
Ann. Inst. H. Poincaré
Anal. Non Linéaire 41 (2024), 129–158
DOI 10.4171/AIHPC/79

© 2023 Association Publications de l’Institut Henri Poincaré
Published by EMS Press

This work is licensed under a CC BY 4.0 license

Analysis of the inhomogeneous Willmore equation

Yann Bernard, Glen Wheeler, and Valentina-Mira Wheeler

Abstract. We study a class of fourth-order geometric problems modeling Willmore surfaces, con-
formally constrained Willmore surfaces, isoperimetrically constrained Willmore surfaces, and bi-
harmonic surfaces in the sense of Chen, among others. We prove several local energy estimates and
derive a global gap lemma.

1. Introduction and main results

Let † be a smooth, two-dimensional, closed, oriented manifold, and let g0 be a smooth
reference metric on †. For any s � 1, the Sobolev space W k;p.†;Rs/ is the space of
measurable maps f W†! Rs for which

kX
jD0

Z
†

jr
jf jpg0 dvolg0 <1:

For a closed surface †, this space is independent of the reference metric g0.
The notion of weak immersion with L2-bounded second fundamental form is well

understood and has been extensively studied (the interested reader will find a detailed
account in [35] and the references therein). This will be the main object of study in this
paper, and we now recall the main definition. Let Ê W†! Rm, for m � 3, be measurable
and Lipschitz. The associated pull-back metric g WD Ê �gRm is given almost everywhere
by

g.X; Y / WD d Ê .X/ � d Ê .Y / 8X; Y 2 T†;

where dot indicates the standard scalar product in Rm. We will demand that g be nonde-
generate, that is, that there exists a constant c > 0 satisfying

c�1g0.X;X/ � g.X;X/ � cg0.X;X/ 8X 2 T†: (1.1)

This makes .†; Ê �gRm/ a Riemannian 2-manifold with a rough metric. The Gauss map is
a bounded measurable map En taking values in the Grassmannian Grm�2.Rm/ of oriented
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.m � 2/-planes in Rm satisfying

En WD ?
@x1 Ê ^ @x2 Ê

j@x1 Ê ^ @x2 Ê j
;

where ? denotes the standard Hodge star operator, and ¹x1; x2º is an arbitrary choice of
local coordinates.

Finally, to say that the weak immersion Ê has square integrable second fundamental
form amounts to requiring that Z

†

jd Enj2g dvolg <1: (1.2)

We let

E† WD
®
Ê W†! Rm measurable and Lipschitz such that (1.1) and (1.2) hold

¯
:

Rescaling if necessary, condition (1.2) ensures that on some local patch, let us say it is
the unit disk D1.0/, there holdsZ

D1.0/

jr Enj2 dx1 dx2 <
8�

3
: (1.3)

Here ¹x1; x2º are local coordinates on D1.0/ and r stands for the usual flat gradient
in these coordinates. A well-known result ([18, 33]) states that if Ê 2 ED1.0/ satisfies
(1.3), then there exists a bi-Lipschitz homeomorphism  of D1.0/ such that the map
Ê ı  WD1.0/! Rm is conformal, namely,

@xi . Ê ı  / � @xj . Ê ı  / D e2�ıij

for some conformal factor �. Without loss of generality, as we are only concerned with
locally analyzing the solutions to problems that are independent of parametrization, we
will henceforth suppose that Ê itself is conformal.

The present paper is concerned with studying the local analytical properties of the
inhomogeneous Willmore equation. To an immersion Ê 2 E† of an oriented two-
dimensional manifold † into Rm, for some m � 3, we assign the second fundamental
form Eh WD �EnD2 Ê , where �En denotes the projection of vectors in Rm onto the .m � 2/-
plane defined by the Gauss map En. The trace of the 2-tensor Eh with respect to g is twice
the normal-valued mean curvature vector:

EH WD
1

2
Trg Eh:

Willmore immersions are critical points of the Willmore energyZ
†

j EH j2 dvolg :
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The study of Willmore immersions has been steadily gaining momentum over the last
century. It would be impossible to give a detailed account of the various works and results
that have appeared in recent years. We content ourselves with mentioning the tour de force
by Marques and Neves [28], where they prove the celebrated Willmore conjecture [44]:
the Clifford torus minimizes, up to Möbius transformations, the Willmore energy in the
class of immersed tori in R3. Although the Willmore conjecture is now resolved, the study
of Willmore immersions continues to grow in intensity.

Any critical point of the Willmore energy satisfies the following fourth-order, quasi-
linear, strongly coupled system of equations [39, 44]:

�? EH C hEh � EH; Ehig � 2j EH j
2 EH D E0; (1.4)

where �? is the negative covariant Laplacian for the connection in the normal bundle.
The dot indicates the standard scalar product of vectors in Rm, while the product h�; �ig
is the usual contraction product with respect to the metric g for tensors. Naturally, when
constraints are imposed on the problem of varying the Willmore energy, the right-hand
side of (1.4) is no longer zero. Various examples are provided in [4] and we will below
look closer at a few specific cases of relevance in applications. Thus we are motivated to
study a problem of the type

�? EH C hEh � EH; Ehig � 2j EH j
2 EH D EW ; (1.5)

where the right-hand side EW is assumed to be known. Naturally, EW has to be normal vec-
tor for (1.5) to make sense. It also has to be independent of parametrization. Before going
any further, an important observation is in order. When Ê lies in E†, it is clear that EH
is square integrable. Even in the case when EW � E0, the term j EH j2 EH is already problem-
atic, for it lies in no space that enables us to give a distributional sense to the equation.
Nevertheless, one may study the problem and obtain estimates, as is done for example in
[43] and the references therein. Another approach was originally devised by Rivière [34].
It relies mainly on the fact that the left-hand side of (1.5) can be factored into an exact
divergence, thereby rendering possible the assignment of a distributional sense to (1.4). In
[4], it is shown that the divergence structure seemingly hidden in (1.4) is a direct conse-
quence of Noether’s theorem applied to the translation invariance of the Willmore energy.
The present paper should be understood as a companion to [4]. While in the latter only
identities were derived, the present work brings to fruition the reformulations presented
in [4] by obtaining local analytical results for problems of type (1.5). The present paper
should also be seen as a companion to [43], where only a specific class of right-hand
sides EW were considered. The class of possible right-hand sides will be here significantly
expanded.

As was shown in [34], any conformal immersion Ê WD1.0/! Rm that satisfies the
Willmore equation (1.4) also satisfies the equation

div.r EH � 2�Enr EH C j EH j
2
r Ê / D E0 on D1.0/;
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where �En denotes projection on the normal bundle. The operators r and div are under-
stood in local coordinates ¹x1; x2º on the unit disk D1.0/. This motivates us to consider
inhomogeneous Willmore problems of the type

div.r EH � 2�Enr EH C j EH j
2
r Ê C ET / D Ev; (1.6)

for some vector field ET 2 �.R2 ˝Rm/ and some normal vector field Ev 2 �.Rm/. Many
known classes of immersed surfaces satisfy a problem of this type:

(1) Willmore immersions with Ev � 0 and ET � E0.

