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Pattern reconstruction with restricted Boltzmann machines

Giuseppe Genovese

Abstract. Restricted Boltzmann machines are energy models made of a visible and a hidden
layer. We identify an effective energy function describing the zero-temperature landscape on
the visible units and depending only on the tail behaviour of the hidden layer prior distribution.
Studying the location of the local minima of such an energy function, we show that the ability
of a restricted Boltzmann machine to reconstruct a random pattern depends indeed only on the
tail of the hidden prior distribution. We find that hidden priors with strictly super-Gaussian tails
give only a logarithmic loss in pattern retrieval, while an efficient retrieval is much harder with
hidden units with strictly sub-Gaussian tails; if the hidden prior has Gaussian tails, the retrieval
capability is determined by the number of hidden units (as in the Hopfield model).

1. Introduction

Restricted Boltzmann machines (RBMs) are represented by probability distributions
on the product space ¹�1; 1ºN1 � RN2 whose density with respect to the uniform
probability on ¹�1; 1ºN1 times some prior distribution on RN2 depends on a matrix
valued parameter W (so-called weight matrix), and it is proportional to
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The vectors .�1; : : : ; �N1/ and .z1; : : : ; zN2/ are called, respectively, visible and hid-
den layers and their entries visible and hidden units. Typically, the units are i.i.d.

RBMs are widely studied generative models of machine learning, introduced long
ago in [23]. Their mathematical relation with models of associative memory, such as
the ones proposed by Little [18] or Hopfield [16], was noted at the very early stage of
the theory, see [15]. Indeed, exploiting the product structure of the RBM distribution
integrating out the hidden layer, one can analyse the corresponding model of associ-
ative memory, see [4, 9, 27]; the simplest example is the Hopfield model, obtained by
an RBM with Gaussian hidden prior by a Hubbard–Stratonovic transformation. The
present work aligns with this line of research.
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Keywords: restricted Boltzmann machines, associative memories, capacity bounds.
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We will be interested in particular to the possibility of reconstructing a pattern just
looking at the typical configurations of the visible layer of a RBM. This operation is
also called pattern retrieval. The question is relevant for the understanding of how the
hidden layer affects the configurations of the visible units in the RBM distribution. In
the last years the main focus on RBMs has been on learning the unknown probability
distribution underlying a given dataset [8, 10, 13, 14]. For the practitioner, learning a
RBM amounts to fitting the true law of the data by tuning the weights in the density
(1.1) and this is typically done by gradient ascent on the Kullback–Leibler divergence.
After the learning process, deep local minima of the energy function are supposed to
fall close to the datapoints. Therefore, the analysis of learning in RBMs consists of
two tasks: understanding the complex landscape of the energy in the vicinity of the
datapoints at given weights and devising good optimisation algorithms to fit the data.
The investigation of each of these steps is a true mathematical challenge. In these
respects pattern retrieval represents a simplified setting to study at first instance, as
the roles of the datapoints and of the weights is undertaken by the same objects, the
patterns. So, there is no optimisation, but one only has to look at the energy landscape
in the vicinity of the patterns.

More precisely, we study the retrieval of i.i.d. binary patterns as the distribution
of the hidden layer varies. We do it by looking at the local minima of the energy func-
tion, in what is called in statistical physics a zero temperature limit, in which retrieval
is maximised (see, e.g., [2]). We prove that the tail of the hidden prior distribution
determines the retrieval capability of RBMs. More precisely, for priors with tails ran-
ging from exponential to Gaussian we prove that deep local minima are well localised
about the patterns, while if the tails of the hidden prior decay faster than Gaussian,
we show that the patterns cannot be retrieved well in any case. RBMs whose hidden
priors have Gaussian tails (a class including the Hopfield model) represent special
threshold cases which we treat separately in either the positive (Theorem 1.1) and the
negative (Theorem 1.2) result below.

1.1. Setting

We consider RBMs with i.i.d. Bernoulli ˙1 visible units �1; : : : ; �N1 and symmetric
i.i.d. hidden units z1; : : : ; zN2 distributed according to some prior � . We allow a
certain freedom in the choice of the hidden prior � , for which we only require that

�.jzj � t / ' e�jt j
q

for some q > 1: (1.2)

Let �.1/; : : : ; �.N2/ denote independent random vectors, that we call patterns, with
N1 centred i.i.d. ˙1 components. We consider RBM probability distributions with
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(unnormalised) density (with respect to the priors)
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where ˇ > 0 is a parameter usually called inverse temperature and q� WD min.q; 2/.
We will consider the ratio between the number of visible and hidden units as follows:
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1
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C

1

q�
D 1:

This is a parameter which will be considered as a constant in the subsequent analysis.
The normalisation factors in (1.3) and (1.4) are unusual. For instance, in (1.3), typ-
ically from a spin glass perspective one adopts a more familiar normalisation with
p
N 1, while for learning one leaves the energy unnormalised (as the best normal-

isation is learned with the weights). Our choice ensures that either the energy of the
single pattern and the global maximum of (1.3) as ˇ!1 stay bounded as N1 grows
to infinity and scale linearly with ˛ (with constants depending on q). The aim of
Section 2 is to make this point more precise.

Integrating out the hidden layer in (1.3), we get a probability distribution over the
visible units. Its density is written asZ
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where
u.x/ WD logEŒexz1 �:

We are interested in studying the local maxima of the right-hand side of (1.5) as ˇ
is very large, but N1; N2 finite. The main issue is that the dependency on ˇ in the
exponent is not multiplicative and it is not clear which function should be analysed in
the limit ˇ !1 (compare it, for instance, with the easier cases of the Sherrington–
Kirkpatrick model [1] or the Hopfield model [20], where ˇ is just a multiplicative
parameter).

Exploiting a reduction argument introduced in [4], we show how to single out
an effective energy function which captures the RBM landscape at zero temperature.
The following simple observation starts our considerations: for any z1 such that (1.2)
holds for some q > 1, we have

c.q/kz1k
p
 q
� lim
x!1
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jxjp
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p
 q
; (1.6)



G. Genovese 4

where 0 < c.q/ � C.q/ <1 are universal constants depending only on q and p is
the Hölder conjugate exponent of q. For a definition of the Orlicz norms k � k q , see
(1.11) below. The proof of (1.6) is immediate, we write

EŒexz1 � D

Z 1
0
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�1 log�/ '
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and the last integral is finite uniformly in x by the Young inequality. Taking the log
on both sides and passing to the limit, we get (1.6).

Thus, by (1.6), as ˇ ! 1, we are led to consider the following p-spin energy
function [7, 12]:

H .p/.� I �/ WD �
1

N
�.p/
1

X
�2ŒN2�

j.�.�/; �/jp; �.p/ WD 1C p �
p

pC
(1.7)

(here we include the usual normalisation factor 1=N1 of the internal energy directly
in the definition of H .p/). To fix the ideas, �.p/ D p for p � 2 and �.p/ D 1C p

2

for p � 2.

1.2. Main results

The focus of this paper is to study the location of the minima of (1.7) on ¹�1; 1ºN1

close to the pattern configurations in the limitN1;N2!1, while ˛ remains constant.
Hence, the main objects of interest will be the following two sets:

LMN1 WD
®
local minima of (1.7)

¯
;

dLM.�/N1 WD
®
local minima N� of (1.7) such that H .p/.�.�/I �/ �H .p/. N� I �/ > 0

¯
:

Below, Hamming.a;b/ denotes the Hamming distance between a;b (i.e., the num-
ber of different entries) and yBN1�;R is the ball in this metric centred at the �th pattern
with radius R. Throughout the paper, we will repeatedly use that two patterns are
typically separated by N1=2 flips so that yBN1

�;bN1=2c
and yBN1

�0;bN1=2c
typically do not

overlap. We say that the event A occurs with high probability (w.h.p.) if for all x > 0,
for all sufficiently largeN1 it holds P.A/� 1�N�x1 . S W Œ0; 1� 7!R denotes the coin
tossing entropy

S.r/ WD �r log r � .1 � r/ log.1 � r/: (1.8)
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Our first result states that the error of reconstructing a given pattern is very small
in terms of the number of visible units N1 if the decay of the hidden prior (1.2) is
slower than Gaussian, while a finite fraction of bits cannot be retrieved for q D 2.

Theorem 1.1. Let q 2 .1; 2/. There exists r0 2 .0; 12 � such that w.h.p.

max
�2ŒN2�

max
�2dLM.�/

N1
\ yB

N1
�;br0N1c

Hamming.�; �.�// � .logN1/
q�1
2�q : (1.9)

Let q D 2. For any r 2 .0; 3=8/ if ˛ < min
�
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�
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�2dLM.�/

N1
\ yB

N1
�;b3N1=8c

Hamming.�; �.�// � rN1:

Theorem 1.1 identifies the models with q < 2 as excellent in pattern reconstruc-
tion: there are deep minima located few flips away from the patterns (in fact, polylog
flips, see (1.9)) and no deeper minima appear in an extended region. We observe that
albeit we formulate Theorem 1.1 in terms of local minima, we proved a stronger state-
ment regarding all points in a Hamming ball about the pattern. Namely, we show that
exploring all the points in a large Hamming ball centred at any pattern, to find a point
with lower energy we need to go very close to the centre.

