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On the sharp scattering threshold for the mass—energy
double critical nonlinear Schrodinger equation via double
track profile decomposition

Yongming Luo

Abstract. The present paper is concerned with the large data scattering groblem f0£ the mass—
energy double critical nonlinear Schrodinger equation id;u + Au %+ |u|du £ |u|d—2u = 0 in
H 1(R“") with d > 3, referred to as DCNLS. In the defocusing—defocusing regime, Tao, Visan
and Zhang showed that the unique solution of DCNLS is global and scattering in time for arbitrary
initial data in H! (Rd ). This does not hold when at least one of the nonlinearities is focusing, due to
the possible formation of blow-up and soliton solutions. However, precise thresholds for a solution
of DCNLS being scattering were open in all the remaining regimes. Following the classical concen-
tration compactness principle, we impose sharp scattering thresholds in terms of ground states for
DCNLS in all the remaining regimes. The new challenge arises from the fact that the remainders of
the standard L2- or H !-profile decomposition fail to have asymptotically vanishing diagonal L2-
and H !-Strichartz norms simultaneously. To overcome this difficulty, we construct a double track
profile decomposition which is capable of capturing the low-, medium- and high-frequency bubbles
within a single profile decomposition and possesses remainders that are asymptotically small in both
of the diagonal L2- and H !-Strichartz spaces.

1. Introduction and main results

In this paper we study the large data scattering problem for the mass—energy double critical
nonlinear Schrodinger equation (NLS)

i0:u + Au 4 oy ul®2u + u2|u|2*_2u =0 inR xR, (DCNLS)

with d > 3, 11, 2 € {£1}, 2, =2+ % and 2* = 2 + 2% Equation (DCNLS) is a
special case of the NLS with combined nonlinearities

P00 4+ Au+ pwp|ul”2u + poul”?2u =0 inRxR?, (1.1)

with i1, u2 € R and py, p» € (2,00). Equation (1.1) is a prototype model arising from
numerous physical applications such as nonlinear optics and Bose—Einstein condensation.
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The signs p; can be tuned to be defocusing (u; < 0) or focusing (u; > 0), indicating
the repulsivity or attractivity of the nonlinearity. For a comprehensive introduction to the
physical background of (1.1), we refer to [3, 8,34] and the references therein. Formally,
(1.1) preserves

the mass M(u) = / lu|? dx,
R4
1
the Hamiltonian ¢ (u) = [ —|Vu|2 _ ﬂ|u|1)1 _ &|u|pz dx,
Re 2 P1 D2

the momentum P (u) = / Im@uVu)dx
R4

over time. It is also easy to check that any solution u of (1.1) is invariant under time
and space translation. Direct calculation also shows that (1.1) remains invariant under the
Galilean transformation

ult,x) > e &% 18Py (1 x — 261)

for any £ € R%. Moreover, we say that a function P is a soliton solution of (1.1) if P
solves the equation

— AP 4+ wP — 11 |P|P'72P — 3| P|P272P =0 (1.2)

for some w € R. One easily verifies that u(z, x) := e*®! P(x) is a solution of (1.1). As we
will see later, the soliton solutions play a fundamental role in the study of (1.1), since they
can be seen as the balance point between dispersive and nonlinear effects.

When 1 = 0, (1.1) reduces to the NLS

i0:u+ Au+ plul?2u=0 (1.3)

with pure power-type nonlinearity, which has been extensively studied in the literature. In
particular, a solution of (1.3) also exhibits the scaling invariance

u(t, x) > A 2u(A2, Ax) (1.4)

for any A > 0, which distinguishes itself from (1.1) with combined nonlinearities. We also
d 2

say that (1.3) is s¢-critical with 5. = s¢(p) = 5 — =51t is easy to verify that the H -
norm is invariant under the scaling (1.4). We are particularly interested in the cases s, = 0
and s, = 1: in order to guarantee one or more conservation laws, we demand the solution
of the NLS is at least of class L2 or H!. Moreover, we see that the mass and Hamiltonian
are invariant under the 0- and 1-scalings respectively.

Concerning the Cauchy problem (1.3), Cazenave and Weissler [12, 13] showed that
(1.3) with p € (2, 2*] defined on some interval I 3 fy is locally well posed in H!(R%)
on the maximal lifespan I.x 2 fo. In particular, if p € (2,2*) (namely the problem is
energy-subcritical), then u blows up at finite time #s,p := Sup I if and only if

lim ||[Vu(r)|2 = oo. (1.5)

t 'Ttsup
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A similar result holds for the negative time direction. Combining with the Gagliardo—
Nirenberg inequality, it is immediate that (1.3) having defocusing energy-subcritical non-
linearity or mass-subcritical nonlinearity (regardless of the sign) is always globally well
posed in H'(R¢). However, this does not hold for focusing mass-supercritical and energy-
subcritical (1.3): one can construct blow-up solutions using the celebrated virial identity
due to Glassey [24] for initial data possessing negative virial. By a straightforward modi-
fication (see for instance [11]) the results from [12, 13] extend naturally to (1.1).

The blow-up criterion (1.5) does not carry over to the energy-critical case, since in this
situation the well-posedness result also depends on the profile of the initial data. Using
the so-called induction on energy method, Bourgain [7] was able to show that the defo-
cusing energy-critical NLS is globally well posed and scattering' (we refer to Definition
1.12 below for a precise definition of a scattering solution) for any radial initial data in
H'(R?) in the case d = 3. Using the interaction Morawetz inequalities, the I-team [17]
successfully removed the radial assumption in [7]. The result in [17] was later extended
to arbitrary dimension d > 4 [41,44] and the well-posedness and scattering problem for
the defocusing energy-critical NLS was completely resolved.

Utilizing the Glassey’s virial arguments one verifies that a solution of the focusing
energy-critical NLS is not always globally well posed and scattering. On the other hand,
appealing to standard contraction iteration we are able to show that the focusing energy-
critical NLS is globally well posed and scattering for small initial data. It turns out that
the strict threshold, under which the small data theory takes place, can be described by the

Aubin—Talenti function
| X | 2 d ;2

W(x) = (1 n m)_i,

which solves the Lane-Emden equation
—AW = w1
and is an optimizer of the Sobolev inequality

2,

S = in .
ueD12R4) ||ul3.

Using the concentration compactness principle, Kenig and Merle [27] proved the follow-
ing large data scattering result for the focusing energy-critical NLS:

Theorem 1.1 ([27]). Letd € {3,4,5}, p = 2* and t = 1. Also let u be a solution of (1.3)
withu(0) = ug € Hrzd(Rd), H*(uo) < H*(W) and |luo|l g1 < IW | g1, where

J* () = LV — L ul3. (1.6)

Then u is global and scattering in time.

.]For (1.3) with pure mass- or energy-critical nonlinearity, the scattering space is referred to L?(R%)
or H'(R?) respectively, while for (DCNLS) we consider scattering in H!(R%).
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The result by Kenig and Merle was later extended by Killip and Visan [30] to arbitrary
dimension d > 5, where the radial assumption was also removed. Very recently, Dodson
[22] also removed the radial assumption in the case d = 4. The three-dimensional large
data scattering problem for nonradial initial data in H! (R3) still remains open.

Based on the methodologies developed for the energy-critical NLS, Dodson was able
to prove similar global well-posedness and scattering results for the mass-critical NLS.
For the defocusing case, Dodson [18, 20, 21] showed that a solution of the defocusing
mass-critical NLS is always global and scattering in time for any initial data o € L2(R%)
with d > 1. To formulate the corresponding result for the focusing case, we denote by Q
the unique positive and radial solution of the stationary focusing mass-critical NLS

—AQ+0 =07

For the existence and uniqueness of Q, we refer to [46] and [33] respectively. The follow-
ing result is due to Dodson [19] concerning the focusing mass-critical NLS:

Theorem 1.2 ([19]). Letd > 1, p = 24 and . = 1. Also let u be a solution of (1.3) with
u(0) = ug € L*(R?) and M(ug) < M(Q). Then u is global and scattering in time.

In recent years, problems with combined nonlinearities (1.1) have been attracting
much attention from the mathematical community. The mixed-type nature of (1.1) pre-
vents it from being scale invariant, and several arguments for (1.3) fail to hold, which
makes the analysis for (1.1) rather delicate and challenging. A systematic study of (1.1)
was initiated by Tao, Visan and Zhang in their seminal paper [43]. In particular, based on
the interaction Morawetz inequalities they showed that a solution of (1.1) with @y, up <0
and p; = 24, p2 = 2* (namely the defocusing—defocusing double critical regime) is
always global and scattering in time for any initial data ug € H'(R%).> As expected,
this does not hold when at least one of the w; in (1.1) is negative. Using concentration
compactness and perturbation arguments initiated by [25], Akahori, Ibrahim, Kikuchi and
Nawa [1] were able to formulate a sharp scattering threshold for (1.1) in the case d > 5,
U1, 2 >0, p1 € (24,2%) and p, = 2* (namely the focusing energy-critical NLS perturbed
by a focusing mass-supercritical and energy-subcritical nonlinearity). The methodology of
[1,25] has now become a golden rule for the study of large data scattering problems of the
NLS with combined nonlinearities. In this direction, we refer to the representative papers
[10,14,16,28,29,36-39,47] for large data scattering results of (1.1) in different regimes,
where at least one of the nonlinearities possesses critical growth.

1.1. Main results

In this paper we study the most interesting and difficult case (DCNLS), where the mass-
and energy-critical nonlinearities exist simultaneously in the equation. Roughly speaking,

2This was originally shown under the additional assumption that a solution of the defocusing mass-
critical NLS is always global and scattering, which was later shown to be true by Dodson [18].
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we cannot consider (DCNLS) as the energy-critical NLS perturbed by the mass-critical
nonlinearity, nor vice versa, due to the endpoint critical nature of the potential terms.
Nevertheless, it is quite natural to have the following heuristics on the long time dynamics
of (DCNLS) based on the results for NLS with single mass- or energy-critical potentials:

* For the defocusing—defocusing case, we expect that both of the mass- and energy-
critical nonlinear terms are harmless, and a solution of (DCNLS) should be global and
scattering in time for arbitrary initial data uo from H'(R?).

» For the focusing—defocusing case, we expect that under the stabilization of the defo-
cusing energy-critical potential, a solution of (DCNLS) should always be global. How-
ever, a bifurcation of scattering and soliton solutions might occur, which is determined
by the mass of the initial data. In view of scaling, we conjecture that the threshold is
given by M(Q).

* For the defocusing—focusing case, we expect that the scattering threshold should be
uniquely determined by the Hamiltonian of the initial data. In view of scaling, we
conjecture that the threshold is given by #*(W).

We should discuss the focusing—focusing case separately, which is the most subtle one
among the four regimes. One might expect that the restriction for the scattering threshold
is coming from both the mass and the energy sides. In particular, a reasonable guess for
the threshold would be

Muo) < M(Q) A H(uo) < H*(W).

This is however not the case. As shown by the following result by Soave, the actual energy
threshold is strictly less than #*(W).

Theorem 1.3 ([42]). Letd > 3 and 1y = o = 1. Define

me = inf {Jf(u) M) =c, Ku) = 0}, 1.7
ueH1(R4)

where K is defined by
Koy = [Vl — = s —
d+2 *
Then we have the following statements:

(1)  (Existence of ground state). For any ¢ € (0, M(Q)), the variational problem
(1.7) has a positive and radially symmetric minimizer P, with m, = #(P;) €
(0, H*(W)). Moreover, P, is a solution of

— AP, + P, = P> 4 P21 (1.8)

for some w > 0.
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(i)  (Blow-up criterion). Assume that ug € H' (R9) satisfies
M(uo) € (0, M(Q)) A H(uo) < Mpqug) N K(uo) <0.

Also assume that |x|ug € L*>(R?). Then the solution u of (DCNLS) with u(0) =
ug blows up in finite time.

Remark 1.4. The quantity JC(u) is referred to as the virial of u, which is closely related
to the Glassey’s virial identity and plays a fundamental role in the study of NLS. A

We make the intuitive heuristics into the following rigorous statements:

Conjecture 1.5. Let d > 3 and consider (DCNLS) on some time interval I > 0. Let u be
the unique solution of (DCNLS) with u(0) = ug € H'(R?). We also define

d .
Kw) = 1Vull3 = pr = ull3: = paljul3:.

d

Then we have the following statements:

(i)  (Defocusing—defocusing regime). Let u1 = t» = —1. Then u is global and scat-
tering in time.

(i)  (Focusing—defocusing regime). Let pt; = 1 and pp = —1. Then u is a global
solution. If additionally M(ug) < M(Q), then u is also scattering in time.

(iii) (Defocusing—focusing regime). Let ity = —1 and pi, = 1. Assume that
H(ug) < H*(W) A K(ug) > 0.

Then u is global and scattering in time.

(iv) (Focusing—focusing regime). Let (i1 = (o = 1. Assume that
M(ug) < M(Q) A H(uo) < Mpr(ug) A K(uog) >0,

where the quantity m y ) is defined through (1.7). Then u is global and scat-
tering in time.

As mentioned previously, Conjecture 1.5 (i) has already been proved by Tao, Visan
and Zhang [43]. The global well-posedness result in Conjecture 1.5 (ii) was shown by
Zhang [48] and Tao, Visan and Zhang [43]. Moreover, Conjecture 1.5 (iii) was proved by
Cheng, Miao and Zhao [16] in the case d < 4 and the author [35] in the case d > 5, both
under the additional assumption that u is radially symmetric.

In this paper we prove Conjecture 1.5 for initial data from H'(R?) which are not
necessarily radial. Our main result is as follows:

Theorem 1.6. We assume in the casesd =3, u;1 = —1, uo =landd =3, p1 =y =1
additionally that ug is radially symmetric. Then Conjecture 1.5 holds for any d > 3.
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Remark 1.7. The radial assumption by Theorem 1.6 is removable as long as Theorem
1.1 also holds for nonradial initial data from H 1(R3), which is widely believed to be
true. A

The sharpness of the scattering threshold for the focusing—focusing (DCNLS) is
already revealed by Theorem 1.3. The criticality of the threshold for the defocusing—
focusing (DCNLS) is more subtle, since in general there exists no soliton solution for
the corresponding stationary equation; see [42, Thm. 1.2]. Nevertheless, we have the fol-
lowing variational characterization of the scattering threshold:

Proposition 1.8. Ler i1 = —1 and py = 1. Let m, be defined through (1.7). Then m, =
H* (W) and (1.7) has no optimizer for any ¢ € (0, 00).

The proof of Proposition 1.8 follows the same lines as [16, Prop. 1.2], but we will
consider the variational problem on a manifold with prescribed mass, which complicates
the arguments in several places. Moreover, it was shown in [16] that any solution of the
defocusing—focusing (DCNLS) with initial data u¢ satisfying

Ix|uo € L2RY) A H (uo) < H*(W) A K(uo) < 0

must blow up in finite time. This gives a complete description of the criticality of the
scattering threshold for the defocusing—focusing (DCNLS).

For the focusing—defocusing regime, it was shown by Zhang [48] and Tao, Visan and
Zhang [43] that a solution of the focusing—defocusing (DCNLS) is always globally well
posed, hence the blow-up solutions are ruled out. Using simple variational arguments we
will show the existence of ground states at arbitrary mass level larger than M(Q).

Proposition 1.9. Let uy; = 1 and p, = —1. Define

Yo = inf {Jf(u) M) = c}. (1.9)
ucH1(R4)

Then we have the following statements:

(1)  The mapping ¢ + y. is monotone decreasing on (0, 00), equal to zero on

(0, M(Q)] and negative on (M(Q), 00).
(i) Forallc € (0, M(Q)], (1.9) has no minimizer.
(iii) Forall ¢ € (M(Q), 0), (1.9) has a positive and radially symmetric minimizer
S¢. Consequently, S. is a solution of
— AS; + S, = S~ — §2°-1 (1.10)
. d
with some w € (0, %(ddﬁ) 2).

