Ann. Inst. H. Poincaré © 2023 Association Publications de 1’Institut Henri Poincaré
Anal. Non Linéaire 41 (2024), 1-94 Published by EMS Press
DOI 10.4171/AIHPC/72 This work is licensed under a CC BY 4.0 license

Solutions to the non-cutoff Boltzmann equation in the
grazing limit

Renjun Duan, Ling-Bing He, Tong Yang, and Yu-Long Zhou

Abstract. It is known that in the parameter range —2 < y < —2s, a spectral gap does not exist
for the linearized Boltzmann operator without cutoff, but it does for the linearized Landau oper-
ator. This paper is devoted to the understanding of the formation of a spectral gap in this range
through the grazing limit. Precisely, we study the Cauchy problems of these two classical collisional
kinetic equations around global Maxwellians in a torus and establish the following results which
are uniform in the vanishing grazing parameter ¢: (i) spectral-gap-type estimates for the collision
operators; (ii) global existence of small-amplitude solutions for initial data with low regularity; (iii)
propagation of regularity in both space and velocity variables, as well as velocity moments without
smallness; (iv) global-in-time asymptotics of the Boltzmann solution toward the Landau solution at
the rate O(¢); (v) continuous transition of decay structure of the Boltzmann operator to the Landau
operator. In particular, the result in part (v) captures the uniform-in-¢ transition of intrinsic optimal
time-decay structures of solutions and reveals how the spectrum of the linearized non-cutoff Boltz-
mann equation in the mentioned parameter range changes continuously under the grazing limit.
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1. Introduction

In the paper we are concerned with the Cauchy problem on both the Boltzmann and
Landau equations in a torus. It is fundamental to study the global existence and large
time behavior of solutions in the mathematical theory of these two classical collisional
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kinetic equations and there has been extensive work on it from different frameworks,
e.g. [2,8,9,12,13,17,19, 20, 28, 31, 33-37]. The Boltzmann and Landau equations are
also closely connected through the so-called grazing collision limit; cf. [3,5, 10, 11, 16].
Hence, it is interesting to construct uniform global solutions of the Boltzmann equation
under the grazing limit so as to develop a unified framework of well-posedness theory
for both the Boltzmann and Landau equations. Recently, the second author of this paper,
together with his collaborators, has produced a series of works [21-26] on a related topic.
In the current work we focus on the uniform grazing limit to the Landau equation from
the non-cutoff Boltzmann in a prescribed range of intermolecular interaction potentials
—2 <y < —2s. Specifically, our main purpose is to reveal the continuous transition of
decay structure of the Boltzmann collision operator in such a range from sub-exponential
time decay to exponential time decay in the limit process. We emphasize that this problem
is related to the famous spectral gap problem, that is, the linearized non-cutoff Boltzmann
operator with y 4+ 2s < 0 does not have any spectral gap but the linearized Landau oper-
ator with y + 2 > 0 does.

1.1. Boltzmann and Landau equations in the perturbation framework

For the setting of the study, we first recall the equations. The Cauchy problem on the
Boltzmann equation reads

{atF-H)-VxF:QB(F,F), t>0, xeT3 velkR3, (1

Fli=o = Fo,

where F (¢, x,v) > 0is the density function of particles with velocity v € R3 attimer > 0
and position x € T3 := [—x, ]3. The Boltzmann collision operator is

08(g.h)() = / / B — v«,0)(glh — g«h) do dvx. (1.2)
R3 JS2

Here we have used the standard shorthand notation & = h(v), g« = g(v«), B’ = h(v’) and
g, = g(vl,), where v’ and v/, are given by
’zv—i_v’k |v—v*|0, ;=v+v*_|v—v*|a oeS%
2 2 2 2
On the other hand, with the same initial data as in (1.1), the Cauchy problem on the
Landau equation reads

{8tF+v-VxF=QL(F,F), 1>0, xeT? veR?, (13)

Fli=0 = Fo,

where the Landau operator QL (g, h) is given by

0L &) =Yy { [ alw = 00le(w) Vb ) = Vo g0 dv.
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Here,

az) = Az (1 - 227),

|z|?

where /3 is the 3 x 3 identity matrix and A is a positive constant.
In the perturbation framework, that is, by setting F (¢, x,v) = u + u% f(t, x,v) with

the normalized global Maxwellians & = u(v) := (27)~3/2¢71**/2, the Cauchy problems

