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Scaling-invariant Serrin criterion via one velocity
component for the Navier—-Stokes equations

Wendong Wang, Di Wu, and Zhifei Zhang

Abstract. The classical Ladyzhenskaya—Prodi—Serrin regularity criterion states that if the Leray

weak solution u of the Navier—Stokes equations satisfies u € L4 (0, T; L? (R3)) with % + % <1,

p > 3, then it is regular in R3 x (0, T'). In this paper, we prove that the Leray weak solution is
also regular in R3 x (0, T') under the scaling-invariant Serrin condition imposed on one component
of the velocity, i.e., u3 € L2910, T; LP (R3)) with % + % < 1,3 < p < 4o0. This result means
that if the solution blows up at a time, then all three components of the velocity have to blow up
simultaneously.

1. Introduction
In this paper we study the incompressible Navier—Stokes equations

oyu—Au—+u-Vu+Vr =0,
divu =0, (NS)

u(x,0) = uo,

where (u(x,t), w(x,t)) denote the velocity and the pressure of the fluid respectively.

In the pioneering work [23], Leray introduced the concept of weak solutions to (NS)
and proved global existence for initial data uo € L?(R3). Kato [17] initiated the study
of (NS) with initial data belonging to the space L3(R3) and obtained global existence
in a subspace of C([0, o0), L3(R3)) provided the norm luollz3w3) is small enough. The
existence result for initial data small in the Besov space Bp_, (11+(3/ p) (R3) for p € [1, 00)
and g € [1, oo] can be found in [4, 11]. The function spaces L3(R3) and BP_,(IIJ“(S/”) (R3)
for (p,q) € [1, 00)? both guarantee the existence of a local-in-time solution for any initial
data. Koch and Tataru [19] showed that global well-posedness holds as well for small
initial data in the space BMO™!(R?). On the other hand, it has been shown by Bourgain
and Pavlovi¢ [2] that the Cauchy problem with initial data in Bgol,oo(R3) is ill posed no
matter how small the initial data is.
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In two spatial dimensions, the Leray weak solution is unique and regular. In three
spatial dimensions, the regularity and uniqueness of a weak solution is an outstanding
open problem in mathematical fluid mechanics. It was known that if the weak solution u
of (NS) satisfies a so-called Ladyzhenskaya—Prodi—Serrin-type (LPS) condition

2 3
ue L0, T; LP(R%) with=+ = <1,p>3,
q P

then it is regular in R3 x (0,7), see [10, 14,29, 30], where the regularity in the class
L>(0,T; L3(R3)) was proved by Escauriaza, Seregin and Sverdk [10]. In [12], based on
[18], Gallagher, Koch and Planchon gave an alternative proof of the result in [10] by the
method of profile decomposition. In [13], they extended the method in [12] to release the
space from L3 to the Besov space with negative power. See [1,36] for further extensions.
Recently, Tao [31] proved the blow-up rate of the solution u of (NS) if the solution u
blows up in finite time. We should mention that in the case of %1 + % = 1, the function
space L7 L% is invariant under the Navier—Stokes scaling:

u(x,t) > u*(x,1) = Au(Ax, A%1) VA >0, (1.1)

where u* is still a solution to (NS) with initial data ué = Aug(Ax).

Concerning the partial regularity of a weak solution satisfying the local energy
inequality, initiated by Scheffer [28], Caffarelli, Kohn and Nirenberg [3] showed that the
one-dimensional Hausdorff measure of the possible singular set is zero. One could check
Lin [24] and Ladyzhenskaya and Seregin [22] for a simplified proof and improvements.
Please refer to [15, 20, 32—35] and references therein for more relevant works.

Starting in [27], there are many interesting works devoted to a new LPS-type criterion,
which only involves one component of the velocity. Neustupa, Novotny and Penel [26]
proved the LPS-type criterion for one component u3 € L4(0, T; L? (R3)) with % + % < %
Later, this condition was improved by Kukavica and Ziane [21] to

z+§:§, p>§, Efc]<~l—oo;
qg p 8 5 5
and by Cao and Titi [5] to
2,032,271
q p 3 3p 2
and then by Zhou and Pokorny [37] up to

2 n 3 _ 3 n 1 - 10
qg p 4 2p Pz

However, these conditions are not scaling invariant. Recently, Chemin and Zhang [7]

obtained a blow-up criterion via one velocity component in a scaling-invariant space

142
L?(H, ?)with4 < p < 6. Later, Chemin, Zhang and Zhang [8] released the restriction
on p to4 < p < oo and Han et al. [16] extended the range of p to 2 < p < 400. However,
as stated in [25],
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the question whether the condition uz € L(0, T; L?(R3)) for p and q, basically

satisfying the condition % + % < 1, is sufficient for regularity of a solution u in

R3 x (t1,12), is still open.

Very recently, Chae and Wolf [6] made important progress and obtained the regularity
of a solution to (NS) under the almost-LPS-type condition

2 3
us € L90,T; LP(R?), =+ =<1,3<p < .
qg p

The aim of this paper is to obtain the LPS criterion via one velocity component with

% + % < 1. Now let us state our main result.

Theorem 1.1. Letug € L2(R3) N L3(R3) and (u, ) be a Leray weak solution of (NS)
inR3 x (0, T). If u satisfies the condition

us € L9210, T; L? (R?)) (1.2)

for some (p, q) with % + % < 1,3 < p < oo, then u is regular in R® x (0, T). Here L%
denotes the Lorentz space with respect to the variable t.