What can be said about the focusing—defocusing model in the borderline case M (ug)=
M(Q) remains an interesting open problem. As suggested by the results in [9, 40], we
conjecture that scattering also takes place in the critical mass case. We plan to tackle this
problem in a forthcoming paper.
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1.2. Road map for the large data scattering results

To prove Theorem 1.6, we utilize the standard concentration compactness arguments initi-
ated by Kenig and Merle [27]. The idea can be briefly summarized as follows: by assuming
that the scattering result below threshold does not hold, we may find a sequence of solu-
tions (u,), of (DCNLS) which lie below the scattering threshold and have diverging
space-time norms. We then apply a suitable linear profile decomposition to the initial
data (u,(0)), and define the nonlinear profiles as solutions of (DCNLS) with the linear
profiles as their initial data. Under the inductive hypothesis we should deduce that there
exists exactly one nonlinear profile, the so-called minimal blow-up solution, that must
have infinite space-time norm and be equal to zero at the same time. This hence leads to a
contradiction, which in turn proves the desired claim.

In view of the stability theory (Lemma 2.4), the main challenge will be to verify the
smallness condition

[{(Viell 2u+n <1 (1.11)
L4 ®)

for an error term e associated to the nonlinear profiles (which is defined precisely through
(4.90) given later). Loosely speaking, to achieve (1.11) we demand the remainders w’,f
given by the linear profile decomposition satisfy the asymptotic smallness condition

lim lim e"2wX| 2usn  2a4n =0, (1.12)
k—K* n—>00 Lt’xd OL,’f’z (R)

However, this is impossible by applying solely the L2- or H L_profile decomposition. To
solve this problem, Cheng, Miao and Zhao [16] established a profile decomposition which
was obtained by first applying the L2-profile decomposition to the (radial) underlying
sequence ({V)v,), and then undoing the transformation. The robustness of such a profile
decomposition lies in the fact that the remainders satisfy the even stronger asymptotic
smallness condition
lim lim [(V)e!"2w¥| 2usn =0.
k—K* n—>00 L7 ®

Equation (1.12) follows immediately from the Strichartz inequality and interpolation.
Nevertheless, the radial assumption is essential, which guarantees that the Galilean boosts
appearing in the L2-profile decomposition are constantly equal to zero. Indeed, we may
also apply the full L2-profile decomposition to the possibly nonradial underlying se-
quence, by also taking the nonvanishing Galilean boosts into account. However, using
this way the Galilean boosts are generally unbounded, and such unboundedness induces
a very strong loss of compactness, which leads to the failure of decomposition of the
Hamiltonian. Heuristically, the occurrence of the compactness defect is attributed to the
fact that the profile decomposition in [16] can still be seen as a variant of the L2-profile
decomposition, and hence it is insufficiently sensitive to the high-frequency bubbles.
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Our solution is based on a refinement of the classical profile decompositions. Notice
that the profile decompositions are obtained by an iterative process. At each iterative step
we will meet a bifurcation: either

() limsup, o e AwK| 2w > limsup, o [le 2wk 2w
LY ® L7 ®
or
(i)  limsup,_ o le™2wk|| 2@sn < limsup,_ o [le"2wk| 2wz
Lix® ®) L ®)

In the former case, we apply the L2-decomposition to continue, while in the latter case
we apply the H _decomposition. Then (1.12) follows immediately from the construction
of the profile decomposition. Moreover, since at each iterative step we are applying the
profile decomposition to a bounded sequence in H'(R?), the resulting Galilean boosts
are thus bounded. Using this additional property of the Galilean boosts we are able to
show that the Hamiltonian of the bubbles are perfectly decoupled as desired. We refer to
Lemma 3.6 for details.

On the other hand, we will build up the minimal blow-up solution using the mass—
energy-indicator (MEI) functional £. This was first introduced in [29] for studying the
large data scattering problems for three-dimensional focusing—defocusing cubic—quintic
NLS and further applied in [2, 36] for different models. The usage of the MEI functional
is motivated by the fact that the underlying inductive scheme relies only on the mass
and energy of the initial data and the scattering regime is immediately readable from the
mass—energy diagram; see Figure 1. The idea can be described as follows: A mass—energy
pair (M(u), #(u)) being admissible will imply D(u) € (0, oo). In order to escape the
admissible region €2, a function ¥ must approach the boundary of 2 and one deduces that
D(u) — oo. We can therefore assume that the supremum D* of O (u) running over all
admissible u is finite, which leads to a contradiction and we conclude that D* = oo, which
will finish the desired proof. However, in the regime (, = 1, a mass—energy pair being
admissible does not automatically imply the positivity of the virial J. In particular, it is
not trivial at first glance that the linear profiles have positive virial. We will appeal to the
geometric properties of the MEI functional £, combined with the variational arguments
from [1], to overcome this difficulty.

Remark 1.10. By straightforward modification of the method developed in this paper,
we are also able to give a new proof for the scattering result in the defocusing—defocusing
regime using the concentration compactness principle. A

QOutline of the paper. The paper is organized as follows: In Section 2 we establish the
small data and stability theories for the (DCNLS). In Section 3 we construct the double
track profile decomposition. Sections 4 to 6 are devoted to the proofs of Theorem 1.6 and
Propositions 1.8 and 1.9. In the appendix we establish the endpoint values of the curve
¢ — m, for the focusing—focusing (DCNLS).
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Figure 1. An illustration of the admissible domains 2 in different regimes, where the shadow region
is the intersection of  and (0, 00)2.

1.3. Notation and definitions

We use the notation A < B whenever there exists some positive constant C such that
A < CB. Similarly we define A 2 B and we will use A ~ B when A < B < A. We
denote by || - ||, the L? (R%)-norm for p € [1, 00]. We similarly define the H'(R?)-norm
by || - ||z . The following quantities will be used throughout the paper:

M(u) = [|u]3, (1.13)
1 iy o, M2 .
It (u) = §||Vu||§—z||u||2* = iz, (1.14)
d «
K@) = Va3 = pn 5 el = pallul, (1.15)
1 *
I(u) = () = 3 K ) = %nung*. (1.16)

We will also frequently use the scaling operator

Thou(x) = A2 u(ix). (1.17)
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One easily verifies that the L2-norm is invariant under this scaling. Throughout the paper
we denote by gg) x,,1, the L?-symmetry transformation which is defined by

—d
2

gfo,XQ,Aof(x) = A0

for (£9, X0, Ao) € R? x R4 x (0, o0).
We denote by Q the unique positive and radially symmetric solution of

~AQ +0 = 0>

and by Cgy the optimal L2-critical Gagliardo—Nirenberg constant, i.e.

5 f(A5" (x — x0)) (1.18)

4
Vu |2 ulé
Con = inf M. (1.19)
ue H1(R9)\{0} ull3:
Using Pohozaev identities (see for instance [5]), the uniqueness of Q and scaling argu-
ments one easily verifies that

d

2
Con = ——= (M d, 1.20
o = 75 (M(Q) (120)
We also denote by § the optimal constant for the Sobolev inequality, i.e.
\V/ 2
si= e Vul

ueD12®\(0} [[uf3.
Here, the space D!2(R9) is defined by
DM2RY) == {u e L¥ R?Y) : Vu € L2(RY)).
For an interval / C R, the space LY L” (1) is defined by
L{LL(I) = {u: I xR? — C : [lullpazr gy < oo},
where

q — q
gy = [ el .

The following spaces will be frequently used throughout the paper:

2(d+2)
Wa(I) =L, (I),
2(d+2)

Wo,(I) =L, " (I),
S(I) = L®L2(I)N L2L> (I).

. . . .. . 2 d d

A pair (g, r) is said to be L2-admissible if ¢, r € [2, 00], str=1% and (¢, r,d) #
(2, 00, 2). For any LZ-admissible pairs (¢, r;) and (g2, r2) we have the following
Strichartz estimates: if u is a solution of

i0;u + Au = F(u)
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in I C R withg € I and u(ty) = uyp, then

el Lo zrcry < lluoll2 + ||F(”)||L;1’2L;é(,)’

where (g5, 1) is the Holder conjugate of (g2, r2). For a proof, we refer to [11,26].
In this paper we use the following concepts for solution and scattering of (DCNLS):

Definiton 1.11 (Solution). A function u: I x R4 — C is said to be a solution of (DCNLS)
on the interval I C R if for any compact J C I,u € C(J; Hl(]Rd)) and forall ¢,¢9 € 1,

t
u(t) = 0Ny (1) 4 i / SNl + palul 7)) ds.

to

Definiton 1.12 (Scattering). A global solution u of (DCNLS) is said to be forward-in-time
scattering if there exists some ¢4 € H'(R?) such that

lim Ju(t) — "2 ¢1|| g = 0.
—>00

A backward-in-time scattering solution is similarly defined, and u is then called a scatter-
ing solution when it is both forward- and backward-in-time scattering.

We define the Fourier transformation of a function f by
f©=F(HE) =" / f(x)e " dx.
R4
For s € R, the multipliers |V|* and (V)* are defined by the symbols
VI £ = (51 7 (©) ().
(V) f(x) = F (1 + EP)2 £ () (x).

Let ¥ € C2°(R?) be a fixed radial, nonnegative and radially decreasing function such
-1 _ 11

that ¥ (x) = 1 if [x| < 1 and ¢ (x) = O for |x| > {5. Then for N > 0, we define the

Littlewood—Paley projectors by

Pen f0) = 77 (0(5) F®©) .

ey =5 ((v(5) - v(3))f©) .
:

Py f) =7 ((1-v(5)) f®) .

We recall the following well-known Bernstein inequalities which will be frequently used
throughout the paper: for all s > O and 1 < p < oo we have

1PN fllp S N HIVEPon fllp:
VI P<n fllp < N*IP<n fllp-
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We also record the following useful elementary inequality, which can be proved by
inductive applications of inequalities (1.7)—(1.9) in [44] over k: for s € {0, 1} and
ul,...,uk:]Rd — C we have

k o k k
19(| ] ()= Xt
j=1 j=1 j=1
D IV [ujr | ifo<a<l,
Ska 177 B (121)
S NVEug g | (g ) + e ) if o> 1
J#J’
We end this section with the following useful local smoothing result:
Lemma 1.13 ([30]). Given ¢ € H'(R?) we have
i 2 3d+2 .
IVe 81132 (1. rixquizry S T72 R 1" 2 llw @ V93 (1.22)

2. Small data and stability theories

We record in this section the small data and stability theories for (DCNLS). The proof
of the small data theory is standard; see for instance [11,31]. We will therefore omit the
details of the proof here.

Lemma 2.1 (Small data theory). For any A > 0 there exists some B > 0 such that the
following is true: Suppose that ty € I for some interval I. Suppose also that ug € H'(R%)
with

ol < A, (2.1

i(t—tg)A

e uollw,, nwys (1) < B- (2.2)

Then (DCNLS) has a unique solution u € C(I; H'(R?)) with u(ty) = ug such that
[(M)ullsay < lluolla, (2.3)
laellws, a1y < 211" 201w, e - 24

By the uniqueness of the solution u we can extend I to some maximal open interval I,x =
(Tmins Tax). We have the following blow-up criterion: if Tyax < 00, then

[l W, AWy (T, Tra)) = O
forany T € Iyax. A similar result holds for T, > —o0. Moreover, if
”u”WZ* sz* (Imax) < o0,

then In.x = R and u scatters in time.
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Remark 2.2. Using the Strichartz and Sobolev inequalities we infer that

"= % wy, awye 1) S ol
Thus Lemma 2.1 is applicable for all u with sufficiently small H !-norm. A
We will also need the following persistence of regularity result for (DCNLS).

Lemma 2.3 (Persistence of regularity for (DCNLS)). Let u be a solution of (DCNLS) on
some interval I with ty € I and ||u|\w,, nw,. ) < 0o. Then

VP ullsy Stullw,, amwyeay VI #0) ]2 (2.5)

Proof. We divide [ into m subintervals Iy, I», ..., I, with I; = [tj_y, ;] such that

lullwy, Awye 1y <1 <K 1
for some small 7 which is to be determined later. Then by Holder and Strichartz we have
4 4
IV Pullsay < HVIPu@)llz + 1 +n7=2) [V [ ullsa))-
Let j = 1. Choosing 7 sufficiently small (where the smallness depends only on the Stri-
chartz constants and is uniform for all subintervals ;) we have
VUl S, awyea VI u@0) 2.

In particular,

HVFu@)ll2 Sy, cwyey 1V #0012
Arguing inductively forall j =2,...,m — 1 and summing the estimates on all subintervals
yields the desired claim. ]

In the following we prove a suitable stability theory for (DCNLS). A similar stability
result appeared first in [16] for the case d € {3, 4}. For d > 5, we encounter the new
difficulty that the gradient of the mass-critical nonlinearity is no longer Lipschitz. By
appealing to fractional calculus the author was able to solve this issue and showed that
the stability result from [16] continues to hold for all d > 5. We refer to [35] for details.
In this paper we prove a stronger version of the stability result from [16, 35] under the
enhanced condition (2.9).

Lemma 2.4 (Stability theory). Let d > 3 and let u € C(I; H'(R?)) be a solution of
(DCNLS) defined on some interval I > to. Also assume that w € C(I; H'(R?)) is an
approximate solution of the perturbed NLS

i8,w+Aw+,u1|w|%w+,u2|w|ﬁw+e=0 (2.6)
such that

lull Lo ggicry = Ba, (2.7)

lwllw,, aw, (1) < B2 (2.8)
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for some By, B, > 0. Then there exists some positive o = Po(B1, B2) < 1 with the
following property: if

lu(to) —w(to) g < B. (2.9)
[(V)el 2a+n =<§B (2.10)
L™
for some 0 < B < By, then
I{V)(u —w)lsa)y <Bi.B, B 2.11)

for some k € (0, 1).

Proof. From the results given in [16,35] we already know that

lu — wllws, AW, (1) <B1.B, B*.
(V)ullsay + I{V)wllsa) <py.B, 1

for some k € (0, 1). We divide [ into O(W) intervals I, ..., I, such that

1w, awse (1) + lWlwa, awye (1) < 6

for all j =1,...,m, where § > 0 is some small number to be determined later. Let
I; = [to, t1]. Using Holder and (1.21) we infer that

4 4
VI (uldu = [w[dw)|| 2a+2
L2+ (1)
4—d 4—d
[|u —wllvvz*un)(llullw2 i) + IIwIIW2 a) NV Fwllw,, 1y

+(||v||W2 an ||w||W2*(,l))|| VIS — w)lw,, (1) ifd =3, o

A

Mulld, +4||w||5V2*(,1)>|| V1 = )l 1)
-l = wld, o NV ullwea + 1VE 0w, ) ifd = 4,

11V (|72 = w72 w)]| 212

L2+ (1)
=4 =4
flu — wllwz*(m(llull@i(,p + IIwIIW‘Zi(,l))II IVIEwlw,, (1)
+ (Il 1, + Tl G DIV E Ge=w)llws, a1y ifd <5,

A

(2.13)
g2 g + ||w||W2*(,1)>|| VIt = w) s, (1

+ [Ju — wllwz*(ll)(ll IVPullw,, ay + 1V FPwliw,, () ifd =6
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for s € {0, 1}. By Strichartz we also see that

IVI*(u —w)llscy)

4 4
SV (u(to) — w(to))llzz + VI (Jul4u — [w[2w)]| 2w+2
L d+4 (1)

t,x

2d+2) - (2.14)
¥ (1))

_4 _4
+ VP (uld2u — [wldzw)|| 2arn  + Vel
L, 4% (1) LS

t,x

Now we absorb the terms with || |V[*(u — w)|lw,, (1,) on the rh.s. of (2.14) to the Lhs.
(which is possible by choosing § sufficiently small) to deduce that

V@ = w)llsa) < B°

for some (possibly smaller) ¥ € (0, 1). In particular, we have

lut) —w(t) g < B°.

