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A quantitative strong parabolic maximum principle and
application to a taxis-type migration–consumption model

involving signal-dependent degenerate diffusion

Michael Winkler

Abstract. The taxis-type migration–consumption model accounting for signal-dependent motili-
ties, as given by ut D �.u�.v//, vt D �v � uv, is considered for suitably smooth functions
�W Œ0;1/!R which are such that � > 0 on .0;1/, but that in addition �.0/D 0 with �0.0/ > 0. In
order to appropriately cope with the diffusion degeneracies thereby included, this study separately
examines the Neumann problem for the linear equation Vt D �V Cr � .a.x; t/V /C b.x; t/V and
establishes a statement on how pointwise positive lower bounds for nonnegative solutions depend
on the supremum and the mass of the initial data, and on integrability features of a and b. This
is thereafter used as a key tool in the derivation of a result on global existence of solutions to the
equation above, smooth and classical for positive times, under the mere assumption that the suitably
regular initial data be nonnegative in both components. Apart from that, these solutions are seen to
stabilize toward some equilibrium, and as a qualitative effect genuinely due to degeneracy in diffu-
sion, a criterion on initial smallness of the second component is identified as sufficient for this limit
state to be spatially nonconstant.

1. Introduction

The primary subject of this study is the initial–boundary value problem8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

ut D �.u�.v//; x 2 �; t > 0;

vt D �v � uv; x 2 �; t > 0;

@u

@�
D
@v

@�
D 0; x 2 @�; t > 0;

u.x; 0/ D u0.x/; v.x; 0/ D v0.x/; x 2 �;

(1.1)

in a smoothly bounded domain � � Rn, n � 1, with nonnegative initial data u0 and
v0, and with a suitably regular nonnegative function � on Œ0;1/. Parabolic systems of
this form arise in the modeling of collective behavior in bacterial ensembles, as repre-
sented through their population densities uD u.x; t/, under the influence of certain signal

2020 Mathematics Subject Classification. Primary 35K55; Secondary 35B50, 35B40, 35K10, 92C17.
Keywords. Maximum principle, functional inequality, chemotaxis, pattern formation.

https://creativecommons.org/licenses/by/4.0/


M. Winkler 96

substances, described by their concentrations v D v.x; t/. Here the approach to describe
migration by second-order operators of the form in the first equation of (1.1) accounts for
recent advances in the modeling literature, addressing bacterial movement, especially in
situations in which cell motility as a whole may be biased by chemical cues ([5, 24]).

Due to the resulting precise quantitative connection between diffusive and cross-
diffusive contributions, (1.1) can be viewed as singling out a special subclass of Keller–
Segel-type chemotaxis models with their commonly much less restricted interdependen-
cies ([12]). The ambition to understand the implications of the particular structural prop-
erties going along with this type of link, and, more generally, to carve out possible pecu-
liarities and characteristic features in population models including migration operators
of this form, has stimulated considerable activity in the mathematical literature of the
past few years. In this regard, the furthest-reaching insight seems to have been achieved
for systems in which signal-dependent migration mechanisms of the form addressed in
(1.1) are coupled to equations reflecting signal production through individuals, rather than
consumption as in (1.1). Indeed, for various classes of the key ingredient �, significant
progress could be achieved for the corresponding initial–-boundary value problem associ-
ated with ´

ut D �.u�.v//; x 2 �; t > 0;

�vt D �v � v C u; x 2 �; t > 0;
(1.2)

both in the fully parabolic case when � D 1, and in the simplified parabolic–elliptic ver-
sion obtained on letting � D 0. Besides basic results on global solvability (see [1, 4, 9, 11,
14, 15, 33, 34, 39]), several studies also include findings on asymptotic behavior, mainly
identifying diffusion-dominated constellations in which solutions to either (1.2) or certain
closely related variants stabilize toward homogeneous equilibria ([8,13,15,25–28,33,41]).
Beyond this, some interesting recent developments have provided rigorous evidence for a
strong structure-supporting potential of such models, as already predicted by some numer-
ical experiments ([4]), by revealing the occurrence of infinite-time blow-up phenomena
([10]).

Motility degeneracies at small signal densities. According to manifest positivity prop-
erties of v inherent in the production-determined signal evolution mechanism therein ([6]),
considerations related to the behavior of � close to the origin seem of secondary rele-
vance in the context of (1.2); in particular, degeneracies due to either singular or vanishing
asymptotics of � near v D 0 appear to have no significant effects on corresponding solu-
tion theories, and thus have partially even been explicitly included in precedent analysis
of (1.1) ([1, 9, 14, 39]).

In stark contrast to this, addressing the taxis–consumption problem (1.1) with its evi-
dent tendency toward enhancing small signal densities, seems to require a distinct focus
on the behavior of �.v/ for small values of v, where especially migration-limiting mech-
anisms appear relevant in the modeling of bacterial motion in nutrient-poor environments
([16, 21]). In line with this, the present manuscript will be concerned with (1.1) under the
assumption that � be small near v D 0, while otherwise being fairly arbitrary for large
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v and hence possibly retaining essential decay features at large signal densities that have
underlain the modeling hypotheses in [5] and [24].

Already at the level of questions related to mere solvability, this degenerate frame-
work seems to bring about noticeable challenges, especially in the application-relevant
case when the initial signal distribution is small, or when v0 even attains zeros. Ade-
quately coping with such degeneracies in the course of an existence analysis for (1.1) will
accordingly form our first objective, and our attempt to accomplish this will lead us to a
more general problem from basic parabolic theory.

Quantifying positivity in a linear parabolic problem. Main results I. Specifically, a
crucial step in our approach will, guided by the ambition to make efficient use of the dis-
sipative action in the first subproblem of (1.1), consist in establishing appropriate lower
bounds for the corresponding second components of solutions .u"; v"/ to suitably regu-
larized variants of (1.1) (cf. (3.1)). Inter alia due to this approximation-based procedure,
the necessity to thus simultaneously deal with whole solution families, instead of just one
single object, seems to restrict accessibility to classical strong maximum principles.

A crucial part of our analysis will accordingly be concerned with the derivation of
positive pointwise lower bounds for families of nonnegative solutions V to Vt D �V �
U.x; t/V possibly attaining zeros initially, under adequate assumptions on U which are
mild enough to allow for an application to V WD v" and U WD u" on the basis of a priori
information on u" that can separately be obtained (cf. the further discussion near (1.12)
below).

To address this in a context conveniently general, as an object of potentially indepen-
dent interest we shall examine this question for the problem8̂̂̂<̂

ˆ̂:
Vt D �V Cr � .a.x; t/V /C b.x; t/V; x 2 �; t 2 .0; T0/;

@V

@�
D 0; x 2 @�; t 2 .0; T0/;

V .x; 0/ D V0.x/; x 2 �;

(1.3)

and our main result in this direction will indeed establish a quantitative link between basic
properties of V0, as well as a and b on the one hand, and positivity features of V on the
other:

Proposition 1.1. Let n � 1 and � � Rn be a bounded domain with smooth boundary,
and suppose that p1 � 2, p2 � 1, q1 > 2, and q2 > 1 are such that

1

q1
C

n

2p1
<
1

2
and

1

q2
C

n

2p2
< 1: (1.4)

Then, given any L > 0, T > 0, and � 2 .0; T /, one can find C.p1; p2; q1; q2;L; T; �/ > 0
with the property that whenever T0 2 .0; T � and a 2 C 1;0.x� � Œ0; T0/I Rn/, b 2
C 0.x� � Œ0; T0//, and V 2 C 0.x� � Œ0; T0// \ C 2;1.x� � .0; T0// are such that a � � D 0
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on @� � .0; T0/, thatZ T0

0

ka.�; t /k
q1
Lp1 .�/

� L and
Z T0

0

kb.�; t /k
q2
Lp2 .�/

� L; (1.5)

that
0 � V0 � L in � and

Z
�

V0 �
1

L
; (1.6)

and that (1.3) holds, we have

V.x; t/ � C.p1; p2; q1; q2; L; T; �/ for all x 2 � and t 2 .�; T0/: (1.7)

Here we note that the hypotheses in (1.5) and (1.4) cannot be substantially relaxed,
not even in the simple case when a � 0:

Proposition 1.2. Let n � 1 and� � Rn be a bounded domain with smooth boundary, let
p � 1 and q � 1 be such that

1

q
C

n

2p
> 1; (1.8)

and let T > 0 and x0 2 �. Then there exist L > 0, .bk/k2N � C
1.x� � Œ0; T �/ and a

positive function V0 2 C1.x�/ such thatZ T

0

kbk.�; t /k
q

Lp.�/
dt � L for all k 2 N (1.9)

and that (1.6) holds, but that for each k 2N one can find Vk 2C 0.x�� Œ0;T �/\C 2;1.x��
.0; T // such that 8̂̂<̂

:̂
Vkt D �Vk C bk.x; t/Vk ; x 2 �; t 2 .0; T /;
@Vk
@�
D 0; x 2 @�; t 2 .0; T /;

Vk.x; 0/ D V0.x/; x 2 �;

(1.10)

and that
Vk.x0; t /! 0 as k !1: (1.11)

Global solvability and large-time behavior in (1.1). Main results II. In line with the
requirements expressed in (1.5) and (1.4), our application of Proposition 1.1 to approxi-
mate solutions of (1.1) needs to be preceded by the derivation of suitable integral bounds
for the respective first components u". When addressing this in the setting of a standard
Lp testing procedure, we shall be forced to appropriately control ill-signed cross-diffusive
contributions by means of correspondingly signal-weighted and hence weakened dissipa-
tion rates (cf. (3.17)). This will be achieved in the course of a further essential step in our
analysis, to be accomplished in Lemma 3.6, by utilizing a functional inequality of the formZ

�

'p

 
jr j2 � �

Z
�

'p�2 jr'j2 C �

Z
�

' 

C C.p/ �
�
1C

1

�

�
�

²Z
�

'p C

²Z
�

'

³2p�1³
�

Z
�

jr j4

 3
; (1.12)
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to be deduced in Lemma 3.5 for smooth ' � 0 and  > 0 and any p � 2 and � > 0 with
some C.p/ > 0 in one- and two-dimensional domains. This will enable us to establish
Lp bounds for u" in actually any Lp space with finite p, and a subsequent application of
Proposition 1.1, as thereby facilitated, will thereupon provide accessibility to arguments
from well-established parabolic regularity theories so as to finally yield C 2C�;1C

�
2 esti-

mates within the range where the said positivity result holds, that is, locally away from the
temporal origin (Lemmas 4.3 and 4.5).