We do not attempt here at precisely characterising the radius r0, the basin of attrac-
tion of the patterns, the maximal ˛ allowing retrieval or any of the constants in the
play. Indeed, the numbers appearing in the case q D 2 of the above Theorem carry no
special meaning.

Local minima are not directly related to the typical configurations of (1.3). How-
ever, it is well known that any algorithmic search of typical configurations will finish
to find a hopefully representative local minimum. This can be done by the usual FLIP

algorithm, that is greedy flipping of one units at time decreasing the energy until no
more decreasing is possible. Therefore, dLM.�/N1 has a direct interpretation in terms of
retrieval. Take, for instance, q < 2. By the proof of Theorem 1.1, it follows that any
FLIP search initialised, for instance, at �.�/ will end up in a point of dLM.�/N1 falling

only .logN1/
q�1
2�q flips away from the pattern, which means that only few bits are

misretrieved.
Somewhat in the opposite direction, the next result shows that for q > 2 in (1.2),

the local minima of (1.7) are quite far from the patterns.

Theorem 1.2. Let q � 2, r 2 Œ0; 1
2
� and let ˛q.r/ WD S.r/ for q ¤ 2 and ˛2.r/ WD

S.r/=.1 � 2r/2. There is a numerical constant f .q/ > 0 such that every r 2 .0; 1
2
/

and for all ˛ � f .q/˛q.r/ we have w.h.p.

Hamming
�
LMN1 ; �

.�/
�
� brN1c: (1.10)
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For sake of brevity, the value of the numerical constant f .q/ is not specified in the
statement of the previous theorem, but can be determined following its proof. Again,
we stress that we did not aim at optimising the constants.

According to Theorem 1.2, if q > 2, one could still hope for retrieval with a very
small amount of hidden variables, i.e., for ˛ small enough (indeed for ˛ D 0 recon-
struction is possible, see [4]), but for ˛ larger than a given constant no recovery is
allowed. For q D 2, the situation improves a bit in the sense that pattern reconstruc-
tion becomes less and less efficient as ˛ grows.

The paper [4] showed that RBMs with hidden prior interpolating between a Gaus-
sian and a bimodal symmetric distribution exhibit retrieval at finite ˛ > 0, which
disappears in the degenerate case when the Gaussian part is switched off. It is also
argued that such a lack of retrieval should persist at least for any compactly suppor-
ted hidden prior. This is demonstrated using non-rigorous replica computations and
numerics. We give here the first mathematical validation of these findings, as Theorem
1.1 (for q D 2) implies pattern retrieval if in the interpolating prior the Gaussian part
is present, whatever small, and Theorem 1.2 is a strong indication for lack of retrieval
for hidden prior with a Bernoulli˙1 distribution (for which we should read q D1).

1.3. Related literature

The results presented here mark a neat difference in the retrieval capabilities of RBMs
with hidden priors (1.2) with q < 2 (very good capabilities) and q > 2 (not so good)
with a transition at the Gaussian tail case q D 2. As already remarked, a notable
instance of the case q D 2 is the Hopfield model, for which a similar analysis at zero
temperature was done in [20] (analog of Theorem 1.1), [19] (analog of Theorem 1.2)
and [25] in the attempt of proving the picture of [2]. When comparing these papers to
ours, we underline that we do not seek to characterise any of our estimates with the
best possible constants, which was instead a relevant component of all these previous
papers. In particular, by Theorem 1.1, it follows that in the case q D 2 we observe
retrieval for ˛ � 0:04, much less than the threshold ˛ � 0:14 computed by Amit,
Gutfreund, and Sompolinsky. However, from our analysis, it is clear that this critical
threshold is not a specific of the Hopfield model, but it can be achieved universally
for all the models whose hidden priors have Gaussian tails.

We exploit and make mathematically precise the heuristics of [4]. Namely, we
use that the tail of the hidden prior determines the behaviour for large argument of
the energy function of the associative network (around zero it is always quadratic). It
is exactly this asymptotic that governs retrieval: the more convex the better. Math-
ematically speaking the introduction of the hidden layer is a way to linearise the
energy function (over the visible units) and different prior distributions for the hid-
den layer correspond to different associative networks. Similar ideas have been used
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by [4, 9, 22, 26, 27] to study the performance of the RBMs with varying hidden unit
statistics.

The FLIP algorithm is a very natural choice to explore the energy landscape of
RBMs and indeed, it is essentially the original network dynamics proposed in [16].
This gives a nice connection with the local max-cut problem as analysed, for instance,
in [11] and [3], even though here we exploit crucially the presence of the patterns,
which constitute a special class of local minima. This is even more clear by comparing
with the analysis for the Sherrington–Kirkpatrick model of [1].

Many other dynamics have been proposed alternative to the FLIP algorithm mainly
for the Hopfield model and we will not give here an account on that (see the recent
work [6] and the references therein). We just mention that the dynamics analysed in [5,
27], which is a zero-temperature version of the alternate Gibbs sampling typically
used to train RBMs, is in spirit very close to our zero-temperature reduction.

1.4. Notations

Throughout the paper, p; q � 1 will always be Hölder conjugates, that is, 1
p
C

1
q
D 1,

and similarly for q�; pC, with q� WD min.2; q/, pC WD max.2; p/. C; c everywhere
denote positive absolute constants which may change from formula to formula. We
write X . Y if X � CY and X ' Y if Y . X . Y . Sometimes, we write'a or .a
to stress the dependence of the constants C above on a parameter a. We indicate by
.�; �/ the inner product in RN1 or RN2 and the meaning will be always clear from the
context and by k � kp the p̀-norms. 1 may represent the vector in RN1 or in RN2 with
all entries equal to 1. B.q/N is the `q centred ball of radius one in RN . ySN1�1�;R ; yB

N1
�;R

denote, respectively, the N1-dimensional Hamming sphere and ball centred at �.�/

of radius R. If v 2 RN and J � ŒN �, we denote by vJ a vector in RjJ j such that
.vJ /i D vji if J D ¹j1; : : : ; jjJ jº. To any J � ŒN � we also associate a FLIP operator
FJ defined by .FJ v/i D �vi if i 2 J and .FJ v/i D vi if i … J . We will use the
following Orlicz norms:

kZk r WD inf

´
� > 0 W E

"
 r

 
jZj

�

!#
< 2

µ
; r > 0; (1.11)

where  r.x/ D ex
r

for any x > 0 for r � 1, while for r 2 .0; 1/ there are c.r/; x.r/
such that for x 2 .0; x.r// it is  r.x/ D c.r/x. We underline that, setting qs WD
sup¹q0 > 1 W kZk q0 <1º, we have P.jZj � t / ' e�jt j

q
s (we convey that bounded

random variables have finite  1-norm). Bearing in mind the definition (1.8), we will
often use the standard bound for r 2 Œ0; 1�:

Card ySN1�1
�;brN1c

D

�
N1

brN1c

�
� eN1S.r/: (1.12)
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We denote the transpose patterns Q�.i/ by Q�.i/� WD �
.�/
i , i 2 ŒN1�, � 2 ŒN2�. Sometimes,

we write O� WD �=
p
N1. Ac is the complement of the set A. We say that the event A

occurs with high probability (w.h.p.) if for all x > 0, for all sufficiently large N1, it
holds P.A/ � 1 �N�x1 .

2. Zero temperature reduction

In this section, which is in part independent on the rest of the paper, we study some
interesting properties of the Hamiltonian (1.7).

First, we show that the single pattern energy is close to the ground state, so provid-
ing a motivation for the normalisation factors in (1.3) and (1.4). We give a lower bound
for the ground state energy linear in ˛. To do so, we do not actually need binary pat-
terns.

Proposition 2.1. Let �.1/; : : : ; �.N2/ be independent vectors in RN1 with i.i.d. centered
sub-Gaussian entries. It holds for p � 1 that

inf
�2¹�1;1ºN1

H .p/.� I �/ &p �.1C ˛/ (2.1)

with probability larger than 1 � e�c˛
2
p N1 .

To prove Proposition 2.1, we need the following auxiliary lemma.

Lemma 2.1. Let �.1/; : : : ; �.N2/ be independent vectors in RN1 with i.i.d. centred
sub-Gaussian entries. Let p � 1. For all t &p .1C ˛/

1
p , we have

P

 
1

N
max.0; q�22q /
1

sup
�2 1p

N1
¹�1;1ºN1

sup
�2B

.q/
N2

.�.�/; �/��
p
N1

� t

!
� 2e�ct

2N1 ;

where c > 0 depends only on the distribution of �.1/1 .

Proof. We introduce the transpose patterns Q�.i/ by Q�.i/� WD �
.�/
i , i 2 ŒN1�, � 2 ŒN2�.