Therefore, we can proceed with the previous arguments for all 15, . . ., I, to conclude that
IVE@—w)llsu) < B
forall j =1,...,m. The claim follows by summing the estimates on each subinterval. =

3. Double track profile decomposition

In this section we construct the double track profile decomposition for a bounded sequence
in H'(R?). We begin with the following inverse Strichartz inequality along the H !-track,
which was originally proved in [29] in the case d = 3 and can be extended to arbitrary
dimension d > 3 straightforwardly by combining the results from [32].

Lemma 3.1 (Inverse Strichartz inequality, H!-track, [29]). Let d > 3 and (fu)n C
H'(R?). Suppose that

im || fullzr = A <oo and  lim [ fullwy®) = & > 0. (3.1)
n—00 n—o0

Then up to a subsequence, there exist ¢ € H'(R?) and (ty, Xn, An)n C R x R x (0, 00)
such that A, — Moo € [0,00), and if Ao > 0, then ¢ € H'(R?). Moreover,

4y . H'(R?) ifde >0,
A7 It d £ Apx + Xn) — G(x) weakly in { . 3.2)
T ) ) ) weakdy i 3T
Setting
_d_q . -
d e [p ()] iAo > 0,
b = " (3.3)

X — Xp

An

A;%—le_,-zm[(&m)( )] ifle = 0
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for some fixed 6 € (0, 1), we have

d(d+2)
. E\ T a
Jim (Ll % = 1o = @l = 913, 2 4%(5) © (3.4)
i (| faull 0 = 1 = nll g = lbnly) = 0. (3.5)
im ([ £ ll3 = 1 fe = #ull3 = l@nll3) = O. (3.6)
n—-oo
Furthermore,
An=1 or A, —0, 3.7
t
=0 or é — +o00 (3.8)
and
I £all32 = Nbnll>r + 1l fu — bull3" + 0n (D), 3.9)
I full3e = Ndnll3e + 1l fr — bull3e + 0n (D). (3.10)

Next we establish the inverse Strichartz inequality along the L2-track by using the
arguments from the proof of Lemma 3.1 and from [15,31]. For each j € Z, define €; by

€ = {1,127 ki, 2/ (ki + 1)) CRY 1 k € 29}

and € := (J;¢z €. Given Q € € we define fo by fQ = )(Qf, where y g is the charac-
teristic function of the cube Q. We have the following improved Strichartz estimate:

2(d2+3d+1)' Then

Lemma 3.2 (Improved Strichartz estimate, [31]). Letd > 1 and g := 7

: LESS d+2_1 . FEs
e fllw,, @) < ||f||é”2<sup |0 4 2||eltAfQ||L‘{x(]R)) o (3.11)
Qe ’
Utilizing Lemma 3.2 we give the following inverse Strichartz inequality along the

L?-track.

Lemma 3.3 (Inverse Strichartz inequality, L2-track). Let d > 3 and (f,), C H'(R9).
Suppose that

. . it A
nll)n;o | fullgr = A < oo and nll)rgo €2 fullw,, ®) = & > 0. (3.12)

Then up to a subsequence, there exist € L2(R?) and (tp, Xp,&n. An)n C R x R x R? x
(0, 00) such that limsup,,_, o |&x| < 00 and lim, 00 Ay =: Aso € (0, 00]. Moreover,

4 . .
At € o CGax ) (@18 L) (Qnx + )

H'(RY) iflimsup,_, ., [Anka| < 00,

3.13
L2R?)  if [Ankn| — oc. ( :

— ¢ (x) weakly in {
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Additionally, iflimsup,,_, ., [An&n| < 00, then &, = 0. Setting

~4 ity A[ (X~ Xn .
bn = Ande _ [¢( An )] N Voo <00 (3.14)
A;ie—ztm[ezén.x(},ﬁzw( - n>] iAo = 00

for some fixed 6 € (0, 1), we have

. e\2(d+1)(d+2)
Jim (1Lfnl3 = 1o = 8al3) = 813 % 4%(5) SENCRD)
gim (1l % = 1 fo = éallZy, = lénlZ) =0, (3.16)
tim (| ful3 = Il fu = 3 = lgnl13) = 0. (3.17)
n—>o0

Proof. For R > 0, denote by f R the function such that ¥ (f %) = yz f , where y g is the
characteristic function of the ball Bg(0). First we obtain

sup || fn — £,R113 = supf | /@) dE < R sup || ful%,, S R724% > 0 (3.18)
neN |€|>R neN

neN

as R — oo. Combining with Strichartz, we infer that there exists some K; > 0 such that
for all R > K; one has

R itA rR
sup || £, ll2 S A and  sup [[e"2 £, 5 |, v) 2 €
neN neN

Applying Lemma 3.2 to ( £,X),,, we know that there exists (Q,), C € such that
_ . d+2_1 . ;
eIT2ATI g inf Qa4 2 e () 04 Lty (3.19)

Let A,! be the side length of Q,. Also, denote by &, the center of Q. Since g €

(@, %) for d > 3, Holder and Strichartz yield

itAr rR
sup |le'f (fa)on ”L?X(R) < sup || fullar < A.
neN ’ neN

Combining with the fact that dd—t]z — % < 0, we deduce that sup, .y |Qx| < 1. Since

(F( fnR)),, are supported in Bg(0), we may assume that (Q,), C Bgr/(0) for some suffi-
ciently large R = R’(R) > 0. Therefore, (1), is bounded below and (&), is bounded
in R?. Holder also gives

d+2 1 .
21 itAc £R
10ul 212 (R0, e @y

12 d(d+2) d+1

oY

d
27 q itA R 2 itA R 2
SE I T A P e e W As P e
d_d+2 4(d+2) . d+1
Sknz q gm”eztA(fnR)Qn”dZHdH

LP@R) -
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Combining with (3.19) we conclude that there exist (¢, x,), C R x R4 such that
. . 4 i —(d2
l}lrglogfknz |[ettnA(fnR)Qn](xn)| > €(d+1)(d+2)14 d +3d+1). (3.20)
Define
4 . .
ha(x) = A5t €7 EnGoXt 0 (108 £ 0k + ),
d . )
hR(x) = Az e7HEnnxtan) (itnh £RY (x4 x).

It is easy to verify that ||k, ||2 = || fu|l2. By the L?-boundedness of ( f,),, we know that
there exists some ¢ € L2(R?) such that b, — ¢ weakly in L>(R?). Arguing similarly,
we also know that (h,’f)n converges weakly to some ¢& € L2(R9). From the definition of
¢ and ¢® it follows that

19— #R13 = im (s — k¢ = %)z < (imsup [y = A1) 9 — ¢ .
Using (3.18) we then obtain
oR — ¢ in L2(R?) as R — oco. (3.21)

Now define the function y such that y is the characteristic function of the cube [—%, %)d.
From (3.20), the weak convergence of h,’f to R in L2(R?) and change of variables it
follows that

R y) = lim )L,;% oA FR x,)| > @+ +2) y~(d>+3d+1) (3.22)
n Qn
n—>o0o
On the other hand, using Holder we also have

(o™, 01 < 1651201 212

Thus
||¢R||% > C82(d+1)(d+2)A—2(d2+3d+1) (3.23)

for some C = C(d) > 0 which is uniform for all R > K;. Now using (3.21) and (3.23)
we finally deduce that

C d d —2(d? d
lpl3 = ||¢R||§_382( +1)(d+2) 4—2(d>+3d+1)

> Egz(d+1)(d+2)A—z(d2+3d+1) (3.24)
for sufficiently large R, which gives the lower bound of (3.15). From now on we fix R
such that the lower bound of (3.15) is valid for this chosen R and let (¢,, x,, &,, An), be
the corresponding symmetry parameters. Since L2(IR?) is a Hilbert space, from the weak
convergence of /1, to ¢ in L2(R?) we obtain

Jim ([1n]13 = 1913 = llhn = ¢113) = 2 lim Re(.hn — )2 = 0.
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Combining with the fact that
1P 60 — ¢l —>0 asn—o0

for A,, — oo, we conclude the equalities of (3.15) and (3.17). Furthermore, in the case
limsup,,_, o, |[An&n| < 00, using the boundedness of (1,&,), and chain rule, we also infer
that ||, | g1 < || fullzr1. By the H!'-boundedness of ( f,), and uniqueness of weak con-
vergence we deduce additionally that ¢ € H'(R?) and (3.13) follows.

Next we show that we may assume &, = 0 under the additional condition that
limsup,,_, o, |[An&n| < co. Define

Tapu(x) = be' " u(x)
fora € R% and b € C with |b| = 1. Also let
(AE)oo == lim A, &y,
n—>00

X0 = i gl ¥n,
n—>oo

Notice that ¢! is well defined (up to a subsequence), since (¢’»*), is bounded.
By the boundedness of (1,£,), we infer that Toptn,citnen 1S AN isometry on Lz(Rd)
and converges strongly t0 T; ¢ i as operators on H 1(R?). We may replace h,
by A2 (/2 f£,)(Apx + xp,) and ¢ by T00) o eiE o0 @ and (3.13), (3.15) and (3.16) carry
over.

Finally, we prove (3.16). For the case Ao < 00 we additionally know that ¢ € H'(R%)
and &, = 0. Using the fact that H! is a Hilbert space and a change of variables we obtain

on(1) = lhall g1 = 1w = @l gr = 1610 = A5 fall g1 = 1 fw = Ball o = gl )-

Combining with the lower boundedness of (4,),, this implies that

1fall g = 1 fw = @nll gin = gl i = A 20n(1) = 0a (1),

which gives (3.16) in the case Ao, < 00. Now assume Ao, = co. Using a change of vari-
ables and the chain rule we obtain

W fallZ = 1o = @l — %,
= 1en2 (113 = Whn — Pyl — I P9 0112)
+ 24, Re((i&n(hn — P_j00), VP_300) + (i6n P96, V(hn — P_;09)))
+ 2 (hal = Whn = Pyg bl — 1 Poygdl%)
=11+ I, + Is. (3.25)
Using the boundedness of (&), and (3.17) we already have I; — 0. For I, using Bern-
stein and the boundedness of (£,), in R? and of (h, — P_jo $) in L2(R?) we see that

112] S A, e = P02V P02 S 4,97 — 0.
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Finally, 75 can be similarly estimated using the Bernstein inequality; we omit the details
here. Summing, we conclude (3.17). [

We show some further properties of the profile decomposition along the L2-track.

Lemma 3.4. In Lemma 3.3, we may always assume that

An=1 or A, — o0, (3.26)
t
th=0 or A—"Z — Fo0. (3.27)

n

Proof. If A,, — oo, then there is nothing to prove. Otherwise assume that Ao, < co. By
the boundedness of (£,), we also know that ¢ € H'(R%) and (A,&,), is bounded, thus

d
£, = 0 and h, (x) reduces to A, (e'2 f,,)(A,x + x,). Define

Faf(x) = A"% FQ %),

Then ¢, and g;ﬂl converge strongly to &, and gl;; respectively as operators in
H'(R?). We may redefine A, = 1 and replace ¢ by ¢ i@ and all the statements from
Lemma 3.3 continue to hold.

We now prove (3.27). If i" — =400, then we are done. Otherwise assume that - 2 —
Too € R. Recall that for (€9, xo, Ao) € RY x R? x (0, o0) the operator 8Eo.x0,A0 1S deﬁned
by

8&0,x0, lof(x) - A0

d
2

e (25" (x — xo)).
Then
Jo = €7 g8, 00 ] ()
and
by = {E‘f’"A[gsn,xn,W](x) if Aoo < 00,
e A [ge, wyan Paol(x) i oo = 00.

Using the invariance of the NLS flow under the Galilean transformation we infer that

_ A
e ge o an F100) = Gey xnaimen [ E e I . (3.28)

Define 8 := lim, oo eil&nl? We can therefore redefine ty as 0, x, as x, — 2t,&, and ¢
as Be™ 2. One easily checks that up to (3.16) in the case Ao, = 00, the statements
from Lemma 3.3 carry over, due to the strong continuity of the linear Schrodinger flow on
H'(R?) and the fact that g is an isometry on L2(R?). To see (3.16) in the case Ao, = 00,
direct calculation results in

. s —iln A Cito A
||g$n Xn—2tnkn,An [e”nlgn‘ e A% Pﬁlg ¢] - gsn Xn—2tnén,An [ﬂe i PS/\Q ¢] || Hl

i 2 —iA Zit A
< Jal e Fe AT P00 — BT AP0,

. tn
—i-ZA
Y

A e TP o — peTAP 0] g = I+ L (3.29)
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By the boundedness of (§,), one easily verifies that /; — 0. Using Bernstein we see that
2] S 2,1 1Pz S A, (gl — 0. (3.30)
This completes the desired proof. ]

Using (3.28), redefining the parameters and taking Lemma 3.1 into account, we w.l.0.g.
assume in the following that

/\ngO,xn,An [eit”AP>Ag¢](x) if Aso =0,
n =4 e"BPp(x — xp) ifloo = 1,
8 ninl€ "B P0Bl(x)  if oo

Lemma 3.5. Let ( f), and (¢pn)n be the sequences from Lemma 3.3. Then

1 fal3 = gnllzs + 1S = dull3: + 0n (D), (3.31)
I fal3e = lgnll3e + 1L fu = dull3- + 0n (1) (332)
Proof. Assume first that 1., = co. Using Bernstein and Sobolev we infer that
nll2r < A P00l 0 S 2,076z — 0.

Hence ||y |l2x = 0, (1). Therefore, by the triangular inequality,

[ fullzs =1 fw = nll2e

and (3.32) follows. Now suppose that Ao, = 1 and #,, — Fo00. For § > 0 let ¢ € S(R?)
such that

.

< lignll2- — 0

¢ = Vlm < B
Define
Vn = e "By (x — xp).
Then by a dispersive estimate we deduce that

[¥nll2x < 1tal~H W ll vy — 0.

On the other hand, by Sobolev we have
”Wn _¢n”2* < IIW _¢”H1 = :3

Hence ||y, ||2+ < B for all sufficiently large n. Therefore, by the triangular inequality,

} ||fn||2* - ”fn - I/fn”2"‘ < ﬂ,

and (3.32) follows by taking g arbitrarily small. Now we assume Ao, = 1 and#z, = 0. Then
we additionally know that ¢ € H'(R?) and h,, — ¢ in H'(R¢). Using the Brezis—Lieb
lemma we deduce that

I l3e = 6113 + llhn — plI3+ + 0n(1).

Undoing the transformation we obtain (3.32).
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We now consider (3.31). When Ao, = 00 or Ao, = 1 and ¢, — F00, then ||, || 2+ — O,
and by Holder we will also have ||y, |2, — 0, thus (3.31) follows. For the case Aoo = 1
and 7, = 0, (3.31) follows again from the Brezis—Lieb lemma. This completes the desired
proof. |

Before we finally establish the double track profile decomposition, we recall the oper-
ator g, xo.A, defined by (1.18) and the quantities #, K, I defined by (1.14)—(1.16) which
will be used to formulate the statement for the double track profile decomposition.

Having all the preliminaries we are in a position to state the double track profile
decomposition.

Lemma 3.6 (Double track profile decomposition). Let ({,), be a bounded sequence in
H'(R4). Then up to a subsequence, there exist nonzero linear profiles (¢7) ;i C HY(R4)U
L2(R%), remainders (wX)y,, C H'(R?), parameters (t,{, X1, é,], )L,],.)j,n C R x R? x
R? x (0, 00) and K* € N U {00}, such that we have the following statements:

(1)  Forany finite 1 < j < K* the parameters satisfy
>. 1; J
125 Jim 61

lim ¢t/ =t/ € {0, +o0),
n—>oo n o0 { }

. Jj .17
Jim A7 =: 27, € {0.1, 00}, (3.33)

t/ =0 iftl, =0,
AM=1 ifAl =1,
£ =0 ifrl, €{0,1}.