(2) Constrained Willmore immersions:

(i) Varying the Willmore energy
R
†
j EH j2 dvolg in a fixed conformal class

(i.e. with infinitesimal, smooth, compactly supported, conformal variations)
gives rise to a more general class of surfaces called conformally constrained
Willmore surfaces, whose corresponding Euler–Lagrange equation [10, 25,
36] is expressed as follows. Let Eh0 denote the trace-free part of the second
fundamental form, namely,

Eh0 WD Eh � EHg:

A conformally constrained Willmore immersion Ê satisfies

�? EH C . EH � Eh
i
j /
Eh
j
i � 2j

EH j2 EH D .Eh0/ij q
ij ; (1.7)

where q is a transverse1 traceless symmetric 2-form. This tensor q plays
the role of Lagrange multiplier in the constrained variational problem. It is
shown in [2, 4] that in a conformal parametrization, with conformal param-
eter �, (1.7) can also be recast in another form of (1.6), namely by setting
Ev � E0 and

ET D �e�2�Mqr
? Ê ;

where r? Ê WD .�@x2 Ê ; @x1 Ê /, and Mq is the matrix

Mq WD

�
�q12 q11
q11 q12

�
:

(ii) Bilayer models [9, 11, 19]. These models also bear the names Helfrich and
Canham–Helfrich, and arise in the modeling of the surface of liposomes
and vesicles (see [4] and the references therein). One seeks to minimize
the Willmore energy under the requirement that the area A.†/, the volume
V.†/, and the total curvature

M.†/ WD

Z
†

H dvolg

1That is, q is divergence-free: rj qj i D 0 for all i .
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be prescribed. This leads to an equation of type (1.5) with

EW D 2.ˇ C ˛H C K/En;

where K is the Gauss curvature, and ˛, ˇ,  are three given parameters
acting as Lagrange multipliers.

As shown in [4], this problem can be brought in the form (1.6) with
Ev � E0 and j ET j . 1C jrEnj.

(iii) Another instance in which minimizing the Willmore energy arises is the
isoperimetric problem [22, 37], which consists in minimizing the Willmore
energy under the constraint that the dimensionless isoperimetric ratio � WD
36�V 2=A3 be a given constant in .0; 1�. As both the Willmore energy and
the constraint are invariant under dilation, one might fix the volume as V D
1=.6
p
�/, thereby forcing the area to satisfyAD �1=3. This problem is thus

equivalent to the bilayer model with  D 0 (no constraint imposed on the
total curvature, but the volume and area are prescribed separately).

(3) Chen surfaces. An isometric immersion Ê WN n ! Rm>n of an n-dimensional
Riemannian manifold N n into Euclidean space is called biharmonic if the cor-
responding mean-curvature vector EH satisfies

�g EH D E0: (1.8)

The study of biharmonic submanifolds was initiated by Chen [12] in the mid-
1980s as he was seeking a classification of finite-type submanifolds in Euclidean
spaces. Independently, Jiang [21] also studied (1.8) in the context of the varia-
tional analysis of the biharmonic energy in the sense of Eells and Lemaire. Chen
conjectures that a biharmonic immersion is necessarily minimal.2 Smooth solu-
tions of (1.8) are known to be minimal for n D 1 [15], for .n; m/ D .2; 3/ [14],
and for .n; m/ D .3; 4/ [17]. In [42], it is shown that Chen’s conjecture holds up
to a growth condition on the Willmore energy. Chen’s conjecture has been solved
under a variety of hypotheses (see the recent survey paper [13]). The statement
remains nevertheless open in general, and in particular for immersed surfaces in
Rm. In [3],3 it is shown that Chen surfaces satisfy an equation of type (1.5) with

j EW j ' jEhj3:

It can more precisely be brought into the form (1.6) with Ev� E0 and j ET j. e�jr Enj2.

2The conjecture as originally stated is rather analytically vague: no particular hypotheses on the regu-
larity of the immersion are a priori imposed. Many authors consider only smooth immersions.

3This paper is the precursor to the published version [4], which unfortunately, at the referee’s request,
no longer addresses the question of Chen immersions.
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(4) Complete Willmore immersions in asymptotically flat spaces also satisfy a prob-
lem of type (1.6). Details may be found in [8].

(5) Equilibria of flow equations. In [23], stability of the sphere is proven for the
Willmore flow. Global existence is obtained by contradiction: one assumes that
existence time is finite, and then rescales around a point in space-time where the
energy concentrates. Local estimates allow one to construct a blowup. The blowup
is shown to be an entire Willmore surface with small energy. To this blowup one
applies a gap lemma, which implies that any such surface is a standard flat plane.
This is in contradiction with the concentration of energy hypothesis, and so no
such concentration points can occur, and the flow exists for all time. This argument
is by now standard, having been adapted at least to constrained surface diffusion
flows [40, 41], locally constrained Willmore flow [31], Willmore flow in Rieman-
nian spaces [26, 32], and a geometric triharmonic heat flow [29].

An appropriate gap lemma combined with local regularity is crucial and so far
has been established separately for each of the flows given above. As our work
here holds for more general equations than what is currently available, we expect
that the results in this paper will apply to a broad class of fourth-order evolution
equations. It is an interesting open question to investigate higher-order cases.

Our first main result consists of local energy estimates.

Theorem 1.1. Let Ê 2 W 2;2 \W 1;1.D1.0/;Rm/ be a conformal immersion with con-
formal parameter � satisfying

kr�kL2;1.D1.0// < C1;

where L2;1 denotes the weak-L2 Marcinkiewicz space. Suppose thatZ
D1.0/

jr Enj2 dx D "20: (1.9)

Provided that "0 is sufficiently small, there is a universal constant C."0;kr�kL2;1.D1.0///
for which the following statements hold:

(i) Let p 2 .1;1/. Suppose that Ê is a solution on D1.0/ of

div.r EH � 2�Enr EH C j EH j
2
r Ê C ET / D E0:

Then for all D�.x/ � D1.0/, we have

kr
2
EnkLp.D�=2.x// � C."0; kr�kL2;1.D1.0///

�
�
ke� ET kLp.D�.x// C �

2
p�2krEnkL2.D�.x//

�
:

(ii) Let r 2 Œ1;1/. Suppose that Ê is a solution on D1.0/ of

div.r EH � 2�Enr EH C j EH j
2
r Ê / D Ev;

For all D�.x/ � D1.0/, we have
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(a) if r D 1 the second-order estimate

kr
2
EnkLp.D�=2.x// � C."0; kr�kL2;1.D1.0///

�
�
ke�EvkLr .D�.x// C �

2
p�2krEnkL2.D�.x//

�
for all p 2 .1; 2/.

(b) if r > 1 the third-order estimate

kr
3
EnkLr .D�=2.x// � C."0; kr�kL2;1.D1.0///

�
�
ke�EvkLr .D�.x// C �

2
r �3krEnkL2.D�.x//

�
:

Theorem 1.1 is used to prove the following regularity result:

Corollary 1.1. Let Ê 2 W 2;2 \W 1;1.D1.0/;Rm/ be a conformal immersion satisfying
(1.6) on the disk D1.0/. If ET and Ev are smooth, so is Ê .

Finally, we derive an interesting geometric “gap” result, obtained using the same tech-
niques as those leading to Theorem 1.1.

Theorem 1.2. Let † be a connected, oriented, complete, immersed surface in Rm whose
mean curvature vector satisfies an inhomogeneous Willmore problem of the type4

�? EH C hEh � EH; Ehig � 2j EH j
2 EH D O.j Ehj3/:

There exists an "0 > 0 such that if Z
†

j Ehj2 dvolg < "20;

then † is a flat plane.