In consequence, this will enable us to establish the following result on global solvabil-
ity of (1.1) by functions which are even smooth for all positive times, provided that � and
the initial data comply with mild assumptions which inter alia allow for large classes of
merely nonnegative v0:

Theorem 1.3. Let n 2 ¹1; 2º and � � Rn be a bounded convex domain with smooth
boundary, assume that

� 2 C 1.Œ0;1// \ C 3..0;1// is such that �.0/ D 0; �0.0/ > 0;

and � > 0 on .0;1/; (1.13)

and suppose that´
u0 2 W

1;1.�/ is nonnegative with u0 6� 0; and that

v0 2 W
1;1.�/ is nonnegative with v0 6� 0 and

p
v0 2 W

1;2.�/:
(1.14)

Then there exist functions´
u 2 C 2;1.x� � .0;1// and

v 2 C 0.x� � Œ0;1// \ C 2;1.x� � .0;1//
(1.15)

such that u > 0 and v > 0 in x� � .0;1/, and that .u; v/ solves (1.1) in that in the
classical pointwise sense we have ut D �.u�.v// and vt D �v � uv in � � .0;1/ and
@u
@�
D

@v
@�
D 0 on @� � .0;1/, as well as v.�; 0/ D v0 in �, and that

u.�; t / * u0 in Lp.�/ for all p � 1 as t & 0: (1.16)

Moreover, this solution has the property that for each p � 1 there exists C.p/ > 0 fulfilling

ku.�; t /kLp.�/ C kv.�; t /kW 1;1.�/ � C.p/ for all t > 0:

Next focusing on the qualitative behavior of the solutions gained above, we shall make
use of the decay information contained in an inequality of the formZ 1

0

Z
�

uv �

Z
�

v0; (1.17)

as constituting one of the most elementary features of the second equation in (1.1), to
assert a bound in the style of an estimate in BV.Œ0;1/I .W 2;1

N .�//?/ for u, where
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W
2;1
N .�/ WD ¹' 2 W 2;1.�/ j @'

@�
D 0 on @�º (Lemma 5.1). Through interpolation, this

will imply the essential part of the following result on large-time stabilization of each
among the solutions obtained in Theorem 1.3:

Theorem 1.4. Let n 2 ¹1; 2º and � � Rn be a bounded convex domain with smooth
boundary, and assume (1.13) as well as (1.14). Then there exists a nonnegative function
u1 2

T
p�1 L

p.�/ such that
R
�
u1 D

R
�
u0, and that as t !1, the solution .u; v/ of

(1.1) from Theorem 1.3 satisfies

u.�; t / * u1 in Lp.�/ for all p � 1 (1.18)

and
v.�; t /

?
* 0 in W 1;1.�/: (1.19)

As a natural question related to the latter result, we finally address the problem of
describing the limit functions u1 appearing in (1.18). To put this in perspective, let us
recall that the literature has identified numerous situations in which, when accompanied
by nondegenerate diffusion, taxis-type cross-diffusive interaction with absorptive signal
evolution mechanisms as in (1.1) leads to asymptotic prevalence of spatial homogeneity:
indeed, not only (1.1) with strictly positive � ([22]), but also a considerable variety of
chemotaxis–consumption systems, have been shown to have the common feature that for
widely arbitrary initial data, corresponding solutions stabilize toward constant states in
their first component (cf. [18, 31, 37] for a small selection of examples).

A noticeable difference to this type of behavior, and hence a qualitative effect gen-
uinely due to the diffusion degeneracy in (1.1), will be revealed in our final result: by
making appropriate use of the quantitative information contained in (1.17), we can derive
a criterion, in its essence apparently reflecting quite well the nutrient-poor situation rele-
vant to applications ([16, 21]), for the limit function in (1.18) to be nonconstant:

Theorem 1.5. Let n 2 ¹1; 2º and � � Rn be a bounded convex domain with smooth
boundary, suppose that (1.13) holds, and let u0 2 W 1;1.�/ be nonnegative with u0 6�
const. Then for all K > 0 there exists ı.K/ > 0 with the property that whenever v0 2
W 1;1.�/ is nonnegative with

p
v0 2 W

1;2.�/ and such that

0 < kv0kL1.�/ � K and
Z
�

v0 � ı.K/;

the corresponding limit function obtained in Theorem 1.4 satisfies

u1 6� const:

2. A quantitative strong maximum principle. Proof of Proposition 1.1

Let us first turn our attention to the most essential among our tools, by namely focus-
ing on the positivity property claimed in Proposition 1.1. Our reasoning in this direction
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will at its core be based on a comparison argument applied to the function W WD ln C
V

which, for suitably large C depending on the parameters in Proposition 1.1, given any V
fulfilling (1.3) indeed satisfies an inhomogeneous linear parabolic inequality (cf. (2.17)).
As an essential preparation for this, our derivation of some quantitative information on
immediate smoothing ofW into L1.�/ will rely on a Poincaré-type inequality, applicable
here thanks to a short-time positive lower bound for

R
�
V due to (1.5) (see (2.11)), which

facilitates making appropriate use of a first-order superlinear absorptive contribution to
the evolution of

R
�

ln ı
V

for suitably chosen ı > 0 (see (2.13)).
Through this type of design, our strategy is able to cope with the mild regularity

requirements in Proposition 1.1, and thereby, unlike alternative approaches based on lower
estimates for Green’s functions ([3]), especially remains applicable throughout the essen-
tially optimal parameter range described by (1.4); in particular, for our subsequently
performed analysis of (1.1) it will be of crucial importance that our argument in Proposi-
tion 1.1 is robust enough to make do without requiring L1 bounds for b.

Proof of Proposition 1.1. We abbreviate … WD .p1; q1; p2; q2/ and first recall known reg-
ularization features of the Neumann heat semigroup .et�/t�0 on� ([7,35]) to fix positive
constants c1.…; T /, c2.…; T /, c3.…; T /, and c4.T / > 0 such that for any t 2 .0; T /,

ket�r � 'kL1.�/ � c1.…; T /t
� 12�

n
2p1 k'kLp1 .�/ for all ' 2 C 1.x�IRn/

fulfilling ' � �j@� D 0 (2.1)

and
ket�'kL1.�/ � c2.…; T /t

� n
p1 k'k

L
p1
2 .�/

for all ' 2 C 0.x�/ (2.2)

and
ket�'kL1.�/ � c3.…; T /t

� n
2p2 k'kLp2 .�/ for all ' 2 C 0.x�/; (2.3)

as well as
ket�'kL1.�/ � c4.T /t

� n2 k'kL1.�/ for all ' 2 C 0.x�/: (2.4)

Using that �1
2
C

n

2p1

�
�

q1

q1 � 1
< 1 and

n

2p2
�

q2

q2 � 1
< 1 (2.5)

according to (1.4), we can thereafter rely on Beppo Levi’s theorem to fix �.…;L; T / > 0
suitably large such that

c1.…; T /L
1
q1 �

²Z T

0

�
�. 12C

n
2p1

/�
q1
q1�1 e

�
�.…;L;T /q1

q1�1
��
d�

³ q1�1
q1

�
1

4
(2.6)

and

c3.…; T /L
1
q2 �

²Z T

0

�
� n
2p2
�
q2
q2�1 e

�
�.…;L;T /q2

q2�1
��
d�

³ q2�1
q2

�
1

4
: (2.7)
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We moreover employ a consequence of a Poincaré-type inequality ([20, Lemma 8.4 and
appendix], [32, Lemma 4.3]) to choose c5.…; L; T / > 0 in such a way that whenever
ı > 0,

1

2

Z
�

jr'j2

'2
� c5.…;L; T / �

²Z
�

ln
ı

'

³2
C

for all ' 2 C 1.x�/

such that ' > 0 in x�
and j¹' > ıºj � 1

4Lc6.…;L;T /
; (2.8)

where
c6.…;L; T / WD 2Le

�.…;L;T /T : (2.9)