First of all, we note that

1

N
max.0; q�22q /
1

sup
�2 1p

N
¹�1;1ºN1

X
i2ŒN1�

X
�2ŒN2�

�
.�/
i �i��
p
N1

D
1

N1

X
i2ŒN1�

j. Q�.i/; �/j

N
max.0; q�22q /
1

: (2.2)

Moreover, since for all � 2 B.q/N2

k�k2 � N
max.0; q�22q /
2 ;
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we have

P

 
1

N
max.0; q�22q /
1

j. Q�.i/; �/j � t

!
� 2e

�
t2N

max.0; q�2q /

1

2N
max.0; q�2q /

2
k�
.1/
1
k2
 2 :

The right-hand side of (2.2) is the sum of independent sub-Gaussian random variables
with

EŒj. Q�.1/; �/j� �

q
EŒj. Q�.1/; �/j2� . N

max.0; q�22q /
2 ;

thus for all � 2 B.q/N2 for t & 1, we have

P

 
1

N1

X
i2ŒN1�

j. Q�.i/; �/j

N
max.0; q�22q /
1

� t

!
� 2e

�
t2N

1Cmax.0; q�2q /

1

2N
max.0; q�2q /

2
k�
.1/
1
k2
 2

for some c > 0 depending only on the distribution of �.1/1 .
Next, we cover B.q/N2 with a number of balls in RN2 with some small radius " > 0.

For p � 2, we can use Euclidean balls, and the Sudakov inequality gives a bound on
the minimal number N.BN2q ; "B

N2
2 / of such balls

N.BN2q ; "B
N2
2 / � ecN

2
p
2

(here we used that for a Gaussian vector g, EŒmax
�2B

N2
q

.�; g/� D EŒkgkp� ' N
1
p

2 ).

For p 2 .1; 2/ we use `q-balls and we have

N.BN2q ; "BN2q / � ecN2

(in the two estimates above the constants c depends on " in a way we do not keep
track of).

Assume now .1C ˛/
1
p .p t (this is to take into account also the behaviour for

small ˛). By the union bound for p � 2, we get

P

 
1

N
max.0; q�22q /
1

sup
�2 1p

N
¹�1;1ºN1

sup
�2B

.q/
N2

. O��; �/ � t

!
� 2ecN

2
p
2
�cN1t

2

� 2e�ct
2N1 :

Similarly, for p 2 .1; 2/,

P

 
1

N
q�2
2q

1

sup
�2 1p

N
¹�1;1ºN1

sup
�2B

.q/
N2

. O��; �/ � t

!
� 2e

cN2�c
�
N1
N2

� q�2
q
N1t

2

� 2e�ct
2N1 :
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Proof of Proposition 2.1. The role of hidden variables at zero temperature is played
by duality: X

�2ŒN2�

j.�.�/; �/jp D

ˇ̌̌̌
ˇ sup
�2B

.q/
N2

X
�2ŒN2�

.�.�/; �/��

ˇ̌̌̌
ˇ
p

; p � 1:

Therefore (here we shorten O� WD �=
p
N1),

inf
�2¹�1;1ºN1

H .p/.� I �/ D � sup
�2 1p

N1
¹�1;1ºN1

ˇ̌̌̌
ˇ 1

N
max.0; q�22q /
1

sup
�2B

.q/
N2

X
�2ŒN2�

. O�.�/; �/��

ˇ̌̌̌
ˇ
p

D �

ˇ̌̌̌
ˇ 1

N
max.0; q�22q /
1

sup
�2 1p

N1
¹�1;1ºN1

sup
�2B

.q/
N2

X
�2ŒN2�

. O�.�/; �/��

ˇ̌̌̌
ˇ
p

(2.3)

by symmetry. It suffices to focus on the quantity inside the modulus above, which is
dealt in Lemma 2.1. We have for all t &p .1C ˛/

1
p

P

 
1

N
max.0; q�22q /
1

sup
�2 1p

N
¹�1;1ºN1

sup
�2B

.q/
N2

. O��; �/ � t

!
� 2e�ct

2N1 :

Combining (2.3) with the bound above we obtain the statement.

Now, we show that the patterns have energy of the same order in ˛ of the global
minimum, even though we can already observe a difference between the models with
p � 2 and p < 2. We deal with ˙1 binary patterns for simplicity, but a similar argu-
ment can be easily repeated for symmetric patterns with minor modifications. We
have

H .p/.�.1/I �/ D �
k�.1/k

p
2

N
1Cp�p=pC
1

�

N2X
jD2

j.�.1/; �.j //jp

N
1Cp�p=pC
1

:

This quantity concentrates around its average as N1 grows.

Lemma 2.2. Take t > 0 uniformly in N1, small enough. It holds

P
�ˇ̌
H .p/.�.1/I �/ �EŒH .p/.�.1/I �/�

ˇ̌
� t

�
�

´
exp.�cN1t2/; p 2 .1; 2�;

exp.�cN1t
2
p /; p > 2:

Proof. We write

H .p/.�.1/I �/ D �
k�.1/k

p
2

N
1Cp�p=pC
1

�

N2X
�D2

j.�.1/; �.�//jp

N
1Cp�p=pC
1

:
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It suffices to focus on the second summand on the right-hand side above. We have by
independence

P

 ˇ̌̌̌
ˇ N2X
�D2

j.�.1/; �.�//jp

N
p
2

1

�E

"
j.�.1/; �.�//jp

N
p
2

1

#ˇ̌̌̌
ˇ � tN 1Cp=2�p=pC

1

!

D P

 ˇ̌̌̌
ˇ N2X
�D2

j.1; �.�//jp

N
p
2

1

�E

"
j.1; �.�//jp

N
p
2

1

#ˇ̌̌̌
ˇ � tN 1Cp=2�p=pC

1

!
; (2.4)

where 1 is the constant vector with all entries equal to 1. The random variables

T .�/p WD
j.1; �.�//jp

N
p
2

1

�E

"
j.1; �.�//jp

N
p
2

1

#
; � D 2; : : : ; N2

are i.i.d. with
kT .�/p k 2

p

' 1:

Thus, by Proposition A.1 with ` D 2=p, we have

(2.4) �

8<: exp
�
� cN1 min.t2; t

2
p /
�
; p 2 .1; 2�;

exp
�
� cN1 min.t2N p�2

1 ; t
2
p /
�
; p > 2;

and the proof is complete.

Moreover, we have

jEŒH .p/.�.1/I �/�j ' �˛
p

2
�

�
p

2

�
�

1

N
1�p=pC
1

:

In fact,

EŒj.�.1/; �.�//jp� D E

� Z
d�P.�.�/ W

ˇ̌
.�.1/; �.�//

ˇ̌
� �1=p/

�
' EŒk�.1/k

p
1 �

Z 1
0

d�e��
2
p
D
p

2
�

�
p

2

�
N

p
2

1 : (2.5)

Therefore,

H .p/.�.1/I �/ ' �
p

2
�

�
p

2

�
˛ �

1

N
1�p=pC
1

with very high probability. We see that if p � 2 this value is really of the same order
of the ground state, while if p 2 .1; 2/ for ˛ small and N1 large the patterns have
higher energy.
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3. Retrieval for p � 2

In this section, we prove Theorem 1.1. We look at all configurations reachable from
�.�/ by brN1c flips and compare the energy of the pattern with the minimal energy
of such configurations. By symmetry of the patterns, we can reduce to look at � D 1
and we may and will assume that 1, i.e., the vector with entries all equal to one, lies
in ySN1�1

1;brN1c
.

Without further explanation, we introduce some more notations. For any point
� 2 ¹�1; 1ºN1 and subset of indices J � ŒN1�, we set

X
.�/
J .�/ WD

1
p
N1
.�
.�/
J ; �J /; Y

.�/
J .�/ WD

1
p
N1
.�
.�/
J c ; �J c / (3.1)

and X .�/J .1/ DW X
.�/
J , Y .�/J .1/ DW Y

.�/
J . We conveniently let

p̂.x; y/ WD jx C yj
p
� jx � yjp; N̂

p.r/ WD p̂.r; 1 � r/ D 1 � .1 � 2r/
p > 0

(3.2)
(recall that we consider r 2 .0; 1=2/). We have the following useful representation
(recall the definition of the FLIP operator FJ in Section 1.4).