This gap result is to be compared to the one given in [43] (see also [30]).
A word of caution is now in order. Should Ê be a (conformal) Willmore immersion

satisfying the small energy condition (1.9), then Ev � E0 and Theorem 1.1 (i) gives the
estimate

krEnkL1.D�=2.x// � C�
�1
krEnkL2.D�.x//:

This estimate, which we will term parametric "-regularity, is the one that was originally
derived by Rivière [34]. In conformal parametrization, jr Enj ' e� Eh, where Eh is the second
fundamental form, so the above reads

ke� EhkL1.D�=2.x// � C�
�1
ke� EhkL2.D�.x//:

4We use the same notation as in (1.4).
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Knowing that our conformal immersion does not “distort” flat disks much, we can further
rephrase the latter as

kEhkL1.Dg
�=2
.x// � C�

�1
kEhkL2g .D

g
� .x//

; (1.10)

whereDg
� .x/ is the metric disk with respect to the induced pull-back metric g D Ê �gRm ,

and L2g is the space .L2; dvolg/. Estimate (1.10) is to be compared with Kuwert and
Schätzle’s original estimate in [23], which we will term ambient "-regularity, and which
states that if Ê W†! Rm is a Willmore immersion withZ

Ê�1.B� .p//

j Ehj2dvolg < "20

for some Euclidean ball B� .p/ � Rm, and "0 is sufficiently small, then

kEhk
L1. Ê�1.B�=2.p///

� C��1kEhk
L2. Ê�1.B� .p///

: (1.11)

It is stated in [23, Remark 2.11], and more explicitly in [24, equation (2.18)], that this
estimate implies

kEhkL1.Dg
�=2
.x// � C�

�1
kEhkL2g .D

g
� .x//

; (1.12)

which is (1.10). To the authors’ knowledge, it is unclear that (1.12) follows from (1.11).
The two versions of "-regularity, parametric and ambient, are in reality distinct, and we
do not know how to recover one from the other.

In the same direction, Marque (see [27, Section 2]) has devised a precise example in
which parametric "-regularity holds but ambient "-regularity fails.

2. Proofs of the results

2.1. Controlling the conformal factor

Using Hélein’s method of moving Coulomb frames [18] (in particular Section 5.2), a weak
immersion Ê 2 W 2;2

imm.D1.0/;R
m/ of the unit disk D1.0/ into Rm can be reparametrized

by a diffeomorphism of D1.0/ to become conformal. Our problem being independent
of parametrization, we will without loss of generality suppose that Ê is conformal with
parameter �, namely,

@xi
Ê � @xj

Ê D e2�ıij :

We will henceforth use the notationr, div, and� to denote the usual gradient, divergence,
and Laplacian operators in flat local coordinates ¹x1; x2º.

AssumeZ
D1.0/

jr Enj2 dx DW "20 � 8�=3 and kr�kL2;1.D1.0// < C1:
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We can call upon [18, Lemma 5.1.4] to deduce the existence of an orthogonal frame
¹Ee1; Ee2º 2 W

1;2.D1.0// satisfying ?En D Ee1 ^ Ee2 and

krEe1kL2.D2.0// C krEe2kL2.D2.0// � CkrEnkL2.D2.0//:

As is easily verified, the conformal parameter satisfies

�� D rEe1 � r
?
Ee2 in D1.0/:

Let � satisfy ´
�� D rEe1 � r

?Ee2 in D1.0/;

� D 0 on @D1.0/:

Standard Wente estimates (cf. [18, Theorem 3.4.1]) give

k�kL1.D1.0// C kr�kL2.D1.0// � krEe1kL2.D1.0//krEe2kL2.D1.0//

� CkrEnk2
L2.D1.0//

: (2.1)

The harmonic function � WD � � � satisfies the usual estimateZ
D

j� � N�j dx � Ckr�kL1.D1.0// � Ckr�kL2;1.D1.0//;

where N� denotes the average of � on the proper subdisk D �� D1.0/. Hence

k� � N�kL1.D/ � Ckr�kL2;1.D1.0//:

Combining the latter with (2.1) now yields

k� � N�kL1.D/ � Ckr�kL2;1.D1.0// C CkrEnk
2
L2.D1.0//

� C."0; kr�kL2;1.D1.0///;

where N� denotes the average of � on D. We can summarize this subsection by stating the
following lemma.

Lemma 2.1. Let Ê 2 W 2;2
imm.D1.0/;R

m/ be a conformal weak immersion such thatZ
D1.0/

jr Enj2 dx D "20 � 8�=3 and kr�kL2;1.D1.0// < C1;

with e� WD j@x1 Ê j D j@x2 Ê j. Then the following estimate holds for any proper subdisk
D �� D1.0/:

ke�kL1.D/ke��kL1.D/ � C."0; kr�kL2;1.D1.0///: (2.2)
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2.2. Proof of Theorem 1.1 (i)

Per the discussion in the introduction and our aim to study only local properties of solu-
tions to (1.5), we assume without loss of generality that the immersion Ê is conformal,
i.e. in local coordinates ¹x1; x2º on the unit disk D1.0/ that

@xi Ê � @xj Ê D e2�ıij ;

with bounded conformal parameter �, and such that e� satisfies the Harnack inequality
(2.2). We will first begin by studying an inhomogeneous Willmore equation of the form

div.r EH � 2�Enr EH C j EH j
2
r Ê C ET / D E0; on D1.0/; (2.3)

where ET satisfies the following condition for some p 2 .1;1/:

ke� ET kLp.D1.0// <1: (2.4)

Let D�.x/ � D1.0/. As done in [4], we consider the following two problems:

� EX D r Ê ^ ET and �Y D r Ê � ET on D�.x/; (2.5)

with boundary conditions EX j@D�.x/ D E0 and Y j@D�.x/ D 0. Standard Calderon–Zygmund
estimates give

kr
2 EXkLp.D�.x// C kr

2Y kLp.D�.x// . ke� ET kLp.D�.x//; (2.6)

up to a universal multiplicative constant. Hence,

kr EXkL2;1.D�.x// C krY kL2;1.D�.x// . �
2� 2p ke� ET kLp.D�.x//: (2.7)

We now follow the procedure outlined in [4]. Integrating (2.3), we infer the existence
of a potential EL satisfying

r
? EL D r EH � 2�Enr EH C j EH j

2
r Ê C ET � �r EH C 2�Tr EH C j EH j

2
r Ê C ET ; (2.8)

where �T is the tangential projection. An elementary computation (cf. [2, equation (II.6)])
reveals that

j�Tr EH j . e�jr Enj2: (2.9)

As EL is defined up to an arbitrary constant, we are certainly free to require thatZ
D�.x/

EL D E0:

Observe next that

kr EHkW �1;2.D�.x// � k
EHkL2.D�.x// � ke

��
kL1.D�.x//krEnkL2.D�.x//;
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and, owing to (2.4) and (2.9),

k ET C 2�Tr EH C j EH j
2
r Ê kL1.D�.x// . ke��kL1.D�.x//

�
�
ke� ET kL1.D�.x// C krEnk

2
L2.D�.x//

�
;

up to a multiplicative constant independent of the parametrization and of the mean cur-
vature, and irrelevant to our purpose. Geared with these last inequalities, we call upon
Lemma A.1 and conclude that

k ELkL2;1.D�.x// . ke��kL1.D�.x//
�
ke� ET kL1.D�.x// C krEnk

2
L2.D�.x//

�
; (2.10)

where L2;1 is the weak-L2 Marcinkiewicz space, seen here as a Lorentz space [38]. Per
Lemma 2.1, e� satisfies a Harnack inequality. The above then yields

ke� ELkL2;1.D�.x// . ke� ET kL1.D�.x// C krEnkL2.D�.x//: (2.11)

We will use the symbol . to indicate the presence of a multiplicative constant depending
at most only on "0 and on kr�kL2;1.D1.0//.