We now suppose that T0 2 .0;T � and that a, V0, and V have the listed properties, and begin
our derivation of (1.7) by relying on a Duhamel representation associated with (1.3) to see
that thanks to the maximum principle, the identity a � �j@��.0;T0/ D 0, (2.1), (2.3), and the
Hölder inequality, the continuous function y given by y.t/ WD e��.…;L;T /tkV.�; t /kL1.�/,
t 2 Œ0; T0/, satisfies

y.t/ D e��.…;L;T /t




et�V0 C Z t

0

e.t�s/�r � ¹a.�; s/V .�; s/º ds

C

Z t

0

e.t�s/�¹b.�; s/V .�; s/º ds






L1.�/

� e��.…;L;T /tkV0kL1.�/

C c1.…; T /e
��.…;L;T /t

Z t

0

.t � s/
� 12�

n
2p1 ka.�; s/V .�; s/kLp1 .�/ ds

C c3.…; T /e
��.…;L;T /t

Z t

0

.t � s/
� n
2p2 kb.�; s/V .�; s/kLp2 .�/ ds

� e��.…;L;T /tkV0kL1.�/

C c1.…; T /e
��.…;L;T /t

Z t

0

.t � s/
� 12�

n
2p1 ka.�; s/kLp1 .�/kV.�; s/kL1.�/ ds

C c3.…; T /e
��.…;L;T /t

Z t

0

.t � s/
� n
2p2 kb.�; s/kLp2 .�/kV.�; s/kL1.�/ ds

� e��.…;L;T /tkV0kL1.�/

C c1.…; T / �

²Z t

0

ka.�; s/k
q1
Lp1 .�/

ds

³ 1
q1

�

²Z t

0

.t � s/
�. 12C

n
2p1

/�
q1
q1�1 e

�
�.…;L;T /q1

q1�1
�.t�s/

ds

³ q1�1
q1

� kykL1..0;t//

C c3.…; T / �

²Z t

0

kb.�; s/k
q2
Lp2 .�/

ds

³ 1
q2

�

²Z t

0

.t � s/
� n
2p2
�
q2
q2�1 e

�
�.…;L;T /q2

q2�1
�.t�s/

ds

³ q2�1
q2

� kykL1..0;t//
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for all t 2 .0; T0/. Therefore, (1.6) and (1.5) together with (2.6) and (2.7) ensure that

y.t/ � LC c1.…; T /L
1
q1 �

²Z T0

0

�
�. 12C

n
2p1

/�
q1
q1�1 e

�
�.…;L;T /q1

q1�1
��
d�

³ q1�1
q1

� kykL1..0;t//

C c3.…; T /L
1
q2 �

²Z T0

0

�
� n
2p2
�
q2
q2�1 e

�
�.…;L;T /q2

q2�1
��
d�

³ q2�1
q2

� kykL1..0;t//

� LC
1

4
kykL1..0;t// C

1

4
kykL1..0;t// for all t 2 .0; T0/;

from which it follows that, in line with (2.9),

kV.�; t /kL1.�/ � c6.…;L; T / for all t 2 .0; T0/: (2.10)

Again, since a � � D 0 on @� � .0; T0/, in view of the Hölder inequality this especially
ensures that

d

dt

Z
�

V D

Z
�

b.x; t/V

� �c6.…;L; T /j�j
p2�1
p2 kb.�; t /kLp2 .�/ for all t 2 .0; T0/

and that hence, by (1.6) and (1.5),Z
�

V.�; t / �

Z
�

V0 � c6.…;L; T /j�j
p2�1
p2

Z t

0

kb.�; s/kLp2 .�/ ds

�
1

L
� c6.…;L; T /j�j

p2�1
p2 �

²Z t

0

kb.�; s/k
q2
Lp2 .�/

ds

³ 1
q2

� t
q2�1
q2

�
1

L
� c6.…;L; T /j�j

p2�1
p2 L

1
q2 t

q2�1
q2

�
1

2L
for all t 2 .0; Ot1/; (2.11)

where

Ot1 WD min¹t1; T0º with t1 � t1.…;L; T /

WD
®
2c6.…;L; T /j�j

p2�1
p2 L

q2C1
q2

¯� q2
q2�1 : (2.12)

Combining this with (2.10), we see that for ı.L/ WD 1
4j�jL

we have

1

2L
�

Z
¹V.�;t/�ı.L/º

V.�; t /C

Z
¹V.�;t/>ı.L/º

V.�; t /

� ı.L/j�j C c6.…;L; T / � j¹V.�; t / > ı.L/ºj

D
1

4L
C c6.…;L; T / � j¹V.�; t / > ı.L/ºj for all t 2 .0; Ot1/
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and thus
j¹V.�; t / > ı.L/ºj �

1

4Lc6.…;L; T /
for all t 2 .0; Ot1/:

We may therefore draw on (2.8) to find that in the identity

d

dt

Z
�

ln
ı.L/

V
D �

Z
�

Vt

V

D �

Z
�

jrV j2

V 2
�

Z
�

a �
rV

V
�

Z
�

b; (2.13)

valid throughout .0;T0/ since clearly V is positive on x�� .0;T0/ by (1.6) and the classical
strong maximum principle, and again since a � � D 0 on @� � .0; T0/, we can estimate

1

2

Z
�

jrV j2

V 2
� c5.…;L; T / �

²Z
�

ln
ı.L/

V

³2
C

for all t 2 .0; Ot1/:

As moreover

�

Z
�

a �
rV

V
�
1

2

Z
�

jrV j2

V 2
C
1

2

Z
�

jaj2

�
1

2

Z
�

jrV j2

V 2
C
1

2
j�j

p1�2
p1 ka.�; t /k2Lp1 .�/ for all t 2 .0; T0/

and
�

Z
�

b � j�j
p2�1
p2 kb.�; t /kLp2 .�/ for all t 2 .0; T0/

by the Hölder inequality, this implies that if we let c7.…/ WD max¹1
2
j�j

p1�2
p1 ; j�j

p2�1
p2 º,

then z.t/ WD
R
�

ln ı.L/
V.�;t/

, t 2 .0; Ot1/, has the property that

z0.t/ � �c5.…;L; T /z
2
C.t/C c7.…/ka.�; t /k

2
Lp1 .�/

C c7.…/kb.�; t /kLp2 .�/ for all t 2 .0; Ot1/:

By means of an ODE comparison argument, this can be seen to entail that with

h.t/ WD c7.…/

Z t

0

ka.�; s/k2Lp1 .�/ dsC c7.…/

Z t

0

kb.�; s/kLp2 .�/ ds; t 2 .0;T0/; (2.14)

we have
z.t/ �

1

c5.…;L; T /t
C h.t/ for all t 2 .0; Ot1/; (2.15)

because for each � 2 .0; Ot1/,

Nz.t/ WD
1

c5.…;L; T / � .t � �/
C h.t/; t > �;
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satisfies

Nz0.t/C c5.…;L; T / Nz
2
C.t/ � c7.…/ka.�; t /k

2
Lp1 .�/ � c7.…/kb.�; t /kLp2 .�/

D

°
�

1

c5.…;L; T / � .t � �/2
C h0.t/

±
C c5.…;L; T / �

° 1

c5.…;L; T / � .t � �/
C h.t/

±2
� c7.…/ka.�; t /k

2
Lp1 .�/ � c7.…/kb.�; t /kLp2 .�/

D
2h.t/

t � �
C c5.…;L; T /h

2.t/

� 0 for all t 2 .�; Ot1/

according to (2.14). In order to make this applicable to accomplishing the final step of our
argument, we note that once more due to the Hölder inequality, (1.5) ensures that

h.t/ � c7.…/t
q1�2
q1 �

²Z t

0

ka.�; s/k
q1
Lp1 .�/

ds

³ 2
q1

C c7.…/t
q2�1
q2 �

²Z t

0

kb.�; s/k
q2
Lp2 .�/

ds

³ 1
q2

� c8.…;L; T /

WD c7.…/T
q1�2
q1 L

2
q1 C c7.…/T

q2�1
q2 L

1
q2 for all t 2 .0; T0/;

and that thus the function W defined by

W.x; t/ WD ln
c6.…;L; T /

V .x; t/
; x 2 x�; t 2 .0; T0/;

nonnegative throughout x� � .0; T0/ thanks to (2.10), satisfies

kW.�; t /kL1.�/ D

Z
�

ln
° ı.L/
V.�; t /

�
c6.…;L; T /

ı.L/

±
� z.t/C

j�jc6.…;L; T /

ı.L/

�
1

c5.…;L; T /t
C c9.…;L; T / for all t 2 .0; Ot1/; (2.16)

with

c9.…;L; T / WD c8.…;L; T /C
j�jc6.…;L; T /

ı.L/
:

To derive (1.7) from this, we let � 2 .0;T / be given and note that we only need to consider
the case when T0 > � , in which (2.12) warrants that Ot1 � t2 � t2.…;L;T; �/ WDmin¹t1; �º.
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As (1.3) together with Young’s inequality implies that

Wt D �W � jrW j
2
�
1

V
r � .a.x; t/V / � b.x; t/

D �W � jrW j2 � r � a.x; t/ � a.x; t/ � rW � b.x; t/

� �W � r � a.x; t/C
1

4
ja.x; t/j2 � b.x; t/ in � � .0; T0/; (2.17)

according to the comparison principle we may use (2.1) and (2.3) now together with (2.2)
and (2.4) to infer on the basis of a corresponding variation-of-constants representation that
thanks to (2.16), the Hölder inequality, and (1.5),