(ii)  For any finite | < k < K* we have the decomposition

k
Vn =Y TIPi¢/ +wk. (3.34)
j=1

Here, the operators Tnj and P,{ are defined by

Mgy gl Bul) ifAde =0,
TIu(x) == 3 [e" Au)(x — x}}) if o =1, (3.35)
Zei i€ AU(x)  if A =00
and .
Pt iAo =0,
Plu=13u if Ao =1, (3.36)

Pyt ifdeo = o0
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for some 6 € (0, 1). Moreover,

H'RY) ifal, =0

¢/ € { HY(RY) ifal, =1, (3.37)
L2RY)  if Al = .
(iii) The remainders (wllC Vie,n Satisfy
Jim - lim e lw, ows. ) = 0. (338)
(iv) The parameters are orthogonal in the sense that
)Lk Mo A2
Zn o 20 J _ gk _ 4
T R ke \rk(x,) t
L[ =2 (kxs)z(sn ) (3:39)
An
forany j # k.
(v)  Forany finite 1 < k < K* we have the energy decompositions
1IVEVal} = Y NIVET P67 13+ 1IVEwEIE +ou(D).  (3.40)
j=1
H (W) =D H(T]PIp") + H(wh) + ox (1), (3.41)
j=1
k . . .
K (W) = Y KT PI§7) + K (wy) + oa(1), (3.42)
j=1
k . . .
IWn) = Y I(T] Pl¢7) + I(wy) + 0a(1) (3.43)
j=1

fors € {0, 1} and any finite 1 < k < K*.

Proof. We construct the linear profiles iteratively and start with k = 0 and w,? = VY. We
assume initially that the linear profile decomposition is given and its claimed properties
are satisfied for some k. Define

= lim |le!"2w¥ .
ex = Hm [e"%wy [y, oW, )
If g = 0, then we stop and set K* = k. Otherwise we have either

L2-track: limsup||e”A k||W2*(R)>hmsup ||e”A k||W2*(R),
n—>oo n—>oo
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or

H'-track: limsup [|e"®w k||W2*(R)<11msup e 2w k||W2*(R) (3.44)
n—>oo

For the first situation we apply Lemma 3.3 to w , while in the latter case we apply Lemma
3.1. In both cases we obtain the sequence

(¢k+l wk-l—l Zk+1 Xk+1 Ek+1 /‘\,k+1)n

? n ’'n *tn ’o5n *n :

We still need to check that (iii) and (iv) are satisfied for k + 1. That the other items
are also satisfied for k + 1 follows directly from the construction of the linear profile
decomposition. If e = 0, then (iii) is automatic; otherwise we have K* = oo and ¢; > 0
for all j € N U {0}. Let S; C N denote the set of indices such that for each j € Sy, we
apply the H !-profile decomposition at the (j—1)-step. Also define S, := N \ S;. Using
(3.4), (3.15) and (3.40) we obtain

d(d+2)
& & 2(d+1)(d+2)
ZA(”)“ + D A7 (”)
J€ST j€ESH
S Y 1%, + D] 7113
JE€ST JES2
=Y lim [T PI¢7 I, + D lim |T;P/¢7 |3
J€S1 JjESH
: 2 2
< lim [y li7 = 43, (3.45)

where 4; = lim, o ||w,{ |lg1- By (3.40) we know that (A4;); is monotone decreasing,
thus also bounded. Since S; U S, = N, at least one of both is an infinite set. Suppose that
|S1] = oo and |S2| < oco. Then

tim 42(2L) * =o.

j—o00 Aj

Combining with the boundedness of (A4;); we immediately conclude that ¢; — 0. The
same also holds for the cases | S| = o0, |S1| < oo and | S| = |S2| = oo, and the proof
of (iii) is complete. Finally, we show (iv). Denote

of M080xi 2 ifkgo =0,
" gé,{,x,’,',/lf; ifléc (S {1,00}.

Assume that (iv) does not hold for some j < k. By construction of the profile decompo-

sition we have
k—1

k-1 j 1 —ithA pl 41
w, " =w) — Z gne "M PL@ .
I=j+1
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Then using the definition of ¢* we know that

9F = w-lime ™ A (g) T wk ]
n—>oQ

k—1

o p—itE AT =10 G i =itk AT k=1 pl 41

= w-lime [(eH " wil— > w-lime [(gn)" P,9"), (3.46)
I=j+1

where the weak limits are taken in the H'- or L2-topology, depending on the bifurcation
(3.44). Our aim is to show that ¢* is zero, which leads to a contradiction and proves
(iv). We first consider the case A’;o = 00. Then the weak limit is taken w.r.t. the L2-
topology. Particularly, we must have Ao = oo, otherwise (iv) would be satisfied. For the
first summand, we obtain

j PR
eI (g) T w]] = (A (gk) gl €AY e A (g) ]
Direct calculation yields

—zt A(gylf) g] zt,,

Ak i
. iRyt A
— J,k "N,
= B8 ke kool € (3.47)
n n A,ﬁ Ak

with ﬂj ok — ol =)k +15 ) 6 &K 2 Therefore_ the failure of (iv) results in the strong
convergence of the adjoint of e~/ A(g )t el in L2(R?). By construction of the
profile decomposition we have

e_it’{A(g,{)_lw,{ —0 in Lz(Rd),

and we conclude that the first summand weakly converges to zero in L2(R%). Now we
treat the single terms in the second summand. We can rewrite each single summand as

T A[(gF)TIPL] = (e A (gF) T gl et A) [Tt A (g )L PLg!].

By the previous arguments it suffices to show that
—it] A jN—1pl gl : d
e B (ghTlply 0 in L*(RY).
Assume first )fo, = (. In this case, we can in fact show that
—it] Ay jN—1 pl 41 .1 2md
e 't (g " P,¢" -0 inL(RY). (3.48)
Indeed, using Bernstein we have

le @A (g PLg 2 = ALI P iyedl N2 < AP 1 — 0.
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Next we consider the cases )Léo € {1, oo}. By the construction of the decomposition and
the inductive hypothesis we know that ¢/ € L2(R¢) and (iv) is satisfied for the pair (j,1).
Using the fact that

||P5(A£1)9¢l — ¢!l >0 when A — oo

and density arguments, it suffices to show that
I, =e ll‘nA(gn) 1 l lt A¢_\0 inLZ(Rd)
for arbitrary ¢ € C2(R?). By (3.47) we obtain

)i X
il (P2
I =,3j’l . l(t"(ii) th)A
n n 8, shoxb—ad adh2@i—gh) A
/1 (&1 —&h), Vi o
n n

Assume first that limy—co 22 A, —I— = o00. Then for any ¢ € C® (R?) we have

).]
1

[, ¥ >|<mm{(*) ||¢||1||vf||oo,(i—f)g||&||1||q3||oo}eo

So we may assume that lim,—, o i, € (0, 00). Suppose now t,, (M )2 _ t,,‘ — #£o00. Then
the weak convergence of I,, to zero in L?(R%) follows 1mmed1a€ely from the dispersive
estimate. Hence we may also assume that lim,, o # ( )2 t; € R. Finally, we are left
with the options

. j—l—Ztl)le J &l
M — gl > oo or [T T2 TR
n n n Afl

For the latter case, we utilize the fact that the symmetry group composed by unbounded
translations weakly converges to zero as operators in L2(R?) to deduce the claim. For the
former case, we can use the same arguments as for the translation symmetry by consid-
ering the Fourier transformation of 7,, in the frequency space. This completes the desired
proof for the case AX = oo.

It is still left to show the claim for the cases AX, € {0, 1}. We only need to prove that
for AL = oo, we must have

NG T ghe APy > 0 in H'R); (3.49)

the other cases can be dealt similarly. Notice in this case that =it A(g,{ )~ ! is an isometry
on H'. Using Bernstein, the boundedness of (é,l,),, and chain rule we obtain

” ttn A(gn) gl ity AP<(}L£,)9¢I||H1
S ADTEN NPy @ 2 + AT IP_rye ! |
< D) 2 + ALl — 0.

This finally completes the proof of (iv). ]
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4. Scattering threshold for the focusing—focusing (DCNLS)

Throughout this section we restrict ourselves to the focusing—focusing (DCNLS)
i0:u + Au+ |u>2u + [u)> 2u = 0. 4.1
We also define the set A by

A= {u € Hl(Rd) : tA/{(M) < </\/t(Q)» ‘;6(”) < MM (u)» JC(M) > 0}

4.1. Variational estimates and the MEI functional

We derive below some useful variational estimates which will be later used in Sections
4.3 and 4.4. Particularly, we give the precise construction of the MEI functional £, which
will help us to set up the inductive hypothesis given in Section 4.3.

Lemma 4.1. Let u € H'(R?) \ {0} with M(u) < M(Q). Then there exists a unique
A(u) > 0 such that

>0 ifde(0,A(n)),
K(Tu)y =0 ifd = A(u),
<0 ifd e (AMu),o0),
where the operator T), is defined by (1.17).

Pl()()f: VVC ﬁrst Obtaln

d d * *__ *
M0 = 22 (13 = 55 Il = 274 3

with
2
[Vull3 —

24 M) \ 7 2
= (1= (5ggy) IVl > 0 “2)
Since 2* > 2, j—AJC(T,\u) has a unique zero B(u) € (0, o0) which is the global maximum
of K (Thu). Also, K (Tu) is increasing on (0, 8(u)) and decreasing on (8(u), o0). One
easily verifies that K (Tyu) is positive on (0, (1)) and K (Tju) — —o0 as A — oo.
Consequently, K (7Tu) has a first and unique zero A(u) € (B(u), o0) and K (Tu) is
positive on (0, A(1)) and negative on (A(u), 00). This completes the proof. |

d+2

Lemma 4.2. Assume that K (u) > 0. Then J (u) > 0. If additionally K (u) > 0, then also
H(u) > 0.

Proof. We have
1 1 .
H(u) > H(u) — ch(u) = E||u||§* > 0. 4.3)

It is trivial that (4.3) becomes strict when u # 0, which is the case when K () > 0. =
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Lemma 4.3. Let u € A. Suppose also that M(u) < (1 — 8)%¢M(Q) with some § € (0, 1).
Then

]z < [Vul3, (4.4)
S 1
S IVullz = G0 = S Vull. 4.5)

Proof. Inequality (4.4) follows immediately from the fact that J (1) > 0 for u € 4 and
the nonpositivity of the nonlinear potentials. The first < in (4.5) follows from

Hw) = Hw) — 50 K

1 d
= (1vulg - i)

d+2
= (1= (i) Ivute = G va

and the second < follows immediately from the nonpositivity of the power potentials. m

Lemma 4.4. The mapping ¢ — m. is continuous and monotone decreasing on (0, M(Q)),
where m. is defined by (1.7).

Proof. The proof follows the arguments of [4], where we also need to take the mass con-
straint into account. We first show that the function f defined by

,b) = 2 —bt?”
fla:b) = adar® = b
is continuous on (0, 00)2. In fact, the global maximum can be calculated explicitly. Let

g(t,a,b) = at* - bt*"

and let t* € (0, 00) be such that d,g(t*,a,b) = 0. Then t* = (zz*“b)#. Particularly,
d,g(t,a,b) is positive on (0, t*) and negative on (t*, c0). Thus

2a )%2

nfab) =g ab) = (57) 7 7.

and we conclude the continuity of f on (0, c0)?.
We now show the monotonicity of ¢ > m.. It suffices to show that for any 0 < ¢; <
¢y < M(Q) and & > 0 we have

Me, < M¢, + €.
Define the set V(c) by

Vie) = {ue H'R): M) = ¢, X(u) = 0}.
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By the definition of m,, there exists some u; € V(c) such that

J(uy) < me, + g (4.6)

Letn € Cf"(]Rd) be a cutoff function such that n = 1 for |x| < 1, n = 0 for |x| > 2 and
n € [0, 1] for |x| € (1,2). For § > 0, define
s (x) = n(dx) - up(x).

Then ity 5 — u; in H'(R9) as § — 0. Therefore,

Vit sl = [Vuill2,
sl = Il
for all p € [2,2%] as § — 0. Using (4.2) we know that %||Vv||§ > i||v||§: for all v €

H'(R?) with M(v) < M(Q). Since ¢; € (0, M(Q)), we infer that M (ii; 5) € (0, M(Q))
for sufficiently small §. Combining with the continuity of f we conclude that

1 1 % ‘
~ 2 ~ 2 ~ 24 ~ 2
max Tyt ) = max{® (519001 — 51 al3:) = 5 g3
1 1 N\ 1 €
< max{? (S1Vur 3 = 5 lharl3:) = a3} +
&
= max # (Tyuy) + — 4.7
t>0 4

for sufficiently small § > 0. Now let v € Cf"(]Rd) with suppv C B(0, 487! + 1)\
B(0,487") and define

(M(v))?
We have M(vg) = ¢z — M(li1,5). Define

w) = 17!1’5 + Thvo

with some to be determined A > 0. For sufficiently small § the supports of #; 5 and vo are
disjoint, thus®
lwally = sl + I Tavollf

for all p € [2,2*]. Hence M(w,) = c». Moreover, one easily verifies that

[Vwilla = [ Vit sll2.

lwally = N5l

3The order logic is as follows: we first fix § such that it1,5 and v have disjoint supports. Then i, s and
T vo have disjoint supports for any A € (0, 1).
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forall p € (2,2*] as A — 0. Using the continuity of f once again we obtain
max H (Tywy) < max H(T;iiy5) + £
t>0 t>0 ’ 4
for sufficiently small A > 0. Finally, combining with (4.6) and (4.7) we infer that
me, <max H(Trwy) < max #H(T;iiq5) + ¢
t>0 t>0 4
511121><J€(Ttu1)—i—E =J€(u1)—i—E <me, +é¢, 4.8)
>0 2 2

which implies the monotonicity of ¢ — m. on (0, M(Q)).
Finally, we show the continuity of the curve ¢ — m.. Since ¢ > m_ is nonincreasing,
it suffices to show that for any ¢ € (0, M(Q)) and any sequence ¢, |, ¢ we have

me < lim me,.
n—>oo

By the same reasoning we can also prove that m. > lim,_, « m, for any sequence ¢, 1 ¢
and the continuity follows. Let ¢ > 0 be an arbitrary positive number. By the definition of
m¢, we can find some u, € V(c,) such that

€ €
H(uy) <me, + 3 <m.+ 5 4.9)

We define i, = (c;lc)% “ Uy = ppUy. Then M(tiy) = ¢ and p, 1 1. Since u, € V(cy),
we obtain

> H(uy) = H(uy) — %K(un)

_ 1 2 d 24
= 2 (IVunl3 = =5 a2

> L (1o (B Y g, 2

me + = = me, +

| ™
| ™

—d M(Q)
— %(1 _ (%ng()l))d)”wnng. (4.10)

Thus (1), is bounded in H'(R?) and up to a subsequence we infer that there exist
A, B > 0 such that

d
d+2
On the other hand, using K (1,) = 0 and the Sobolev inequality we see that

[ Vun |12 — lunll3? = A+ 04(1), |lunl2 = B + 0n(1). (4.11)

(1= (S ) )it < (1903 - 7 )

d
1 *
= gllunlli*
§2%

< —— Vi3 (4.12)
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Hence liminf,— oo | Vitn||3 > 0, which combining with (4.12) also implies
d
d+2

Therefore, f is continuous at the point (A4, B). Also using the fact that p,, 1 1 we deduce
that

1 2 2 1 2%
A= lim (1Vinl3 = ——lunll3;) > 0. B = lim fun|3 > 0.

2pn" tz*p ¥
me < max H(Tyiiy) = max{ o 0 g Bz — S 13
A « B
< max{tz— —t? } °
>0\ 2 2% 4
12 = £
< max{ 1 Vua I3 - 2 || e I EA T
= max H (Tyuy,) + — = H(uy) + —<mg, +¢ 4.13)
>0 2 2
by choosing n sufficiently large. The claim follows from the arbitrariness of ¢. ]

The following lemma shows that the NLS flow leaves solutions starting from + invari-
ant.