It is shown in [4] that two important identities hold, namely,

div. EL ^ r? Ê C EH ^ r Ê C r EX/ D E0 and div. EL � r? Ê C rY / D 0:

Again, we infer the existence of two potentials ER and S satisfying

r ER D EL ^ r Ê � EH ^ r? Ê � r? EX and rS D EL � r Ê � r?Y: (2.12)

Owing to (2.11) and (2.7), we find that r ER and rS lie in the weak space L2;1, namely,

kr ERkL2;1.D�.x// C krSkL2;1.D�.x//

. ke� ET kL1.D�.x// C krEnk
2
L2.D�.x//

C krEnkL2.D�.x// C kr
EXkL2;1.D�.x//

C krY kL2;1.D�.x//

. �
2� 2p ke� ET kLp.D�.x// C krEnkL2.D�.x//;

where C."0/ is a constant depending only on "0. In other words,

kr ERkL2;1.D�.x// C krSkL2;1.D�.x// . Mp; (2.13)

where for notational convenience, we have set

Mp WD �
2� 2p ke� ET kLp.D�.x// C krEnkL2.D�.x//: (2.14)

It is remarkable that ER and S are linked together via an interesting system of equations
that displays a very particular structural type. It is shown in [4] that5´

� ER D r.?En/ � r? ERCr.?En/ � r?S C div..?En/ � r EX C .?En/rY /;

�S D r.?En/ � r? ERC div..?En/ � r EX/:
(2.15)

The apparent notational complication is an artifice of codimension only.

5Refer to the appendix for the notation.
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System (2.15) is in divergence form. Owing to kEnkL1.D1.0// D 1, to krEnkL2.D1.0// <
"0, and to (2.6), we can call upon Proposition A.2,6 which states that for7 all s < 2=

.2 � p/C it holds that

kr ERkLs.D5�=8.x// C krSkLs.D5�=8.x//

. �
2
s �1

�
kr ERkL2;1.D�.x// C krSkL2;1.D�.x// C �

2� 2p ke� ET kLp.D�.x//
�

. �
2
s �1Mp; (2.16)

where we have used (2.13). Note that (2.16) holds in particular for s D 2p.
A useful identity is derived in [4]; it relays information on ER and S back to the immer-

sion Ê , namely,

e2� EH D .r ERCr? EX/ � r? Ê C .rS Cr?Y / � r? Ê : (2.17)

It follows from this identity and from (2.6) and (2.16) that

ke2� EHkL2p.D5�=8.x// . �
1
p�1ke�kL1.D�.x//Mp; (2.18)

where as always the symbol . indicates the presence of a multiplicative constant involving
at most "0 and kr�kL2;1.D1/. From (2.18) and the Harnack estimate (2.2), we deduce that

k EH ^ r? Ê kL2p.D5�=8.x// . �
1
p�1Mp: (2.19)

It is shown in the appendix that the Gauss map satisfies the equation

�.?En/ D r?.?En/ � r.?En/ � 2 div. EH ^ r? Ê /: (2.20)

Using [20, Theorem 10.5.1], there exists some Ev 2 W 1;2p.D5�=8.x// such that

�Ev D 2 div. EH ^ r? Ê / on D5�=8.x/ (2.21)

and
krEvkL2p.D5�=8.x// . k EH ^ r? Ê kL2p.D5�=8.x// . �

1
p�1Mp; (2.22)

where we have used (2.19).
We next define Ev0 and Ev1 such that Ev0C Ev1D ?EnC Ev, which in accordance with (2.20)

and (2.21) satisfy´
�Ev0 D E0; �Ev1 D r

?.?En/ � r.?En/ in D5�=8.x/;

Ev0 D ?EnC Ev; Ev1 D E0 on @D5�=8.x/:

6Proposition A.2 is proved for one equation, but it is easily adapted for systems. Details are left to the
reader.

7That is, s < 2=.2 � p/ if p 2 .1; 2/, and s <1 for p � 2.
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To handle Ev1, we apply Wente’s inequality in the form of [7, Lemma IV.2] to obtain

krEv1kL2.D5�=8.x// . kr.?En/kL2.D5�=8.x//kr.?En/kL2.D5�=8.x//
� "0krEnkL2.D5�=8.x//: (2.23)

On the other hand, standard estimates about harmonic function growth give, for k 2
.0; 5=8/,

krEv0kL2.Dk�.x// . kkrEv0kL2.D5�=8.x//

. k
�
krEv1kL2.D5�=8.x// C kr.?En/kL2.D5�=8.x// C krEvkL2.D5�=8.x//

�
. .k C "0/krEnkL2.D5�=8.x// C kMp; (2.24)

where (2.22) and (2.23) were used.
Altogether, (2.22)–(2.24) along with (2.14) easily yield

krEnkL2.Dk�.x// . .k C "0/krEnkL2.D�.x// C �
2� 2p ke� ET kLp.D�.x//:

Choosing k and "0 small enough, and provided for the time being that p 2 .1; 2/, then a
standard controlled growth argument (see e.g. [16, Lemma III.2.1]) reveals that

krEnkL2.D� .x// .
�
ke� ET kLp.D�.x// C �

2
p�2krEnkL2.D�.x//

�
�
2� 2p

.
��
�

�2� 2p
Mp 8� < 5�=8:

Hence, we see that

k�Ev1kL1.D� .x// . krEnk2
L2.D� .x//

.
��
�

�2� 2p
Mp:

Calling upon Proposition A.1 gives that

krEv1kLs.Da� .x// . �
2
s �1

h
krEv1kL2.D� .x// C

��
�

�2� 2p
Mp

i
;

for any a 2 .0; 1/ and

2 < s <
2

2 � p
:

Focusing on s D 2p shows that

krEv1kL2p.Da� .x// . �
1
p�1Mp:

Using the basic growth property of harmonic functions for Ev0 and (2.22), we obtain

krEnkL2p.Da� .x// . krEvkL2p.Da� .x// C krEv0kL2p.Da� .x// C krEv1kL2p.Da� .x//

. �
1
p�1Mp C �

1
p�1krEv0kL2.Da� .x// C �

1
p�1Mp

. �
1
p�1M

C �
1
p�1.krEnkL2.Da� .x// C krEvkL2.Da� .x// C krEv1kL2.Da� .x///

. �
1
p�1Mp:
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In particular, we find
krEnkL2p.D9�=16.x// . �

1
p�1Mp: (2.25)

Owing to (2.17), we verify easily that

2 EH ^ r? Ê D .r? ER � r EX/ � .?En/C .r?S � rY /.?En/; (2.26)

so that, using (2.5) and (2.15),

jdiv. EH ^ r? Ê /j . j� EX j C j�Y j C jrEnj.jr ERj C jrS j C jr EX j C jrY j/

. je� ET j C jrEnj.jr ERj C jrS j C jr EX j C jrY j/:

Hence, from (2.25), (2.6), and (2.16),

kdiv. EH ^ r? Ê /kLp.D9�=16.x//

. ke� ET kLp.D9�=16.x//
C krEnkL2p.D9�=16.x//.kr

ERkL2p.D9�=16.x// C krSkL2p.D9�=16.x//

C kr EXkL2p.D9�=16.x// C krY kL2p.D9�=16.x///

. �
2
p�2Mp: (2.27)

As shown in the appendix, the Gauss map En satisfies a perturbed harmonic map equation,
namely,

j�Enj � 2jdiv. EH ^ r? Ê /j CO.jr Enj2/:

Accordingly, from (2.25) and (2.27), we find

kr
2
EnkLp.D17�=32.x// . kdiv. EH ^ r? Ê /kLp.D9�=16.x//

C krEnk2
L2p.D9�=16.x//

C �
2
p�2krEnkL2.D9�=16.x//

. ke� ET kLp.D�.x// C �
2
p�2M 2

p C �
2
p�2krEnkL2.D�.x//

. �
2
p�2Mp: (2.28)

To complete the proof of Theorem 1.1 (i), we show that (2.28) remains true when
p � 2. First, when p D 2, we have per the above procedure that for all ı > 0,

kr
2
EnkL2�ı .D17�=32.x// . �

2
2�ı
�2M2�ı . �

2
2�ı
�2M2:

Upon letting ı & 0, we find the desired

kr
2
EnkL2.D17�=32.x// . ��1M2:

Now, if p > 2, we first note that by the previous case, it holds that

kr
2
EnkL2.D17�=32.x// . ��1M2 . ��1Mp;
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hence by the Sobolev embedding theorem,

krEnkL2p.D35�=64.x// . �
1
p�1Mp 8q <1:

This is (2.25) and the argument proceeds as in the case p 2 .1; 2/. This completes the
proof of Theorem 1.1 (i).