W.�; t / � e.t�
t2
2 /�W

�
�;
t2

2

�
�

Z t

t2
2

e.t�s/�r � a.�; s/ ds C
1

4

Z t

t2
2

e.t�s/�ja.�; s/j2 ds �

Z t

t2
2

e.t�s/�b.�; s/ ds

� c4.T / �
�
t �

t2

2

�� n2 


W �
�;
t2

2

�



L1.�/

C c1.…; T /

Z t

t2
2

.t � s/
� 12�

n
2p1 ka.�; s/kLp1 .�/ ds

C
c2.…; T /

4

Z t

t2
2

.t � s/
� n
p1 kja.�; s/j2k

L
p1
2 .�/

ds

C c3.…; T /

Z t

t2
2

.t � s/
� n
2p2 kb.�; s/kLp2 .�/ ds

� c4.T / �
�
t �

t2

2

�� n2
�

° 2

c5.…;L; T /t2
C c9.…;L; T /

±
C c10.…;L; T / in �; for all t 2 . t2

2
; T0/;

where

c10.…;L; T / WD c1.…;L; T /L
1
q1 �

²Z T

0

�
�. 12C

n
2p1

/�
q1
q1�1 d�

³ q1�1
q1

C
c2.…;L; T /

4
L

2
q1 �

²Z T

0

�
� n
p1
�
q1
q1�2 d�

³ q1�2
q1

C c3.…;L; T /L
1
q2 �

²Z T

0

�
� n
2p2
�
q2
q2�1 d�

³ q2�1
q2

is finite because of (2.5), and of the fact that (1.4) moreover warrants that n
p1
�
q1
q1�2

< 1.
Since t2 � � , by definition of W this particularly means that for all x 2 � and t 2 .�; T0/
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we have

V.x; t/ � c6.p;L; T /

� exp
°
�c4.T / �

� t2.…;L; T; �/
2

�� n2
�

° 2

c5.…;L; T /t2.…;L; T; �/
C c9.…;L; T /

±
� c10.…;L; T /

±
;

and that hence indeed (1.7) holds with some C.…;L; T; �/ > 0 independent of T0, a, b,
V0, and V .

Our construction of a counterexample in the case when instead of (1.4) we have (1.8)
is much less involved:

Proof of Proposition 1.2. We fix any ˛ 2 .0; 1/ and then use that 2nC ˛ � .1 � ˛/�2 !
�1 as � !1 to pick a nonnegative function g 2 C10 .Œ0;1// such that

.�2 C 1/g.�/ � 2nC ˛ � .1 � ˛/�2 for all � � 0: (2.18)

Without loss of generality assuming that x0 D 0, we then choose R > 0 and R0 > R such
that xBR.0/ � � � BR0.0/, and for fixed T > 0 taking .Tk/k2N � .T; T C 1/ such that
Tk ! T as k !1, we let

bk.x; t/ WD �.Tk � t /
�1
� g..Tk � t /

� 12 jxj/; x 2 x�; t 2 Œ0; T �;

for k 2 N. Then since Tk > T , it follows that bk indeed belongs to C1.x� � Œ0; T �/ and,
with !n WD njB1.0/j, due to the inclusion � � BR0.0/ satisfiesZ

�

jbk.x; t/j
p dx � !n

Z R0

0

rn�1 �
®
.Tk � t /

�1
� g..Tk � t /

� 12 r/
¯p
dr

D !n � .Tk � t /
�p

Z R0

0

rn�1gp..Tk � t /
� 12 r/ dr

D !n � .Tk � t /
n
2�p

Z .Tk�t/
� 12R0

0

�n�1gp.�/ d�

� c1 � .Tk � t /
n
2�p for all t 2 .0; T / and k 2 N;

where c1 WD !n
R1
0
�n�1gp.�/d� is finite according to the boundedness of suppg. There-

fore, Z T

0

kbk.�; t /k
q

Lp.�/
dt � c

q
p

1

Z T

0

.Tk � t /
. n2�p/�

q
p dt

� c
q
p

1

Z Tk

0

s
. n2�p/�

q
p ds for all k 2 N;
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so that since our assumption (1.8) ensures that .n
2
� p/ � q

p
> �1, we can find c2 > 0

fulfilling Z T

0

kbk.�; t /k
q

Lp.�/
dt � c2 for all k 2 NI (2.19)

writing V0.x/ WD min¹T ˛; .T C 1/˛�1R2º, x 2 x�, we can thereupon fix L > 0 large
enough such that besides (1.6) we also have L � c2.

It is then clear that thanks to the smoothness features of the constant function V0 and
of .bk/k2N , according to standard parabolic theory ([17]) for any k 2 N the problem
(1.10) admits a classical solution Vk 2 C 0.x� � Œ0; T �/ \ C 2;1.x� � .0; T // which, by
nonpositivity of bk and the maximum principle, satisfies

Vk � min
®
T ˛; .T C 1/˛�1R2

¯
in x� � Œ0; T �: (2.20)

To derive (1.11) from this, we let

xVk.x; t/ WD .Tk � t /
˛f ..Tk � t /

� 12 jxj/; .x; t/ 2 x� � Œ0; T �; k 2 N;

with f .�/ WD �2 C 1, � � 0, and use that f 0.�/ D 2� and f 00.�/ D 2 for all � � 0 in
verifying that for each k 2 N and any .x; t/ 2 � � .0; T /, writing � � �.x; t I k/ WD

.Tk � t /
� 12 jxj we have

xVkt �� xVk � bk.x; t/ xVk

D �˛.Tk � t /
˛�1f .�/C

1

2
.Tk � t /

˛� 32 jxjf 0.�/

� .Tk � t /
˛
�

°
.Tk � t /

�1f 00.�/C
n � 1

jxj
.Tk � t /

� 12 f 0.�/
±

C .Tk � t /
�1
� g.�/ � .Tk � t /

˛f .�/

D .Tk � t /
˛�1
�

°
� f̨ .�/C

�

2
f 0.�/ � f 00.�/ �

n � 1

�
f 0.�/C g.�/f .�/

±
D .Tk � t /

˛�1
�
®
.1 � ˛/�2 � ˛ � 2nC g.�/ � .�2 C 1/

¯
� 0

due to (2.18). Since for any x 2 @BR.0/ and all t 2 .0; T / we have

xVk.x; t/D .Tk � t /
˛
�
®
.Tk � t /

�1R2C 1
¯
� .Tk � t /

˛�1R2 � .T C 1/˛�1R2 � Vk.x; t/

according to the inequalities Tk < T C 1 and ˛ < 1, and thanks to (2.20), and since the
latter moreover entails that

xVk.x; 0/ � T
˛
k �

®
T �1k jxj

2
C 1

¯
� T ˛k � T

˛
� Vk.x; 0/ for all x 2 BR.0/;

from the comparison principle we thus infer that xVk � Vk in BR.0/� .0;T / for all k 2N.
Therefore, (1.11) results upon observing that since ˛ is positive,

inf
t2.0;T /

xVk.0; t/ D .Tk � T /
˛
! 0 as k !1

due to our requirement that Tk ! T as k !1.
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3. Analysis of (1.1): Lp bounds

Our analysis of (1.1) will now be launched by the observation that according to standard
arguments from the theory of Keller–Segel-type cross-diffusion systems, for each " 2
.0; 1/ the regularized variant of (1.1) given by8̂̂̂̂

ˆ̂<̂
ˆ̂̂̂̂:

u"t D "�u" C�.u"�.v"//; x 2 �; t > 0;

v"t D �v" � u"v"; x 2 �; t > 0;

@u"

@�
D
@v"

@�
D 0; x 2 @�; t > 0;

u".x; 0/ D u0.x/; v".x; 0/ D v0.x/; x 2 �;

(3.1)

admits local-in-time classical solutions enjoying a handy extensibility criterion:

Lemma 3.1. Let n � 1 and � � Rn be a bounded domain with smooth boundary, and
suppose that (1.13) and (1.14) hold. Then for each " 2 .0; 1/ there exist Tmax;" 2 .0;1�

and functions´
u" 2 C

0.x� � Œ0; Tmax;"// \ C
2;1.x� � .0; Tmax;"// and

v" 2
T
q�1 C

0.Œ0; Tmax;"/IW
1;q.�// \ C 2;1.x� � .0; Tmax;"//

such that u" � 0 and v" > 0 in x� � .0; Tmax;"/, that .u"; v"/ solves (3.1) in the classical
sense in � � .0; Tmax;"/, and that

if Tmax;" <1 then lim sup
t%Tmax;"

ku".�; t /kL1.�/ D1: (3.2)

This solution satisfies Z
�

u".�; t / D

Z
�

u0 for all t 2 .0; Tmax;"/ (3.3)

and
kv".�; t /kL1.�/ � kv0kL1.�/ for all t 2 .0; Tmax;"/; (3.4)

as well as Z Tmax;"

0

Z
�

u"v" �

Z
�

v0: (3.5)

Proof. The statements on existence, positivity, and extensibility can be verified by fol-
lowing standard approaches in local existence theories of taxis-type parabolic systems ([2,
19]). The mass conservation property immediately results from an integration in the first
subproblem in (3.1), whereas (3.4) is a consequence of the comparison principle. Finally,
the inequality (3.5) can be verified upon a time integration of the identity d

dt

R
�
v" D

�
R
�
u"v".
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Throughout the sequel, unless otherwise stated we shall tacitly assume that (1.13)
holds, and that n � 2 and � � Rn is a smoothly bounded convex domain, noting that the
convexity requirement will be needed from Lemma 3.4 on, while the restriction on the
spatial dimension will be relied on only in Lemma 3.5 and its sequel. Moreover, once u0
and v0 fulfilling (1.14) have been fixed, by .u"; v"/ and Tmax;" we shall exclusively mean
the objects provided by Lemma 3.1.

For repeated later reference, let us explicitly state the following elementary implication
of our assumptions on �, and especially the requirement that �0.0/ be positive.