(1.1) and (1.3) are reduced respectively to

(1.4)

O f+v-Vif +2Bf=TB(f.f), t>0,xeT3 veR3
(1.5)
fli=o = fo.
and
W f+v-Vof +&Lf=TL(f f), t>0, xeT3? veR3
(1.6)
f|t=0=f0'

Here, the linearized Boltzmann operator £ and the nonlinear term I'? are given respec-
tively by

PB(g.h) =2 QB (uig. u2h), £Pgi=-T(ub, g)—T% (g u?).
Similarly, the linearized Landau operator £ and the nonlinear term I'” are
rh(g h) = p~2 Qb (ubg, p2h), £rg=-TL(u?, g)—Tr(g, ub).

In what follows, we impose the following assumptions on the non-cutoff Boltzmann
kernel B in (1.2):

(A1) The Boltzmann kernel B takes the form
B(v — v4,0) = Cplv —vi|Vb(cosb), -3 <y =<1, Cp>0,

— UV—Ux
where cos 0 = =

(A2) The angular function b(-) is singular in the sense that

0.

9 0
Cb_l sin~272¢ > < b(cosf) < Cpsin~ 272" 5 0<s<l1, Cp,>1.

(A3) The parameter y and s satisfy y + 2s > —1.

(A4) Without loss of generality, we assume that B(v — v, 0) is supported in the
interval 0 < 0 < /2, 1i.e. ﬁ:ﬁ:l -0 > 0, for otherwise B can be replaced by its
symmetrized form:

B —vs,0)=|v— v*|”{b< . a) +b( . .(—g))}n v oo,

v —v.| v — vl =

where 14 is the characteristic function of a set A.

Remark 1.1. The above assumptions on B(v — v, o) are motivated by the inverse power
law model with potential U(r) =r~?, p > 1 where s = % andy = ij4 satisfy y + 45 = 1.
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1.1.1. Mathematical theory on the grazing collisions limit of the Boltzmann equation
to the Landau equation. In this subsection we will briefly review existing mathematical
work on the grazing limit of the Boltzmann equation to the Landau equation.

Formally, the grazing limit means that when one scales the function of the deviation
angle to be concentrated on the collisions that become grazing, the corresponding Boltz-
mann equation leads to the Landau equation in the limit. Precisely, set

e = sin(Bmax/2), b%(cos ) = (1 —s5)e>*2sin"2725(6/2)1_.

Q b
sin 3 <&

1.7

where O, is the maximum deviation angle such that collisions happen only when 6 <
Omax- Then the rescaled Boltzmann kernel B®(v — v, o) and the corresponding collision
operator Q¢ are given respectively as

B?(v —vx,0) = |v — v4|"b®(cos 0)

= |v — v |7 (1 —5)e>* 2 sin"2725(0/2)1 (1.8)

sin &
sin 255

and

0%(g. h)(v) == /R3 /SZ B (v — vy, 0) (gl — g«h) do dvs.

At the operator level, it is known that the following asymptotic formula between Q¢ and
O holds for suitably smooth functions:

10°(f /) = QF(f Dllez S ell a3

y+10

1/ 3

+10°

We refer to [11,21,41] for the details.

Weak convergence of the limit. In the spatially homogeneous case, Arsen’ev—Buryak
[5] studied the convergence of weak solutions of the Boltzmann equation to those of the
Landau equation under certain assumptions on the Boltzmann kernel. However, the kernel
considered in [5] does not include the inverse power law potential. Goudon [16] proved
the convergence of weak solutions for the inverse power law potential in the case y > —2
and s < %. Note that this range covers the potential U(r) = r~? for p > % only. Villani
[38] used the symmetry of spherical integrals and introduced a new definition of weak
solutions that enables him to show the convergence of weak solutions of the Boltzmann
equation to those of the Landau equation by only assuming y > —4. Note that the results
in [38] hold for the Coulomb potential with p = 1.

Based on the renormalized solution theory [38] and the entropy dissipation estimate
obtained in [1], an important contribution was made by Alexandre—Villani [3] giving the
first study of the problem in the spatially inhomogeneous setting. Thanks to the general
setting of weak solutions, the situation in [3] covers a board class of potentials, including

the Coulomb interaction.