Lemma 4.5. Let u be a solution of (4.1) with u(0) € A. Then u(t) € A for all t in the
maximal lifespan. Also assume M(u) = (1 — 5)%eM(Q). Then

. inf K (u(t))

max

d
5(d —2)
Proof. By mass and energy conservation, to show the invariance of solutions starting from
A under the NLS flow, we only need to show that J (u(¢)) > 0 for all # € I,,x. Suppose
that there exists some ¢ in the maximal lifespan such that K (u(¢)) < 0. By continuity of

u(t) there exists some s € (0, ¢] such that K (u(s)) = 0. By conservation of mass we also
know that 0 < M(u(s)) < M(Q). Using the definition of m, we immediately obtain

> min{‘;—‘gje(u(o», (( )% - 1)_1(mm,,(0)) - J(’(u(O)))}. (4.14)

Mpuis) < HU(S)) < Mpe) = MMuEs))

which is a contradiction. We now show (4.14). Direct calculation yields

2
da?
If K (u(t)) — 725 llu(r) ||%: > 0, then using (4.2) we see that

FTu(0) = =25 K(Tu0) + 5 (KTt = T3 @19)

K () = |Vull3 - d+2|| ull3; = llull3-

d—
> $IVul — 52 K@),
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which combining with (4.5) implies

28 44
K W) geq— IVu@)ll3 = —H (), (4.16)
where for the last inequality we also used the conservation of energy. Suppose now that
K () = —— Ju@)]3 <0. (4.17)
Then
T O3 > 1V = el — el
= 8|Vu()3 — Ju)3:
Hence 5(d —2)
[ @3 > =———=IVu@®)I3. (4.18)
Since K (u(t)) > 0, by Lemma 4.1 we know that there exists some A, € (1, 00) such that
K(Thu@)) >0 VAe]l, Ay (4.19)
and
0= KT = 22 (1921~ 5 @) = 27 Tl
which gives
le@l3: = 227 (IVu0I3 = 5 lu@l3;) < 227 IVu@l3. @20
Inequalities (4.18) and (4.20) then yleld
d %
A S\ 05— . 4.21
* = (8(d - 2)) “.21)
On the other hand, one easily checks that
d 22" =2) x5 2
(s (Do) = 25 1T013)) = =202 P 3 <0, 422)
Integrating (4.22) and usmg (4.17), we find that for A > 1,
5 (K@) - —||nu<r)||2*) (4.23)

Expressions (4.15), (4.19) and (4.23) then imply that -4 Tz J(’(T,w(t)) <Oforall A €[1,A].
Finally, combining with (4.21), the fact that K (7,u(t)) = 0 and Taylor expansion we
conclude that

((S(dd_z))d“_z DA = (e~ (AT, )

= H(Thu(t)) — Hu())
> M (o)) — H@(0)). (4.24)
This together with (4.16) yields (4.14). [ ]
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Lemma 4.6. Let

me = inf  {IT(u): M(u)=c, K(u) <0}, (4.25)
ueH! (R4)

where I(u) is defined by (1.16). Then m, = m. for any ¢ € (0, M(Q)).

Proof. Let (uy), be a minimizing sequence for the variational problem (4.25), i.e.

lim T(uy) =me, M@uy) =c, K(uy) <O0.

n—oo

Using Lemma 4.1 we know that there exists some A, € (0, 1] such that X (T} ,u,) = 0.
Thus
me < H(Ty,un) = I(Th,un) < I(un) = mce + o0n(1).

Sending n — oo we infer that m, < 71.. On the other hand,

me < inf {I(u) M) =c, Ku) = 0}

uecHI(RY)
= inf {Jf(u) M) =c, Ku) = 0} = me. (4.26)
ucH1(R4)
This completes the proof. ]

We define the set 2 by its complement
Q¢ ={(c.h) eR*:c > M(Q)} U{(c.h) eR*: ¢ € [0, M(Q)), h >m.} (427)

and the function D: R? — [0, o] by

h+c
h+ —————— if(c,h) € Q,
D(c.h) = dist((c, h), ) (c. k) (4.28)

00 otherwise.
For u € H'(R?) also define D (1) := D (M), K (u)).
Remark 4.7. Let mg = lim; o m. and mg = lim¢44(0) M. By modifying the argu-
ments in [42, Thm. 1.2] and [45, Lem. 3.3] we are able to show that

Nevertheless, the precise values of mg and m g have no impact on the scattering result;
all we need here is the monotonicity and continuity of the curve ¢ +— m.. We therefore
postpone the proof to the appendix. A

Lemma 4.8. Assume v € H'(R?) such that X (v) > 0. Then we have the following state-
ments:

i D) =0ifandonlyifv =0.
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(i) 0< D) < oo ifand onlyifv € A.
(iii) D is conserved under the NLS flow (4.1).

(iv) Let uy,upy € A with M(uy) < M(uz) and H(uy) < H(u3z), then D(uy) <
D (uy). If in addition either M(u1) < M(uz) or H(u1) < H(uz), then D(u;) <
D(u2).

(v) Let Dy € (0,00). Then

[Vull3 ~p, H(u), (4.29)
2 ~po H () + Mu) ~gp, D(u) (4.30)

uniformly for all u € A with D(u) < Dy.
(vi) Forallu € A with D(u) < Dy for some Dy € (0, 00) we have

|H(u) —mpl 2 1. (4.31)

Proof. (i) Thatv = 0implies O (v) = 0 is trivial. The other direction follows immediately
from (4.5) and the definition of D.

(i) Itis trivial that v € #A implies O (v) < co. By Lemma 4.2 we also know that J¢ (v) > 0,
which gives D (v) > 0. Now let 0 < D (v) < co. Then M(v) € (0, M(Q)). By definition
of O and Lemma 4.2 we infer that 0 < J(v) < m 4 y), Which also yields K (v) > 0 by
the definition of m 4 (). Hence we conclude that v € +.

(iii) This follows immediately from the conservation of mass and energy of the NLS flow
(4.1) and the definition of D.

(iv) This follows directly from the fact that ¢ + m, is monotone decreasing on (0, M (Q))
and the definition of D.

(v) Since u € A, we know that M(u) € (0, M(Q)) and using Lemma 4.2 also # (u) €
[0, m p¢ (). Thus

dist((M(u), F (), Q°) < dist((M(u), H (), (M(Q), H(u)))
= M(Q) = M(u).

Since # (1) > 0, we have

- M(u)
D(u) > m, (4.32)

which implies that
1 - M(u)

1+Dw) — M)

Sincel —a <1-— ad fora e [0, 1], we deduce that

! M)\ 3
o <! Gagy)”
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Using X (1) > 0 we have

D) = H(u) > H(u) — ZL*JC(M)

1 d
7 (193 = =S5 i)

d+2
1 M) \ 7 > lIVul3
= 5 (1- (i) IIVulB 2 50 ooy (433)

Therefore, ||Vu|3 <o, # (u). Combining with (4.5) we conclude that
IVul3 ~p, H ), ullf ~o, @) + Mw).

It remains to show # (1) + M(u) ~g, O (u). Using (4.32) and (4.33) we already know
that
H () + M) ~o, [[ulF S0, D).

To show D(u) Sop, H (1) + M(u) we discuss the following different cases: If M(u) >
%M(Q), then using the fact that J (1) > 0 we have

M) _ M(Q)

dist((M(u), H (u)), Q°) > Dy = 2Dy

which implies

D(u) = (M(u) + H(u)) + H(u).

2D
M(Q)
If M(u) < %M(Q) and #(u) > %m%M(Q), then analogously we obtain

Do

D(u) = (M(u) + H(u)) + H(u).

miu)

If M(u) < %M(Q) and #(u) < %m%M(Q), then
dist((M(u), F (), Q) > dist((3 M(Q). %m%M(Q)), Q°) = ag > 0,

where the first inequality and the positivity of ¢ follow from the monotonicity of ¢ > m..
Therefore,

D) < %(M(u) + H(u)) + H(u).

Summing, the proof of (v) is complete.

(vi) If this were not the case, then we could find a sequence (u,), C # such that

| (tn) — Mpcun)| = 0n(1). (4.34)
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But then

dist((M (un), H (n)). Q€) < dist((M(un), H n)), (MWtn). M4 G0r)))
= M,y — H(Un)| = 0n(1).
If M(up) 2 1, then D(uy,) = ﬁ, contradicting D (uy,) < Dg. If M(uy,) = 0,(1), then

by (4.34) we know that # (u,) = 1 and similarly we may again derive the contradiction
D(uy) Z ﬁ This finishes the proof of (vi) and also the desired proof of Lemma 4.8. m

4.2. Large- and small-scale approximations

In this section we show that the nonlinear profiles corresponding to low-frequency and
high-frequency bubbles can be well approximated by the solutions of the mass- and
energy-critical NLS respectively.

Lemma 4.9 (Large-scale approximation for Ao, = 00). Let u be the solution of the focus-
ing mass-critical NLS
4
i0/u+ Au + |u|du =0, (4.35)

with u(0) = ug € H'(R%) and M(uo) < M(Q). Then u is global and

lullw,, Ry < C(M(uo)), (4.36)
1V ulls®y Saco) VI uoll2 (4.37)

fors €{0,1}. Moreover, we have the following large-scale approximation result for (4.35):
Let (Ay)n C (0, 00) such that A, — 00, (t;)n C R such that either t, = 0 or t, — £00
and (&,)n, C R? such that (&,), is bounded. Define

bn = Leyxpin€ AP0 (4.38)

for some 6 € (0, 1). Then for all sufficiently large n, the solution u,, of (4.1) with u,(0) =
¢n is global and scattering in time with

lim sup [(V)un [ s®) < C(M(¢)), (4.39)
n—o00
lim |[uy|w,.®) = 0. (4.40)
n—>oo

Furthermore, for every B > O there exists Ng € N and ¢pg € CZ°(R x R%) such that

_d . ; t X —xp — 2t€
% il ik (_ p #)‘ <B. (441
’ Up n- € e ¢,3 /\% + 1y An W, (R) — :3 ( )
_d . ) t X — X — 2t&
Vi — iE 0% pitlenl? jitnx (_ ,#)‘ < 4.42
” Up lsn n- € e ¢,B /\% +In A, W, (R) — :3 ( )

foralln > Ng.
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Proof. Inequality (4.36) and the fact that u is global are proved in [19]; (4.37) can be
proved similarly to Lemma 2.3 and we therefore omit the details here.

Next we prove the claims concerning the large-scale approximation. When ¢,, = 0, we
define w and w, as the solutions of (4.35) with w(0) = ¢ and w,(0) = ¢, respectively.
When t, — 400, we define w and w,, as solutions of (4.35) which scatter to e’ Aq& and
ei’AP<Az¢ in L2(R%) as t — 400 respectively. By (4.36) we know that w is global,
scatters in time and

[wlsg)y < C(M(9)).

On the other hand, since

lim lim |w,(t) —w()|2

n—>00 t—+o00

< Jim Tim (Jwa () =" P0dla + [w(t) — e lla + 19 — P_ze¢ll2)
=0,

by the standard stability result for mass-critical NLS (see for instance [31]) we infer that
wy, is global and scattering in time for all sufficiently large n and

lim sup ||w,, || Wa, (R) 5M(¢) 1.
n—>oQ
Using Bernstein, Strichartz and (4.37) we additionally have

6
lwallw,®) < IVwalls®) Sug) An-

‘We now define

d
lin(t,x) = Ay 2

x—xn—2tén)

. . t
lEnx p=itlinl? ) (_ .
n /\2 + 1ty ln

n

(4.43)

Using the symmetry invariance for mass-critical NLS one easily verifies that i,, is also a
global and scattering solution of (4.35). In particular,

(VYiinlls@) < (1+ EDlwnlls@ + A, IVwnlls® S 1+ 24,070 > 1, 444

i [l w,e ®) = A wn e ®) < A I Vnls®) S 4,07 — 0 (4.45)

as n — co. We next show that i, is asymptotically a good proxy of u, using Lemma 2.4.
Rewrite (4.35) for i, as

104l + Adly + liln| 411y + |iin| 720y + € = 0, (4.46)
where e = —|ii,| ﬁﬁn. Using (4.2), Sobolev and conservation of energy we obtain
V()13 < Hun () + 2 llun (O3 < H(a) + Va3
But using Bernstein we also see that

IVnll2 < 2, Eal B2 + A, TP ] — 0,
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which implies
H(¢n) < [ Vull3 — 0.

By standard continuity arguments we conclude that lim sup,,_, o, ||z || Lo EL (1) < OO and
(2.7) is satisfied by combining with conservation of mass for sufficiently large n. It remains
to show (2.10). Indeed, using Holder we deduce that

_4_
KV)ell awsn < Nl gy IV )it |, ) (4.47)
L

t,x

Then (2.10) follows from (4.44) and (4.45). Expressions (4.39) and (4.40) now follow
from (2.11), (4.44), (4.45) and Strichartz. Finally, to show (4.41) and (4.42) we first choose
¢p € CP(R x R¥) and sufficiently large n such that

[lw = dgllws, ® + W —wnllw,, ®) + [{V)itn — (Vunlw,, ®) < B
Using the chain rule and Bernstein we also deduce that
IVitn = i€ntinllws, ®) = A7 I Vwnllws, @) S 2,479 — 0. (4.48)

Then (4.41) and (4.42) follow from the triangular inequality and taking n sufficiently
large. ]

Analogously, we have the following small-scale analogue of Lemma 4.9, where the
arguments from [19] are replaced by [22,27,30]. We therefore omit the proof.

Lemma 4.10 (Small-scale approximation for Ao, = 0). Let u be the solution of the focus-
ing energy-critical NLS .

i0:u + Au + |ula—2u =0 (4.49)
with u(0) = ug € H'(RY), H*(uo) < H*(W) and |[uoll g1 < |W| g:. Additionally
assume that uy is radial when d = 3. Then u is global and

lullw,. gy < C(H*(uo)), (4.50)
VI ulls@®)y Saee o) |1V uoll2 (4.51)

for s € {0, 1}. Moreover, we have the following small-scale approximation result for
(4.49): Let (Ay)n C (0, 00) such that A, — 0 and (t,)n, C R such that either t, = 0
ort, — =£o00. Define

. ith A
Pn = Ango,xn,/l,,el " P>)Lg¢

for some 6 € (0, 1). Then for all sufficiently large n, the solution u, of (4.1) with u, (0) =
dn is global and scattering in time with

lim sup [{(V)un|ls®) < C(H*(9)), (4.52)

n—>o0

lim [[uy || w,, ®) = 0. (4.53)
n—>00
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Furthermore, for every B > O there exists Ng € N, ¢pg € CZ°(R x R%) and Yg € CO(R x
RY; (Cd) such that

—d4q t X — Xp
— 2 —_— —
Jin = 2> 0 (55 + =),y =P (4.54)
-4 t X — Xp
— 2 — PR
H Viin = An W(A% +in, An )H W, (R) =h (4.55)

foralln > Ng.

4.3. Existence of the minimal blow-up solution

Having all the preliminaries we are ready to construct the minimal blow-up solution.
Define

(Do) = sup{ ||V || wa, \War (1) : ¥ is solution of (4.1),
¥ (0) € A, D(¥(0) < Do}

and
D* :=sup{Dg > 0: (Do) < o0}. (4.56)

By Lemma 2.1, Remark 2.2 and Lemma 4.8 (v) we know that D* > 0 and t(Dy) <
oo for sufficiently small Dy. We will therefore assume that D* < oo and aim to derive
a contradiction, which will imply D* = oo and the whole proof will be complete in
view of Lemma 4.8 (ii). By the inductive hypothesis we may find a sequence (V,,), with
(¥4(0)), C # which are solutions of (4.1) with maximal lifespan (1), such that

[V llws, 0w (ot 10D = MY W, 0Ws (10,50 1)) = 005 (4.57)
lim Dy (0)) = D*. (4.58)
n—>oo

Up to a subsequence we may also assume that

(MW (0). H (Y (0)), I (¥n(0))) — (Mo. Ho, To) asn — oo.

By continuity of £ and finiteness of D* we know that
D* = D(Mo, Ho), Mo € (0. M(Q)), Ho € [0,mug).