Theorem 1.1 is a corollary of the following Theorem 1.2 and [36, Theorem 1.4]. The
proof will be presented in Section 4.

Definition 1.1. Let @ C R3 and 7 > 0. We say that (u, ) is a suitable weak solution of
(NS)in Qr = Q x (-T,0) if

(1) u € L®(=T,0; L>(Q)) N L?>(~T,0; H'(Q)) and 7 € L%(QT);

(2) (u, ) satisfies (NS) in the sense of distributions;

(3) alocal energy inequality holds: for any nonnegative ¢ € C°(R3 x R) vanishing
in a neighborhood of the parabolic boundary of Qr,

t
/|u(x,t)|2¢dx+2[ /|Vu|2¢dxds
Q -rJa

t
5/ /|u|2(8s¢+A¢)+u-V¢(|u|2+2n)dxds (1.3)
T JQ

forany ¢t € [-T,0].
For 2o = (X9, %), we denote Q,(z0) = B, (xo) X (tg — 12, 1) with zg = (xg, tp) and
Qr = Qr((ovo))

Theorem 1.2. Let (u, ) be a suitable weak solution of (NS) in R3 x (—1,0). If u satisfies
the condition

us € LY (—1,0; L?(R?)), + —<land3 < p < 00,

QN
| W
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then it holds that

r 2 ullZa g0, oy = €

forany0 <r < %andany 7o € R3 x (—%,0].

Let us make some remarks about our result.

ey

@)

3

“

The initial data in L2(R3) N L3(R3) in Theorem 1.1 implies the local-in-time
regularity of weak solutions using weak—strong uniqueness theory (see [9] for
example). Thus, the weak solution is actually a suitable weak solution, which is
defined as above.

Compared with the result in [6], our main contribution is that condition (1.2) with
the equality is invariant under the Navier—Stokes scaling, which seems to be the
first scaling-invariant regularity criterion in terms of one velocity component in
the space L? L%. Due to the inclusion L9! ¢ L4 for ¢ > 1, the regularity of the
weak solution under the condition u3 € L4(0, T; L?(R?)) with % + % = lisstill
open.

Our result means that if the solution blows up at time 7', then three components
of the velocity will blow up at the same time. However, it remains open whether
three components (or two components) of the velocity blow up at the same time
and same position. For this, we need to establish a new local interior regularity
criterion; see [34] for partial progress.

Our key idea comes from an intuitive analysis for a toy model. Rigorous analysis
is based on the introduction of a new iterative scheme, a new local anisotropic
energy estimate and the atomic decomposition of the Lorentz space (see Section 2
for a detailed explanation).

The rest of this paper is organized as follows. Section 2 is devoted to presenting an
intuitive argument, which helps us to show our main idea in a perspective view. In Sec-
tion 3, we show the local anisotropic energy estimates. In Section 4, we prove Theorems
1.1 and 1.2.

2. An intuitive argument and main ideas

In this section, let us first present an intuitive argument to show the regularity condition via
one velocity component. This argument explains the reason why the regularity criterion
via one component is reasonable. Moreover, it explains that the requirement of the time
variable in the Lorentz space seems critical.

For x5, = (x1, x2), we introduce

Ulxs. 1) =[ s x5, )2 dox.
RZ
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Then U(t, x3) satisfies
1 1, 2
-0, U —-0:.U + |Vu(x,t)|“dx, = — u-Vu-udxy — Vr-udxy.
2 273 R2 R2 R2
By integration by parts and V - u = 0, we get

1 1, 5
EB,U — §3ng + /R2 [Vu(x,t)|” dxyp,

1 1
:/ —8x3u3§|u|2dxh—/ u38x3§|u|2dxh—/ 0y s doxy
R2 R2 R2

—/2 O, U3 dXp,
R

1
= —0x, u3—|u|2 dxp — 0x, wus dxy.
rR2 2 R2

Since each nonlinear term on the right-hand side includes a velocity component u3, this
simple argument shows that there is a chance to establish the regularity criterion via one
velocity component.

Next let us motivate our result via the following toy equation:

0;U — 8)2c3U = —0yx, uslul? dxy,.
RZ

Then we have

t
U(xs,t) = %% Uy —/ PGS 0xs (/ uslul? dxh) ds.
0 R2

Using the estimate of the heat kernel, we obtain

t
IUC Dllze < UG =)z + Cf 3(t = )72 us(s) = UG, 9)] e ds,
t_

which gives

sup  [|UC.8)llLoe = |U( 1 =)o

s€[t—6,¢]

t
+C f 8(t - s)_% lus(s)||ze ds  sup |JU(C,s)||Lee-
r— ]

s€[t—6,t

Therefore, if u3 € L21((0, T); L*°), then we have

! _1 _1
/ =) (@l ds < 1 =) e 15O e 2
t_

< Clllus$)re | 21 ¢—s.0)-
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This shows that

sup  [[UC.8)llLe = [U(.1 = 8)Lee

s€[t—8,t]

+ C“”M3(S)”L°° HLZsl(tfb’,t) sup ||U("S)||L°°'
s€[t—6,t]

Thus, if § is small enough, we conclude that

sup |UC.s) Lo < 2[|UC 1 = 8)llee.
s€[t—6,¢t]

oo

In particular, this argument implies that u € L7%

mate under the Navier—Stokes scaling.