Classical convergence of the limit. In the spatially homogeneous case, the second author
in [21] showed the convergence of (1.9) to (1.3) in weighted Sobolev spaces with an
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explicit rate. More precisely, supposing that F¢ and F are solutions to (1.9) and (1.3)
respectively, it was proved in [21] that

sup [F*(1) = F(t)|gn < eC(T.|Foly

F
0<t<T ,l)’ | O|HIN+3)

1
q(N,
for some 7' > 0. Here, T can be extended to oo for y > —2s, whereas 7' < oo is required
for -3 <y < —2s.

In the present work, we are interested in the inverse power law model when the param-
eters y and s satisfy —2 < y < —2s, because in this setting the linearized Boltzmann
collision operator £5 does not have a spectral gap while the linearized Landau operator
does. Correspondingly, this property induces that for the solutions to the nonlinear equa-
tions (1.5) and (1.6), one can derive a sub-exponential time-decay rate for the Boltzmann
equation but an exponential decay rate for the Landau equation. As we mentioned above,
the grazing collision limit bridges these two equations in the limit process. It is then nat-
ural to ask whether one can have a unified framework to show that in the vanishing-in-¢
limit process the spectral gap is continuously transferred from nonexistence to existence.
Unfortunately, so far we have no idea how to directly answer this question at the level of
functional analysis. Thus we resort to finding a continuous transition from sub-exponential
structure to exponential structure by studying the time decay of solutions. Mathematically,
we are concerned with the rescaled Boltzmann equation:

{a,F+v-VxF=Q£(F,F), t>0, xeT3 veR? (1.9)

Fli=o = Fy,

as well as the associated Landau equation (1.3) with the same initial data in the limit ¢ — 0
in the above perturbation framework.

1.1.2. Mathematical theory of Landau’s derivation. In 1936, Landau derived an effec-
tive kinetic equation, named the Landau equation (or Fokker—Planck—Landau equation)
nowadays, for the charged particles governed by the Coulomb potential in the weak cou-
pling regime. Landau’s formal derivation can be found in many books; see [27,29] for
instance. In this situation, it holds that y = —3 in (1.4); we refer to [10] for the conver-
gence of the Boltzmann operator to the Landau operator. At the solution level for the limit
from (1.9) to (1.3), we refer readers to [3] for convergence of weak solutions, as well as
[22] for convergence of classical solutions with an explicit rate |In&|~!. We remark that
the Boltzmann kernel in [22] is taken as

~ 0
Bé(v —vs,0) == |Ing| v —vs| Psin* =1 4,
2 sin 5 >

and the result holds only locally in time. Very recently, in the near equilibrium framework,
in [25] the second and fourth authors proved the global-in-time convergence of solutions
of (1.5) with the singular kernel B? to solutions of (1.6).
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1.2. Mathematical setting of the problems

Let us give a detailed mathematical description of the problems to be discussed in this
paper. We begin with the function spaces.

Function spaces. We refer to [2, 17] and [18] on global well-posedness theories for
the Boltzmann equation without angular cutoff and the Landau equation in weighted
Sobolev spaces, respectively. In this paper, we will follow the low regularity function
space L IICL%OL2 introduced in [14] to consider the limit, where Lllc corresponds to the
Weiner algebra over a torus. More precisely, the function space is equipped with the norm

1/l zgere =) sup |f (ke

kez3 0st=T

Here, f is the Fourier transform with respect to x. The | - |2 is taken with respect to the
variable v. Note that in terms of the regularity of the x-variable on a torus, it holds at the
formal level that H3/2+8 — LllC < L%°. To the best of our knowledge, L}CL‘}"L2 seems
to be the largest space in which global well-posedness theory for both the non-cutoff
Boltzmann equation and the Landau equation can be established via the direct energy
method, in contrast with the recent substantial progress in [4] for constructing the L2 N
L*° solutions via the De Giorgi argument.