Lemma 3.1. Let r 2 .0; 1
2
/, J � ŒN1� with jJ j D brN1c. It is

H .p/.�.1// �H .p/.FJ �
.1//

D �
1

N
pC�p

2

1

N̂
p.r/ �

1

N
pC
2

1

N2X
�D2

p̂.X
.�/
J .�.1//; Y

.�/
J .�.1///: (3.3)

Proof. Compute

H .p/.�/ �H .p/.FJ�/

D �
1

N
�.p/
1

X
�2ŒN2�

�ˇ̌̌
.�
.�/
J ; �J /C .�

.�/
J c ; �J c /j

p
� j � .�

.�/
J ; �J /C .�

.�/
J c ; �J c /

ˇ̌̌p�
D �

1

N
�.p/�p2
1

X
�2ŒN2�

p̂.X
.�/
J .�/; Y

.�/
J .�//

by the definitions (3.1), (3.2). We have �.p/ � p
2
D 1C p

2
�

p
pC
D

pC
2

. Take now

v D �.1/. An easy computation gives

X
.1/
J .�.1// D

k�
.1/
J k

2
2

p
N 1

D
jJ j
p
N 1

D r
p
N1;

Y
.�/
J .�.1// D

k�
.1/
J c k

2
2

p
N1
D
jJ cj
p
N1
D .1 � r/

p
N1:
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Thus,
1

N
pC
2

1

p̂.X
.1/
J .�.1//; Y

.1/
J .�.1/// D

1

N
pC�p

2

1

p̂.r; 1 � r/;

and (3.3) follows.

The necessary tail estimates in order to prove Theorem 1.1 are given in the next
lemmas.

Lemma 3.2. Let r 2 .0; 1
2
/, J � ŒN1� with

jJ j D brN1c;

¹X
.�/
J º�2ŒN2�n¹1º and ¹Y .�/J º�2ŒN2�n¹1º are independent sub-Gaussian random vari-

ables, independent one from each other, with

kX
.�/
J k 2 �

r
3r

2
; kY

.�/
J k 2 �

r
3.1 � r/

2
: (3.4)

Moreover, ¹ p̂.X
.�/
J ; Y

.�/
J /º�2ŒN2� are i.i.d.  2=p r.vs. with


p̂.X

.�/
J ; Y

.�/
J /



 2p
 2=p

� 3
p
r.1 � r/: (3.5)

Proof. The proof of (3.4) is standard. We proceed only forX .�/, as for Y .�/ is similar.
We set

Q� WD �
p
N1=2brN1c and zX .�/ WD .�

.�/
J ; 1/=

p
brN1c:

We let also g � N .0; 1/ and N� be a symmetric Bernoulli ˙1 variable, whose expect-
ation values are denoted by Eg and E N� . We have

E
h
e
jX
.�/
J
j2

�2

i
D E

h
e
j zX.�/j2

Q�2

i
D EEg

h
e
g zX.�/

Q�

i
D Eg

h�
E N�

h
e

g N�
Q�
p
brN1c

i�brN1ci
D Eg

h
e
brN1c log cosh. g

Q�
p
brN1c

/
i
� Eg Œe

g2

2 Q�2 � D .1 � Q�2/�
1
2 :

Since

.1 � Q�2/�
1
2 D

�
1 �

1

2
�2

N1

brN1c

�� 12
< 2

for � <
q
3r
2

we recover the first one of (3.4).
To prove (3.5), we bound

E
h
e.
ˆp
t /

2
p
i
� E

�
e

.jX
.�/
J
jCjY

.�/
J
j/2

t
2
p

�
�
1

2
E

�
e

2jX
.�/
J
j2

t
2
p

�
C
1

2
E

�
e

2jY
.�/
J
j2

t
2
p

�
;

whence 


p̂.X

.�/
J ; Y

.�/
J /



 2p
 2=p

� 2kX
.�/
J k 2kY

.�/
J k 2 :



G. Genovese 14

We shorten in the next statement P�.�/ D P.� j �/.

Lemma 3.3. Let r 2 .0; 1
2
/, p � 2, t D t .r/ WD 1 � .1 � 2r/p � r

p
2 . Take any � 2

yS
N1�1

1;brN1c
. If

˛ � 31�pN
p�2
2

1

�
r

1 � r

�p�1
2

; (3.6)

then

P�.1/
�
H .p/.�.1// �H .p/.�/ � �t

�
� exp

�
�
N

p
2

1

24˛

�
r

1 � r

�p
2
�
; (3.7)

and otherwise,

P�.1/
�
H .p/.�.1// �H .p/.�/ � �t

�
� exp

�
�
1

24
N1

r
r

1 � r

�
: (3.8)

Remark 3.1. Thinking ofN1 very large, with an abuse of notation, we will say in the
sequel that a property occurs for all ˛ > 0 in case it does for all ˛ & N�x1 for some
x > 0. Therefore, if r > 0 uniformly in N1, i.e., we flip a number of bits proportional
to N1, we have for p > 2 the tail (3.8) for all ˛ > 0 and for ˛ .

p
r for p D 2. A

sub-linear number of flips corresponds to take r ' N�x1 for some x 2 Œ0; 1� (modulo
log-corrections, see below). In this case, we see that if x < p�2

p�1
, the estimate (3.8)

still holds for any ˛ > 0, while otherwise we have (3.7).

Proof. In Lemma B.1, it is proven t .r/ > 0 for any r 2 .0; 1=2/. It is clear that any
� 2 yS

N1�1

1;brN1c
can be written as FJ �.1/ for some index set J of brN1c elements (indeed

J D ¹i 2 ŒN1� W �i ¤ �
.1/
i º). Then, by (3.3), we have

P�.1/.H
.p/.�.1// �H .p/.�/ � �t /

D P�.1/

 
�

N2X
�D2

p̂.X
.�/
J .�.1//; Y

.�/
J .�.1/// � N

p
2

1 .
N̂
p.r/ � t /

!

D P�.1/

 
�

N2X
�D2

p̂.X
.�/
J ; Y

.�/
J / � .N1r/

p
2

!

D P

 
�

N2X
�D2

p̂.X
.�/
J ; Y

.�/
J / � .N1r/

p
2

!
; (3.9)

because of independence of the patterns and p̂.r; 1 � r/ � 0.
Note that y > 0 is equivalent to 0 � t < N̂p.r/. By Lemma 3.2, ¹ p̂.X

.�/
J ;

Y
.�/
J /º�2ŒN2� are centred i.i.d. r.vs. which fit the assumptions of Proposition A.1 below
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(with ` D 2=p 2 .0; 1�). Therefore,

(3.9) � exp
�
�
1

24
min

�
N
p
1 r

p
2

3p�1N2.1 � r/
p
2

;
N1
p
r

p
1 � r

��
:

The value of this minimum depends on ˛. We take the first term if (3.6) is fulfilled;
otherwise, we take the second one.

Now, we are ready for the main proof.

Proof of Theorem 1.1. We shorten

D�;N1.r0/ WD
®
� 2 yB

N1
�;br0N1c

W H .p/.�.�/I �/ � H .p/.� I �/
¯
; (3.10)

and note that since for any � 2 ŒN2�

dLM.�/N1 \
yB
N1
�;br0N1c

� D�;N1.r0/;

it is

P
�
8� 2 ŒN2�dLM.�/N1 \

yB
N1
�;br0N1c

� yB
N1
�;R

�
� P

�
8� 2 ŒN2�D�;N1.r0/ � yB

N1
�;R

�
:

(3.11)
Let us introduce the sets

BarN1;N2;p.n/ WD
²

min
�2ŒN2�

min
�2 yS

N1�1
�;n

H .p/.�/ �H .p/.�.�// � t .n/

³
on which the minimal energy gap of n flips from the patterns is a given t .n/. Write
now for r 2 .0; 1

2
/, n D brN1c and t .n/ D t .r/ D t . We take some r0 2 .0; 1=2/ to

be specified later. Then, bearing in mind (3.11), the crux is

P.8� 2 ŒN2�D�;N1.r0/ � yB
N1
�;R/ � P

 
br0N1c\
nDbRc

BarN1;N2;p.n/

!

� 1 �

br0N1cX
nDbRc

P.BarcN1;N2;p.n//

� 1 �N1 min
bRc�n�br0N1c

P.BarcN1;N2;p.n//:

(3.12)

By the standard estimate (1.12) and the union bound, we have

P.BarcN1;N2;p.n// D P
�

min
�2ŒN2�

min
�2 yS

N1�1
�;n

H .p/.�/ �H .p/.��/ � t

�
� N2 exp.N1S.r//E

"
sup

�2 yS
N1�1

1;brN1c

P�.1/.H
.p/.�.1// �H .p/.�/ � �t /

#
:
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The probabilities appearing in the last line are evaluated using Lemma 3.3 with
the same choice t D 1 � .1 � 2r/p � r

p
2 .