2.3. Proof of Theorem 1.1 (ii)

In this section we will build upon the results previously derived in order to obtain regular-
ity estimates for an inhomogeneous Willmore equation of the type

div.r EH � 2�Enr EH C j EH j
2
r Ê / D Ev;

where we suppose that

e�Ev 2 Lr .D1.0// for some r � 1:

Let D�.x/ � D1.0/. In order to recover (2.3), we let EV satisfy the problem´
�� EV D Ev in D�.x/;
EV D E0 on @D�.x/:

(2.29)

Using the Harnack inequality (2.2), we easily deduce´
ke�r EV kL2;1.D�.x// . ke�EvkL1.D�.x//; r D 1

ke�r EV kL2r=.2�r/.D�.x// . ke�EvkLr .D�.x//; r 2 .1; 2/:

We are now back in the case studied in the previous section with ET WD r EV . In particular,
when r D 1, we find

ke� ET kLp.D�.x// . �
2
p�1ke� ET kL2;1.D�.x// . �

2
p�1ke�EvkL1.D�.x// 8p 2 .1; 2/;

from which (2.28) yields

kr
2
EnkLp.D�=2.x// . �

2
p�2M 8p 2 .1; 2/;

where
M D �ke�EvkL1.D�.x// C krEnkL2.D�.x//:

Consider next the case r 2 .1; 2/. This time, estimate (2.28) gives

kr
2
EnkL2r=.2�r/.D�=2.x// . �

2
r �3Mr ; (2.30)

with
Mr D �

3� 2r ke�EvkLr .D�.x// C krEnkL2.D�.x//:
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Next, from (2.29), we find

kr EV kLr� .D�.x// C kr
2 EV kLr .D�.x// . kEvkLr .D�.x//;

where for notational convenience, we have set r� WD 2r=.2� r/ > 2. Since ET WD r EV , the
latter and (2.2) yield

ke� ET kLr� .D�.x// C ke
�
r ET kLr .D�.x// . ke�EvkLr .D�.x//: (2.31)

Recall that EX and Y satisfy (2.5):

� EX D r Ê ^ ET and �Y D r Ê � ET on D�.x/;

with boundary conditions EX j@D�.x/ D E0 and Y j@D�.x/ D 0. Standard Calderon–Zygmund
estimates and again (2.2) give

�kr2 EXkLr� .D�.x// C �kr
2Y kLr� .D�.x//

C �
2
r�
�2.kr EXkL2.D�.x// C krY kL2.D�.x/// . ke�EvkLr .D�.x// (2.32)

and, moreover, using (2.31),

kr� EXkLr .D�.x// C kr�Y kLr .D�.x//

. kr2 Ê kL2.D�.x//k ET kLr� .D�.x// C kr Ê kL1.D�.x//kr ET kLr .D�.x//

. ke�EvkLr .D�.x//: (2.33)

Note that we have used the fact that r2 Ê D e�O.jr Enj/.
From (2.17), we easily verify that

jr div. EH ^ r? Ê /j . jr� EX j C jr�Y j C jrEnj.jr2 ERj C jr2S j C jr2 EX j C jr2Y j/

C jr
2
Enj.jr ERj C jrS j C jr EX j C jrY j/:

Estimates (2.30), (2.32), and (2.33) then show that8

kr div. EH ^ r? Ê /kLr .D�=2.x// . �
2
r �3Mr : (2.34)

We next move on to finding a third-order estimate for En. Recall that

�.?En/ D r?.?En/ � r.?En/ � 2 div. EH ^ r? Ê /;

from which, with the help of (2.30) and (2.34), we easily deduce the estimate

kr
3
EnkLr .D�=3.x// . krEnkL2.D�.x//kr

2
EnkLr� .D�.x// C kr div. EH ^ r? Ê /kLr .D�=2.x//

C �
2
r �3krEnkL2.D�.x//

. �
2
r �3Mr :

This is the statement of Theorem 1.1 (ii) in the case r 2 .1; 2/. The case r � 2 is handled
mutatis mutandis the end of the proof of Theorem 1.1 (i) and follows easily from the case
r 2 .1; 2/.

8Recall that we are considering the case r 2 .1; 2/.
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2.4. On smoothness of the solution: Proof of Corollary 1.1

Let us suppose that Ê 2 W 2;2
imm.D1.0/;R

m/ satisfies the equation

div.r EH � 2�Enr EH C j EH j
2
r Ê C ET / D Ev on D1.0/;

where ET and Ev are smooth. As we are interested in obtaining a local result, we may always
rescale so as to guarantee that the small energy assumption

krEnkL2.D1.0// < "0

holds for some "0 sufficiently small. We proved in the last section that rEn 2
T
p<1W

2;p .
Owing to the Liouville equation9

��� D e2�K D O.jr Enj2/;

it follows that e˙� lie in
T
p<1W

2;p . Hence r2 Ê � O.e�jr Enj/ 2
T
p<1W

2;p .
Thus, EH 2

T
p<1W

2;p . From this and (2.8), it follows that EL 2
T
p<1W

2;p , and
hence by (2.12) that rS and r ER lie in

T
p<1W

2;p .

The function EV defined in (2.29) is smooth. By definition, so is EU WD ET Cr EV . Using
(2.5), we deduce thatr EX andrY belong to

T
p<1W

4;p . We see in the paragraph follow-
ing (2.17) that ER and S also belong to

T
p<1W

2;p . In turn, (2.15) yields the immediate
improvement that rS and r ER lie in

T
p<1W

3;p . Accordingly, per (2.26), we have

EH ^ r? Ê 2
\
p<1

W 3;p:

Per (2.20), we now see that�En belongs to the space
T
p<1W

2;p , and therefore thatrEn 2T
p<1W

3;p . The regularity has thus been improved and the process may be repeated
indefinitely until eventually reaching that En and thus the immersion Ê itself are smooth.

2.5. Remarks about the critical case

As its name indicates, the critical case is far more delicate to handle, and, as far as the
authors know, there is no general method to prove the regularity of solutions to the inho-
mogeneous Willmore equation

div.r EH � 2�Enr EH C j EH j
2
r Ê C ET / D E0; (2.35)

with a generic inhomogeneity e� ET 2 L1, if it is only known that the second fundamental
form is square integrable. There are of course special cases, such as the Willmore immer-
sions (with ET � E0) and more generally the conformally constrained Willmore immersions
(which include Willmore and CMC immersions) whose e� ET has a very specific form;

9K denotes the Gauss curvature.
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see [2]. The conformally constrained Willmore immersions have an inhomogeneous term
ET for which the solutions to (2.5) are identically vanishing. In turn, this guarantees that
system (2.15) is of Wente type and can thus be made subcritical just as we have done for
e� ET 2 Lp>1.