Because of the nonlocality of the pressure, this argument seems difficult to apply to the
original Navier—Stokes equations. To overcome this difficulty, we adapt the local energy
method introduced in [6]. A key difference from [6] is that we only make the localization
in the variables x3 and ¢. More precisely, inserting ¢ = &, 7 in (1.3), we obtain

(L)zch), which is a scaling-invariant esti-

1 t
5/}1{3 |u(-,t)|21>n(',t)17(-,t)a’x~|—/‘1/];{3 |Vu|?®,ndx ds

1! [t
< —/ f [u?(0; + A)(®pn)dx ds + —f / [ul*u - V(®,n) dx ds
2 )1 Jrs 2 )1 Jrs

t
+[ / au - V(®,n) dx ds, 2.1)
—1 ]R?a

where ®,, stands for the shifted fundamental solution to the backward heat equation in
one spatial dimension, i.e.,
1 3
¢ ) (x3,1) € R x (—00,0),
Van(—t +r2)

with 7, =27",n € N. Moreover, n = n(x3,t) € C>((—1,1) x (-1, 0]) denotes a cut-off
function such that0 < n < 1inR x (—1,0] and n = 1 on (—%, %) X (—%,O).

(I)n(X3,l) =

Remark 2.1. Note that one can also take a cut-off function ¥ = ¥ (x;) € CS°(R?) with
0 < ¢ <1 satisfying

B _J U in B'(R) = {xp, |xp| < R},
Y () = v(l) = { o b\ BoR 22)

and

C C
Dyl < . |D>y| < =

Inserting ¢ = ®,ny in (1.3) and taking R — oo implies formula (2.1) immediately, since
the a priori estimates (3.1) and 7 € L3/2(Q27) hold and all derivatives of ®,,7 are bounded.
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Next we introduce

U, =U(ry) = R? x (=rn,1rn),
On = Uy x (—=12,0),

An =R* x A%,
where
Ay =00\ Oniy. On = (=rn.ra) X (=12.0).
Clearly, there exist absolute constants c¢1,c, > Osuch thatforalln e Nand j =1,...,n,
it holds that

D, <corjt, [03Pn S corj? in A, (2.3)

crt <@, <cyr 103®,| < cary 2 in Q. (2.4)

n

Given n € Ny, we introduce
0

E, = sup / lu(t))? dx + / |Vul|? dx ds.
te(—r2,0) Y Un —rit JUn
0
&= sup / lu(t)|* dx + / / |Vu|? dx ds,
te(—1,0) JR3 -1 JR3

and the main focus of this paper is to prove the boundedness of the scaling-invariant
anisotropic quantity
i E, <C Vn>1.

To this end, we have to introduce many new ideas as follows.

(1) New iteration scheme. Recall the discrete iteration scheme in [6]:

N N n
> 7 En(p)) % > Ay (7' Ei(R) + LOT

n=0 n=0 i=0

1 N N

3 Z(ri_lEi(R))( > r,}—*) +L.O.T,
i=0 n=i

which fails in the endpoint case A = 1 (the critical case), since constant series
cannot be summed. The condition A < 1 implies the necessity of the subcritical
condition of u3. The symbol “L.O.T” represents some lower-order terms in the

IA

IA

form (g£‘24 . Our new iteration comes from the discrete inequality
n—1
yn <Co+ Y Cjyj. n=landyo < Co.
j=0

where {C;}jeN, {¥) }jen are nonnegative series. Then {y,} is uniformly bounded
if the infinite sum of Z;”’g C;j is convergent (see Lemma A.1 for details).
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(2) New key local anisotropic energy estimate:

n—1
Y <CE+CEF+C D Ciyi,
i=0

where y; = ri_lE,- and C; is

2p—3 2
> 0 % R _;ﬁ
Ci=)Y_ lusGo)l75 > ds ) rilte 2k 4 -
k=i -

We also mention that like our argument for the above toy model, C; is mainly
deduced by the heat kernel via the Young inequality. To achieve it, we have to
make a very subtle decomposition and summation argument for the nonlinear term
and the pressure (see the proof of Proposition 3.1).

(3) Atomic decomposition of the Lorentz space. To show that Z;;"g Cj < 400, we
need to introduce the atomic decomposition of the Lorentz space. See Lemmas
A.2 and A.3 for the details.

3. Local anisotropic energy estimates

This section is devoted to proving the following key local anisotropic energy estimate.

Proposition 3.1. Let (u, ) be a suitable weak solution of (NS) in R3 x (-1, 0). Suppose
that (u, ) satisfies the assumptions of Theorem 1.2. Then there exists a positive series
{Ci}ien with Y 72 Ci < |us(-,8)|l 01, » such that for any n € N we have

t X

n—1
i En < CE+CE3 +C Y (7 ENG.
i=0
This proposition can be directly deduced from the following Lemmas 3.1-3.3. Tech-
nically, it is delicate to construct the sequence {C; } bounded by |[u3(-, s)|| 1912058 each
C; is related to the value of u3 on small cubes or cylinders.
Let us recall the following embedding inequality, which will be used frequently:

2 3 3

”u”im(—r,%,O;Ll(Un)) =< CE}’L V2 =m =< o0, E + 7 = 5 (31)

Ly

3.1. Estimates for nonlinear terms

Lemma 3.1. Let (u, ) be a suitable weak solution of (NS) in R3 x (=1,0). Suppose that
(u, ) satisfies the assumptions of Theorem 1.2. Then we have

t
/ / [ul?(d; + A)(Ppn)dx ds < CE, (3.2)
-1JU,
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and there exists a positive series {B; }ien with Y ;o Bi < |u3 a1, » such that for any
t X
n € N we have

t n
/ / lu*u-V(®,n)dxds < C Z(ri_lE,-)B,- +CE12, (3.3)
—1JUyp

i=0

Proof. Let (u, ) be the solution satisfying the condition in Lemma 3.1. For the proof of
(3.2), we notice that

