note that
T
k>0 S

�k
� .MIE/ is independent of 1=2 < � � 1 and we therefore drop the � index

in the notation of S�1.MIE/.
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Note that by setting m.x; �/ D k 2 R the standard symbols are a special case of
anisotropic symbols. We will therefore mostly introduce the notation in the anisotropic
setting as it contains the standard symbols as a special case. Furthermore, note that x 7!
IdEx is a global smooth section of End.E/ ! M and multiplication with this section
yields a canonical embedding S1� .M/ ,! S1� .MIE/. We will refer to symbols in the
image of this embedding as scalar symbols.

After fixing a finite atlas and a suitable partition of unity on M one can define a
quantization (see e.g. [18, E.1.7]) that associates to any a 2 S1� .MIE/ a continuous
operator Op.a/ W C1.MI E/ ! C1.MI E/ which extends to a continuous operator
Op.a/ W C�1.MIE/! C�1.MIE/. We denote by ‰�1.MIE/ the space of smooth-
ing operators A W C�1.MIE/ ! C1.MIE/. The quantization has the property that
Op.S�1.MIE//�‰�1.MIE/. We say that A 2‰m� .MIE/ iff there is a 2 Sm� .MIE/
such that A � Op.a/ 2 ‰�1.MIE/. When � D 1, we will drop the � index and write
Sm.MIE/ and ‰m.MIE/ instead of Sm1 .MIE/ and ‰m1 .MIE/.

With any A 2 ‰m� .MIE/ one can associate its principal symbol

�mp .A/ 2 S
m
� .MIE/=S

m�2�C1
� .MIE/:

The principal symbol is an inverse to Op in the sense that

�mp ı Op W Sm� ! Sm� =S
m�2�C1
� and Op ı �mp W ‰

m
� ! ‰m� =‰

m�2�C1
�

are simply the projections on the respective quotients.

Example A.2. Any k-th order differential operator P with smooth coefficients on the
bundle E !M is in ‰k1 .MIE/ and a representative of its principal symbol �kp .P / can
be calculated by

Œ�kp .P /.x; �/�u.x/ D lim
t!1

t�k Œe�it�P.eit�u/�.x/;

where u 2 C1.MIE/ and � 2 C1.M/ is a phase function with d�.x/ D � (see e.g.
[36, (6.4.60)]). As a direct consequence we get:

(1) For any vector fieldX 2C1.MIT �M/�‰11.M/we have �1p .X/.x;�/D i�.X.x//.

(2) If X W a! Diff1.MIE/ � ‰11.MIE/ is an admissible lift of an Anosov action, then
for all A 2 a the principal symbol �1p .XA/.x; �/ D i�.XA.x// IdEx is scalar.

(3) To express the principal symbol of the exterior derivative dX 2 ‰
1
1.MIE ˝ ƒa�C/

of X , consider the smooth map T �M 3 .x; �/ 7! �.X�.x// 2ƒ
1a�. With its help we

calculate, for v 2 Ex and ! 2 ƒa�,

�1p .dX/.x; �/.v ˝ !/ D iv ˝
�
�.X�.x// ^ !

�
:

(Thus �1p .dX/ is scalar on the E-component but not on the ƒa�-component as it
increases the order of differential forms.)

Proposition A.3. Let A 2 ‰m1.x;�/� .MIE/ and B 2 ‰m2.x;�/� .MIE/. Then

AB 2‰m1Cm2� .MIE/ and �m1Cm2p .AB/D�m1p .A/�m2p .B/mod Sm1Cm2�2�C1� .MIE/:
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Definition A.4. Given a 2 Sm.x;�/� .MIE/, we define its elliptic set to be the open cone
ellm.x;�/.a/ � T �M n ¹0º which consists of all .x0; �0/ 2 T �M n ¹0º for which there
is a C > 0 and a function � 2 C1.T �M/, positively homogeneous of degree zero for
j�j � C , and with �.x0; C �0=j�0j/ > 0, such that a.x; �/ 2 End.Ex/ is invertible for
all .x; �/ 2 supp � and �a�1 2 S�m.x;�/� .MIE/. We call a 2 Sm.x;�/� .M; E/ elliptic if
ellm.x;�/.a/ D T �M n ¹0º.

As a direct consequence of the chain rule for derivatives and the symbol estimates we
get the following.