Lemma 3.2. Let K > 0. Then there exist �.K/ > 0 and ƒ.K/ > 0 such that if (1.14)
holds with kv0kL1.�/ � K, we have

�.K/v" � �.v"/ � ƒ.K/v" in � � .0; Tmax;"/ (3.6)

and
j�0.v"/j � ƒ.K/ in � � .0; Tmax;"/: (3.7)

Proof. Since �.0/ D 0, letting ƒ.K/ WD k�0kL1..0;K// we obtain that besides (3.7), also
the right inequality in (3.6) holds due to (3.4). For the same reason, the l’Hôpital rule
ensures that �.�/ WD �.�/

�
, � > 0, extends to a continuous function on Œ0;1/ with �.0/ D

�0.0/, whence combining the positivity of � on .0; K� with that of �0.0/, as both being
ensured by (1.13), we obtain that �.K/ WD inf�2Œ0;K� �.�/ is positive and satisfies the left
inequality in (3.6).

We next derive a space-time L2 bound for u", weighted by the factor v" due to the
lower bound from (3.6), by adapting a duality-based strategy which appears well estab-
lished in the analysis of semilinear parabolic problems, but which has also partially been
pursued in some contexts of cross-diffusive systems related to (1.1) ([4, 33]). Unlike in
most precedents, however, thanks to (3.5) the information thereby generated will here
even include corresponding integrability over the whole existence interval, thus implicitly
containing certain decay information.

Lemma 3.3. If (1.14) holds, then there exists C > 0 such thatZ Tmax;"

0

Z
�

u2"v" � C for all " 2 .0; 1/: (3.8)

Proof. For ' 2 L1.�/ we abbreviate N' WD 1
j�j

R
�
', and we let A denote the realization of

�� inL2
?
.�/ WD ¹' 2L2.�/ j N'D 0º, with its domain given byD.A/ WD ¹' 2W 2;2.�/\

L2
?
.�/ j @'

@�
D 0 on @�º. Then A is self-adjoint and positive, and an application of A�1

to the identity

.u" � Nu0/t D �
®
".u" � Nu0/C .u"�.v"/ � u"�.v"//

¯
D �A

®
".u" � Nu0/C .u"�.v"/ � u"�.v"//

¯
; x 2 �; t 2 .0; Tmax;"/;
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as implied by (3.1) and (3.3), upon testing by u" � Nu0 shows that

1

2

d

dt

Z
�

jA�
1
2 .u" � Nu0/j

2

D �

Z
�

®
".u" � Nu0/C .u"�.v"/ � u"�.v"//

¯
� .u" � Nu0/

D �"

Z
�

.u" � Nu0/
2
�

Z
�

u2"�.v"/C Nu0

Z
�

u"�.v"/ for all t 2 .0; Tmax;"/;

because Z
�

u"�.v"/ � .u" � Nu0/ D 0 for all t 2 .0; Tmax;"/;

again due to (3.3). In view of Lemma 3.2, after integrating in time and dropping two
favorably signed summands we thus obtain that with K WD kv0kL1.�/ we have

�.K/

Z t

0

Z
�

u2"v" �
1

2

Z
�

jA�
1
2 .u0 � Nu0/j

2
C Nu0

Z t

0

Z
�

u"�.v"/

�
1

2

Z
�

jA�
1
2 .u0 � Nu0/j

2

Cƒ.K/ Nu0

Z t

0

Z
�

u"v" for all t 2 .0; Tmax;"/ and " 2 .0; 1/:

According to (3.5), this entails (3.8) with an obvious choice of C .

This enables us to suitably control the interaction-driven contributions that appear in
a standard first-order testing procedure applied to the second equation of (3.1). As we are
assuming � to be convex, corresponding boundary integrals are conveniently signed and
hence the overall estimates thereby gained again including the entire time range .0;Tmax;"/.
An interesting question left open here is how far a large-time relaxation feature simi-
lar to that implicitly expressed in (3.9) can be derived also in more general domains;
while our existence theory in the context of Theorem 1.3 could readily be extended to
such settings by adaptations based on fairly well-established arguments, convexity seems
more essential in the parts in which Lemma 3.4 will be applied in the large-time analysis
addressing boundedness and stabilization properties of solutions (cf. Lemmas 3.6 and 5.3,
for instance).

Lemma 3.4. Assume (1.14). Then there exists C > 0 such thatZ Tmax;"

0

Z
�

jrv"j
4

v3"
� C for all " 2 .0; 1/: (3.9)

Proof. By straightforward computation using (3.1) and integration by parts (cf. also [36,
Lemma 3.2]), we obtain the identity

1

2

d

dt

Z
�

jrv"j
2

v"
C

Z
�

v"jD
2 ln v"j2 C

1

2

Z
�

u"

v"
jrv"j

2

D �

Z
�

ru" � rv" C
1

2

Z
�

1

v"

@jrv"j
2

@�
for all t 2 .0; Tmax;"/; (3.10)
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where the rightmost summand is nonpositive, because @jrv"j
2

@�
� 0 on @� � .0; Tmax;"/ by

convexity of � ([23]). As it is well known ([36, Lemma 3.3], [40, Lemma 3.4]) that there
exist positive constants c1 and c2 such that for all ' 2 C 2.x�/ such that ' > 0 in x� and
@'
@�
D 0 on @� we have

c1

Z
�

jr'j4

'3
�

Z
�

'jD2 ln'j2 and c2

Z
�

jD2'j2

'
�

Z
�

'jD2 ln'j2;

from (3.10) we thus infer that

4
d

dt

Z
�

jr
p
v"j

2
C c1

Z
�

jrv"j
4

v3"
C c2

Z
�

jD2v"j
2

v"
C

Z
�

u"

v"
jrv"j

2

� �2

Z
�

ru" � rv" for all t 2 .0; Tmax;"/; (3.11)

where now, after a further integration by parts, we may use Young’s inequality to estimate

�2

Z
�

ru" � rv" D 2

Z
�

u"�v"

�
c2

n

Z
�

j�v"j
2

v"
C
n

c2

Z
�

u2"v"

� c2

Z
�

jD2v"j
2

v"
C
n

c2

Z
�

u2"v" for all t 2 .0; Tmax;"/;

because j�v"j2 � njD2v"j
2. Therefore,

c1

Z t

0

Z
�

jrv"j
4

v3"
C

Z t

0

Z
�

u"

v"
jrv"j

2

� 4

Z
�

jr
p
v0j

2
C
n

c2

Z t

0

Z
�

u2"v" for all t 2 .0; Tmax;"/;

so that (3.9) results from Lemma 3.3.

To provide a prerequisite for a subsequent Lp regularity argument concerning u", as
the second of our key tools we now address the functional inequality announced in (1.12).
We underline that its derivation actually does not require any convexity hypothesis, but
through the use of a Sobolev embedding property it relies on the assumption that the
spatial setting be one- or two-dimensional.

Lemma 3.5. Let n � 2 and G � Rn be a bounded domain with smooth boundary, and
let p � 2. Then there exists C.p; G/ > 0 such that for any ' 2 C 1. xG/ and  2 C 1. xG/
fulfilling ' � 0 and  > 0 in xG,Z

G

'p

 
jr j2 � �

Z
G

'p�2 jr'j2 C �

Z
G

' 

C C.p;G/ �
�
1C

1

�

�
�

²Z
G

'p C

²Z
G

'

³2p�1³
�

Z
G

jr j4

 3

for all � > 0: (3.12)
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Proof. Since we are assuming that n � 2, and that thus W 1;1.G/ is continuously embed-
ded into L2.G/, a corresponding Sobolev inequality yields c1.G/ > 0 fulfilling

k�kL2.G/ � c1.G/kr�kL1.G/ C c1.G/k�kL1.G/ for all � 2 W 1;1.G/;

so that since Hölder’s and Young’s inequalities imply that

c1.G/k�kL1.G/ � c1.G/k�k
2p�2
2p�1

L2.G/
k�k

1
2p�1

L
1
p .G/

D

°1
2
k�kL2.G/

± 2p�2
2p�1
� 2

2p�2
2p�1 c1.G/k�k

1
2p�1

L
1
p .G/

�
1

2
k�kL2.G/ C 2

2p�2c
2p�1
1 .G/k�k

L
1
p .G/

for all � 2 L2.G/;

it follows that

k�kL2.G/ � c2.p;G/kr�kL1.G/ C c2.p;G/k�k
L
1
p .G/

for all � 2 W 1;1.G/

with c2.p;G/ WD max¹2c1.G/; .2c1.G//2p�1º. On the right-hand side of the estimateZ
G

'p

 
jr j2 �

²Z
G

jr j4

 3

³ 1
2

�

²Z
G

'2p 

³ 1
2

; (3.13)

valid whenever 0 � ' 2 C 1. xG/ and 0 <  2 C 1. xG/ by the Cauchy–Schwarz inequality,
we can therefore control the second factor according to²Z

G

'2p 

³ 1
2

D k'p
p
 kL2.�/

� c2.p;G/

Z
G

ˇ̌̌
p'p�1

p
 r' C

'p

2
p
 
r 

ˇ̌̌
C c2.p;G/ �

²Z
G

' 
1
2p

³p
� pc2.p;G/

Z
G

'p�1
p
 jr'j C

c2.p;G/

2

Z
G

'p
p
 
jr j

C c2.p;G/ �

²Z
G

' 
1
2p

³p
: (3.14)