Let us first deal with p > 2. We take r0 2 .0; 12 � such that for all r 2 Œ0; r0� it
is 25S.r/ �

p
r=.1 � r/ and t .r/ D 1 � .1 � 2r/p � r

p
2 increases. Bearing in mind

Remark 3.1, we let xp WD p�2
p�1

and consider different regimes. If n > bN 1�xp
1 c then

Lemma 3.3 yields for all ˛ > 0

P.BarcN1;N2;p.n// � N2 exp
�
N1

�
S.r/ �

p
r

24
p
1 � r

��
� N2e

�c
p
rN1 ' N2e

�c
p
nN1 : (3.13)

Thus,

min
bN

1�xp
1

c<n�br0N1c

P.BarcN1;N2;p.n// � N2e
�cN

1�
xp
2

1 : (3.14)

For n < bN 1�xp
1 c, Lemma 3.3 gives for all ˛ > 0

P.BarcN1;N2;p.n// � N2e
N1S.r/�

N

p
2
1
r

p
2

24˛ � N2e
nj logN1j� n

p
2

24˛ : (3.15)

Thus, for all " > 0 sufficiently small,

min
bN2"
1
c<n<bN

1�xp
1

c

P.BarcN1;N2;p.n// � N2e
�cN

"p
1 : (3.16)

Moreover, by (3.15), we see that also a poly-log number of flips is allowed:

min
b.logN1/

2
p�2 c<n�bN2"

1
c

P.BarcN1;N2;p.n// � N2e
�c.logN1/

1C 2
2�p

: (3.17)

Finally, we look at n ' N 1�xp
1 . In this case, we have to fix some ˛0 > 0, and we use

for ˛ � ˛0 the bound (3.13) and for ˛ > ˛0 the bound (3.15). We have

min
n'bN

1�xp
1

c

P.BarcN1;N2;p.n// � N2e
�cN

1�
xp
2

1 : (3.18)

Combining (3.12) with R D .logN1/
2
p�2 and (3.14), (3.16), (3.17), and (3.18),

we get

P

�
8� 2 ŒN2�dLM.�/N1 \

yB
N1
�;br0N1c

� yB
N1

�;b.logN1/
2
p�2 c

�
�1�N1N2e

�c.logN1/
1C 2

2�p

(3.19)
whence (1.9) follows.
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Now, we look at pD 2 and take r0D 3
8

, so that t .r/ is increasing for r 2 .0; 3
8
/ (the

number 3=8 carries no special meaning). If ˛ � min
�
1
3

q
r
1�r

;
p
r

25S.r/

�
then Lemma

3.3 gives

P.BcN1;N2;p.n// � N2 exp
�
N1

�
S.r/ �

p
r

24˛
p
1 � r

��
� N2e

�c
p
nN1 :

Thus, by (3.12) with R D brN1c and r 2 .0; 3
8
/,

P
�
8� 2 ŒN2�dLM.�/N1 \

yB
N1
�;br0N1c

� yB
N1
�;brN1c

�
� 1 �N1N2e

� 14

p
rN1 ; (3.20)

whence the p D 2 part of Theorem 1.1 follows.

4. Absence of retrieval for p 2 .1; 2�

In this section, we present the proof of Theorem 1.2.
We set for brevity for� 2 ŒN2� n ¹1º, p 2 .1;2�, k 2 ŒN1�, J � ŒN1�, � 2 ¹�1;1ºN1

W
.�/

p;k;J
.�/ WD

2p
p
N1
�
.�/

k
vk sign.Z.�/J .�//jZ

.�/
J .�/jp�1; (4.1)

where (recall the definition of the FLIP operator FJ in Section 1.4)

Z
.�/
J .�/ WD

1
p
N1
.�.�/; FJ�/: (4.2)

Next, we give the central technical lemma employed in the proof of Theorem 1.2.
In the sequel, we shorten J C k WD J [ ¹kº if k … J and J � k WD J n ¹kº if k 2 J .

Lemma 4.1. Let r 2 .0; 1
2
�, J � ŒN1� with jJ j D brN1c. For any p 2 .1; 2�, we have

N1.H
.p/.FJ˙k�

.1// �H .p/.FJ �
.1/// D �

N2X
�D2

W
.�/

p;k;J
.�.1// � ˛&N

1�p2
1

˙
2p.1�2r/p�1

N
1�p2
1

CO

�
1

N
2�p2
1

�
; (4.3)

where & is a strictly positive and uniformly bounded random variable depending on
¹�
.1/

k
�
.�/

k
º�D2;:::;N2 and ¹Z.�/J .�.1//º�D2;:::;N2 . Setting

d.p/ WD 2p
�
2p � 1 � 2p�1

�
p � 1

p

�p�1
3p � 2

p

�
;

we have Cp > & � d.p/ for any realisation of & and C > 0 an absolute constant.
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In particular,

N1

4
.H .2/.FJ˙k�

.1// �H .2/.FJ �
.1///

D �

X
��2

�
.1/

k
�
.�/

k
p
N1

Z
.�/
J .�.1// � ˛ ˙ .1 � 2r/�

1

N1
: (4.4)

Proof. By Lemma 3.1, we have for any k … J

N1.H
.p/.FJCk�

.1// �H .p/.FJ �
.1///

D N1
�
H.FJCk�

.1// �H.�.1// � .H.FJ �
.1// �H.�.1///

�
D N

p
2

1

�
N̂
p

�
r C

1

N1

�
� N̂p.r/

�
C

N2X
�D2

p̂

�
X
.�/
JCk

.�.1//; Y
.�/
JCk

.�.1//
�

�

N2X
�D2

p̂

�
X
.�/
J .�.1//; Y

.�/
J .�.1//

�
D N

p
2

1

�
j1 � 2r jp �

ˇ̌̌̌
1 � 2r �

2

N1

ˇ̌̌̌p�
C

N2X
�D2

�
jZ
.�/
J .�.1//jp �

ˇ̌̌̌
Z
.�/
J .�.1// � 2

�
.�/

k
�
.1/

k
p
N1

ˇ̌̌̌p�
: (4.5)

Similarly, for all k 2 J ,

N1.H
.p/.FJ�k�

.1// �H .p/.FJ �
.1///

D N
p
2

1

�
j1 � 2r jp �

ˇ̌̌̌
1 � 2r C

2

N1

ˇ̌̌̌p�
C

N2X
�D2

�
jZ
.�/
J .�.1//jp �

ˇ̌̌̌
Z
.�/
J .�.1//C 2

�
.�/

k
�
.1/

k
p
N1

ˇ̌̌̌p�
: (4.6)

For p D 2 a straightforward computation gives (4.4) from (4.5) and (4.6).
In general, for p 2 .1; 2/, we have to use Taylor expansion. Let .p/0 WD 1 and

.p/k WD
Qk�1
jD0.p � j / for k � 1. Assuming r 2 .0; 1

2
/,N1 large enough (i.e.,N1.1�

2r/ > 2), we haveˇ̌̌̌
1 � 2r ˙

2

N1

ˇ̌̌̌p
D j1 � 2r jp ˙

2p

N1
j1 � 2r jp�1 C

4

N 2
1

X
k�2

.p/k

kŠ

2k�2.1 � 2r/p�k

N k�2
1

;
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and using j.p/kj � kŠ, we getˇ̌̌̌
4

N 2
1

X
k�2

.p/k

kŠ

2k�2.1 � 2r/p�k

N k�2
1

ˇ̌̌̌
�

4

N 2
1 .1 � 2r/

2�p

X
k�0

2k

..1 � 2r/N1/k

.
1

N 2
1 .1 � 2r/

2�p
:

Therefore,

N
p
2

1

�
j1 � 2r jp �

ˇ̌̌̌
1 � 2r ˙

2

N1

ˇ̌̌̌p�
D �

2p

N
1�p2
1

j1 � 2r jp�1 CO

�
1

N
2�p2
1

�
: (4.7)

On the other hand, for r D 1
2

, this correction term is trivially of order N
�
p
2

1 .
Recall now (4.1) and computeˇ̌̌̌

ˇZ.�/J .�.1//˙ 2
�
.�/

k
�
.1/

k
p
N1

ˇ̌̌̌
ˇ
p

D 1
¹jZ

.�/
J
.�.1//j�2N

� 1
2

1
º

 
jZ
.�/
J .�.1//jp ˙W

.�/

p;k;J
.�.1//

C

X
`�2

.p/`

`Š

jZ
.�/
J .�.1//jp

.Z
.�/
J .�.1///`

.˙2�
.�/

k
�
.1/

k
/`

N
`
2

1

!