Some well-known facts. Now we list some basic facts on the large time behavior of
solutions to both the Boltzmann and the Landau equations in the space L}CL‘}"LZ. Let fL
be the solution to the Cauchy problem (1.6) on the Landau equation. When y > —2, under
a suitable smallness assumption on fy, it holds (see [14, Theorem 2.1]) that

LFEOlzye S e follyze S e (1.10)

See (1.21) for the precise definition of the norm || - ||, lp2. The above time-decay property
is consistent with the fact that the linearized Landau operator £% has a spectral gap if and
only if y > —2. On the other hand, let & be the solution to the Cauchy problem (1.5) on
the Boltzmann equation. When —3 < y < —2s, under a suitable smallness assumption on
fo, it holds (see [14, Theorem 2.1]) that

1F 2Ol < e 1™ foll g2 S e (1.11)

where k = m, g > 0, and (v) = /1 + |v|?2. The time-decay rate in (1.11) is also
consistent with the spectrum structure of the linearized Boltzmann operator £ in the soft
potential regime y < —2s for which there is no spectral gap; cf. [40] and the references
therein. To the best of our knowledge, (1.10) and (1.11) provide the optimal decay rate
estimates in the existing literatures.

Spectral estimates of the linearized collision operators. The spectral gap estimates for
the linearized operators play an important role in the global-in-time well-posedness for the
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collisional kinetic equation in the perturbation framework. We recall a pioneering work
by Wang Chang and Uhlenbeck (see [39]) on the Maxwell molecule model y = 0. Let us
write £8°7 to address the fact that the linearized collision operator £5 in fact depends
on the parameter y. In [39], the authors gave explicit formulas for all the eigenvalues and
the associated eigenfunctions to £5:0. As a direct consequence, it implies the so-called
spectral gap estimate. To be precise, the kernel space of £ and £ is defined by

. 11 1 1 10
ker := span{u?, u2 vy, n2 vz, 2 vs, 12 [v]?}. (1.12)

Usually, ker is called the macro-space, and ker is called micro-space. Wang Chang—
Uhlenbeck proved that for any f € ker™,

(LBOf ) = Ael f122. (1.13)

where A, is the first (smallest) nonzero eigenvalue of £5-° given by

/2
Ae i= / b(cos ) sin8(1 — cos 0) db. (1.14)
0

Later on, authors in [6,30,32] proved that the spectral gap estimates can be generalized to
the other potentials. It was asserted that there exist two constant Cy, and C}, such that for
any f € kert,

(L2 L 1) 2 GGl f P2 . (1.15)
where

Cp:= inf /min{b(al-03),b(02-c73)}d03.
Sz

o1 ,GzESZ

For the angular function b? defined in (1.8), one may check that A, ~ 1 while Cps — 0
as € goes to zero. This shows that estimate (1.13) is robust in the grazing collisions limit
process and thus can be thought of as a unified formula for both Boltzmann and Landau
collision operators. It also requires us to establish Wang Chang—Uhlenbeck-type estimates
for the soft potentials.

Statement of the results. It is obvious that in the regime —2 < y < —2s the time asymp-
totic behaviors of the solutions described in (1.10) and (1.11) are different by noticing that
the latter is at the sub-exponential decay rate (0 < k < 1) while the former is at the expo-
nential decay rate. Since the grazing collision limit of the Boltzmann equation yields the
Landau equation, it is interesting to find out whether the transition from sub-exponential
decay structure to exponential decay structure occurs in a continuous way through the
limit. Furthermore, one may ask whether one can provide a detailed mathematical descrip-
tion of the time-decay structures in the limit process. To answer the above questions, we
first rewrite the rescaled Boltzmann equation (1.9) by letting F = u + /ﬁ f:

(1.16)

G f +v-Vof +L5f =Tf f), t>0, xeT3 veR3,
Sli=o = fo.
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Here, the linearized Boltzmann operator &£° and the nonlinear term I'® are defined by
P(g.h) = w2 Q% (2g.uih), £°g:=—T(u2.g) —T*(g.n). (117

From now on, we assume without of loss of generality the initial perturbation f; for (1.16)
and (1.6) has zero total mass, momentum, and energy:

/1?3 R3,u%f0¢dxdv =0, ¢)=1,v1, 02 03 V%
X

Now the problems to be discussed are the global well-posedness of (1.16), the
uniform-in-time asymptotic rate in & between solutions to (1.16) and (1.6), and the transi-
tion from sub-exponential decay (cf. (1.11)) of (1.16) to exponential decay (cf. (1.10)) of
(1.6) as ¢ goes to 0.