Here, three applications of the Hölder inequality show that

pc2.p;G/

Z
G

'p�1
p
 jr'j � pc2.p;G/ �

²Z
G

'p
³ 1
2

�

²Z
G

'p�2 jr'j2
³ 1
2

and
c2.p;G/

2

Z
G

'p
p
 
jr j �

c2.p;G/

2
�

²Z
G

'p
³ 1
2

�

²Z
G

'p

 
jr j2

³ 1
2

;
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as well as

c2.p;G/ �

²Z
G

' 
1
2p

³p
D c2.p;G/ �

²Z
G

.' /
1
2p � '

2p�1
2p

³p
� c2.p;G/ �

²Z
G

'

³ 2p�1
2

�

²Z
G

' 

³ 1
2

:

Inserting (3.14) into (3.13) and using Young’s inequality, we hence infer that for each
� > 0,Z

G

'p

 
jr j2 � pc2.p;G/ �

²Z
G

jr j4

 3

³ 1
2

�

²Z
G

'p
³ 1
2

�

²Z
G

'p�2 jr'j2
³ 1
2

C
c2.p;G/

2
�

²Z
G

jr j4

 3

³ 1
2

�

²Z
G

'p
³ 1
2

�

²Z
G

'p

 
jr j2

³ 1
2

C c2.p;G/ �

²Z
G

jr j4

 3

³ 1
2

�

²Z
G

'

³ 2p�1
2

�

²Z
G

' 

³ 1
2

�
�

2

Z
G

'p�2 jr'j2 C
p2c22.p;G/

2�
�

²Z
G

'p
³
�

Z
G

jr j4

 3

C
1

2

Z
G

'p

 
jr j2 C

c22.p;G/

8
�

²Z
G

'p
³
�

Z
G

jr j4

 3

C
�

2

Z
G

' C
c22.p;G/

2�
�

²Z
G

'

³2p�1
�

Z
G

jr j4

 3
;

which readily implies (3.12) with C.p;G/ WD p2c22.p;G/.

We are now prepared to make sure that despite the diffusion degeneracy in the first
equation of (3.1), the respective first solution components remain bounded with respect
to the norm in any Lp space with p � 2. Our derivation of this will rely on two things,
namely Lemma 3.5 and the corresponding decay features expressed in (3.9) and, again,
in (3.5).

Lemma 3.6. Given any p � 2, one can pick C.p/ > 0 such that if (1.14) holds, thenZ
�

up" .�; t / � C.p/ for all t 2 .0; Tmax;"/ and " 2 .0; 1/: (3.15)

Proof. We first employ Lemma 3.4 to fix c1 > 0 such thatZ Tmax;"

0

Z
�

jrv"j
4

v3"
� c1 for all " 2 .0; 1/; (3.16)

and to make adequate use of this together with the outcome of Lemma 3.5, we utilize
Young’s inequality when testing the first equation in (3.1) by up�1" to find that

d

dt

Z
�

up" D p

Z
�

up�1" �¹"u" C u"�.v"/º
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D �p.p � 1/"

Z
�

up�2" jru"j
2
� p.p � 1/

Z
�

up�2" �.v"/jru"j
2

� p.p � 1/

Z
�

up�1" �0.v"/ru" � rv"

� �
p.p � 1/

2

Z
�

up�2" �.v"/jru"j
2

C
p.p � 1/

2

Z
�

up"
�02.v"/

�.v"/
jrv"j

2 for all t 2 .0; Tmax;"/: (3.17)

Here, abbreviating K WD kv0kL1.�/ we may draw on Lemma 3.2 in estimating

�.v"/ � �.K/v" and
�02.v"/

�.v"/
�
ƒ2.K/

�.K/v"
in � � .0; Tmax;"/;

so that since an application of Lemma 3.5 to � WDmin¹p.p�1/ƒ
2.K/

2�.K/
; 1º provides c2.p/ > 0

such that for all ' 2 C 1.x�/ and  2 C 1.x�/ with ' � 0 and  > 0 in x� we have

p.p � 1/ƒ2.K/

2�.K/

Z
�

'p

 
jr j2 �

p.p � 1/�.K/

2

Z
�

'p�2 jr'j2 C

Z
�

' 

C c2.p/ �

²Z
�

'p C

²Z
�

'

³2p�1³
�

Z
�

jr j4

 3
;

thanks to (3.3) this entails that for all t 2 .0; Tmax;"/ and " 2 .0; 1/,

d

dt

Z
�

up" �

Z
�

u"v" C c2.p/ �

²Z
�

up" C

²Z
�

u0

³2p�1³
�

Z
�

jrv"j
4

v3"
:

For each " 2 .0; 1/, the functions given by

y".t/ WD

Z
�

up" .�; t /C

²Z
�

u0

³2p�1
; t 2 Œ0; Tmax;"/;

as well as

g".t/ WD

Z
�

u".�; t /v".�; t / and h".t/ WD c2.p/

Z
�

jrv".�; t /j
4

v3" .�; t /
; t 2 .0; Tmax;"/;

thus satisfy
y0".t/ � g".t/C h".t/y".t/ for all t 2 .0; Tmax;"/;

which upon an ODE comparison argument implies that

y".t/ � y".0/e
R t
0 h".s/ ds C

Z t

0

e
R t
s h".�/d�g".s/ ds for all t 2 .0; Tmax;"/: (3.18)

Since Z t

s

h".�/d� � c1c2.p/ for all t 2 .0; Tmax;"/, s 2 Œ0; t/, and " 2 .0; 1/
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by (3.16), and sinceZ t

0

g".s/ ds �

Z
�

v0 for all t 2 .0; Tmax;"/ and " 2 .0; 1/

due to (3.5), from (3.18) we thus obtainZ
�

up" .�; t / �

²Z
�

u
p
0 C

²Z
�

u0

³2p�1³
� ec1c2.p/

C ec1c2.p/
Z
�

v0 for all t 2 .0; Tmax;"/ and " 2 .0; 1/

to conclude as intended.

4. Analysis of (1.1): Positivity properties of v" and higher-order
estimates

Thanks to Lemma 3.6, we are now in the position to draw the intended conclusion from
Proposition 1.1, and to thereby obtain a pointwise lower estimate for the second solution
components, which indeed is uniform with respect to the approximation parameter:

Corollary 4.1. Assume (1.14). Then for all T > 0 and � 2 .0; T / there exists C.T; �/ > 0
such that

v".x; t/ � C.T; �/ for all x 2 �, t 2 .�; T / \ .0; Tmax;"/, and " 2 .0; 1/: (4.1)

Proof. Since v0 6� 0, this immediately results from Proposition 1.1 upon applying Lemma
3.6 to, e.g., p WD 2.

Independently from the latter, through standard parabolic regularity arguments the
outcome of Lemma 3.6 furthermore entails uniform bounds for the taxis gradients in (3.1):

Lemma 4.2. If (1.14) holds, then there exists C > 0 such that

krv".�; t /kL1.�/ � C for all t 2 .0; Tmax;"/ and " 2 .0; 1/: (4.2)

Proof. According to well-known smoothing properties of the Neumann heat semigroup
.et�/t�0 on � ([35]), fixing any p > 2 we can find c1 > 0 such that for all t 2 .0; Tmax;"/

and " 2 .0; 1/,

krv".�; t /kL1.�/

D





ret.��1/v0 � Z t

0

re.t�s/.��1/¹u".�; s/v".�; s/ � v".�; s/º ds






L1.�/

� c1kv0kW 1;1.�/

C c1

Z t

0

.1C .t � s/
� 12�

n
2p /e�.t�s/ku".�; s/v".�; s/ � v".�; s/kLp.�/ ds: (4.3)
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Since (3.4) implies that

ku".�; s/v".�; s/ � v".�; s/kLp.�/

� ku".�; s/kLp.�/kv".�; s/kL1.�/ C j�j
1
p kv".�; s/kL1.�/

� c2kv0kL1.�/ C j�j
1
p kv0kL1.�/ for all s 2 .0; Tmax;"/ and " 2 .0; 1/;

with c2 WD sup"2.0;1/ supt2.0;Tmax;"/
ku".�; s/kLp.�/ being finite by Lemma 3.6, from (4.3)

we directly obtain (4.2).

Relying on information on actual nondegeneracy of diffusion in (3.1), as implied by
Corollary 4.1 throughout any region of the form�� ..�;T /\ .0;Tmax;"//with 0 < � < T ,
by means of a straightforward temporal cut-off procedure we can now utilize Lemma 4.2
to establish local-in-timeL1 bounds for u" through the outcome of a Moser-type iterative
reasoning.