C 1
¹jZ

.�/
J
.�.1//j<2N

� 1
2

1
º

2p

N
p
2

1

 
1˙

p

2
�
.�/

k
�
.1/

k
Z
.�/
J .�.1//

p
N1

C

X
`�2

.p/`

`Š

 
˙
�
.�/

k
�
.1/

k

2
Z
.�/
J .�.1//

p
N1

!`!
:

Thus,�
jZ
.�/
J .�.1//jp �

ˇ̌̌̌
Z
.�/
J .�.1//˙ 2

�
.�/

k
�
.1/

k
p
N1

ˇ̌̌̌p�
D �W

.�/

p;k;J
.�.1//

� 1
¹jZ

.�/
J
.�.1//j�2N

� 1
2

1
º

X
`�2

.p/`

`Š

jZ
.�/
J .�.1//jp

.Z
.�/
J .�.1///`

.˙2�
.�/

k
�
.1/

k
/`

N
`
2

1

(4.8)

� 1
¹jZ

.�/
J
.�.1//j<2N

� 1
2

1
º

�

�
2p

N
p
2

1

˙
2p

N
p
2

1

�
.�/

k
�
.1/

k

2
Z
.�/
J .�.1//

p
N1 � jZ

.�/
J .�.1//jp �W

.�/

p;k;J
.�.1//

�
(4.9)

� 1
¹jZ

.�/
J
.�.1//j<2N

� 1
2

1
º

2p

N
p
2

1

X
`�2

.p/`

`Š
2�`.˙Z

.�/
J .�.1//�

.�/

k
�
.1/

k

p
N1/

`: (4.10)
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The contributions (4.8) and (4.10) are very similar and will be dealt together.
Using that for ` � 2 it is ` � p > 0 and `2.p/` � 2p2`Š we have

j(4.8)j �
2p2

N
p
2

1

X
`�2

`�2: (4.11)

Similarly,

j(4.10)j �
2pC1p2

N
p
2

1

X
`�2

`�2: (4.12)

Furthermore, depending on the value of sign.Z.�/J .�.1///�
.1/

k
�
.�/

k
, we have either

(4.8) D 1
¹jZ

.�/
J
.�.1//j�2N

� 1
2

1
º

1

N
p
2

1

X
`�2

.p/`

`Š

jZ
.�/
J .�.1//jp

jZ
.�/
J .�.1//j`

2`

N
`
2

1

D 1
¹jZ

.�/
J
.�.1//j�2N

� 1
2

1
º

jZ
.�/
J .�.1//jp

N
p
2

1

�

h
.1C 2jZ

.�/
J .�.1//

p
N 1j

�1/p � .1C 2pjZ
.�/
J .�.1//

p
N 1j

�1/
i
� 0;

where equality is achieved only if p D 1, or

(4.8) D 1
¹jZ

.�/
J
.�.1//j�2N

� 1
2

1
º

1

N
p
2

1

X
`�2

.�1/`
.p/`

`Š

jZ
.�/
J .�.1//jp

jZ
.�/
J .�.1//j`

2`

N
`
2

1

D 1
¹jZ

.�/
J
.�.1//j�2N

� 1
2

1
º

jZ
.�/
J .�.1//jp

N
p
2

1

X
`�1

�p
N1Z

.�/
J .�.1//

2

��2`
�

�
.p/2`

2`Š
�
.p/2`C1

2`C 1Š

ˇ̌̌̌p
N1Z

.�/
J .�.1//

2

ˇ̌̌̌�1�
; (4.13)

where we split the sum over even and odd ` � 2 and rename the indices to get the
second identity. The quantity in (4.13) above is non-negative, since for `� 1, .p/2` �
0 and .p/2`C1 � 0, which can be shown by observing that .p/`�3 D .�1/`p.p �

1/
Q`�1
jD2.j � p/ (again the equality is achieved only for p D 1).

Similarly, we have

(4.10) D 1
¹jZ

.�/
J
.�.1//j<2N

� 1
2

1
º

2p

N
p
2

1

X
`�2

.p/`

`Š
2�`jZ

.�/
J .�.1//

p
N1j

`

D 1
¹jZ

.�/
J
.�.1//j<2N

� 1
2

1
º

2p

N
p
2

1

�

h
.1C pj2�1Z

.�/
J .�.1//

p
N 1j/

p
� .1C j2�1Z

.�/
J .�.1//

p
N 1j/

i
� 0

(4.14)
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(equality is achieved only if p D 1) or

(4.10) D 1
¹jZ

.�/
J
.�.1//j<2N

� 1
2

1
º

2p

N
p
2

1

X
`�2

.�1/`
.p/`

`Š
2�`jZ

.�/
J .�.1//

p
N1j

`

D 1
¹jZ

.�/
J
.�.1//j<2N

� 1
2

1
º

2p

N
p
2

1

X
`�1

�p
N1Z

.�/
J .�.1//

2

�2`
�

�
.p/2`

2`Š
�
.p/2`C1

2`C 1Š

j
p
N1Z

.�/
J .�.1//j

2

�
� 0 (4.15)

by the same argument used for the (4.13).
We conclude that

(4.8) � 0; (4.10) � 0 for p 2 .1; 2/:

Moreover, for any a 2 .0; 1/,

(4.14)1
¹jZ

.�/
J
.�.1//j�2aN

� 1
2

1
º

�
.2a/p

aN
p
2

1

; (4.16)

(4.15)1
¹jZ

.�/
J
.�.1//j�2aN

� 1
2

1
º

�
2p

N
p
2

1

a2
�
.p/2

2
C a
j.p/3j

6

�
: (4.17)

With a bit of algebra, we rewrite the term in (4.9) as follows:

1
¹jZ

.�/
J
.�.1//j<2N

� 1
2

1
º

2p

N
p
2

1

��
1 �
j
p
N1Z

.�/
J .�.1//jp

2p

�
� p�

.�/

k
�
.1/

k
sign.Z.�/J .�.1///

�
j
p
N1Z

.�/
J .�.1//jp�1

2p�1
�
j
p
N1Z

.�/
J .�.1//j

2

��
:

(4.18)

According to the value of �.�/
k
�
.1/

k
sign.Z.�/J .�.1///, the term inside the parenthesis

can be either

1 � jxjp C p.jxjp�1 � jxj/ or 1 � jxjp � p.jxjp�1 � jxj/;

where we shortened

jxj WD
j2Z

.�/
J .�.1//j

N
1
2

1

< 1:

The first expression above is clearly positive, while the second one is positive thanks
to Lemma B.1. More precisely, for any a 2 .0; 1/,

(4.18)1
¹jZ

.�/
J
.�.1//j<2aN

� 1
2

1
º

� 1 � ap � p.ap�1 � a/ > 0: (4.19)
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From the representation (4.18), we also get the bound

(4.9) �
C

N
p
2

1

: (4.20)

Now, we pick a D 2.p � 1/=p into (4.16), (4.17), and (4.19). Combining with
(4.11), (4.12), and (4.20), we conclude that the lines (4.8), (4.9), and (4.10) define a
random variable

& WD &.¹�
.1/

k
�
.�/

k
; Z

.�/
J .�.1//º�D2;:::;N2/

lying in a uniformly bounded interval away from the origin such that

N2X
�D2

�
jZ
.�/
J .�.1//jp �

ˇ̌̌̌
Z
.�/
J .�.1//˙ 2

�
.�/

k
�
.1/

k
p
N1

ˇ̌̌̌p�

D �

N2X
�D2

W
.�/

p;k;J
.�.1//C ˛&N

1�p2
1 :

Precisely, we have

& � 2p
�
2p � 1 � 2p�1

�
p � 1

p

�p�1
3p � 2

p

�
:

This and (4.7) give (4.3).

Now, we turn to the proof of Theorem 1.2, which we conveniently split into several
steps.

Step 1: reduction. Due to the exchangeability of the patterns and their entries, we
have

P
�
LM.�/N1 \

yB
N1
�;brN1c

¤ ;

�
� N2

brN1cX
`D1

X
J�ŒN1�
jJ jD`

P

 \
k…J

¹H.FJCk�
.1// �H.FJ �

.1// > 0º;

\
k2J

¹H.FJ�k�
.1// �H.FJ �

.1// > 0º

!

D N2

brN1cX
`D1

 
N1

`

!
P

 \
k>`

¹H.FŒ`�Ck�
.1// �H.FŒ`��

.1// > 0º;

\
k�`

¹H.FŒ`��k�
.1// �H.FŒ`��

.1// > 0º

!
: (4.21)
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Recalling (4.1) and (4.2), we set for brevity

W
.�/

p;k;`
.�.1// WD W

.�/

p;k;Œ`�
.�.1//; W

.�/

p;k;`
WD W

.�/

p;k;`
.1/;

M .�/
WD

1

N1

X
i2ŒN1�

�
.�/
i ; Q.�/

WD sign.M .�//jM .�/
j
p�1:

By Lemma 4.1, we have for N1 large enough (r 0 WD `=N1)

(4.21) � N2
brN1cX
`D1

 
N1

`

!
P

 
8k > ` �

N2X
�D2

W
.�/

p;k;`
.�.1// � d.p/˛N

1�p2
1

�
2p.1 � 2r 0/p�1

N
1�p2
1

;8k 2 Œ`�

N2X
�D2

W
.�/

p;k;`
.�.1//

� d.p/˛N
1�p2
1 C

2p.1 � 2r 0/p�1

N
1�p2
1

!

D N2

brN1cX
`D1

 
N1

`

!
P

 
8k > ` �

N2X
�D2

W
.�/

p;k;`
� d.p/˛N

1�p2
1

�
2p.1 � 2r 0/p�1

N
1�p2
1

;8k 2 Œ`�

N2X
�D2

W
.�/

p;k;`

� d.p/˛N
1�p2
1 C

2p.1 � 2r 0/p�1

N
1�p2
1

!

D N2

brN1cX
`D1

 
N1

`

!
P

 
8k > `.Q; Q�.k// � d.p/˛N

1�p2
1 �

2p.1 � 2r 0/p�1

N
1�p2
1

;

8k 2 Œ`�.Q; Q�.k//�d.p/˛N
1�p2
1 C

2p.1 � 2r 0/p�1

N
1�p2
1

!