Lemma A.5. If a 2 Sm.x;�/� .MIE/ is a scalar symbol, then .x0; �0/ 2 ellm.x;�/.a/ if there
exists an open cone � � T �M containing .x0; �0/ and C > 0 such that

ja.x; �/j �
1

C
h�im.x;�/ for all .x; �/ 2 � \ ¹j�j > C º:

One checks that for a 2 Sm.x;�/� .MIE/ and r 2 Sm.x;�/�"� .MIE/ one has ellm.x;�/.a/
D ellm.x;�/.a C r/, which allows us to define the elliptic set of an operator A 2
‰m.x;�/.MIE/ via its principal symbol: ellm.x;�/.A/ WD ellm.x;�/.�m.x;�/p .A//.

Definition A.6. GivenADOp.a/mod‰�1.MIE/, we define its wavefront set to be the
closed cone WF.A/ � T �M n ¹0º which is the complement of all .x0; �0/ 2 T �M n ¹0º
for which there is an open cone � � T �M around .x0; �0/ such that for all N > 0 and
˛; ˇ 2 Nn there is CN;˛;ˇ such that

k@˛x@
ˇ

�
a.x; �/k � CN;˛;ˇ h�i

�N for all .x; �/ 2 �:

The wavefront set has the following property for the product of two pseudodifferential
operators A;B 2 ‰1� .MIE/:

WF.AB/ �WF.A/ \WF.B/:

We crucially use the following constructions of microlocal parametrices.

Lemma A.7. If A 2 ‰m1.x;�/� .MIE/;B 2 ‰
m2.x;�/
� .MIE/ and WF.B/� ellm1.x;�/.A/,

then there is Q 2 ‰m2.x;�/�m1.x;�/� with WF.Q/ �WF.B/ such that

AQ � B 2 ‰�1.MIE/:

If furthermore A and B are holomorphic families of operators, then Q can be chosen to
be holomorphic as well.

As a consequence of Lemma A.7, if A 2 ‰m1� .MIE/ and B 2 ‰m2� .MIE/, then

ellm1.A/ \WF.B/ �WF.AB/: (A.1)

We also have the following particular case of Egorov’s lemma.
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Lemma A.8. Let F 2 Diffeo.M/ be a smooth diffeomorphism and let zF 2 Diffeo.E/ be
a lift of F , i.e. zF acts linearly in the fibers and � ı zF D F ı � for the fiber projection
� W E !M. Define the transfer operator

LF W C
1.MIE/! C1.MIE/; .LF u/.x/ WD zF

�1.F.x/; u.F.x///:

Then for each A 2 ‰m� .MI E/, we have LFAL�1F 2 ‰
mıˆ
� .MI E/ with ˆ.x; �/ WD

.F.x/; .dF �1/T �/ and

�mıˆp .LFAL
�1
F /.x; �/ D

zF �1.F.x/; �/ ı �mp .A/.ˆ.x; �// ı
zF .x; �/:

Proposition A.9 (L2-boundedness). Let A 2 ‰0�.MIE/. Then A can be extended from
an operator on C1.MIE/ to a bounded operator on L2.MIE/. Furthermore, for any

C > lim sup
j�j!1

k�0p .A/.x; �/k;

there exists a decomposition A D K C R, where K 2 ‰�1.MIE/ is a smoothing and
hence L2-compact operator and kRkL2!L2 � C . If At is a smooth family in ‰0�.MIE/
for t 2 Œt1; t2�, the decompositionAt DRt CKt can be chosen so that t 7!Rt and t 7!Kt
are continuous in t .

Proof. See [20, Lemma 14]. The continuity in t is straightforward from the proof.

We conclude this appendix by mentioning that one can use a small semiclassical
parameter h > 0 in the quantization, in which case we shall write Oph, by using the
expression in a local chart

Oph.a/f .x/ D
1

.2�h/n

Z
e
i.x�x0/�

h a.x; �/f .x0/ d� dx0

if a is supported in a chart. We do not use this semiclassical quantization except in
Section 5.2 and we refer to [18, Appendix E] for the results on semiclassical pseudo-
differential operators that we use. One of their advantages is that one can get the estimate
kOph.a/kL2!L2 � supx;� ja.x; �/j CO.h/ for small h > 0 and if a 2 S0.MIE/.
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