1.3. Main results

Before stating the main results in this paper, we first give adequate notation.
«  The bracket (-) is defined by (v) := (1 + |v|?)z.
* For N € N,] € R, and a function f(v) on R3, set

flay = D0 W) 0pflea 1 flgy = D 1(0)'9pfIea.
IBI=N IBl=N (1.18)

£l =1 luo. flze = 1f 1z,

» With the weighted norm | - |;; (from the coercivity estimate for &£° in Theorem 2.1)
defined in (1.32), for N € N, [ € R, and a function f(v) on R3, set

flay = D 10pflea. 1flgy = D 196 let.
IBI<N IBl=N (1.19)

£z, =1 Lo, = |fleu-

+ For a function f(z, x,v) on [0,00) x T3 x R3, and a norm or seminorm X (defined
in (1.18) or (1.19)) on the velocity variable v, we define for T > 0 and m > 0 that

1l esx = D ()™ sup |F(t.k.lx.

kezz ~ O0sI=T
r : (1.20)
17y a0 = 5 0m( [ 1F ko ar)”
’ kez3 0

Here, f is the Fourier transform with respect to x. When m = 0, denote

”f”L}cL"T"X = ”f”L}(’OL"T"Xv ”f“L}CLZTX = ”f”L}C,OLZTX'
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Remark 1.2. In (1.20), the notation Lli . Tepresents the discrete measure (k)™ on the

frequency mode k € Z3. More precisely, for a function f(x) on T3, the norm L is
defined by

£z, = D2 k)™ Rl

keZ3

Note that after taking the summation, the value || f || L depends on m and f but not
on k. Here, the symbol k in the norm is used to emphas1ze that the norm is taken in the
frequency space k € Z3 rather than phase space x € T3.

+ For a function f(x,v) on T3 x R3, and a norm or seminorm X (defined in (1.18) or
(1.19)) on the velocity variable v, define for m > 0 that

10z, x = D k)™ klx. (1.21)

keZ3

Whenm =0, | fli1x = I/} x

* Letn € N and m,l > 0. For brevity of notation we denote the energy and dissipation
functionals for a function f(¢,x,v) on [0, 00) x T3 x R3 as

n
Er(fimn) =3 W fllyy  rsprs

j=0 I-j(r+2s)
(1.22)
m,n,l) =
D (fim.n.1) = 12; ey 38 s
respectively, and the norm on the initial data fo(x, v) as
. 1.23
I follmn s = 2 1folley ) (129

Remark 1.3. Note that in (1.22), the maximum order of regularity for the variable x is
m + n, while the maximum order of regularity for the variable v is n. The maximum
order of the mixed regularity for x, v is m + n. The minimum order of the weight for the
variable v is [ when there is an nth-order derivative on the variable v. The weight increases
by —(y + 2s) as the order of the v-derivative decreases by 1.

We begin with Wang Chang—Uhlenbeck-type spectral gap estimates for the linearized
Boltzmann collision operator.

Theorem 1.1. Recall (1.18). Let =3 <y <0, 0 < s < 1. Let B satisfy assumptions (Al)—
(A4). Suppose that £8 is the linearized collision operator associated with B. Then there
exists a constant C(y, s, A¢) depending only on y, s, and A, (see (1.14)) such that if
f € ker™,

(L8 £.f) = Corns. 2ol /s
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Proof. Let [ € ker' and gy be the universal constant in Theorem 2.2. We denote by

:ﬁB

>30

B1.

where b, = bl

and SCE ¢, the linearized operator associated to the Boltzmann kernel B1; o 8> and
sin € <o respectively.

For £B_ by (1.15), we have

>g0°
( >,sof f) = Cbe>go|f|L2 ,

sin 5 >6‘0

For £8, . thanks to Theorem 2.2 and Remark 2.3, we get

5 0
( <£0f f) = C(y’ ’/ sin 3 <s b(COSG) Sll'l do—)|f|1242/2.
Y.

Combining these two estimates, we get the desired result and then complete the proof. =

Remark 1.4. In comparison with the previous work [6, 30, 32], we have highlighted
dependence of the estimate on A, in Theorem 1.1. As a direct application, we success-
fully extend Wang Chang—Uhlenbeck’s work to the inverse power law interactions, that
is, the kernel B verifies assumptions (A1), (A2), (A4) and the condition y + 45 = 1.

With the notation given above, we present the result concerning the global well-

posedness, propagation of regularity of solutions, and the asymptotic rate in terms of ¢
under the grazing limit for the Cauchy problems (1.16) and (1.6) on the Boltzmann and

the

Landau equation, respectively.