From Lemma 4.8 (v) it follows that (¥,(0)), is a bounded sequence in H'(R?) and
Lemma 3.6 is applicable for (y,(0)),. More precisely, there exist nonzero linear pro-
files (¢7); C H'(R?) U L2(R?), remainders (w’,f)k,n C H'(R?), parameters (l,{x,ﬁ
S,{,M,')j,,, C R x R4 x R x (0,00) and K* € N U {oo}, such that we have the following
statements:
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(i)  For any finite 1 < j < K* the parameters satisfy
>, 1 J
1z Tim [&]].

lim ¢/ =:tZ, € {0, +o0},

n—oo
Jo— 37
nll)n;o/\ = A, €{0,1, 00}, (4.59)

t/ =0 iftl =0,
AM=1 ifAl =1
£ =0 ifal, €{0,1}.

(i)  For any finite 1 < k < K™ we have the decomposition

k
Va(0) = Y TPl +w,. (4.60)

j=1
Here, the operators Tnj and P,'," are defined by
| M8ouf agle™ Aulx) if Ado =0,
T/ u(x) = { [ 2u](x — x3) ifAl, =1, (4.61)
8gt f gl BuI() iAo = o0

and .
. P>(M;)9u if)t'(’?o =0,
Plu=1u ifAl =1, (4.62)
Ps(%)"” if Ao = o0

for some 6 € (0, 1). Moreover,
H'(R?) ifAl, =0,
¢’ e S HY(RY) ifal, =1, (4.63)
L2[RY)  if Al = .
(iii) The remainders (wX)y , satisfy

lim lim [e" 2wk lw,, Aw,.®) = 0. (4.64)

k—K* n—>00
(iv) The parameters are orthogonal in the sense that
A, X Mz
RS R LR Y IRT:
n

X — Xy =205 () (6 — &)

+ k

A'I’l

0 (4.65)

for any j # k.
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(v) For any finite 1 < k < K* we have the energy decompositions

k
HVEYal3 = Y NIVET IG5 + IIVFwhlE +oa(D),  (4.66)
j=1
k
H(WYn) = Y H (T Pp7) + H(wy) + 0a(1), (4.67)
j=1
k
K(m) = Y K (T PI$7) + K(wy) + 0a(1), (4.68)
j=1
k
I(Yn) = ) LTI Pl¢7) + I(wy) + on(1) (4.69)
j=1

for s € {0, 1} and any finite 1 < k < K*.
We define the nonlinear profiles as follows: For )L’;o € {0, 0o}, we define vf as the solution
of (4.1) with vX(0) = TF P¥¢*. For Ak, = 1 and tX, = 0, we define v¥ as the solution
of (4.1) with vK(0) = ¢*. For Ak, = 1 and rX, — o0, we define v* as the solution of
(4.1) that scatters forward (backward) to e’ Ad)k in H 1(Rd). In both cases for /\’;o =1
we define
vk = vk + 1k x — x5).

n.
Then v,’f is also a solution of (4.1). In all cases we have for each finite 1 < k < K*,

. k k pk 4k
lim [[vF(0) = T P "l = 0. (4.70)

In the following, we establish a Palais—Smale-type lemma which is essential for the
construction of the minimal blow-up solution.

Lemma 4.11 (Palais—Smale condition). Let (V,), be a sequence of solutions of (4.1)
with maximal lifespan I, Y, € A and lim, oo D(uy) = D*. Also assume that there
exists a sequence (ty)n C [, In such that

[V [[ws, 0w (Gt L) = W |5, 0 (i, 50p 1) = 00 4.71)

Then up to a subsequence, there exists a sequence (xp)n C R? such that (Y (tn, - + Xn))n
strongly converges in H'(R?).

Proof. By time-translation invariance we may assume that #, = 0. Let (v,{ )j,n be the non-
linear profiles corresponding to the linear profile decomposition of (v, (0)),. Define

k
lIJ,’lC = Zvi + e”Awf.
Jj=1

We will show that there exists exactly one nontrivial bad linear profile, relying on which
the desired claim follows. We divide the remainder of the proof into three steps.
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Step 1: Decomposition of energies and large-/small-scale proxies. In the first step we
show that the low- and high-frequency bubbles asymptotically meet the preconditions of
Lemmas 4.9 and 4.10 respectively. We first show that

H(T] Pl¢p’) > 0, (4.72)
K(T]PI¢p7) >0 (4.73)
for any finite 1 < j < K* and all sufficiently large n = n(;) € N. Since ¢’ # 0 we know
that T,) P} ¢/ # 0 for sufficiently large n. Suppose now that (4.73) does not hold. Up to
a subsequence we may assume that K (7}] P,/ ¢/) < 0 for all sufficiently large n. By the

nonnegativity of I, (4.69) and (4.31) we know that there exists some sufficiently small
8 > 0 depending on D* and some sufficiently large Ny such that for all n > N; we have

i gy ri pigiy < LT PL¢7) < T(n(0) + 6
< H(WYn(0)) + 8 < mp(y,(0)) — 26, (4.74)

where 7 is the quantity defined by Lemma 4.6. By continuity of ¢ + m, we also know
that for sufficiently large n we have

MMy (0)) — 28 < mpy — 6. (4.75)

Using (4.66) we deduce that for any ¢ > 0O there exists some large N, such that for all
n > N, we have

M(T,] P p’) < Mo + .
From the continuity and monotonicity of ¢ — m, and Lemma 4.6, we may choose some
sufficiently small ¢ to see that

g bl o) = Mt plgi) 2 M Mote Z My — 5 (4.76)

Now (4.74), (4.75) and (4.76) yield a contradiction. Thus (4.73) holds, which combining
with Lemma 4.2 also yields (4.72). Similarly, for each 1 < k < K* we deduce

H(wk) > 0, (4.77)
Kwky >0 (4.78)
for sufficiently large n. Now using (4.66)—(4.69) we have for any 1 < k < K*,

k
Mo = MY (0) + 0a(1) = D M(S]$7) + Mw}) +0,(1), (479

j=1
k
Ho = HWn(0) + 0a(1) = D H(S]¢7) + H(wy) +0a(1),  (4.80)
j=1
k . .
Io = HWn(0) +0on(1) = Y I(S¢7) + T(wf) + 0a(1). (4.81)

j=1
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From (4.79) it is immediate that Lemma 4.9 is applicable for solutions with initial data
TJ P,] ¢/ for all sufficiently large 7 in the case A%, = oo. We will show that Lemma 4.10
is applicable for solutions with initial data T,,] Pn] ¢’ for all sufficiently large 7 in the case
)kéo = (. From Theorem 1.3, and Lemmas 4.6 and 4.8 we know that there exists some
& > 0 such that

M) < M(Q) —2e, Ho < H*(W)—2e, Io<H*(W)—2e, (4.82)

where J* (W) is the quantity defined by (1.6). Since ||Tnj Pl ¢’ |2 — 0, by interpolation
we have
H(T,] Pl¢’) — H*(T;] P $’) — 0,
which implies
H(TI Pl¢7) < Ho+e < H*(W)—e

for all sufficiently large . Similarly,
j pigi «TiPieh + =2 101 pigi
d—-2
§2(Jfo+8)+—d (Lo +e)

d—2 2
<2 W) =) + —— (W) =) = W = (3- )e

for all sufficiently large n. This completes the proof of Step 1.

Step 2: Existence of at least one bad profile. First we claim that there exists some
1 < J < K*suchthat forall j > J + 1 and all sufficiently large n, vj, is global and

sup  lim [[v] lw,, nwpe ) S 1. (4.83)
JH+1<j<K* P70

Indeed, using (4.66) we infer that
k

JpJgyi
Jim | lim X;HT Plid7 % < . (4.84)
J

Then (4.83) follows from Lemma 2.1. In the same manner, by Lemma 2.1 we infer that

sup lim Y3 T2y S 1. (4.85)
J+1<k<K*n_>°°J XJ-:i-l S(R) ~

‘We now claim that there exists some 1 < Jy < J such that

lim sup [|v;°[lw,, Aw,. &) = 0. (4.86)

n—oQ
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We argue by contradiction and assume that

limsup v} [ wy, aw,e @) <00 V1< j <J. (4.87)
n—oo
Combining with (4.85), Lemma 2.3 and (4.93) (to be independently proved in Step 2a

below) we deduce
k

> (V)i
ji=1

Therefore, using (4.66), (4.70) and Strichartz we confirm that conditions (2.7)—(2.9) are
satisfied for sufficiently large k and n, where we set u = ¥, and w = \Ifﬁ therein. Once
we can show that (2.10) is satisfied, we may apply Lemma 2.4 to obtain the contradiction

sup lim
1<k<K* n—00

< 1. (4.88)

S(R)

lim sup [V [l ws, nwys R) < 00 (4.89)

n—>00

It is readily seen that

e = 10Uk + AWK 4 W4 WE + Wk i wk

k k 4k
. . d .
(Z(z’&tv,’, v+ [l S v+
Jj=1 j=1 Jj=1 Jj= j=1
LA R R N T EE (T )
+ (172 — [ — et (8 - A w))
= 11+12+I3. (490)

In the following we show the asymptotic smallness of Iy, I, I5.

Step 2a: Smallness of 1. We first show

khnI}* ,}Lm (Vv )11” 2442 = 0. (4.91)

tx

Since v;, solves (4.1), we can rewrite I as

k k i k k 4 k
o= (oo — w17 + | Y vi| i - Z,é Z
j=1 j=1 j=1 j=1 j=1
k k %
(X il [ Xot| 2
ji=1 j=1 =1
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By Holder and (1.21) we obtain for s € {0, 1} that

[ VI 2@+2)
dT4

th
VIRvIEY, jyd—! jyd1
ZGManwwwmmﬁﬁwmmw)
J#T Loz )
-w%wmmﬁf(mwmwm+wwmmw)ﬁd=a
t,x
. ., 4
S (019w 1 s 1190 ey
JEi L{ ®

(4.92)
vl V) || 412

(AL P T 152 gy)  ifd € (4.5,

x

4
XXMMW%WZZ VI I

J#i 4 ®)
4 iy 1— 7> .
IV 178 190 13,6 ifd > 6
L - (]R)

In view of (4.83) and (4.87) and for the purpose of closing the proof of (4.88), we only
need to show that for any fixed 1 <i, j < K* withi # j and any s € {0, 1},

hm (Ilv VIO ag2 4+ 10LIVI0L ar2 4+ IVUEVVI] a2 ) =0. (4.93)
L¢ ®) LATT®) L¢ ®)

First consider the term ||v}v; || a2 Notice that it suffices to consider the case
L.¢ R4

AL, Ao € {1, oo}. Indeed, using (4.53) (which is applicable due to Step 1) and Holder
we already conclude that

(A a2 S 0% 1w, @) 10 1w, R) — O (4.94)
L{ ®

when AL, or AL, is equal to zero. Next we claim that for any B > 0 there exists some
Vi, v} € C2(R x RY) such that

d t o x —xb -2t
_ /\l —2 —lt\$n|2 l%‘n ( tl, n i I’l)) < B, 4.95
U ( ) e 1/[ (A,l )2 + n A,i,’ Wz* (R) —_ ﬂ ( )
Cx —xj) — 28]
A )~ % o mitIE i f( g, X 2l ) H <B. (496
— () (G oy S B 496)
Indeed, for /Xf)o, )Léo = 00, this follows already from (4.41), while for )Léo, Al =1 we

choose some ngv 1///5 € CPR x R?) such that

' = ¥llw,® < B, 10/ = V5llm, @) < B (4.97)
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and the claim follows. Define

t ooy —xi —2rg!
]
(A3) A

n

An () = ()5 v
Using Holder we infer that

lpvall as2 < B+ [An(Wp)An (W,g)ll

da+2 d+2 .
L¢ ®RY) L, ®R9)

Since B can be chosen arbitrarily small, it suffices to show

Jim A DA DI a2 =0 (4.98)

d+2

L{ R
A
Assume that + i
change of varlables we obtain

— 00. By symmetry we may w.l.o.g. assume that — 0. Using a

MDA, a2
=(i—§)2 "<”XW£((%)2’ ((—")’—‘»{)’
(2)x+2( )A’(sn £
N ZtA(JW)z(S’ A HLT(Rd)
(i;)gnx/fﬂn i Witz =0 @99)

Suppose therefore i—l + ,{’ — A¢ € (0, 00). If( )2t’ - t,, — Zo00, then by (4.99)
the supports of the mtegrands become dlS]Olnt in the temporal direction.
We may therefore further assume that ( )Zt’ —t] >ty eR.

. If |x —x,,—2t (Al )2(Sn ‘En

27

)| — oo and & = E,, for infinitely many »n, then the supports
of the integral;ds become disjoint in the spatial direction.
T | B =203 () ~64)

A7

| = oo and é,’; # S,{ for infinitely many n, then we apply the
change of tem'f)oral variable ¢ —
integrands in the spatlal direction.
X =215 (3> (€, —&1)
Py
AL1ED — &1 | — oo. Hence for all ¢ # 0 the integrand converges pointwise to zero.
Using the dominated convergence theorem (setting ||1//é L% ®) 1//;5 as the majorant)
we finally conclude (4.98).

\E— to see the decoupling of the supports of the

* Finally, if — xo € R?, then by (4.65) we must have that
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We now consider the remaining terms:

* For |[vi Vvy | as2 arguing similarly to (4.94) and using (4.53) we know that A e
o ®)

{1, oo}. For Vu;, we use (4.42) or (4.55) as a proxy for an, depending on the value
of AL.

*  For [v} vy Al i We first obtain
LA-T(R)

tx

lhvdll ase < minf|o ™t
L X

l
- A

! ”Wz*(R) llv , ”Wz* (R)’

Therefore, using (4.40) and (4.53) we can reduce the analysis to the case )&éo, A{;o =1.

e For ‘||v’ Vv,, || 42 We can reduce our analysis to the case AL € {0, 1} and use
LA (R)
(4.42) or (4.55) as proxy for an and (4.54) for v

» For |Vv,, Vvé || we use (4.42) or (4.55) as proxies for both va, and Vv,’,..
(R)

X

Combining also with the boundedness of (S,{ )n, we can proceed as before to conclude
(4.93). We omit the details of the repeating arguments. This completes the proof of Step 2a.