// WP @ + A)(@n) dx ds
—1JUy

t
= / [ |”|2(@n3ﬂ7+233@n3377+q>n3337}) ddey
—1JUy

which along with (2.3) and (3.1) implies

t
/ / [ul?(3; + A)(P,n)dx ds < CE.
-1JU,

This proves (3.2).
Next we turn to the proof of (3.3). Notice that

t
/ / [u|?u - V(®,n)dx ds
—1JUy

n—1
= [ WPlual 0a@alndxds + [ Pl sl ds
i i

On
+/ 2 143 [937| B dx ds
Qo

3
e ‘st pdxds

< |x3]
CZ/ s |(\/7)3

+C[ Pl ——2L i d ds

NN e

4 [ Pl panl @y dxds = Loy + I + I
Qo
The last term I3 can be easily controlled as
I 5/ u|?|us| dx ds < C&3. (3.4)
Qo

Before presenting the estimates for /57 and /55, we introduce B; as

00 2p 3 r2 2p—3

3d L _321r2 -1 0 ;p3d zp
E ||u3( S)||Lp s reoe Tkt lusC.9)ll;5 " ds .
- —r?

k=i i



For I,; we have

n—1
I =C Z/ |u|?|us
i=0 Aﬂ{rz+1<|x3|<rz,—r+1<S<0}
rey / o3|
i—o JAin{Ixs|<ri,—rP<s<—r? |}

= D11 + I212.

First, by (3.1) we have
IIMII2
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s 3| T
(s+r) d dS
nax
(v(— 3
|x3] 5

4Cstd pdx ds

(V(=s+r 3e

< CE;,

T r2,0;L27' (U}))

asi.’.i:

35 T3y % For the first term 1511, we have

n—1 0
B CY [ ey 02 Mr s
i=0Y " Tir1

n—1 0
<eya(f ) maeoin”
i=0 d

i+
On the other hand, for any s € [—rl.z+1 ,0],

2
1 d

(s + )7

2
Ti

e 26s+d) dg

)
pr?

[ b SE— 2p
e (32p 12)(—. s+rn) ds .

2 2

_pr
(—s + r2)z=3
Gathering the above two estimates, we obtain

I < CZ(V_IE )(/ ,

i=0 Tit1

2p_
lus G5

(=5 + )7

e_(32p712)(7s+r%)+32( s+12) < C T

r2 2p—3

- 32(—s+r2) ds

2p

e

Before going further, we give our attention to the term

0 2p
2p-3
(), e

Tit1

(s +r7)7

2p—3

7 2
— D
32(—s+r,2,) ds) ,

e

which is actually controlled by B;. Indeed, we notice that forany 0 <i <n — 1,

2p
2p—3
lusC.)l s

e
P
(=s +r2)2r3

(/0
2
iy

2

(L.

Tiv1™ r"

(I

s (s + rz)ll“’ ’

A

[ ($)us (s + rz)llz” ’

r-2 2p—3

— L 2p
32(—s+r,%) ds

5 2p-3
1 _ 2p
——e 3% ds)
()7
2 25—3
ri J2
e ds) . (S5)
(o)
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where xn(s) = 1—1_,2 ;(s). Now we denote Jx = (—r,?, —r]fﬂ], and then

2p—3
0 1 r? "2
(/ lxn()us(,s + r2)||2” e dS)
-r? (=)

e 5 2p o2 1 _i %

=3[ Wnomstes DT — e ds
k=i~ Ik (—S)z”‘3
00 2p r2

p 1

< Z(/ it ($)us (s + r2>||z; ’ ds) ke PR

k=i \YJk
On the other hand, we notice that for any k > n,
2p_
[ st + Iz ds = o
Jk
andforanyi <k <n-—1,
2p —r,fH-i-r
2 2p-—3 _ 2p—3
[ Mauas 2 as = [ s DI ds
Jk —r]§+r,%

0 2p
3
< / lusCos)|1 257 ds.

—r2
which along with (3.5) and (3.6) implies

2p—3

0 2p 1 o “2p
(/ lus ()l —————e 2> dS)
—r? (=s +r2)2r=3

(N

2p=3 2

_2p 2p 1
us(-, 8727 ds rle % < CB;.
Lp k

i

Therefore, we obtain
n—1
I <C Z(”i_lEi)Bi~
i=0
Similarly, for the second term 1515, we have

169

(3.6)

3.7

2p—3
iy 1 2
s < C ( / s o) 122 3—ds) 2
Z ; (—s+r )2127p L¥ =i L2 (U))
< CZ(V,-_IEi)(/ N EIO0] 7 3—2pd5) :
i=0 i (=s +r3)2r
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2 _,2
Duetos € [—r,—r/, ], we have

2p
2p-3
r? 1

: 2p fs (j P
(—s+ 1255 (s +r2)7s

which along with the above estimate for /515 implies

-3

—r2,,
2

i+ 1 ST
1212<CZ(”_1E)(/ lus G5 3—pds) ’
. st )

- o 2p=3
<C Z(r,-_lE,-)ri_1 (/
i=0

—r

Therefore, we obtain
n—1

Ly <CY (7 "Ei)Bi.
i=0

Similarly, we have

122=[ 213 |93 | dx ds
On
2p—3

s o)l 5

. 0 S22 1 2
<Cr, E, (/ —— ds)
—r7 (v/—s + rr%)Zp—S
<Cr, E,B,.