Theorem 1.2. Let -3 <y <0, L s<1,and y + 25 > —1. There exist &g, 8¢9 > 0 such

tha

tif0<e<eo, U+ /L%fo >0, and ||f0||LI1€L2 < 8o, then the following statements hold:

(1) (Global well-posedness). Recall (1.18), (1.19), (1.20), and (1.21). The Cauchy
problem (1.16) for the non-cutoff Boltzmann equation admits a unique global solu-
tion € with u + u%fs > 0 and

||f ||L1L°°L2 + ||f ||L1L2L2 < ||f0||L1L2 (1.24)

for any T > 0. As a result, by passing to the limit ¢ — 0, the Cauchy problem
(1.6) with the same initial data fy for the Landau equation admits a unique global
solution f satisfying u + u%fL > 0and

”fL”L lpger2 + ||fL||L VLALE < ||f0||L 172 (1.25)

forany T > 0.

(2) (Propagation of regularity and velocity moment). Recall (1.22) and (1.23). Let
n € Nandm,l > 0. There is a constant 8, 51 wWith 0 < 8, .1 < 8o and a poly-
nomial P, with P,(0) = 0 such that if the initial data satisfy ||f0||L,1€Lz < Smn.l

and || follmn,1 < 00, then the following statements are valid. Let f° (fL) be the
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solution to the Cauchy problem (1.16) (problem (1.6)) with initial data fy. Then
forany T > 0, it holds that

Er(fm.n 1)+ D7(f im.n.1) < Pu(ll follmn,i)- (1.26)
As a result, by passing to the limit ¢ — 0O, for any T > 0, it holds that
Er(f*imn, )+ Dp(f*m,n, 1) S Palll follman.)- (1.27)

(3) (Asymptotic formula). Let f¢ and f* be the solutions to the Cauchy problems
(1.16) and (1.6), respectively, with the same initial data fy satisfying || follo.3,9 <
oo and ”fO”L}(LZ < 80,3,9. Then for any T > 0, it holds that

L
1o = fElngore + 155 = fElLia p2

0,7/2
< eP3(]| follo,3,9)(1 + P3([l follo,3,9))- (1.28)

Several remarks on Theorem 1.2 are in order.

Remark 1.5. The restrictions s > 1/2 and y + 25 > —1 on the parameters s and y come
from Theorem 3.1 for the upper bound for the nonlinear term I'. By y 4+ 25 > —1, the
inverse power law potential is covered, because y + 4s = 1 is satisfied in this case; cf.
also Remark 1.1. Since we aim to investigate the inconsistency of the spectrum in the
parameter range —2 < y < —2s, we only focus on the case of —3 < y < 0 in Theorem
1.2.

Remark 1.6. Note that all the results in Theorem 1.2 are uniform with respect to the
parameter ¢ and that the smallness assumption is only imposed on || fol|;, 12 In partic-
ular, in (1.26) and (1.27), we obtain the propagation of the bounds of solutions in the
norm || - || Ll HP only under the smallness assumption on || fol|;1 LiLe and boundedness on
| folln,n.i- In comparison, [14] establishes the propagation in norm || - || Ll L2 under the
smallness assumption on || fo|| L 12 Moreover, the asymptotic estimate (1.28) is global
in time and has an explicit convergence rate O(e).

Remark 1.7. By the weak convergence results in [3] and [38], we can directly use (1.24)
and (1.26) to derive (1.25) and (1.27), respectively. This shows that the well-posedness of
the Boltzmann and Landau equations can be studied in a unified framework.

Remark 1.8. Theorem 1.2 does not include the Coulomb potential since y > —3 is re-
quired. However, we can deal with the Coulomb case using the idea in [21]. More pre-
cisely, we can take the Boltzmann collision kernel with the mathematical choice of s and
y by

£
s=s8:=1—z, Yy =y, :=—-3+c¢,

and consider the limit ¢ — 0. After all, we need those uniform operator estimates with
respect to the parameter s (near 1) and y (near —3) similar to the situation under consider-
ation. Since in the present paper we are mainly concerned with the spectrum inconsistency
in the case —2 < y < —2s, we leave the Coulomb case for future work.
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As the main goal of this work, we state the second result revealing the transition of the
decay structure from sub-exponential e M in (1.11) to exponential e M in (1.10) under
the grazing limit.