(recall that Q�.k/ denotes the kth transposed pattern). In the second identity above we
have exploited independence of the pattern �.1/ to replace W .�/

p;k;`
.�.1// by W .�/

p;k;`
and

in the third one the independence of the first ` entries from all the others and the
flip-symmetry to replace Z.�/

`
by M .�/. We also used that the independent random

variablesQ.2/ : : :Q.N2/ are symmetric. We denote byQ (respectively,M ) the vector
whose �th component is Q.�/ (respectively, M .�/).

Step 2: disentangling by the FKG inequality. Let us denote by M the � -field gen-
erated by M .2/; : : : ; M .N2/ and notice that Q.2/ : : : Q.N2/ are M-measurable. We
shorten PM.�/ WD P.� jM/. The crucial observation here (first remarked in [19] for
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the Hopfield model) is that for each � 2 ŒN2� the law of �.�/ conditionally on M

is a permutation distribution (as the increments of a simple random walk given the
position). Therefore, the FKG inequality applies (see, for instance, [21]), and we have

PM

 
8k > `.Q; Q�.k// � d.p/˛N

1�p2
1 �

2p.1 � 2r 0/p�1

N
1�p2
1

;

8k 2 Œ`�.Q; Q�.k// � d.p/˛N
1�p2
1 C

2p.1 � 2r 0/p�1

N
1�p2
1

!

�

Y
k>`

PM

 
.Q; Q�.k// � d.p/˛N

1�p2
1 �

2p.1 � 2r 0/p�1

N
1�p2
1

!

�

Y
k2Œ`�

PM

 
.Q; Q�.k// � d.p/˛N

1�p2
1 C

2p.1 � 2r 0/p�1

N
1�p2
1

!
: (4.22)

Note that
EŒ�

.�/

k
jM� DM .�/

and
VarŒ�.�/

k
jM� D 1 � .M .�//2:

Therefore, introducing xQ 2 RN2 with components xQ.�/ WD Q.�/
p
1 � .M .�//2, we

get

PM

�
.Q; Q�.k// � t

�
� exp

�
�
.t � kMk

p
p /
2

2k xQk22

�
by the Hoeffding inequality. Note that this quantity is independent on k and also, we
have the simple bound k xQk22 � kQk

2
2 D kMk

2p�2
2p�2. Then, (note d.2/ D 1)

(4.22)p2.1;2/ � exp
�
�N1

.˛d.p/N
1�p2
1 � kMk

p
p /
2

2kMk
2p�2
2p�2

�
; (4.23)

(4.22)pD2 � exp
�
�

N1

2kMk22

�
r 0.˛ � .1 � 2r 0/ � kMk22/

2

C .1 � r 0/.˛ C .1 � 2r 0/ � kMk22/
2
��
: (4.24)

Step 3: concentration. Now, we have to take the global expectations of the right-

hand side above. We notice that EŒkMkpp � ' ˛N
1�p2
1 (this is an identity for p D 2)

and k.M .�//p � EŒ.M .�//p�k 2
p

' N
�
p
2

1 . We can give precise upper bounds for

these quantities. It holds for any p > 0

EŒkMkpp � �
˛N1

N
p
2

1

Z
e�

x
2
p

2 dx DW ˛N
1�p2
1 e.p/ (4.25)



Pattern reconstruction with restricted Boltzmann machines 25

(to prove it, proceed as in the computation giving (2.5)) and

k.M .�//p �EŒ.M .�//p�k 2
p

�

�
3

2N1

�p
2

(to prove it, proceed as in the proof of Lemma 3.2).
Hence, by Proposition A.1 in Appendix A (with ` D 2=p),

P

�ˇ̌̌̌X
��2

jM .�/
j
p
�EŒjM .�/

j
p�

ˇ̌̌̌
� t

�

� 2 exp
�
�
1

8
min

�
2pt2N

p�1
1

3p˛
;
2t

2
pN

2� 2p
1

3˛
2
p�1

��
: (4.26)

We will also use the following sub-Gaussian estimate, which follows from [24, Corol-
lary 2.8] (there the constant was not specified, but our choice is however not the
optimal one). For any p 2 .1; 2/ there is a number h > 0 such that for any t <
2˛hN

2�p
1

P

�ˇ̌̌̌X
��2

jM .�/
j
2p�2

�EŒjM .�/
j
2p�2�

ˇ̌̌̌
� t

�
� 2 exp

�
�

t2

4˛hN
3�2p
1

�
: (4.27)

A sketch of the proof of (4.27) is given at the end of this section. Note that for
p D 2 (4.27) reduces to the standard Gaussian estimate in the Bernstein inequality
(4.26)jpD2 (however, numerical constants may change a bit).

Step 4: finalising the argument for p 2 .1; 2/. Using (4.26) with

t D
1

2
˛N

1�p2
1 jd.p/ � e.p/j DW �p;

we obtain

EŒright-hand side of (4.23)� � E
�
right-hand side of (4.23)1¹jkMkpp�EŒkMkpp �j��pº

�
C P

�
jkMkpp �EŒkMk

p
p �j � �p

�
� E

�
exp

�
�
˛2N

3�p
1 .d.p/ � e.p//2

kMk
2p�2
2p�2

��

C 2 exp
�
�
1

8
min

�
2p�2pN

p�1
1

3p˛
;
2�

2
p
p N

2� 2p
1

3˛
2
p�1

��
D E

�
exp

�
�
˛2N

3�p
1 .d.p/ � e.p//2

kMk
2p�2
2p�2

��
C 2e�˛N1�1.p/; (4.28)
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where

�1.p/ WD
1

8
min

�
1

4

�
2

3

�p
.d.p/ � e.p//2;

2

3
2�

2
p .d.p/ � e.p//

2
p

�
:

Using (4.27) with t D 1
2
EŒkMk

2p�2
2p�2� and (4.25) (with p ! 2p � 2), we obtain

E

"
exp

 
�
˛2N

3�p
1 .d.p/ � e.p//2

kMk
2p�2
2p�2

!#

� E

"
exp

 
�
2˛2N

3�p
1 .d.p/ � e.p//2

3˛N 2�pe.2p � 2/

!#
C 2 exp

 
�
˛N1

16h

!

D 2 exp

 
�
2˛N1.d.p/ � e.p//

2

2e.2p � 2/

!
C 2 exp

 
�
˛N1

16h

!
:

Combining the display above with (4.21), (4.22), (4.23), (4.28) and using (1.12),
we have

P
�
LM.�/N1 \

yB
N1
�;brN1c

¤ ;

�
� 2N2

brN1cX
`D1

�
N1

`

��
e�˛N1�1.p/ C 2e�˛N1

2.d.p/�e.p//2

2e.2p�2/ C e�
˛N1
16h

�
� 6rN2N1e

N1

�
S.r/�˛min.�1.p/;

2.d.p/�e.p//2

2e.2p�2/
; 1
16h

/
�
;

which yields the assertion for p 2 .1; 2/.

Step 5: finalising the argument for p D 2. Using (4.26)pD2 with t D .1C ˛/.1 �
2r 0/ DW � in the first line of the display below and (4.27)pD2 with t D 1

2
EŒkMk22� in

the third line, we have

EŒright-hand side of (4.24)�

� E

�
exp

�
�
N1

2

..1 � 2r 0/ � �/2

kMk22

��
C P

�
jkMk22 �EŒkMk

2
2�j � �

�
� E

�
exp

�
�
N1

2

˛2.1 � 2r 0/2

kMk22

��
C 2e�

2
3N1.1C˛/.1�2r

0/min
�
1; 2.1C˛/.1�2r

0/
3˛

�
� e�

1
3˛N1.1�2r

0/2
C 2e�

1
3˛N1 C 2e�

2
3N1.1C˛/.1�2r

0/min
�
1; 2.1C˛/.1�2r

0/
3˛

�
� e�

1
3˛N1.1�2r/

2

C 2e�
1
3˛N1 C 2e�

2
3N1.1C˛/.1�2r/min

�
1; 2.1C˛/.1�2r/3˛

�
;

(4.29)
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as r 0 ranges from 1=N1 to r . So, combining (4.21), (4.22), (4.23), (4.29) and using
again (1.12), we obtain

P
�
LM.�/N1 \

yB
N1
�;brN1c

¤ ;
�
� N2

brN1cX
`D1

�
N1

`

�
.terms in (4.29)/

� 2rN2N1

�
eN1.S.r/�

1
3˛.1�2r/

2/
C eN1.S.r/�

1
3˛/

C eN1
�
S.r/� 23 .1C˛/.1�2r/min.1; 2.1C˛/.1�2r/3˛ /

��
:

The first two summands are negative if ˛ > 3S.r/=.1 � 2r/2. The fact that also the
third one is so is verified in Lemma B.2, Appendix B. The proof is complete.