Combining (3.9), (3.10) and (3.4), we finally have

t n
/ / ulu - V(®un)dxds < C Y (7 Ei)B; + CE?.
—1JUy

i=0

This finishes the proof of (3.3). We are left with the proof of the fact that

)
Z B; < “M?’“L?’IL)I?'
i=0

We notice that

2p-3 r2

oo [o SlNe ] 2p 2 -1l
> szz(/ a5 ds) rte
=0 0 k=i -

i

s / e IE " ds)
i=0

2p—3

£ n—1
(- s>||;;3ds) T < 0T ENBs.
i=0

170

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)
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For the first term on the right-hand side, we have

2p-3 r2

2p—3 Ea -1 e
D> / lusCZ = ds ) rpte
i=0k=i
e 0 _2p 2’27;3 k 1 — ri2
sz( [ ez as) Ty e
k=0 7’.1? i=0 rk
< — us(-, 8)||;5 " ds
= 2=: P (/;rk | 3( )”Lp )
° _3 2 0 %
=cyn! ([ ol as)
k=0 _'k
where 5 5
P §¢j<q:_p, 3<p<oo.
2p -3 p—3

By Lemma A.3 we obtain

— r.2
25 -
Z Z( / llua (-, S)IILp 5" ds) rete PE < CllusCos)lpgrp (313
i=0k=i "
On the other hand, the estimate of the second term of (3.12) is obvious, since

2p
Zr—l(/ s s)uL,fds) < Clus8)l 902

by using the Holder inequality and Lemma A.3 again.
Hence, we obtain

o0
Z B; < C||u3(a S)”L‘,I’IL)[Z'
i=0
The proof of this lemma is completed. ]

3.2. Estimate for the pressure

This subsection is devoted to showing the estimates for the third term on the right-hand
side of (2.1), which is related to the control of the pressure 7.
We first decompose the pressure w as 7 = o + 7, Where

—Amg = 3;0; (uiujxg,) in R’ x (=1,0).

Hence 7, is harmonic in Q¢. Then we have

¢
/ / wu-V(O,n)dxds
-1Jup

t ¢
= / / wou - V(O,n) dx ds + [ [ wpu - V(®un)dx ds
—1 JUy —1JUy
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t t
=[ / n0u383<1>nndxds+/ / woPpuszdsndx ds
—1 JUy —1JUy

t
—/ / Vap - u(®,n)dxds.
—1JUy

Next we deal with three terms on the right-hand side of the above equation.

Lemma 3.2. Let (u, ) be a suitable weak solution of (NS) in R3 x (—1,0). Suppose
that (u, ) satisfies the assumptions of Theorem 1.2. Then there exists a positive series
{Ci}ien with Y i, Ci < lusll; a1, » such that for any n € N we have

t X

t n
/ / Uusm(03®,n)dxds < C Z(ri_lE,-)C,-.
—1JUo i=0

We can also represent 7y in the following way. For any f;; € L?(Qo) with 1 < p < oo
andi, j = 1,2, 3, we define

TG0 =PV [ K =3 fG0rm0)dy, (0 € B x (-1.0),

@,

where “:” stands for tensor contraction and the kernel is
1
Ki; = a‘a-(—), i,j =123
Y t 47| x| J

Then we have mo = T'(u;u; x g,)-

Proof of Lemma 3.2. Let (u, ) be the solution satisfying the condition in Lemma 3.2. We
first introduce the following notation. For j € Ny let y; = x ;. Moreover, we set

Xi— X+ ifj=0,1,....n—1,
¢; = o
Xn if j =n.

It is clear that

Z¢j=(X0-){1)+"'+Xn:1:>f=Zf¢j in Qo.
j=0

Jj=0
Taking f = u;u; x g, it holds that
n n
mo=T(f) =Y T(f$;)) =) 7o,
j=0 j=0
Then we have
t
/ f u3mo(03®P,n) dx ds
-1JUp

n t
- Z/ / n0u383d>n¢>kndx dS
k=0 1700
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n n t
ZZZ/ / 70, U303 Pudrndx ds
-1 UO

Jj=0k=0

n n t
- ZZ/ / 70,ju303Pppgndx ds
—-1JUy

k=0j=k

n n ¢
+Z Z /_ /UO”O,J'M333<Pn¢k7}dxds

=1II; +1I,.

Now we deal with the term II;. By the definitions of the cut-off function ¢; and the sin-
gular operator 7', II; can be written as

n t
I, = Z/ / Mo 4133 Pnpin dx ds,
k=0’~"17lo

where
o ifk =0;
0,k — .
T f) ifk=1,...,n.
We first notice that
n—1 |x3| _ X%
I, <cC / [Tloi| |u3| ———e———e *Cs+dndxds
g Ai0{rit1=|x3|<ri,—r?, <50} (v (=s + r,%))3
X3

|3

n—1
vy | [ Mloi| ] — e
; Ain{|x3|<ri,—rZ<s<—r?} l (V(=s+ r,%) 3

+ C/ [ITo, x| |u3|rn_2 dxds
On

6_4(7s+r,%) n dxds

n—1 0 2

1 IS

= CZ/ G 2 gy 143G r ———5ve 2Cs+D ds
i=0 YT L (=s+r7)

T
n—1 —r.2 2p 1277_3
_n i+1 o D 2
e ([ s )17 ds) el o, |
i—o —r? L3 (=r2,—r? ;L2 (U)))