Theorem 1.3 (Transition of decay structure). Let all the assumptions in Theorem 1.2 be
satisfied and further let —2 <y < —2s. If the positive constants A and q are chosen such
that A K Ao and q > 2A, where Lo > 0 is the constant in Theorem 2.2 given later, then
there is a constant §1 > 0 such that if||eq(”>f0||L1L2 < 81, the solution f°¢ to the Cauchy
problem (1.16) for the non-cutoff Boltzmann equcftion satisfies

15Ol 2 S (Lest, exp(=A0) + Les1, exp(=he 240 4 foll 12 (1.29)

2(1—s)
— (I\TTasl — 1
foranyt > 0, where T; = ()1 and k = 5y 735

Some remarks on this result are also in order.

Remark 1.9. Theorem 1.3 shows that the transition of the decay structure is continuous in
the limit process. Note that the key estimate (1.29) is consistent with the sub-exponential
decay rate e~ in (1.11) and the exponential rate e~** in (1.10) by additionally taking
into account the dependence of the rate on the vanishing grazing parameter £. Moreover,
we introduce the time threshold 7 so as to characterize how the transition occurs as ¢ — 0.
Note that the estimate of decay rates for the Boltzmann equation with soft potentials from
angular cutoff to non-cutoff was studied in [24, 26].

Remark 1.10. Theorem 1.3 provides a detailed picture of the uniform-in-¢ and global-
in-time dynamics of solutions to the Cauchy problem (1.16) for the non-cutoff Boltzmann
equation in the parameter range —2 < y < —2s. More precisely, the perturbation converges
to zero with exponential decay rate, i.e. e~**, from initial time to T;. When time exactly
approaches the critical one T, the convergence rate continuously changes to the sub-
exponential decay, i.e. exp(—Ae™2(179%¢€) "in terms of the definition of T,. After the
transition time, the solution keeps the sub-exponential decay rate until infinity. Notice
T — oo as ¢ — 0, which then recovers the exponential decay for the Cauchy problem
(1.6) on the Landau equation in case y + 2 > 0.

Remark 1.11. The exponential velocity weight assumption ||e?‘”) fo||, 12 < 81 on initial
data is used to get the sub-exponential decay for the Cauchy problem (1.16) with y 4+ 2s <
0. It is interesting to study what the transition of the decay structure is if only a finite-order
polynomial velocity weight is imposed on the initial data.

Remark 1.12. The constructive constant A in fact gives the lower bound for the first
nonzero eigenvalue for the linearized Landau collision operator £ in Theorem 1.3. In
other words, we have explained the formation of the spectral gap through the large time
behavior of the semigroup e’£" as ¢ tends to zero. However, understanding the forma-
tion of the spectral gap via spectrum theory is still a fundamental and more challenging
problem. At the moment we are still far from answering this question.
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1.4. Strategy of proof

In this subsection we outline the strategy for proving Theorems 1.2 and 1.3, which will
help readers get a better understanding of the key ideas.

1.4.1. Proof of Theorem 1.2. The proofs of both Theorems 1.2 and 1.3 rely on some
subtle analysis of the linear operator £° and the nonlinear operator I'°. Referring to [1],
the quantity

§

KE(§) = /gz bS(E .g) min{|£[? sin?(6/2), 1} do,

offers velocity regularity in the frequency space. By Proposition A.l originating in [21,
proof of Theorem 3.1]), we have K¢(§) + 1 = (W¢)2(§), where

We(y) = ¢(elyD{y) + (L= C(elyD)e™) (). (1.30)
Here, the function ¢: [0, co) — [0, 1] satisfies

teC®, t(r)= { L ifrefo.1/2] ¢ is strictly decreasing on [1/2,1].  (1.31)
0 ifrell,o0),
When ¢ = 0, we define W°(y) := (y).
As in [26], we call W¢(W?) the characteristic function associated to £°(£%). This is
because the function W€ is the common weight gain in phase space, frequency space, and
anisotropic space. More precisely, for / € R and ¢ > 0, we define

1
|f120 = IWE(=2s2) ) Wi f 172 + W (DYW, f 72 + IWEWL f 7o (1.32)

Here, W#(D) is the pseudo-differential operator with symbol W¢, and the operator
WE((—ASz)%) is defined in such a way that for v = ro withr > 0 and o € S?,

00 I
(WE((=8s2)2) f) ) == D 3~ WU +1)2)Y]" () (),
=0 m=—I
where f"(r) = [q. Y/ (0) f(ro)do,and Y/",—I < m < are the real spherical harmon-
ics satisfying (—Ag2) Y™ = [(I + 1)Y;".
We use the explicitly defined norm | - |, /> in (1.32) to characterize the lower bound
for the linear operator £° as well as the upper bound for the nonlinear term I"®.