Lemma 4.3. Suppose that (1.14) holds. Then for all T > 0 and � 2 .0; T / one can find
C.T; �/ > 0 such that

ku".�; t /kL1.�/ � C.T; �/ for all t 2 .�; T / \ .0; Tmax;"/ and " 2 .0; 1/: (4.4)

Proof. We fix � 2 C1.Œ0;1// such that � � 0 on Œ0; �
2
� and � � 1 on Œ�;1/, and then

from (3.1) we obtain that w".x; t/ WD �.t/ � u".x; t/, .x; t/ 2 x� � Œ0; Tmax;"/, " 2 .0; 1/,
satisfies

w"t D r � .D".x; t/rw"/

Cr � f".x; t/C g".x; t/; x 2 �; t 2 .0; Tmax;"/; " 2 .0; 1/; (4.5)

where
D".x; t/ WD "C �.v".x; t//;

f".x; t/ WD �.t/u".x; t/�
0.v".x; t//rv".x; t/;

g".x; t/ WD �
0.t/u".x; t/

for .x; t/ 2 � � .0; Tmax;"/ and " 2 .0; 1/. Here, since

�.kv0kL1.�// � v" � D".x; t/

� 1Cƒ.kv0kL1.�// � kv0kL1.�/ for all x 2 �, t 2 .0; Tmax;"/, and " 2 .0; 1/

by Lemma 3.2 and (3.4), using Corollary 4.1 we infer the existence of c1.T; �/ > 0 and
c2 > 0 such that

c1.T; �/ � D".x; t/ � c2 for all x 2 �, t 2 . �
2
; T / \ .0; Tmax;"/, and " 2 .0; 1/:

Since, apart from that, a combination of Lemma 3.6 with (3.4) and Lemma 4.2 shows that

sup
"2.0;1/

sup
t2.0;Tmax;"/

®
kw".�; t /kLp.�/ C kf".�; t /kLp.�/ C kg".�; t /kLp.�/

¯
<1 for all p 2 Œ2;1/;



M. Winkler 118

and since w".�; �2 / � 0 for all " 2 .0; 1/ according to our choice of �, an application of
[30, Lemma A.1] yields c3.T; �/ > 0 such that

kw".�; t /kL1.�/ � c3.T; �/ for all t 2 . �
2
; T / \ .0; Tmax;"/ and " 2 .0; 1/:

As w".�; t / � u".�; t / in � for all t 2 .�; T / \ .0; Tmax;"/ and " 2 .0; 1/, this implies
(4.4).

The latter especially rules out any blow-up in the approximate problems:

Lemma 4.4. If (1.14) holds, then Tmax;" D C1 for all " 2 .0; 1/.

Proof. This immediately follows from Lemma 4.3 when combined with (3.2).

Apart from that, Lemma 4.3 can be combined with Lemma 4.2 in the course of an
essentially straightforward bootstrap procedure so as to yield temporally local higher-
order regularity properties.

Lemma 4.5. Assume (1.14). Then for all T > 0 and any � 2 .0; T / there exist � D
�.T; �/ 2 .0; 1/ and C.T; �/ > 0 such that

ku"k
C
2C�;1C �2 .x��Œ�;T �/

� C.T; �/ for all " 2 .0; 1/ (4.6)

and
kv"k

C
2C�;1C �2 .x��Œ�;T �/

� C.T; �/ for all " 2 .0; 1/: (4.7)

Proof. We rewrite the first equation of (3.1) according to

u"t D r � A".x; t;ru"/; x 2 �; t > 0; " 2 .0; 1/;

with

A".x; t; �/ WD "� C �.v".x; t//�

C �0.v".x; t//u".x; t/rv".x; t/; .x; t; �/ 2 � � .0;1/ �R; " 2 .0; 1/;

and employ Corollary 4.1 along with Lemma 3.2, (3.4), and Lemmas 4.3 and 4.2 to find
c1.T; �/ > 0, c2.T; �/ > 0, and c3.T; �/ > 0 such that whenever " 2 .0; 1/,

A".x; t; �/ � � � c1.T;�/j�j
2
� c2.T;�/ for all .x; t; �/ 2 �� . �

8
; T /�Rn and " 2 .0; 1/

and

jA".;x; t; �/j � c3.T; �/j�j C c3.T; �/ for all .x; t; �/ 2 �� . �
8
; T /�Rn and " 2 .0; 1/:

Again based on Lemma 4.3, by means of a standard result on Hölder regularity of bounded
solutions to scalar parabolic equations ([29]) we thus obtain �1 D �1.T; �/ 2 .0; 1/ and
c4.T; �/ > 0 such that

ku"k
C
�1;

�1
2 .x��Œ �4 ;T �/

� c4.T; �/ for all " 2 .0; 1/;
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whereupon parabolic Schauder theory applies to the second equation of (3.1) to yield
�2 D �2.T; �/ 2 .0; 1/ and c5.T; �/ > 0 fulfilling

kv"k
C
2C�2;1C

�2
2 .x��Œ �2 ;T �/

� c5.T; �/ for all " 2 .0; 1/: (4.8)

This information in turn enables us to go back to the first equation in (3.1), now written in
the form

u"t D ¹"C �.v"/º�u" C ¹2�
0.v"/rv"º � ru"

C ¹�0.v"/�v" C �
00.v"/jrv"j

2
ºu"; x 2 �; t > 0; " 2 .0; 1/;

to conclude again from parabolic Schauder theory and the estimates provided by Corollary
4.1, (3.4), and Lemma 4.2 that (4.6) holds with some � D �.T; �/ 2 .0; 1/ and C.T; �/ > 0.
In view of (4.8), the proof thereby becomes complete.

As a last preparation for our limit passage, let us once more go back to Lemma 3.6 to
obtain the following information on Hölder regularity of v" down to the temporal origin.

Lemma 4.6. If (1.14) is satisfied, then for each T > 0 there exist � D �.T / 2 .0; 1/ and
C.T / > 0 such that

kv"k
C
�; �2 .x��Œ0;T �/

� C.T / for all " 2 .0; 1/: (4.9)

Proof. This immediately follows from standard parabolic regularity theory ([29]) after
applying Lemma 3.6 to any fixed p � 2.

A solution of (1.1) in the flavor of the statement from Theorem 1.3 can now be obtained
by a standard extraction process, followed by a suitably arranged argument asserting con-
tinuity of the corresponding first component with respect to weak Lp topologies.

Lemma 4.7. Assume (1.14). Then there exist ."j /j2N � .0; 1/, as well as functions u and
v on x� � .0;1/, such that "j & 0 as j !1, that (1.15) holds with u > 0 and v > 0 in
x� � .0;1/, and that

u" ! u in C 2;1loc .
x� � .0;1//; (4.10)

u" * u in Lploc.
x� � Œ0;1// for all p � 1; (4.11)

v" ! v in C 0loc.
x� � Œ0;1// and in C 2;1loc .

x� � .0;1//; and that (4.12)

rv"
?
* rv in L1.� � .0;1// (4.13)

as " D "j & 0. In the classical sense, these functions satisfy ut D �.u�.v// and vt D
�v � uv in � � .0;1/ with @u

@�
D

@v
@�
D 0 on @� � .0;1/ and v.x; 0/ D v0.x/ for all

x 2 �, and moreover (1.16) holds. Apart from that,Z
�

u.�; t / D

Z
�

u0; as well as kv.�; t /kL1.�/ � kv0kL1.�/; for all t > 0; (4.14)
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and Z 1
0

Z
�

uv �

Z
�

v0: (4.15)

Proof. The existence of ."j /j2N and nonnegative functions u and v with the properties
in (1.15) and (4.10)–(4.13) follows from Lemmas 4.5, 4.6, 3.6, and 4.2 by means of a
straightforward extraction procedure, whereupon the claimed classical solution features
can then immediately be verified by taking " D "j & 0 in (3.1) and using (4.10), (4.12)
and the continuity of �, �0, and �00. Strict positivity of u and v throughout x�� .0;1/ can
then a posteriori be deduced by applying the classical strong maximum principle to the
identities vt D �v � uv and ut D �.u�.v//, while (4.14) and (4.15) result from (3.3),
(3.4), and (3.5) in conjunction with (4.10), (4.12), and Fatou’s lemma.

It thus remains to derive the initial trace feature expressed in (1.16) for each p � 1, and
to achieve this, assuming without loss of generality that p > 1 we let  2 .Lp.�//? Š
L

p
p�1 .�/ and � > 0 be given and pick any  � 2 C10 .�/ such that, in accordance with

Lemma 3.6 and (4.10), we have

ku.�; t /kLp.�/ � k �  �k
L

p
p�1 .�/

�
�

3
for all t > 0

and ku0kLp.�/ � k �  �k
L

p
p�1 .�/

�
�

3
:

(4.16)

We thereafter choose t� 2 .0; 1/ suitably small such that with ƒ taken from Lemma 3.2
we have ²Z

�

u0

³
�ƒ.kv0kL1.�// � kv0kL1.�/ � k� �kL1.�/ � t� �

�

3
; (4.17)

and we claim that these selections guarantee thatˇ̌̌̌Z
�

u.�; t / �

Z
�

u0 

ˇ̌̌̌
� � for all t 2 .0; t�/: (4.18)

In fact, since  � belongs to C10 .�/, when testing the first equation in (3.1) against  �
we do not encounter nontrivial boundary integrals and hence obtainZ
�

u".�; t / � �

Z
�

u0 � D "

Z t

0

Z
�

u"� �

C

Z t

0

Z
�

u"�.v"/� � for all t > 0 and " 2 .0; 1/: (4.19)

Here, fixing any t 2 .0; t�/ we may invoke (4.10) to see thatZ
�

u".�; t / � !

Z
�

u.�; t / � as " D "j & 0;

while combining (4.11) with (4.12) and the continuity of � readily implies that

"

Z t

0

Z
�

u"� �! 0 and
Z t

0

Z
�

u"�.v"/� �!

Z t

0

Z
�

u�.v/� � as " D "j & 0:
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Accordingly, (4.19) entails that due to (4.14), Lemma 3.2, and (4.17),ˇ̌̌̌Z
�

u.�; t / � �

Z
�

u0 �

ˇ̌̌̌
D

ˇ̌̌̌Z t

0

Z
�

u�.v/� �

ˇ̌̌̌
�

Z t

0

ku.�; s/kL1.�/k�.v.�; s//kL1.�/k� �kL1.�/ ds

�

²Z
�

u0

³
�ƒ.kv0kL1.�// � kv0kL1.�/ � k� �kL1.�/ � t

�
�

3
;

because t 2 .0; t�/. In view of (4.16), we thus obtain that, indeed,ˇ̌̌̌Z
�

u.�; t / �

Z
�

u0 

ˇ̌̌̌
D

ˇ̌̌̌Z
�

u.�; t / � . �  �/C

²Z
�

u.�; t / � �

Z
�

u0 �

³
C

Z
�

u0 � . � �  /

ˇ̌̌̌
�
�

3
C
�

3
C
�

3
D �;

and that hence the verification of (4.18), as thereby achieved, completes the proof.