2p—3

2 0 2127p3 d 2p 2
+Cr, / us(-, 8)|l;5 ~ ds u
2( sl )Ry
provided that the kernel of 7 is a Calderén—Zygmund kernel such that for any ¢ € (—1,0),

1Mok (a0l ay < C sty (O xeCOll o < a1
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By a similar argument leading to (3.7) and (3.8), we obtain
n
I, <CY (7 E)B;. (3.14)

i=0
Now we turn to the estimate of I, which is much more complicated. We have

I, = Z Z/ / 7o, ;U303 P, prndx ds

j=n—-2k=j
n—3j+3
—|—ZZ/ / 7o, ;U303 Py prndx ds
J=0k=]j
+Z Z / / 70,ju303Pnndx ds = 11 + lpz + 3.
Jj=0k=j+4
Using the property of a singular operator 7" and a similar argument to above, we get
2
| 3| — 2
EEDS Z/ ol sl e e S dds
i=n—2k=i ( )3
p—3
2p
<c [ wscoon 3ds) 2l
an:ZkX;( - L L 3( rk,OLZP (Ul))
<C Z(r;lEi)Bi
i=0
and
t2 = C Y5 [omnsrctofare, 0l bl — By di ds
i=0 k=i k—rr::qfo} e (V(=s+r))°

n—3i+3

2

| 3| 3
+CZZ/Akn{|X3‘<rk | Oz|| 3| 3 Tac s+rn)7)dx ds
i=0 k=i " —rf<s<— rkﬂ} (V )
n—3i+3 r2

1 e
< CZZ/ ”M(,S)” 120 (U)||u3( S)”Lp( 2)e T 32(os+rd) ds

i=0 k=i rk+1

n—3i+3 2. 1 25’7;3
+c22(/2 s 9)112, —zpds) o

i=0 k=i (_S)z‘”*3 L3 (= rk _rk+1 L27'(Up)
2 2p—3
_2p_ 1 i “2p
<C Z(r—‘E )( / lusCo9)llf5 " —————e 2+ ds)
r2+1 (—=s+ V%)m

*'i2+1 2p_ 1 20
+c2(r;1E,-)(/ . ||u3(',S)||Z’,§_3—pds) :

. —r: — 2p-3
i=0 r; S ) <P
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Hence, as in (3.7) and (3.8), we obtain

n
oy + 1, <C Y (17 'Ei)B;. (3.15)
i=0

Finally, we estimate the term I3 as

1123—2 Z / / 0,j U303 Py ndx ds.

J=0k=j+4

By the definition of 7o, j, which is harmonic in R? X (=742, 7j42) X (—r].2+2, 0), with the
help of Lemma A.4 (passing R — o0), we get

1 2

/

LT
170, o Loy = Cril " 0, ¢ ) ey

w

Hence, it follows that

n—3 n-—1 %

| 3| 36 Ta= s+r,,),7dxds

sy ¥, rodl sl = s
kﬁ{rk+1<|x3|<rk i
i=0 k=i+4 —rZ, <s<0} (V(=s +

— — 2
n—3 n-—1 x5

sl e *=tndxds

+CZ Z /A n |70,i | [U3]| ————
{lxsl=r, i
i=0k=i+4 —r§§s53—r,§:l} (\/(—7)3

=
+C / |70,i xds
Z Nk
n—3 n 1 1 2 3 i

<=cY > / v

i=0k=i+4 rk+1

1 k.
£
P ) B ae g 43 € ) Lo e 205D dis

(—s 2)
P T L2 2.3
+C / uz(-,s 2”3ds) r2 e Yu)?,
; > ([ msconzi A .
i=0k=i+4

2
1 "k

3
3 1 ke
SCZ 3 / I g 05 e e 20D ds

i=0k=i+4 rk+l

1 2 _
7

-3

n-3 n
ey Y (/ s I d )
i=0k=i+4
w2 H—7 3343
ooy el o )
L33 (—r2,0:L2L(U}))

= 1T, + 1),
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where 1 < £ < p’. Note that

n—3 n % _3_2 3_343
L<cy 3 (/ sl ds) e PR T

i=0k=i+4

S

77‘

QU

n

2-3-2 -2 3343
E re Dot YE;,
=i+4

nu3(.ﬂands)

where we choose ¢ close to ¢ and £ close to 1 such that
1 3

n—3 3 2 0 1
’ 37! q e
W,=<Cy r L lusCoo)lg, ds ) Ei.
i=0 “Tits
Thanks to )
;e_n(—rskw%) <Cr;?
(—s+r?) -k
it follows from the Holder inequality that
n—-3 n 2p=3
7 L2 Z-3 3343
m=cy > (/ lus (-, s)||L¢,3ds) ol T E
i=0k=i+4
2 _3 L n 3_2 1L_, 3 3
< A . g q 1—;-;-"1 i ;_3+7E~
CZV i lusC, )2, ds DR Y, ;.
i+4 k=i+4
Hence, we obtain
) n—3 1—3_2_ 0 %
m<Ccyr 71 (/ L llua( S)||Lpds) Ei
i=0 “Tita
Therefore, from the above two estimates, we deduce that
n—3 1—3_2_4 0 _ %
s <Cy r; 77 (/ . lluz(-,s)llipds) E;. (3.16)
i=0 Tita
‘We denote
1—3_2( [0 i
Ci=Bi+r; * q(/ lue5 (-, s)||Lp ds) . (3.17)
—r

Then we infer from (3.14), (3.15) and (3.16) that

t n
/ / u3mo(93®yn) dx ds < C Y (1" Ei)Ci.
—1 JUy

i=0
The bound of C; is guaranteed by B; and Lemma A.3. ]
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Lemma 3.3. Let (u, ) be a suitable weak solution of (NS) in R3 x (—1,0). Suppose that
(u, ) satisfies the assumptions of Theorem 1.2. Then we have

t
‘/ / wo®puzdzndx ds
—1 JUyp

t
‘f / V- u(d,n)dxds
-1Ju,

The difference between the proof of this lemma and the corresponding pressure esti-
mates in [6] is that the horizontal variable lies in the whole space R2.