Step 2b: Smallness of I, and I3. We establish in this substep the asymptotic smallness of
I, and I3. Using Holder and (1.21) we obtain the following:

e Ford =3,

1V + )] 2@+
Lt

4
k itA k ka1 Ak

Sk W5V e wy | %R)(||\Ifn||;’m®+||e” ||W2 ®)
t,x

4
kitA Kk kya—! ith )k
+ |l |V|S‘pnel Wy, ”Ld 2 R)(”\Dn ”I‘/in*(]R) + e’ ”W2 (]R))
t

(

k s itA k k itA k
IVl g (0] 127 ) + e wk 22 )

k jitA k k tA k
+ [V Py e S w, ”L“ﬁ%( (R ”Wz*(R) + |lé’ ”Wz*(R))
t,x

4
itA_ knd itA k
I s 717 0 o
k i k
e S wE T gy | IV 2 0k s, oy
* Ford € {4,5},

1V + I3 2@+
L d+a

t,x

4
k itA  k|d Ak
<k ||\pn|V|se” wn”dm V[ e " wy ”W2 R)
L



Sharp scattering for double critical NLS 235

| VEWE )

4
+ VI Wy Ay,
L, ®)

k itA_ k k Ak -1
TIPS S g (19 122 + e Sk |22 0 )
t,x
itA A
+ V[ wke w,’:nLgfz( (AN ) + e Ak 12 )
t,x

Ak itA, k
+ e w ||W2*(R)|| Ve 2wk s, )

A,k itA, k
+ e Bw ||W ® VI 2wy s, ®)-

e Ford > 6,
4
k Ay Ak
[V (12+13)|| 24+2) Sk WKV ES 2wk 4, [V ||W2 ®)
L,¢ ®)
4
k_itA. k7 k
+ [ IV e w HV% 11VIFw, ||W2 ®)
L.d ®
k Ak TN T e
+ UKV e Ak %(R)HWW” Wy, ||W2f(]1§)
tX
k_itA k k-7
+ || [V whe 2wk | d+z(R)|||V|S‘1’n||sz(ﬂ§)

Ak itA k
e B wklE, ol VI 0 s, )
Ak itA .k
T e A w1 Z o I IV S w s, -

In view of (4.64), (4.66), Strichartz and (4.88) it suffices to show that for s € {0, 1},

lim | tim (JWEIVI e w0l v+ VPO A0k o
L

k—K* n—>00 A ®) L,¢ ®)
+ KV A uwk ) p VR AR ):o. (4.100)
LA (R) LA (R)

, using Holder, (4.88), Stri-
R)

d+2
-1

For |||V ke duk | s and ||V Whetduk|
Li ® L
chartz, (4.66) and (4.64) we have

lim lim (| [V wk | ao  + | [VFEE A0k an )
k—K* n—00 L

W4 ®) LATT(R)
k
: k itA_  k
< Jim_ tim (1191 (3 o Yl ek vy
J=1
k

_1
Tl |V|S(Z vﬁ)llﬁgj<R)lle w1
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A, k A, k

+ Ve 2wy lws, @ lle’ 2wy T, @)
Ak Ak

+ [ |v)e ||W2 ®lletw ||W2*(R))

1 L
s lim - tim (0 gl + g |50 (e Swgllws, @ + e will,) @)
=0. (4.101)
It is left to estimate |WXVe"2wk| 4  and [|[WAVe 2wk| 4 . By (4.85),
L, 4 R LA-1(R)

Holder, Strichartz and (4.66) we know tt’flat for each n > 0 there exiggs some 1 < J' =
J'(n) < K* such that

k
sup  lim (”( Z v,{)Ve”Aw,]f
Ji<k<K* 100 =,

j L{ ®
k
+ H( > vg)ve‘mwjf ii2 ) <. (4.102)
y? LA ®)
Hence, it suffices to show that
lim lim (o) Ve 2wk || a2+ i Ve 2wk 4ra ) =0 (4.103)
k—K* n—0o0 Lt,)‘ci (R) Llu’i;l (R)
forany 1 < j < J’. For ||v,£ Vei’Awk I d2 , using (4.53) we may further assume that
Ly ®)

Ao € {1,00}.For B > 0,let¢pg € CZ(R x R¥) be given according to (4.41). Let T, R > 0
such that supp ¢g C [T, T] x {|x| < R}. Then using Holder we infer that

vl Vel Auwk| 4
L,

> S BIVE R wflw,, ) + A, (4.104)
®)

i

=

where
A= g0 (G H e BTk — )21
M+ 261G+ 5] — 28] 0] |

d+2

L{ ®)
(4.105)

= | ¢ (t. x)GE (e A Vwf1(t, x + 2£11)) ||

p &‘+

(R)

and
Glu(t, x) = A Tu(Q)2(t — ). M x + xJ).

By the arbitrariness of B it suffices to show the asymptotic smallness of A. Using the
invariance of the NLS flow under Galilean transformation we know that

[e""AVwk](, x + 28] 1)
— eié{{~xeit|$,’,'\2 [eim[e_ié']’.'wilrf]](l, x)
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P BT T T _iE).

= elfnxitltnl [e”A[V(e i xwfl)]](t,x)
+ l-é-’jl'ei&‘;{-xeit\g;{\Z[eitA[e—iE;{-xwl;]](L X)

S VRO 0 . e, i .
= il tlEnl [yl A8 k) (1, x) + ig] [ Awk](t, x + 28] 1)
= oGP AL 4 A, (4.106)

Using Holder, (4.64) and the boundedness of (E,{ )n we infer that

65 G, (Az)”

ar2 Sl 2wt [[A2] 2w+2)
L¢ ® L7 ® L7 ®
=& gl 2arn 2w 2arn  =o0,(1). (4.107)
L% ®) L4 ®)

Finally, using Holder, a change of variables, (1.22) and the boundedness of (Sn] )n We
obtain

Cae] . .
l¢p G (@5 e P A 4 L1 gy = CTBIG Az -r.rxq128)
tx

< C(T. R *Bwk ., ol 5wl

< C(T,R,sup |é§_;{ |)||e”A k”Wz* (R)”wk”Hl
n
(4.108)

The claim then follows by invoking (4.64) and (4.66). For d > 4, ||vi Vei!Awk || d2
PAWE| aa2

. . Ld ®
that A4, € {0, 1} and & = 0 (which also holds for d = 3) and the proof is in fact much
easier; we therefore omit the details here. For d = 3, we notice that d+2 > 2 and hence
we should use the interpolation estimate

' (R)

can be estimated similarly to ||v,, Ve . In this case we can further assume

1
165 VTL1, 5 o % CTRIVTL Iy, |V (4.109)
t,x

||L2 (=T, T]x{|x|<R})
in order to apply the local smoothing estimate (1.22), where ¢g is deduced from (4.54)
and w = )LJ GJ w . This completes the proof of Step 2b and thus also the desired proof
of Step 2.

Step 3: Reduction to one bad profile and conclusion. From Step 2 we conclude that
there exists some 1 < J; < K™ such that

limsup [[v7 [ w,, nwye @) = 00 Y1 </ <1, (4.110)
n—>o0
limsup [|v] ||y, nw,e®) <00 VJ1+1<j < K* (4.111)

n—>o0
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Letj e{l,...,1}.If ALo = oo, then by Lemma 3.6 we know that v,{ (0) takes the form
(4.38). Consequently, using Lemma 4.9 we infer that

limsup [|v] |, nw,» ®) < 00, (4.112)
n—soo

which contradicts (4.110). In the same manner, we exclude the case AL, = 0 using Lemma
4.10 and by Lemma 3.6 we conclude A}, = A, = 1. If J; > 1, then using (4.79), (4.80)
and Lemma 4.8 (iv) we know that limsup,,_, .o D*(vy) < D* forany 1 < j < J;. By
the inductive hypothesis we arrive at the contradiction (4.112) again and we deduce J; =
1. Note also that from Lemma 3.6 we know that in the case AL, = 1 one has £} = 0.
Therefore, by applying the linear profile expansion (4.60) at step k = 1 we obtain

Yn(0, ) = B¢ (x — x 1) + wl (x).

In particular, by Lemma 3.6 we know that ¢! € H'(R9). Similarly, we must have
M(w)) = 0,(1) and H(w}) = 0,(1), otherwise we deduce the contradiction (4.89) again
using Lemma 2.4. Combining with Lemma 4.8 (v) we conclude that ||[w}|z1 = 0,(1).
Finally, we exclude the case 7! — F00. We only consider the case ] — oo; the case
t} — —o0 can be dealt with similarly. Indeed, using Strichartz we obtain

€™ 29 (0) |l wy, aW,e (0,000 < € 2D lwa, AWye (tn00)) + [Wallgt — 0 (4.113)

and using Lemma 2.1 we deduce the contradiction (4.89) again. This completes the desired
proof. ]

Lemma 4.12 (Existence of the minimal blow-up solution). Suppose that D* < oco. Then
there exists a global solution u. of (4.1) such that D(u.) = D* and

e lws, AWy (—00,01) = ke W, AW,x (10,00)) = O©- (4.114)

Moreover, u. is almost periodic in H'(R?) modulo translations, i.e. the set {u(t) : t € R}
is precompact in H'(R%) modulo translations.

Proof. As discussed at the beginning of this section, under the assumption D* < oo
one can find a sequence such that (4.57) and (4.58) hold. We apply Lemma 4.11 to the
sequence (Y, (0)), to infer that (¥, (0)), (up to modifying time and space translation) is
precompact in H'(R%). We denote its strong H '-limit by . Let u, be the solution of
(4.1) with u.(0) = . Then D(u.(t)) = D(Y) = D* for all ¢ in the maximal lifespan
Inax of u, (recall that D is a conserved quantity by Lemma 4.8).

We first show that u, is a global solution. We only show that s¢ := sup Ij.x = 00; the
negative direction can be similarly proved. If this does not hold, then by Lemma 2.1 there
exists a sequence (s,), C R with s, — s¢ such that

lim sup [[uc || w,, W (sn,50)) = O©-
n—>o00
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Define ¥, (¢) := uc(¢t + s,). Then (4.71) is satisfied with t, = 0. We then apply Lemma
4.11 to the sequence (¥, (0)), to infer that there exists some ¢ € H'(R¢) such that, up
to modifying the space translation, u(s,) strongly converges to ¢ in H!(R?). But then
using Strichartz we obtain

lle* At () lwa, AW (sms0)) = 1€ 2@l W, AWas (Isas0)) + 0n (1) = 0n(1).

By Lemma 2.1 we can extend u,. beyond s¢, which contradicts the maximality of so. Now
by (4.57) and Lemma 2.4 it is necessary that
el wa, AW, (—o0.0) = lltellWa, AW, ([0.00)) = 00 (4.115)
We finally show that the orbit {u () : t € R} is precompact in ! (R¢) modulo trans-
lations. Let (t,), C R be an arbitrary time sequence. Then (4.115) implies
e [wa, nWys (—o0,tal) = ltte Il Wa, AWy ([ 00)) = 00

The claim follows by applying Lemma 4.11 to (#¢(7,))s- |

4.4. Extinction of the minimal blow-up solution

The following lemma is an immediate consequence of the fact that u, is almost periodic
in H! (Rd) and conservation of momentum. The proof is standard; we refer to [23,29] for
details of the proof.

Lemma 4.13. Let u. be the minimal blow-up solution given by Lemma 4.12. Then there
exists some function x: R — R? such that we have the following statements:

(i)  Foreach ¢ > 0, there exists R > 0 so that
/ Ve (O + e () + e + ue|” dx <& Vi eR. (4.116)
[x+x@)|>R

(i1)  The center function x (t) obeys the decay condition x(t) = o(t) as |t| — oc.

Proof of Theorem 1.6 for the focusing—focusing regime. We will show the contradiction
that the minimal blow-up solution u, given by Lemma 4.12 is equal to zero, which will
finally imply Theorem 1.6 for the focusing—focusing case. Let y be a smooth radial cutoff
function satisfying

X oif x| =1,
1o if|x] = 2.

Also define the local virial function

2r(0) :=/R2)((%>|uc(t,x)|2dx.
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Direct calculation yields

,2r(1) = ZIm/RV)( %) Ve (1)ite () dx, 4.117)
duzlt) =4 [ (7 )ouetuitc — 75 [ 82(% )l
4 24 2%
“ 712 A)(( )|uc| dx——/A)( |uc|* dx. (4.118)

‘We then obtain
0:2R (1) = 8K (ue) + Ar(uc(1)), (4.119)

where

Ar(ue (1)) = 4/( ,]x( )Ia uc|? +4Z/<x|<2R

g [ Gl = g [ (an() —2a el
- 3 /(AX<%) - 2d)|uc|2* dx.

‘We thus infer the estimate

Ok x )8 U U

1 *
|[AR())] = C / [Vu(n)]? + ﬁlu(t)l2 + [+ Juf?

[x|>=R

for some C; > 0. Assume that M (u.) = (1 — 8)%=M(Q) for some § € (0, 1). Using (4.14)
we deduce that

d—2

46 d N -
Kue@) = minf 2O, ((5775) * =1) o = K]
_ ’77'1 (4.120)

for all € R. From Lemma 4.13 it follows that there exists some Ry > 1 such that

[ e el el dx <

[x+x ()| C

Thus for any R > Ro + sup;cyy, 1,1 1X(¢)| with some to be determined 79, 71 € [0, 00), we
have

9 zr(t) Z M (4.121)

forall t € [tg,?1]. By Lemma 4.13 we know that for any 7, > 0 there exists some 5 > 1
such that |x(¢)| < nat for all ¢ > 5. Now set R = Rg + 12t;. Integrating (4.121) over
[l(), ll] yields

0:zr(t1) — 9:zR(t0) = M1 (11 — to). (4.122)
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Using (4.117), Cauchy—Schwarz and Lemma 4.8 we have
|0:2r(1)| < C2D*R = C2D*(Ro + n2t1) (4.123)
for some C, = Co(D*) > 0. Expressions (4.122) and (4.123) give us
2C2D*(Ro + mat1) = m(ts — to).

Setting 1, = %, dividing both sides by #; and then sending #; to infinity we obtain
%771 > 11, which implies 7; = 0 and consequently #¢ = # (u.) = 0. From Lemma 4.8
we know that Vu, = 0, hence u, = 0. This completes the proof. ]

5. Scattering threshold for the defocusing—focusing (DCNLS)

In this section we prove Theorem 1.6 for the defocusing—focusing model and Proposition
1.8. Throughout the section, we assume that (DCNLS) reduces to

iatu+Au—|u|%u+|u|ﬁu=0. 5.1
We also define the set # by

A= {ue H'(R?Y) : H ) < H*(W), K@) > 0}.

5.1. Variational formulation for m,

This subsection is devoted to the proof of Proposition 1.8. We first record some auxiliary
variational tools for (5.1) which are similar to those given in Section 4.1.
Lemma 5.1. The following statements hold true:

(i) Letu € H'(R?)\ {0}. Then there exists a unique A(u) > 0 such that

>0 ifAe(0,A(n)),
K(Twu)y =0 ifd =2Au),
<0 ifA e (A(u),o00),

where the operator T), is defined by (1.17).
(ii)  The mapping ¢ v~ m¢ is continuous and monotone decreasing on (0, 00).
(iii) Let
me = inf {I(u) M) =c, Ku) < 0},
ueH1(RY)
where I(u) is defined by (1.16). Then m, = m, for any ¢ € (0, 00).
Proof. This is a straightforward modification of Lemmas 4.1, 4.4 and 4.6; we therefore
omit the details here. ]



Y. Luo 242

Lemma 5.2. Let X¢(u) := ||Vu|3 — |u|3. and
e = inf  {T(u): Mu)=c, K(u)=<0}. (5.2)
ueH(R4)

Then m. = m. for any ¢ € (0, 00).

Proof. If M(u) = ¢ and K (u) = 0, then it is clear that K¢(u) < 0 and # (u) = I (u),
which implies m. > .. For the converse direction, in view of Lemma 5.1 (iii) it suffices
to show 71, < .. By Lemma 5.1 (ii) we can further define 7. by

Mme = inf {I(u) s M) € (0,c], K(u) < 0}. 5.3)
ucH1(R9)

Assume that u € H'(R¢) with M(u) = ¢ and K°(u) < 0. Then

d *
—J("’(T,u)‘tzl — 2K (u) — lul2: <. (5.4)

4
dt d—2

Hence there exists some sufficiently small § > 0 such that JC¢(T;u) < Oforallf € (1,1 +
8). In particular,

I(Tyu) — IT(w), K(Tyu) —> K(u) ast 1.

We now define s
Upu(x) :== A 2 u(Ax).
Then K¢ (Uju) = K(u) and I(Upu) = I(u) for any A > 0. Moreover,

4

K(Uzu) = K¢ 2h X 5.5
(Upu) = K(u) + d—~|—2”u”2* — K(u), (5.5)
MUzu) = A2 M(u) — 0 (5.6)

as A — oo. Let ¢ > 0 be an arbitrary positive number. We can then find some ¢ > 1
sufficiently close to 1 such that

I L(Tou) — I(u)| <&

Moreover, we can further find some sufficiently large A = A(¢) such that X (U, Tyu) < 0.
Then by (5.3) and (5.6) we infer that

I(w) > I(UpTiu) —e > . —¢.
The claim follows from the arbitrariness of u and &. [

Proof of Proposition 1.8. Letc > 0andletu, € Cc°°(IRd) with [lug — Wl 1 < e for some

given ¢ > 0. We define
[ ¢
Ve 1= M) Ug.
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Then M(ve) = c. Let ¢, € (0, 00) such that K¢(T3,v.) = 0. Direct calculation yields

Ve |2\ 452
" <|| all*z) v (5.7)
||Us||2*
By Lemma 5.2 we have
LOIVolByd _ 1 Va3 4
| ) _! . 5.8
me < I(T;,ve) d( AR d( ||ua||§*) (5.8)
Ivwi3

Taking ¢ — 0 we immediately conclude that m, < % -( )% = H*(W). On the other

W 112
hand, one easily verifies that

IVul3\%
K@) <0= T(u)> (a2
(Ilulli*)

Illlzﬁtzllé)% > 8% = dF*(W). Hence m, =
2*

H*(W). By [42, Thm. 1.2], any optimizer P of m, must satisfy # (P) > #H* (W), which
is a contradiction. This completes the proof of Proposition 1.8. ]

But by the Sobolev inequality we always have (

5.2. Scattering for the defocusing—focusing (DCNLS)

In this subsection we establish similar variational estimates as those given in Section 4.1.
The scattering result then follows from the variational estimates by using the arguments
given in Sections 4.3 and 4.4 verbatim.