But even if we assume from the onset that the solution to (2.35) is sufficiently reg-
ular,10 the presence of an inhomogeneity ET , and thus of nonzero solutions of (2.5), will
in general prevent us from reaching estimates of the type appearing in Theorem 1.1. This
difficulty can only be resolved on a case-by-case basis. We will content ourselves in this
short section with mentioning one specific type of inhomogeneity for which Theorem 1.1
can be obtained.

Let us write the inhomogeneity ET in the form

ET D

�
A1
A2

�
@x1 Ê C

�
B1
B2

�
@x2 Ê C

 
EU1
EU2

!
;

where EU1 and EU2 are two normal vectors. One easily verifies that

r Ê ^ ET D e2�.A2 � B1/.?En/ � EU1 ^ @x1 Ê � EU2 ^ @x2 Ê

and
r Ê � ET D e2�.A1 C B2/:

Accordingly, if the functions .A1 C B2/, .A2 � B1/, and the normal projection �En ET lie
in the space L1Cı for some ı > 0, we can apply to (2.5) the same technique as used in the
proof of Theorem 1.1. This holds of course even if the functions A1, A2, B1, and B2 are
only merely integrable.

In general, it is not possible to obtain a subcritical-type energy estimate. However, as
we have seen above, there are exceptions when ET has a specific form. Another important
exceptional case occurs when ET depends on the geometry of the problem, and if the solu-
tion is already known to be regular enough, say Ê 2 W 2;2Cı.D1.0//, for some positive
ı 2 .0; 1/. We only focus on the specific situation when

e� ET D O.jr Enj2/

for an inhomogeneous Willmore problem of the type

div.r EH � 2�Enr EH C j EH j
2
r Ê C ET / D E0;

and assuming as usual that
krEnkL2.D1.0// < "0

for some "0 chosen sufficiently small.

10Even if ever so slightly, say EH 2 L2Cı for some ı > 0.
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As e� ET 2 L1C
ı
2 , it follows from Theorem 1.1 that rEn lies in W 1;1C ı

2 � L2
2Cı
2�ı , and

thus e� ET lies in W 1;2 2Cı
6�ı , which is a proper subset of L1C

ı
2 . Calling again on Theo-

rem 1.1, the integrability of rEn is improved accordingly. This procedure may be repeated
until reaching that r2En belongs to all Lp spaces, with p finite, i.e. that En belongs to C 1;˛

for all ˛ < 1. Standard arguments then imply that En, and thus the immersion Ê , are smooth.

2.6. Gap phenomenon: Proof of Theorem 1.2

Let us suppose that † is a complete, connected, noncompact, oriented, immersed surface
into Rm�3 satisfying an inhomogeneous Willmore equation (1.4) of the form

�? EH C hEh � EH; Ehig � 2j EH j
2 EH D EW ; (2.36)

with the same notation as before, and where EW is a normal field with the property that

EW D O.j Ehj3/; i.e. j EW j � cj Ehj3; (2.37)

for some constant c. We suppose further thatZ
†

j Ehj2g dvolg < "20; (2.38)

for some "20 chosen to be small enough (at least smaller than 8�=3). A well-known result of
Müller and Šverák [33] guarantees that † is embedded and conformally equivalent to R2.
Accordingly, we parametrize † by a conformal immersion Ê WR2 ,! Rm with conformal
parameter �, and such that Ê 2 W 2;2.R2/.

Just as was done in Section 1, in the flat coordinates of R2, the inhomogeneous Will-
more equation (2.36) can be recast in the form

div.r EH � 2�Enr EH C j EH j
2
r Ê / D Ev on R2;

where
Ev WD e2� EW :

Per (2.37), note that
je�Evj ' je� Ehj3 ' jrEnj3; (2.39)

where, as always, En is the Gauss map associated with Ê . The smallness hypothesis (2.38)
translates into

krEnkL2.R2/ < "0; (2.40)

for some "0 > 0 sufficiently small.
Owing to the Liouville equation

��� D e2�K D O.jr Enj2/ 2 L1.R2/;
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it follows that r� lies in the space L2;1.R2/ with norm controlled by krEnkL2.R2/. We
can in particular repeat the analysis leading to Lemma 2.1 to deduce that

ke�kL1.R2/ke
��
kL1.R2/ � C."0/: (2.41)

This Harnack-type inequality will be used in our argument.
As we did in the proof of Theorem 1.1 (ii), we let

�� EV D Ev on R2;

and ET WD r EV . As the equation

div.r EH � 2�Enr EH C j EH j
2
r Ê C ET / D E0

holds on R2, we can repeat the analysis done in the proof of Theorem 1.1 (i) and deduce
the existence of ER and S satisfying´

� ER D r.?En/ � r? ERCr.?En/ � r?S C div..?En/ � r EX C .?En/rY /;

�S D r.?En/ � r? ERC div..?En/ � r EX/;
(2.42)

where, as before, EX and Y satisfy

� EX D r Ê ^ ET and �Y D r Ê � ET on R2: (2.43)

We have

k� EXkLq.R2/ C k�Y kLq.R2/ C kr
EXkLq� .R2/ C krY kLq� .R2/ . ke� ET kLq.R2/; (2.44)

for q 2 .1; 2/ and q� WD 2q=.2 � q/.
Applying Wente’s inequality to (2.42) as in [7, Lemma IV.2], we find

kr ERkLq� .R2/ C krSkLq� .R2/ � krEnkL2.R2/.kr ERkLq� .R2/ C krSkLq� .R2//

C kr EXkLq� .R2/ C krY kLq� .R2/;

which, owing to (2.40) and (2.44), yields

kr ERkLq� .R2/ C krSkLq� .R2/ � C."0/.kr
EXkLq� .R2/ C krY kLq� .R2//

� C."0/ke� ET kLq.R2/: (2.45)

We saw in the previous section that

2 EH ^ r? Ê D .r? ER � r EX/ � .?En/C .r?S � rY /.?En/;

hence

jdiv.2 EH ^ r? Ê /j � j� EX j C j�Y j C jrEnj.jr ERj C jrS j C jr EX j C jrY j/:
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This gives, using (2.44) and (2.45),

kdiv.2 EH ^ r? Ê /kLq.R2/

� k� EXkLq.R2/ C k�Y kLq.R2/

C krEnkL2.R2/.kr ERkLq� .R2/ C krSkLq� .R2/ C kr
EXkLq� .R2/ C krY kLq� .R2//

� 2ke� ET kLq.R2/ C C."0/.kr EXkLq� .R2/ C krY kLq� .R2//

� C."0/ke� ET kLq.R2/: (2.46)

Recall that
�En D div.2 EH ^ r? Ê /CO.jr Enj2/:

According to (2.46), to (2.40), and to the Sobolev embedding theorem, we thus have

kr
2
EnkLq.R2/ � kdiv.2 EH ^ r? Ê /kLq.R2/ C krEnkL2.R2/krEnkLq� .R2/

� C."0/ke� ET kLq.R2/ C "0kr
2
EnkLq.R2/;

thereby yielding
kr

2
EnkLq.R2/ � C."0/ke

� ET kLq.R2/: (2.47)

We now call upon the Gagliardo–Nirenberg interpolation inequality, (2.40), and (2.47) to
find

krEnkLp.R2/ � kr
2
Enk˛
Lq.R2/

krEnk1�˛
L2.R2/

� C."0/"
1�˛
0 ke� ET k˛

Lq.R2/
;

for
1

p
D
1

2
C

�1
q
� 1

�
˛ and 0 � ˛ � 1:

Equivalently,
kjrEnj3kLb.R2/ � C."0/"

3.1�˛/
0 ke� ET k3˛

Lq.R2/

for
1

b
D
3

2
C 3

�1
q
� 1

�
˛:

As e�� EV D �e�Ev D O.jr Enj3/ and ET D r EV , the latter yields

ke�� EV kLb.R2/ � C."0/"
3.1�˛/
0 ke�r EV k3˛

Lq.R2/
;

hence, using (2.41),

k� EV kLb.R2/ � C."0/"
3.1�˛/
0 ke�k3˛�1

L1.R2/
kr EV k3˛

Lq.R2/
: (2.48)

Let ı 2 .0; 2=3/. We specialize to

q D 2 � ı and 3˛ D
1

1 � ı
:
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This gives
1

b
D
3

2
�

1

2 � ı
; so that b 2 .1; 2/:

Using the Sobolev embedding theorem in (2.48) then gives

kr EV k1�ı

L
2�ı
1�ı .R2/

� C."0/"
2�3ı
0 ke�kı

L1.R2/
kr EV kL2�ı .R2/: (2.49)

Since
1 � ı

2 � ı
C

1

2 � ı
D 1;

we interpolate (2.49) to find

kr EV k
2.1�ı/

L2.R2/
� C."0/"

2�3ı
0 ke�kı

L1.R2/
kr EV k2�ı

L2�ı .R2/
:

Letting ı & 0 reveals that

kr EV kL2.R2/ � C."0/"0kr EV kL2.R2/:

Since "0 can be adjusted at will, the latter implies that r EV � E0, hence that ET � E0, and
therefore that rEn � E0 by (2.47). This guarantees that † is a flat plane, as announced.

A. Appendix

A.1. Notational conventions

We append an arrow to all the elements belonging to Rm. To simplify the notation, by
Ê 2 X.D1.0// is meant Ê 2 X.D1.0/;Rm/ whenever X is a function space. Similarly,
we write r Ê 2 X.D1.0// for r Ê 2 R2 ˝X.D1.0/;Rm/.

We let differential operators act on elements of Rm componentwise. Thus, for
example, r Ê is the element of R2 ˝ Rm with Rm-valued components .@x1 Ê ; @x2 Ê /.
If S is a scalar and ER an element of Rm, then we let

ER � r Ê WD . ER � @x1 Ê ; ER � @x2 Ê /;

r
?S � r Ê WD @x1S@x2 Ê � @x2S@x1 Ê ;

r
? ER � r Ê WD @x1 ER � @x2 Ê � @x2 ER � @x1 Ê ;

r
? ER ^ r Ê WD @x1 ER ^ @x2 Ê � @x2 ER ^ @x1 Ê :

Analogous quantities are defined according to the same logic.
Two operations between multivectors are useful. The interior multiplication maps a

pair comprising a q-vector  and a p-vector ˇ to a .q � p/-vector. It is defined via

h ˇ; ˛i D h; ˇ ^ ˛i for each .q � p/-vector ˛:
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Let ˛ be a k-vector. The first-order contraction operation � is defined inductively through

˛ � ˇ D ˛ ˇ when ˇ is a 1-vector;

and
˛ � .ˇ ^ / D .˛ � ˇ/ ^  C .�1/pq.˛ � / ^ ˇ

when ˇ and  are respectively a p-vector and a q-vector.

A.2. On the Gauss map

It is shown in [6, Appendix B] that the Gauss map ?En WD e�2�@x1 Ê ^ @x2 Ê satisfies (for
a conformal parametrization Ê with conformal coefficient �) the identity

�En D 2e2�K EnC 2 ? e2� Eh12 ^ .Eh11 � Eh22/C 2 ? .r? Ê ^ r EH/; (A.1)

where
Ehij WD �Enrij Ê

are the components of the second fundamental form, and K is the Gauss curvature.
One easily verifies that

.?En/ � rj .?En/ D �Ehij ^ r
i Ê :

Let �jk be the Kronecker symbol. Differentiating the above gives

r
?..?En/ � r.?En// D �jkrk Œ.?En/ � rj .?En/�

D ��jk Ehij ^ Eh
i
k � �

jk
rk
Ehij ^ r

i Ê : (A.2)

Owing to the Codazzi–Mainardi identity in the form

rk
Ehij D ri Ehjk C .Ehkj � Ehil � Ehij � Ehkl /r

l Ê ;

we recast (A.2) in the form11

�jkrk Œ.?En/ � rj .?En/� D ��
jk Ehij ^ Eh

i
k C �

jk.Ehij � Ehkl /r
l Ê ^ r

i Ê

D 2e2� Eh12 ^ .Eh11 � Eh22/C 2Ke2�.?En/:

Injecting this into (A.1) and slightly rearranging yields

�.?En/ D r?.?En/ � r.?En/ � 2 div. EH ^ r? Ê /: (A.3)

11Recall that the Kronecker symbol is an antisymmetric tensor, while the second fundamental form is
symmetric.
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A.3. Some useful elliptic results

The following result is established in [5, Appendix].

Lemma A.1. Let D be a disk and suppose that G D G1 CG2 satisfies

divG D 0 on D;

where
G1 2 W

�1;2.D;R2/; G2 2 L
1.D;R2/:

Then there exists an element L in the space L2;1.D;R/ such that

G D r?L

and
kL � LDkL2;1.D/ � C.kG1kW �1;2.D/ C kG2kL1.D//;

where LD denotes the average of L on the disk D, and C is a universal constant.

The following propositions are decisive for our estimates.

Proposition A.1. Let u 2 W 1;2.D�.x// satisfy �u D F on D�.x/. Suppose that

kF kL1.D� .x// � CF �
q

for some constants CF > 0, q > 0, and for all � < a�, for some a 2 .0; 1/. Then we have

krukLs.Db�.x// . �
2
s �1.krukL2.D�.x// C CF �

q/

for any b 2 .0; a=2/ and any

2 < s <
2 � q

1 � q
:

Proof. Consider the maximal function

Mg.y/ WD sup
�>0

��q
Z
D� .y/

jg.z/j dz: (A.4)

Calling upon the assumption on F , we derive that for y 2 Da�=2.x/, there holds

M.�Da�=2.y/�u.z//.y/ � sup
0<�<

a�
2

��qkF kL1.D� .y// � CF : (A.5)

On the other hand, we have

k�ukL1.Da�=2.x// D kF kL1.Da�=2.x// . CF �
q : (A.6)

Let jzj�1 denote the standard Riesz transform. It is stated in [1, Proposition 3.2] that

kjzj�1 � �Da�=2.y/�ukL˛;1.Da�=2.x// . kM.�Da�=2.y/�u/k
1� 1˛
L1.Da�=2.x//

k�uk
1
˛

L1.Da�=2.x//
;
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where ˛ WD .2 � q/=.1 � q/ > 2. Hence, according to (A.5) and (A.6), we have

kjzj�1 � �Da�=2.y/�ukL˛;1.Da�=2.x// . CF �
q=˛: (A.7)

We let y 2 Da�=2.x/ and we decompose u D u0 C u1 with´
�u0 D 0; �u1 D �Da�=2.y/�u in Da�=2.x/;

u0 D u; u1 D 0 on @Da�=2.x/:

Let s 2 .2; ˛/. Using standard estimates for the harmonic function u0 and the estimate
(A.7) gives for any b 2 .0; a=2/ that

krukLs.Db�.x// � kru0kLs.Db�.x// C kru1kLs.Db�.x//

. �
2
s �

4
3 kru0kL3=2.Da�=2.x// C kru1kLs.Db�.x//

. �
2
s �

4
3 krukL3=2.Da�=2.x// C kjzj

�1
� �Da�=2.y/�ukLs.Db�.x//

. �
2
s �1krukL2.Da�=2.x// C �

2
s �

2
˛ kjzj�1 � �Da�=2.y/�ukL˛;1.Da�=2.x//

. �
2
s �1.krukL2.D�.x// C CF �

q/: (A.8)

Proposition A.2. LetD�.x/ �D1.0/, and let u 2 W 1;.2;1/.D�.x// satisfy the equation

�u D rb � r?uC div.brf / on D�.x/; (A.9)

where f 2 W 2;p
0 .D�.x// for some p > 1. Suppose moreover that

b 2 W 1;2
\ L1.D�.x// with krbkL2.D�.x// < "0 and kbkL1.D�.x// � 1; (A.10)

for some "0 chosen to be “small enough”. Then

krukLs.D5�=8.x// � C."0/
�
�
2
s �1krukL2;1.D�.x// C �

2
s �

2
pC1kr

2f kLp.D�.x//
�
;

for some constant C."0/ depending only on "0, and where s < 2=.2� p/ if p 2 .1; 2/, or
s <1 if p � 2.

Proof. Suppose first that p 2 .1; 2/. Then for every D� .z/ � D�.x/, it holds that

krf kL2.D� .z// . �
2� 2p krf kL2p=.2�p/.D�.x// . �

2� 2p kr
2f kLp.D�.x//: (A.11)

Let us fix once and for all some point x0 2 D3�=4.x/ and some radius 0 < r � �=4, so
that the disk Dr .x0/ of radius r and centered on the point x0 is contained in D�.x/. With
the help of the theorem of Fubini, we may always find some r0 2 .r=2; r/ such thatZ

@Dr0 .x0/

jruj
3
2 .

1

r

Z
Dr .x0/

jruj
3
2 . r�

1
2 kruk

3
2

L2;1.Dr .x0//

. r
� 12
0 kruk

3
2

L2;1.D�.x//
: (A.12)
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We next define u D u0 C u1, where the new variables, in accordance with (A.9), satisfy´
�u0 D div.brf /; �u1 D rb � r?u in Dr0.x0/;

u0 D u; u1 D 0 on @Dr0.x0/:

Let
Nu WD

1

2�r0

Z
@Dr0 .x0/

u:

Standard elliptic theory, our assumptions on b and f , and the Sobolev embedding theorem
give

kru0kL2.Dr0 .x0//
. kbrf kL2.Dr0 .x0// C ku � NukH1=2.@Dr0 .x0//

. krf kL2.Dr0 .x0// C r
1
3
0 krukL3=2.@Dr0 .x0//

. r
2� 2p
0 kr

2f kLp.D�.x// C krukL2;1.D�.x//; (A.13)

where (A.11) and (A.12) were used.
To handle u1, we apply Wente’s inequality in the form of [7, Lemma IV.2] to obtain

kru1kL2.Dr0 .x0//
. krbkL2.Dr0 .x0//krukL2;1.Dr0 .x0// � "0krukL2;1.D�.x//: (A.14)

Altogether, (A.13) and (A.14) yield that ru belongs to L2.Dr0.x0//. In particular,

krukL2.Dr0 .x0//
. r

2� 2p
0 kr

2f kLp.D�.x// C krukL2;1.D�.x//: (A.15)

Now let k 2 .0; 1/. Using (A.11) again, standard elliptic theory and growth estimates
give

kru0kL2.Dkr0 .x0//
. kbrf kL2.Dr0 .x0// C kkru0kL2.Dr0 .x0//
. krf kL2.Dr0 .x0// C kkru0kL2.Dr0 .x0//

. r
2� 2p
0 kr

2f kLp.D�.x// C kkru0kL2.Dr0 .x0//
: (A.16)

For u1, we apply Wente’s inequality this time as in [18, Theorem 3.4.1] so as to find

kru1kL2.Dr0 .x0//
. krbkL2.Dr0 .x0//krukL2.Dr0 .x0//
. "0krukL2.Dr0 .x0//

; (A.17)

again up to some multiplicative constant without bearing on the sequel. Hence, combining
(A.16) and (A.17) we obtain the estimate

krukL2.Dkr0 .x0//
. .k C "0 C k"0/krukL2.Dr0 .x0//

C r
2� 2p
0 kr

2f kLp.D�.x//: (A.18)
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Because "0 is a small adjustable parameter, we may always choose k so that ."0 C k"0/
is small enough. A standard controlled-growth argument (see [16, Lemma III.2.1]) along
with (A.15) enables us to conclude that for some constant C."0/, it holds that

krukL2.D� .x0// � C."0/�
2� 2p

�
r
2
p�2

0 krukL2.Dr0 .x0//
C kr

2f kLp.D�.x//
�

� C."0/�
2� 2p

�
r
2
p�2

0 krukL2;1.D�.x// C kr
2f kLp.D�.x//

�
;

for
x0 2 D3�=4.x/ and � 2 .0; r0/:

In particular, for r0 D �=2, we find

krukL2.D� .x0// � C."0/�
2� 2p

�
�
2
p�2krukL2;1.D�.x// C kr

2f kLp.D�.x//
�
; (A.19)

for
x0 2 D�=2.x/ and � 2 .0; �=2/:

Our proof proceeds next in two distinct cases.

Case 1: p 2 .1; 2/. We recast equation (A.9) in the form

��u D b�f Crb � .r?uCrf /:

From (A.11) and (A.19), we have

k�ukL1.D� .x// . k�f kL1.D� .x// C krukL2.D� .x// C krf kL2.D� .x//

� C."0/
�
�
2
p�2krukL2;1.D�.x// C kr

2f kLp.D�.x//
�
�
2� 2p :

Calling upon Proposition A.1 yields

krukLs.Db� .x//

. �
2
s �1

�
krukL2.D� / C �

2� 2p
�
�
2
p�2krukL2;1.D�.x// C kr

2f kLp.D�.x//
��

. �
2
s �

2
pC1

�
�
2
p�2krukL2;1.D�.x// C kr

2f kLp.D�.x//
�

. C."0/
�
�
2
s �1krukL2;1.D�.x// C �

2
s �

2
pC1kr

2f kLp.D�.x//
�
;

for any b 2 .0; 1/ and

2 < s <
2

2 � p
:

Hence for b < 1=2, we deduce that

krukLs.Db�.x// . C."0/
�
�
2
s �1krukL2;1.D�.x// C �

2
s �

2
pC1kr

2f kLp.D�.x//
�
: (A.20)
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Case 2: p � 2. Let s 2 .2;1/ be arbitrary. Choose 0 < ı < 2=s. Then, setting q D 2� ı,
we have

kr
2f kLq.D�.x// . �

2
q�

2
p kr

2f kLp.D�.x//:

Since s < 2=.2� q/, we have per the above discussion (previous case and notably (A.20))
that

krukLs.Db�.x// � C."0/
�
�
2
s �1krukL2;1.D�.x// C �

2
s �

2
qC1kr

2f kLq.D�.x//
�

� C."0/
�
�
2
s �1krukL2;1.D�.x// C �

2
s �

2
pC1kr

2f kLp.D�.x//
�
:

In other words, (A.20) holds for all p 2 .1;1/, with any s < 2=.2 � p/ if p 2 .1; 2/
and any s < 1 if p � 2. We combine these facts by writing that (A.8) holds for all
s < 2=.2 � p/C, which concludes the proof.
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