§C8%,

<Ce:.

Proof of Lemma 3.3. By the definition of wy and the Calder6n—Zygmund inequality, we

have
t t
‘/ / wo®nuzd3ndx ds 5/ / |mousz| dx ds
-1 JUy —1 JUy

0
< [ 1m0, 3 g 1) sy ds

0
< C/ lu(s)|35ds < CE3.
—1

Now we turn to proving the second inequality of the lemma. We first choose a cut-off
function £ (x3,1) € C2((—%, 1) x (—4.0]) satisfying {(x3.7) = 1in (=%, 3) x (—1¢.0]
and |d3¢| < C. Then

=

'/ Vap - u(®,n) (1 —¢)dxds
Qo

/ wpu - V(Oun(1 =) dxds

Qo

3
= Cllmall 3., 1ullL3cgq = CE2.

L2(Qo)

Moreover, there exists a sequence of balls centered at xj’- € R? with j =1,2,... and radius
% so that

o0
U{x' D =xi] < é} = R?,
j=1

and any point x’ is contained within up to 10 balls of B'(x;, %) Then we have

t
’/ / Vg -u(®,n)¢dxds
-1Juy

n oo
§CZZrk_1/ V| [u| dx ds

k=1j=1 an{|x/—)§;|<%}

n oo

—1
=€) ”V”h”L%(—ri,o;Lw(Ukm{lx/—x}|<é}))”u||L3(—’§=0;L‘(Uk”{|x’—x}I<%}))
k=1j=1
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1/3
=C Z Zrk ”Vﬂh”Lz( r2,0; Lo (U N{|x'—x} |<1}))” ||L3( 30 L3 U N{Ix'—x} 1< §1)

k= 1]—1

-1/3 3
<C r \%.7?
ZZ el ||L2( 0L (U N{lx'—x} 1< 1)

k=1j=1
n
—1/3 3
+CYor el r2.0:3 000y
k=1
For any
x* e U Nix = (¢ x3): |x' — x| < 3.
we have

1
d(x*.8Uo) > 5

due to k > 1. Thus, there exists x3 € (—% %) such that
! 1
x* € B((x}.x3):3) CUo N{Ix" = xj| < 3}-
Since 7y, is harmonic in Uy, there holds

\V/ ) < C dx <C
[V |(x™) < /B((x],_’x; ;4)|”h| X ””h”Lz(Uom{\x’ —xjl<ih’

which implies

0
Vr 3 </ V(s ds
| h”Lz( 0L (U N{lx'—x} 1< 4 1) _,k IV, )”L‘”(Um{\X’—x fl<g)

<C / |7Th|2 ds.
Uon{lx'—x} <%}

_rk

Hence,

t
/ / Vi, -ud,ndxds
-1Jup

n
13 3 X
<
= C Xz: rk ||7Th||L2( rk,O LZ(U 0 ||u||L3(_r£,0,L3(Uk)))

n
1/6 3 3
=C Z " (I ”Lz( 2 0:.3 (Uy)) + ””||L4(—r,§,o;L3(Uk)))
<c(In|? +63).
L2(—1,0; L3 o))
Applying Calderén—Zygmund estimates, there holds

/ / Vap - u(®,n)dxds| < C
Uy

The proof is completed.

N\w
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4. Proofs of Theorem 1.1 and Theorem 1.2

This section is devoted to the proofs of Theorems 1.1 and 1.2. Let us first prove Theo-
rem [.2.

Proof of Theorem 1.2. By a translation argument, it is enough to consider the point zy =
(0, 0). By Proposition 3.1, we have

n—1
i En <CE+CEX +C Y (7 ENG,
i=0

then, due to Zi>0 C; <Cllus ||Lq,1Lp and Lemma A.1, we have for any n € N,
- t X

i E, < C(E + €2)eZi0Ci < C(6 + 62),
which yields that for any r € (0, %),
- _3 _ 3
r 2”””23@,) =Cr> ||”||13:4(—r2,0;L3(B(r))) <C(r,'En)? < C.
Here 0 < r,, < r. The proof is completed. ]

Now we prove Theorem 1.1 by applying Theorem 1.2 and the following interior reg-
ularity theorem (see [36, Theorem 1.4]).

Theorem 4.1. Let (u, ) be a suitable weak solution of (NS) in Q1. If u satisfies

sup rl_%_§||u||Lqu(Q )y =M < +o0 4.1
0o<r<l1 pEEREr
for some (p,q) with 1 < % + % <2and1 < g < oo, then there exists a positive constant &
depending on p, q, M such that (0, 0) is a regular point if
_3_2
P 4 |

1

for some ro with
. _ 3 -2
0 <rg <min{3, (r2 [, u(y,$)I> + |7(y,5)|2 dy ds) "} 4.3)
Now we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Duetoug € L3(R?), it follows that (u, ) is regular in R3 x (0, Tp)
for some 0 < Ty < T, which implies that it is a suitable weak solution of (NS) in (0, Tp).
Assume that T is the first blow-up time. However, we will prove that the point (x, 7p) for
any x € R3 is a regular point. For this, it is enough to prove that (0, 0) is a regular point
by a translation argument.
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First of all, it follows from the proof of Theorem 1.2 that

2 ul3s  + sup rt u(y,0)*dy +r~" [ |Vu(y,s)|*dyds <C
L3(0)) 0 0

—r2<t<0

for any r € (0, %) and

us € L1 (—1,0; L?(R?)), +-<1,3<p<oc0.