Proof of (4.27) (sketch). If p < 2, it is 2p � 2 < 2. We bound

E

�
e

ˇ̌
1p
N1

P
i2ŒN1�

�i

ˇ̌2p�2�
� 2

X
n�1

E

�
1
¹n�1� 1p

N1

P
i2ŒN1�

�i�nº
e

ˇ̌
1p
N1

P
i2ŒN1�

�i

ˇ̌2p�2�
� 2

X
n�1

en
2p�2�

.n�1/2

4 DW h <1:

We can write

jM .�/
j
2p�2

D
1

N
p�1
1

�
1
p
N 1

X
i2ŒN1�

�
.�/
i

�2p�2
:

If s 2 .0; 1/, we have (see, for instance, [24, Lemma 2.6])

EŒesjM
.�/j2p�2 � � es

2h:

Thus, by the Markov inequality and optimisation over s,

P

�
N
p�1
1

ˇ̌̌̌X
��2

jM .�/
j
2p�2

�EŒjM .�/
j
2p�2�

ˇ̌̌̌
� t

�
� es

2˛N1h�st � e
� t2

4˛hN1 :

provided t � 2h˛N1. Changing variables implies the assertion.

A. Tail estimates

In this appendix, we present tail estimates for sums of i.i.d. r.vs. used in the main
text. The following statement is not new, and we give the proof here mainly for the
reader’s convenience. In fact, the proof of the subsequent formula (A.1) for ` 2 Œ1; 2�
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is classical and can be found, for instance, in [24, Corollaries 2.9 and 2.10] (though
the formulation is slightly different there). So, we focus on the case ` 2 .0; 1/. For
similar statements, see [20, Proposition 3.2] and [17, Theorem 6.21].

Proposition A.1. Let ` 2 .0; 2�, X1; : : : ; XN i.i.d. r.vs. Then, for N large enough,

P

�ˇ̌̌̌ X
i2ŒN �

Xi

ˇ̌̌̌
� t

�
� 2 exp

�
�
1

8
min

�
t2

kX1k
2
 `
N
;

t`

kX1k
`
 `
Nmax.`�1;0/

��
:

(A.1)

Proof (only for ` 2 .0; 1/). We have by assumption

P.jX1j � t / � e
� t`

2kX1k
`
 ` :

Let now s WD kX1k `N
1
2�` and set X si WD Xi1¹jXi j<sº. Then, we have

P

�ˇ̌̌̌ X
i2ŒN �

Xi

ˇ̌̌̌
� t

�
� P

� X
i2ŒN �

Xi � t; sup
i2ŒN �

jXi j < s

�
C P

�
sup
i2ŒN �

jXi j � s

�

� P

�ˇ̌̌̌ X
i2ŒN �

X si

ˇ̌̌̌
� t

�
C e
� s`

4kX1k
`
 ` : (A.2)

Set now
N� WD

1

4s1�`kX1k
`
 `

:

We note that for any 0 � � � N� (and N large enough) it is

�X si �
jX si j

`

AkXik
`
 `

:

Using the bound x2 � e
jxj`

A , we compute

EŒe�X
s
i � D 1C �2kX si k

2
 `

X
n�0

�n
EŒ.X si /

nC2�

kXik
2
 `
.nC 2/Š

� 1C �2kXik
2
 `
E

"
e

jXs
i
j`

10kXi k
`
 `

X
n�0

1

nŠ

�
jX si j

`

10kXik
`
 `

�n#

� 1C �2kXik
2
 `
E

"
e

jXi j
`

5kXi k
`
 `

#

� exp

 
�2kXik

2
 `
E

"
e

jXi j
`

5kXi k
`
 `

#!
� exp

�
2�2kXik

2
 `

�
:
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It follows that

P

�ˇ̌̌̌ X
i2ŒN �

X si

ˇ̌̌̌
� t

�
� 2e

��tC2N�2kX1k
2
 `

�

8<: 2 exp
�
�

t2

8kX1k
2
 `
N

�
; 0 < t < 4N N�kX1k

2
 `
;

2 exp.� N�t C 2N N�2kX1k2 `/; t � 4N N�kX1k
2
 `
:

With our choice of parameters, the above formula rewrites as

P

�ˇ̌̌̌ X
i2ŒN �

X si

ˇ̌̌̌
� t

�
�

8̂<̂
:
2 exp

�
�

t2

8kX1k
2
 `
N

�
; 0 < t < s;

2 exp
�
�

t`

8kX1k
`
 `

�
; t � s:

(A.3)

Combining (A.2) and (A.3) gives the assertion.

B. Two technical lemmas

The following two results are basically calculus.

Lemma B.1. Let g.x;p/ WD 1� .1� 2x/p � x
p
2 and f .x;p/ WD 1� xp �pxp�1C

px. It is g > 0 for all p � 2 and x 2 Œ0; 1=2�. Moreover, for any a 2 .0; 1/, it is
f .p; x/ � f .p; a/ > 0 for all p 2 .1; 2� and x 2 Œ0; a�.

Proof. For x 2 Œ0; 1=2� the function .1� 2x/p C x
p
2 is decreasing in p, so it suffices

to study g.x; 2/ for which one verifies explicitly g.x; 2/ > 0 for all x 2 Œ0; 1=2�.
Now, we pass to f . First, we note that

1C .x C p/ log x � x 8x 2 Œ0; 1�: (B.1)

The proof is simple: we compare the function logx with x�1
xCp

for x 2 Œ0; 1�, and since

1

x
D

d

dx
log x �

d

dx

x � 1

x C p
D

p C 1

.x C p/2
8x 2 Œ0; 1�

and in x D 1 the two functions intersect, (B.1) follows.
Next, we note that f .x; 1/ D 0 and f .x; 2/ � 0 for all x 2 Œ0; 1�. Then, we show

that f is non-decreasing in p uniformly in x 2 Œ0; 1�. We compute

@

@p
f .x; p/ D x.1 � xp�2.1C .x C p/ log x// � x.1 � xp�1/ � 0;

thanks to (B.1). This tells us f � 0. Moreover, we compute

@

@x
f .x; p/ D p

�
1 � xp�1

�
p � 1

x
C 1

��
:
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We have for all x 2 Œ0; 1�
p � 1

x
C 1 �

1

xp�1
:

The above inequality is clearly true if x is near the origin and at x D 1. Indeed, it must
hold in the whole interval Œ0; 1� since the functions on both sides are decreasing.

It follows that f is decreasing in Œ0; 1� uniformly in p 2 .1; 2�, whence the asser-
tion follows.

Lemma B.2. Let r 2 Œ0; 1
2
�, c1 > 0. Let also Nr D Nr.c1/ 2 Œ0; 1=2� defined implicitly

by
S. Nr/

1 � 2 Nr
D c1;

and set

c2 WD max
�
1

c1
;
.1 � 2 Nr/2

2c1 Nr

�
:

For all ˛ � c2S.r/=.1 � 2r/2, it holds

S.r/ � c1.1C ˛/.1 � 2r/min
�
1;
.1C ˛/.1 � 2r/

˛

�
: (B.2)

Proof. (B.2) selects two conditions, namely, either

˛ �
1 � 2r

2r
; c1˛ �

S.r/

1 � 2r
� c1 or ˛ >

1 � 2r

2r
; c1

.1C ˛/2

˛
�

S.r/

.1 � 2r/2
:

(B.3)
For r 2 Œ0; 1=2�, the function S.r/ increases and c1.1 � 2r/ decreases. Let us denote
by Nr their unique intersection point in Œ0; 1=2�. Clearly, Nr depends on c1 and Nr ! 0 as
c1 ! 0. If r 2 Œ0; Nr� then for every ˛ < .1 � 2r/=2r , it holds

c1˛ �
S.r/

1 � 2r
� c1:

Moreover, there is C > 0 such that

1 � 2r

2r
� C

S.r/

.1 � 2r/2
8r 2 Œ0; Nr�:

Indeed, by definition of Nr , the above condition is implied by

1 � 2r

2r
�

c1C

1 � 2r
8r 2 Œ0; Nr�I

therefore, it suffices to take

c2 WD
.1 � 2 Nr/2

2c1 Nr
;

and we have the statement for r 2 Œ0; Nr�.
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For r 2 Œ Nr; 1=2�, we use the second condition in (B.3). First, we observe that, since
.1C˛/2=˛ >˛, the condition c1

.1C˛/2

˛
�

S.r/

.1�2r/2
is implied by ˛�CS.r/=.1� 2r/2

for all C > c�11 . It remains to show that there is C > c�11 such that

1 � 2r

2r
� C

S.r/

.1 � 2r/2
or equivalently

.1 � 2r/2

2r
� C

S.r/

.1 � 2r/
: (B.4)

By definition of Nr ,
S.r/

.1 � 2r/
� c1 8r 2 Œ Nr; 1=2�:

The left-hand side of the second inequality in (B.4) is decreasing and its right-hand
side is increasing, whence it suffices to require

.1 � 2 Nr/2

2 Nr
� Cc1:

Thus, taking

c2 WD max
�
1

c1
;
.1 � 2 Nr/2

2c1 Nr

�
;

we have proved the statement also for r 2 Œ Nr; 1=2�.
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