Our main result concerning global solvability in (1.1) has thereby been accomplished:

Proof of Theorem 1.3. We only need to take .u; v/ as provided by Lemma 4.7.

5. Large-time behavior in (1.1). Proofs of Theorems 1.4 and 1.5

Our analysis of the large-time behavior in (1.1) is rooted in the following consequence of
(4.15) on the total variation of u when considered as a W 2;1

N .�/-valued function over
Œ0;1/. Here and below, for definiteness in our corresponding argument, we shall let the
Banach space W 2;1

N .�/, as introduced before Theorem 1.4, be equipped with the norm
given by k'kW 2;1.�/ WD maxj˛j�2 kD˛'kL1.�/, ' 2 W

2;1
N .�/.

Lemma 5.1. Let K > 0. Then there exists C.K/ > 0 with the property that if (1.14)
holds with kv0kL1.�/ � K, for any choice of .tk/k2N � Œ0;1/ such that tkC1 � tk for
all k 2 N, we haveX

k2N

ku.�; tkC1/ � u.�; tk/k.W 2;1
N .�//?

� C.K/

Z
�

v0: (5.1)



M. Winkler 122

Proof. For fixed  2 W 2;1
N .�/, an integration by parts in (3.1) shows thatZ

�

u".�; tkC1/ �  �

Z
�

u".�; tk/ �  

D "

Z tkC1

tk

Z
�

u"� C

Z tkC1

tk

Z
�

u"�.v"/� for all k 2 N and " 2 .0; 1/;

and that hence, by (4.10), (4.11), (4.12), and the continuity of �,Z
�

u.�; tkC1/ �  �

Z
�

u.�; tk/ �  D

Z tkC1

tk

Z
�

u�.v/� for all k 2 N:

Since �.v/ � ƒ.K/v according to Lemma 3.2, (4.12), and our assumption, this implies
that ˇ̌̌̌Z

�

¹u.�; tkC1/ � u.�; tk/º �  

ˇ̌̌̌
� ƒ.K/k� kL1.�/

Z tkC1

tk

Z
�

uv for all k 2 N;

so that estimating k� kL1.�/ � nk kW 2;1.�/ we obtain

ku.�; tkC1/ � u.�; tk/k.W 2;1
N .�//?

� nƒ.K/

Z tkC1

tk

Z
�

uv for all k 2 N

and thus X
k2N

ku.�; tkC1/ � u.�; tk/k.W 2;1
N .�//?

� nƒ.K/

Z 1
0

Z
�

uv;

because .tk ; tkC1/\ .tl ; tlC1/D; for all k 2N and l 2N with k¤ l . The claim therefore
results upon recalling (4.15).

Thanks to the quantitative dependence on v0, this does not only imply large-time stabi-
lization of each individual trajectory in its first component, but it moreover provides some
information on the distance between the associated limit and the initial data.

Lemma 5.2. Let K > 0. Then there exists „.K/ > 0 such that whenever (1.14) holds
with kv0kL1.�/ � K, the function u obtained in Lemma 4.7 has the property that

u.�; t /! u1 in .W 2;1
N .�//? as t !1; (5.2)

with some u1 2 .W
2;1
N .�//? which satisfies

ku1 � u0k.W 2;1
N .�//?

� „.K/

Z
�

v0: (5.3)

Proof. Given any unbounded .tk/k2N � .0;1/ such that tkC1 > tk for all k 2 N, from
(5.1) we obtain that .u.�; tk//k2N forms a Cauchy sequence in .W 2;1

N .�//?, and that
hence (5.2) holds with some u1 2 .W

2;1
N .�//?. The characterization in (5.3) thereupon

results from a second application of (5.1), this time to the particular sequence .0; t;2t; : : : /,
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t > 0, which namely ensures the existence of c1.K/ > 0 such that under the hypotheses
stated above we have

ku.�; t / � u0k.W 2;1
N .�//?

� c1.K/

Z
�

v0 for all t > 0;

and thereby establishes (5.3) due to (5.2).

Also with regard to the large-time behavior in the second solution component, we
shall first content ourselves with a topological framework somewhat more moderate than
the one appearing in Theorem 1.4:

Lemma 5.3. If (1.14) holds, then for v as in Lemma 4.7 we have

v.�; t /! 0 in L1.�/ as t !1: (5.4)

Proof. This can be seen by means of an argument similar to that performed to a slightly
more complex variant in [38, Section 4]: From Lemma 3.4, (3.4), and Lemma 4.7 we
obtain that

R1
0

R
�
jrvj4 is finite, and that hence, according to a Poincaré inequality,Z tC1

t

kv.�; s/ � v.�; s/kL4.�/ ds ! 0 as t !1;

where again N' WD 1
j�j

R
�
' for ' 2 L1.�/. Since furthermore c1 WD supt>0 ku.�; t /kL 4

3 .�/

is finite by (1.15), and since Z tC1

t

Z
�

uv ! 0 as t !1

according to (4.15), in view of the mass conservation property from (4.14), and thanks to
the Hölder inequality, this implies that

u0

Z tC1

t

kv.�; s/kL1.�/ ds D

ˇ̌̌̌Z tC1

t

Z
�

u.x; s/v.�; s/ dx ds

ˇ̌̌̌
D

ˇ̌̌̌Z tC1

t

Z
�

uv �

Z tC1

t

Z
�

u.x; s/.v.x; s/ � v.�; s// dx ds

ˇ̌̌̌
�

Z tC1

t

Z
�

uv C c1

Z tC1

t

kv.�; s/ � v.�; s/kL4.�/ ds

! 0 as t !1:

Since u0 is positive according to (1.14), from this we immediately infer (5.4) upon noting
that 0 � t 7! kv.�; t /kL1.�/ is nonincreasing due to the fact that v solves its respective
subproblem in (1.1) classically in � � .0;1/ by Lemma 4.7.

By means of straightforward interpolation relying on (1.18) and (1.15), from the latter
and Lemma 5.2 we readily obtain our main result on stabilization in (1.1):
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Proof of Theorem 1.4. Since (1.15) guarantees that .u.�; t //t>0 is relatively compact with
respect to the weak topology in each of the spaces Lp.�/ with p > 1, taking u1 as in
Lemma 5.2 we obtain the inclusion u1 2

T
p�1L

p.�/ and (1.18) as direct consequences
of (5.2) when combined with the continuity of the embedding .W 2;1

N .�//? ,!Lp.�/ for
any such p, while the identity thereupon follows from (1.18) and (4.14).

Likewise, (1.19) results from the boundedness of .v.�; t //t>0 in W 1;1.�/, as implied
by (1.15), in conjunction with the statement on L1 decay made in Lemma 5.3.

Returning to (5.3), we can finally make sure that under a suitable smallness condition
on v0, the large-time limit thus obtained cannot be constant:

Lemma 5.4. Let u0 2W 1;1.�/ be nonnegative with u0 6� const. Then givenK > 0, one
can find ı.K/ > 0 such that if v0 2 W 1;1.�/ is nonnegative with

p
v0 2 W

1;2.�/ and
kv0kL1.�/ � K, as well as Z

�

v0 � ı.K/; (5.5)

then the corresponding limit u1 2 .W
2;1
N .�//? from Lemma 5.2 has the property that

u1 6� const.

Proof. Since u0 is continuous and not constant, we can fix numbers c1 > 0, c2 > c1, and
R > 0, as well as points x1 2� and x2 2�, such thatB2R.xi /�� for i 2 ¹1;2º, and that
u0 � c1 in B2R.x1/ and u0 � c2 in B2R.x2/. It is then possible to pick c3 > 0, as well as
nonnegative functions  i 2 C10 .�/, i 2 ¹1; 2º, which are such that supp i � B2R.xi /,
that  i � c3 in BR.xi / and k ikW 2;1

N .�/
D 1 for i 2 ¹1; 2º. For fixed K > 0, we then

take „.K/ as in Lemma 5.2 and claim that then the intended conclusion holds if we let

ı.K/ WD
c3� � jBR.0/j

2„.K/
(5.6)

with � WD c2�c1
2

.
Indeed, assuming on the contrary that 0 � v0 2 W 1;1.�/ with

p
v0 2 W

1;2.�/ and
kv0kL1.�/ � K satisfied (5.5), but had the property that for the associated limit u1 we
had u1 � a for some a 2 R, by definition of � we would either have a � c2 � � or
a � c1 C �. In the latter of these cases, however, we could use the localization features of
 1 together with (5.6) to estimate

ku1 � u0k.W 2;1
N .�//?

�

Z
�

.a � u0/ �  1 D

Z
B2R.x1/

.a � u0/ �  1

�

Z
BR.x1/

.a � u0/ � c3

�

Z
BR.x1/

¹.c1 C �/ � c1º � c3

D c3� � jBR.0/j D 2„.K/ı.K/;
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which in view of (5.3) is absurd. As it can be shown in quite a similar manner that also the
inequality a � c2 � � is impossible, it follows that, in fact, u1 cannot coincide with any
constant.

Our reasoning thereby becomes complete:

Proof of Theorem 1.5. The claimed result has precisely been asserted by Lemma 5.4.
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