QN
| w

Thus, condition (4.1) holds.
Next we verify condition (4.2). By Holder inequality, for g < 3 and p > 9 we have

0 ! !
r_2”u3”23(g’)§r_2/_rz(/3 © |u3|2dx) (/B (0)|u3|4dx) o
1
2 0 2
5( sup V_I/ |u3(y,t)|2dy) r_%/ (/ |u3|4dx) ds
—r2<t<0 B, (0) —r2 B, (0)

= Cluslzy Lo,y
which implies
.2
lim r=3lusll 323 0,) = 0-

The remaining case of ¢ > 3 is obvious, since the local invariant quantity r =2 ||us|| 23 ©)
.

can be controlled by ||u3 ||qup(Q )
t=x r

Thus, the conditions of Theorem 4.1 are satisfied so that (0, 0) is regular point. n

A. Some basic lemmas

Lemma A.1. Let {b;};eN, {y;}jen be nonnegative series satisfying the inequality

n—1
J’n§C0+ijyj, n > 1andyy < Cy.
=0

Then it holds that for any n € N,
yn < Coe ;l;(l)bj~

Proof. We first define the following nonnegative series {x; }:

n—1
xo = Cop, xn=C0+ijxj, n>1.
j=0
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It is easy to check that for any j € N, x; > y;. On the other hand, by the definition of
{x;}, it can be represented as for any n > 1,

n—1
xn = Co [ [+ bi) < CoeXi=0b.
i=0

Hence, we deduce that for any n > 1,
Yn < Xn < CoeZi=obi,
which along with the condition that yo < Cy completes the proof of this lemma. |

Lemma A.2. Let 0 < p,q < oo. Then for any f € LP9(R), there exists a sequence
{cn}nez € L9 and a sequence of functions { f,}nez with each f, bounded by 27"/? and
supported on a set of measure 2" such that

f= chfn

nez

and
c(p. D entllea < N fllLra < C(p. @ l{cn}lleas

where the constants c(p, q) and C(p, q) only depend on p, q.

Proof. Let f € LP9(R). We denote by f* the corresponding decreasing rearrangement
of f. We let
e =217 f*(2M),
Ap = 1@ < |f(0)] = f1@D) (A1)
fo=c' fla,.
By a direct calculation, it is easy to check that

f= chfw

nez

Now we start to prove the second statement. By the definition of the Lorentz space, we
have

2n+1
eSS / V2 £*(5)%s~) ds
nez 2"
2n+1
< S (fr@my1aralramalr / 51 gy
nez n

< 5(24/1’ — DY (fr@Mi2nr = 5(24/1’ — D),

nez
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and
on+1
Ve =3 [ 677 ots~ ds
nez’?"
on+l
> Z2q(n+1)/p(f*(2n+1))q2—q<n+1)/p/ /-1 g
neZ 2n
» _
= =2l .
Lemma A.3. For any
2 2
2p[i3§c]<q=p—p3, 3<p<oo,

we have

-

00 0
1-3-2 g

> onlTe q(/ 2||u3(.,s)||gpds) < Cllusll ot 12 py om3):

k=0 Tk

Proof. Let f(s) = ||us(-, s)||Lr. By Lemma A.2, we know that

+oo e
f=Ycte: WflLar =) leel,
{=0 {=0

where ,
|fel <24, |Dg| = |supp fe| ~ 275

(o)

Then we have

00 0
1-3-2 q
Sort ([ e as)

k=0

-7

Qe
Qs

QU

o 3
k=0

o0 o0
_3_2 L 1 L _3_2 1
<Y rTETEY 20| Dy N Il7 <Y feg|20 Y r! Tr T De 0 L]
k=0 4 { k=0
£/2 o)
L 1-3-2 1 L 1—-3_-2 1
<D leel2e Y ! TPTADEN Il 4 Y Jee29 Y TP TADeN L9,
L k=0 4 k=(/2

where I, = (—r,f, 0). On the other hand, we notice that for any k < £/2,
e TPTEDy N |7 < €2 i RO,
and for any £/2 < k < oo,

3_2 1 2k 3_2
R TPTED N i < €27 a 27K = kO,
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Then we have
o0 N 0 _
St ([ et )
k=0 Tk

00 . /2
<D legl2e7d
£=0

o0 o
_k(1-3-2 L k(1-3
27HOITTD 4 Y fegl2a Y 27O,
0 (=0
which along with the restriction on p, g implies that

XS
Q=

k= k=t/2

1

[ed] 32 0 p 7 o]
Sonlme ( / s, ds) <C Y lal = Clusllor oy omey
k=0 G 1=0

The proof is completed. ]

Finally, let us recall the lemma about the harmonic functions in [6].

Lemma A4. Let0 <r < R < ooand h: B'(2R) x (—r,r) — R be harmonic. Then for
all0 <p<jandl <l <p <o,
p 2-3%2 p
VLo B/ Ryx—pon = PT™E MR e (5 @Ry (1))
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