Lemma 5.3. The following statements hold true:

(i)  Assume that JC(u) > 0. Then # (u) > 0. If additionally X (u) > 0, then J (u) >
0 also.

(ii) Letu € A. Then

* d
lall3= = IVull3 + S lull3:. (5.9)
1 2 d 24 1 2 d 2%
F(IVul + s i) < ) < 5 (IVul + ol ). 6.10)

(iii) Let u be a solution of (5.1) withu(0) € . Then u(t) € 4 for all t in the maximal
lifespan. Moreover, we have
inf K (u(t))
t€lma

X
d—2

> min{%%(u(O)), ((%)T . 1)_1(%*(W) . J(’(u(O)))}. (5.11)

Proof. This is a straightforward modification of Lemmas 4.2, 4.3 and 4.5; we therefore
omit the details here. [
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We now define the MEI functional for (5.1). Let Q := R? \ ([0, 00) x [#* (W), 00))
and let the MEI functional £ be given by (4.28). One has the following analogue of
Lemma 4.8.

Lemma 5.4. Assume v € H'(R?) such that X (v) > 0. Then we have the following state-
ments:

i D) =0ifandonlyifv =0.

(i) 0< D) <ooifandonlyifv € A.

(iii) D is conserved under the NLS flow (5.1).

(iv) Let ui,uz € A with M(uy) < M(uz) and H(uy) < H(uz). Then D(up) <
D(uz). If in addition either M(u1) < M(uz) or H(uy) < H(uz), then D(up) <
D(uz).

(v) Let Dy € (0,00). Then
IVull3 ~0, # ). (5.12)
Il ~p, H () + M) ~p, D(u) (5.13)
uniformly for all u € A with D(u) < Dy.
(vi) Forallu € A with D(u) < Dy for some Dy € (0, 00) we have
|H(u) — F*(W)| = 1. (5.14)

Proof. (1) to (iv) can be proved similarly to those from Lemma 4.8; we omit the details
here.

Next we verify (v). Let u € A with D(u) < Dy. Using (5.10) we already have
[Vul|3 < d J(u). On the other hand, by the definition of D it is readily seen that

H(u) + M(u) - M(u)

Do>Dw)=H , 5.15
02 D) =K+ 2 " w = T an) (5.15)
which implies M (1) < DoH* (W). Using Gagliardo—Nirenberg we infer that
d 2 M) \7 s (Do*(W)\7 )
_— * — \Y <\—— Vull5. 5.16

Applying (5.10) one more time we conclude that
1 5 d 2, 1 Do H*(W)\ 7 5
s = 5 (1Vul + g5 i) = 5 (1+ (Fggy ) )IvelE - G
and (5.12) and the first equivalence of (5.13) follow. From (5.15) it also follows that
H(u) + M(u) <o, D (u). To prove the inverse direction, we first obtain

H (1) + M(u) - H (u)
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which implies # (1) < (1 + Do) ' Do H*(W). Then
H(u) + M(u)
FH*(W) — H (1)
J(u) + M(u)
(1 = (1 + Do)~ Do) H*(W)

_ (I 4 Do) (H (u) + M(u))
= H(u) + -0 :

D) = H () +

< H(u)+

which finishes the proof of (v). For (vi), if this were not the case, then we could find a
sequence (Uy), C 4 such that

H*W) — H(uy) = 0,(1). (5.18)
Then (5.18) implies # (u,) = 1 and therefore

> H(un)
@(Un) = Jf*(W) — ]{(un) — 00,

which is a contradiction to D (u,) < Dy. This completes the proof of (vi) and also the
desired proof of Lemma 5.4. ]

Proof of Theorem 1.6 for the defocusing—focusing regime. The proof is almost identical
to the one for the focusing—focusing regime; one only needs to replace the results from
[19] applied in Lemma 4.9 by those from [18,20,21], the arguments from Lemma 4.8 by
those from Lemma 5.4 and (4.120) by (5.11). We therefore omit the details here. [

6. Scattering threshold, existence and nonexistence of ground states
for the focusing—defocusing (DCNLS)

In this section we prove Theorem 1.6 for the focusing—defocusing model and Proposition
1.9. Throughout the section, we assume that (DCNLS) reduces to

iatu+Au+|u|%u—|u|ﬁu=0. 6.1)
The corresponding stationary equation reads

—Au+wu—|u|§u+|u|ﬁu:0. (6.2)
We also define the set 4 by

A= {ue H'(RY) :0 < Mu) < M(Q))}.
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6.1. Monotonicity formulae and nonexistence of minimizers for ¢ < M (Q)

Lemma 6.1. Suppose that u is a solution of (6.2). Then
0 =[|Vull3 + ollull; — ull3; + ||u||§I,

0 =[Vul3 + olul3 - ||u|| s 3

-2
and

ollul} = =

Moreover, if u # 0, then w € (0, %(dLH)i).

246

(6.3)

6.4)

(6.5)

Proof. Equation (6.3) follows from multiplying (6.2) by u and then integrating by parts.
Equation (6.4) is the Pohozaev inequality; see for instance [6]. Equation (6.5) follows
1mmed1ately from (6.3) and (6.4). That w > 0 for u # 0 follows directly from (6.5). To

seew < 5 2L 7 Jr2) 2, one can easily check this by using the fact that the polynomial

4 d? . d

. . 2 d
is nonnegative for v > Z(57%5)2.

Lemma 6.2. The mapping ¢ — Y. is nonpositive on (0, c0) and equal to zero on

(0, M(Q)]. Consequently, y. has no minimizer for any ¢ € (0, M(Q)].

Proof. First we obtain

A%
uli3:) + 52

By sending A — 0 we see that y, < 0. On the other hand, using (4.2) we infer that

)LZ
9e(Ty) = 5 (1Vul3 -

d+2

g0 = 31 () vt + A i = 0

for M(u) € (0, M(Q)]. In particular, since (1 — (‘M(") )%) is nonnegative for M(u) €

M(Q)

(0, M(Q)], we deduce that # (1) = 0 is only possible when u = 0, which is a contradiction

since M(u) > 0. Thus there is no minimizer for y, when ¢ € (0, M(Q)].

Lemma 6.3. The mapping ¢ — y. is monotone decreasing and y. > —oo on (0, 00).

Moreover, y. is negative on (M(Q), 00).

Proof. We define the scaling operator U by

Uyu(x) == k%u(lx).
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Then
1 _4 24
F(Usn) = H@) + 3-(1 = 27D ul:.
M(Uzu) = A2 M ().

For u # 0 we see that J (Upu) — —oo and M (U, u) — oo as A — 0, which implies that
Y. < 0 for large c. Next we show the monotonicity of ¢ — .. Let 0 < ¢; < ¢; < c0. By
definition of y,, there exists a sequence (u,), C H'(R9) satisfying

M(uy) = c1,
H(un) = Yer T on(1).

Let Ay := 1/% < 1. Then M(Uj,u,) = c, and we conclude that

Yer = H(up) +0n(1) = H(Up,up) + 04 (1) = ye, + 0,(1).

Sending n — oo follows the monotonicity. To see that . is negative on (M(Q), 00), we
define S = ¢Q for some to be determined ¢ € (1, 00). Using Pohozaev we infer that

d
\v/ 2: 2
IVOIE = 51015,

which yields
A? 2 _ 42 2. 2 2* 2*
H(TLS) = —— (> =)0l + 517 12112+
2. 2
By direct calculation we also see that
2* ZZ* _ t2 24 d—2
0<4A <( ( = )”3”2*) Yo w(TS) <.
2227 QI3+

This shows that y. < 0 on (M(Q), o0). Finally, we show that y. is bounded below. By
theHolder inequality we obtain

2 < (M) [[u 3.

Then for u € H'(R?) with M(u) = ¢ we have

2

cd 1 *
H W) = ==z + S llull3- (6.6)
*

2
But the function ¢ +— —%tz + Zi*tz* is bounded below on [0, co). This completes the

proof. ]
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6.2. Existence of minimizers of y. for ¢ > M (Q)

Lemma 6.4. For each ¢ > M(Q), the variational problem y. has a minimizer which is
positive and radially symmetric.

Proof. Let (uy), C H'(R?) be a minimizing sequence, i.e.

M(un) = c,

H(un) = ye + 0n(1).
Since J is stable under the Steiner symmetrization, we may further assume that u,, is
radially symmetric. Using (6.6) we infer that

2

cd 1 *
Ve + 0n(D) = == lunll3e + 35 a3+,

thus (|1 ||2*)n is a bounded sequence. Hence

2
1 cd
_”V”n”% < Ye +on(1) + _””n”%* <1
2 24

and therefore (u,), is a bounded sequence in H!(R?). Up to a subsequence (i), con-
verges to some radially symmetric u € H'(R?) weakly in H'(R¢) and M(u) < c. By
weak lower semicontinuity of norms and the Strauss compact embedding for radial func-
tions we know that

H(u) <y. <0,

and therefore u # 0. Suppose that M (u) < ¢. Then M(Uju) = A" 2M(u) < c for L ina
neighborhood of 1 and
l _ 4 24 1 _4 24
H(Upu) = H(u) + 2_(1 —A d)||u||2* =Y+ 2_(1 -4 ‘1)”””2* <Ye
* *

for A < 1 sufficiently close to 1. This contradicts the monotonicity of ¢ + y,, thus M(u) =
c. By the Lagrange multiplier theorem we know that any minimizer of y,. is automatically
a solution of (6.2) and thus the positivity of u follows from the strong maximum principle.
The proof is then complete. |

Proof of Proposition 1.9. This follows immediately from Lemmas 6.1-6.4. ]

6.3. Scattering for the focusing—defocusing (DCNLS)

Lemma 6.5. Let u be a solution of (6.1) with u(0) € A. Then u(t) € A forall t € R.
Also assume M(u) = (1 — 8)%M(Q). Then

inf K (u(t)) > 2 u(0)). 6.7)

1€ Imax
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Proof. That u(t) € 4 for all ¢ € R follows immediately from the conservation of mass.
Moreover, (6.7) follows from

2 *
K () =2Hu)) + EIIMII%* > 24 (u(0)),

where we also used the conservation of energy. ]

We now define the MEI functional for (6.1). Let Q := (—o0, M(Q)) x R and let the
MEI functional O be given by (4.28). One has the following analogue of Lemma 4.8.
Lemma 6.6. Assume u € H'(R?). Then we have the following statements:

i) D) =0ifandonly ifu = 0.

i) 0<Du) <ooifandonly ifu € A.

(iii) D is conserved under the NLS flow (6.1).

(iv) Let ui,uz € A with M(uy) < M(uz) and H(uy) < H(uz). Then D(up) <
D(uz). If additionally either M(uy) < M(uz) or H(uy) < H(uz), then
D(ur) < D(uz).

v) Let Dy € (0,00). Then
IVull3 ~o, #(u), (6.8)
lullZ ~2p H () + Mu) ~p, D(u) (6.9)

uniformly for all u € A with D(u) < Dy.

Remark 6.7. Due to the positivity of the defocusing energy-critical potential we do not
need to impose the additional condition K (1) > 0. A

Proof of Lemma 6.6. Items (i) to (iv) are trivial. We still need to verify (v). Let u € #A with
D(u) < Dy. It is readily seen that

HOo+ M) _ M)

Doz DU =HOF Soy—aa = @) - s
which implies M (u) < (1 + Do) ' DoM(Q). Hence
1 M)\ 7 1 .
s =z 5 (1= (5gpy) IVl + 5wl
> 21— (1 + D0 Do) ) Va3, 61D

Similarly, we obtain

Do = J(w) = %(1 ~ (1 + Do) Do) ¥ ) | Vu 2.
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which implies
2Dy

1—((1+ Do)~ 1500)
Using the Sobolev inequality and (6.11) we obtain

2
IVullz <

&.\N

1 1 .
H () < S ||Vull3 + ||”||2* IIVullz > > lull3-

-2
S_ﬁ< 2Dy

2
a3
5 S)TIvu. 612

— ((1 + Do)~1 D) ¢
Expression (6.8) and the first equivalence of (6.9) now follow from (6.11) and (6.12).
From (6.10) it also follows that J (1) + M(u) <o, D (u). That D(u) Sop, H (1) + M(u)
follows immediately from

1
< SIVul} +

B Hw) + M) _ H () + M(u)
D) = H @) + M(Q) — M(u ) = A0+ (1 = (14 Do)~ 1 Do) M(Q)
— i)+ (1 +£°)f<(§))+m))~ .

Proof of Theorem 1.6 for the focusing—defocusing regime. The proof is almost identical
to the one for the focusing—focusing regime; one only needs to replace the results from
[22,27,30] applied in Lemma 4.10 by those from [17,41,44], the arguments from Lemma
4.8 by those from Lemma 6.6 and (4.120) by (6.7). We therefore omit the details here. m

A. Endpoint values of the curve ¢ — m, for the focusing—focusing
(DCNLS)

Proposition A.1. Let 1 = o = 1 and m. be defined through (1.7). Let
mo = limm., mg = lim m.
cl0 ctM(Q)
Then mg = H*(W)andmg = 0.

Proof. By Theorem 1.3 we already know that mo < #*(W). For ¢ € (0, M(Q)), let P,
be an optimizer of the variational problem m ., whose existence is guaranteed by Theorem
1.3. We first show mqy = H* (W) and let ¢ | 0. Then by K (P.) = 0 and (4.2) we obtain

me Z%(Pc):%(Pc)_z_*fK(Pc)

SRz - TSR
(1= () I e

d
_ %(1 _ (j;((g))ﬁ)uwcug. (A1)
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Hence (Pc)cyo is bounded in H I(R?). On the other hand, using X (P.) = 0 and the
Sobolev inequality we infer that

é(l _ (Z((;)))ﬁ)uvml% < %(nvpcllé — dLanc”gz)

1 =
= EHPC“%* = T”VPcng s
which implies that (up to a subsequence) / := lim. o ||V P, |3 > 0. But then, by the

Gagliardo—Nirenberg inequality and K (P,) = 0, we obtain

oc(1)
M(Q)

2
IVEIE S5 = 1P = 19 P~ el = (10— (S Y yv ez -1
+2
Tlc}erefore, %8 2 > [. Since | # 0, we infer that/ > § %. But then (A.1) implies my >
‘877 = H*(W), which completes the proof.

Next we show mg = 0. Let (1), be a minimizing sequence for (1.19). By rescaling
we may assume that M (u,) = §M(Q) and |u,||2, = 1 for a fixed § € (0, 1), which will
be sent to 1 later. Then combining with (1.20) we obtain || Vu, |3 = dLHS_g + on(1).
We then conclude that

2

d+2

K (Taun) = (578 =1+ 0,(1)) = 2% [Jun |3+

By setting

d _2 2
s = (g (077 1)

we see that K (7}, ;un) = 0. By Holder we deduce that

2(d+2)

||un||§: > M(un)*ﬁ”un”z:lfz _ (5M(Q))7T32

We now choose N = N(8) € N such that |0, (1)] < §~@ —1foralln > N. Summing and
using the definition of m. we finally conclude that

1
msp(0) < sug Jf(TAn,sun) = sup (](’(T;Ln,sun) — E‘K(Tln,sun)>
n>

n>N
2*
1 2% n)é' 2%
= sup —— 7%, sunllzx = sup —=llunllz-
n>N2 n>N 2

2% d 4
< 2—*(d—+2) (6~ — 1)EM(Q) — 0

as § — 1. This proves mg = 0. m
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