Step 1: Coercivity estimate. We prove that
(ELLY+IE = Mlfl? /2 (1.33)
L2, ¥

for some constant A; > 0 independent of ¢; see Theorem 2.1. That is, the uniform-in-¢
coercivity estimate for £° is obtained by using the norm | - |, ,/». Note that by (1.32), the

norm | - |§,y /, has three parts:

1
IWe(=Ds2)2)Wypa fliae IWEDIWypa flTae W Wypa fla
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We use some elementary computations to obtain regularity in phase space |W*W,, f |1242
in Proposition 2.1. By the well-known result in [1], we derive frequency space regularity
|We(DYWy 2 f1? 72 in Lemma 2 3 and Proposition 2.4. By referring to [23], we gain the
anisotropic norm |W?é((—Ag2)2 )Wy/zf |L2 in Propositions 2.3 and 2.4. Lemma 3.4 shows
that (£ f, /) is bounded from above by | f | 2+ The lower and upper bounds together
demonstrate that | - |2 is the right norm to characterize the inner product (£° f, f).

Step 2: Spectrum-gap-type estimate. Indeed, we are able to prove that for any f € ker™,
it holds that

(EEf. f) = 2ol f12,)2 (1.34)

for some explicitly computable Ay > 0 independent of &; see Theorem 2.2. This is moti-
vated by Wang Chang—Uhlenbeck’s work [39] on the explicit spectral gap estimate for the
Maxwell molecule model y = 0. Our main idea is to reduce the desired estimate to the
case y = 0 and at the same time utilize the coercivity estimate (1.33) to get (1.34) for
—3 < y < 0; cf. the proof of Theorem 2.2 for more details.

Step 3: Upper bound for nonlinear term. We use the norm | - |, /> to bound the non-
linear term I'¢ as

|(F€(g’ h), f>| =< C|g|L2|h|a,y/2|f|a,y/2 (1.35)

for some C independent of ¢; see Theorem 3.1. When y < 0, the relative velocity v — v«
has singularity near 0. For this, we consider |[v — v«| < 1 and |v — v«| 2 1 separately.
When |[v — v«| = 1, it holds that |[v — v«|” ~ (v — v«)? so that there is no singularity.
When |v — v4| < 1, it holds that ;ﬁ(v*) < ;ﬁ(v). Hence, one can make use of ;ﬁ(v*)
in the definition of I'? to deal with the weight problem. We call it the weight transferring
idea for a general result; cf. Lemma 3.1. We carry out the idea roughly in Proposition 3.3
but fully in Lemma 3.2 and Proposition 3.4.

Step 4: Global well-posedness. With (1.34) and (1.35), we can implement the standard
macro—micro decomposition and take advantage of the functional property of the space
L,iL‘;?LZ to prove global well-posedness of the Boltzmann equation (1.16). Since the
procedure is well established in [14], we directly conclude the global well-posedness result
in the space L}CL‘}"L2 in Theorem 1.2. We remark that |g|;2 in (1.35) corresponds to the
L*in L }CL‘;?LZ.

Step 5: Propagation of regularity. To obtain propagation of regularity and velocity
moments in Theorem 1.2, we first derive a commutator estimate between I'*(g, -) and the
weight function W, , == (v)! exp(g(v)) in Lemma 3.7. We then derive a commutator esti-
mate between £° and the weight function W; 4 in Lemma 3.10. Note that the case ¢ = 0
represents a polynomial weight which is used in Theorem 1.2. Our goal is to prove prop-
agation of the norm || - ||L1 HP under smallness of ||f()||L1L2 and finiteness of || follm n.i-
We first prove this in Theorem 4.1 for the case n = 0 w1thout velocity derivative. Then
the case n > 1 is proved in Theorem 4.2 using the induction argument.
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Step 6: Asymptotic formula. To derive the asymptotic formula between the solutions of
the Boltzmann and Landau equations in Theorem 1.2, we first show the error estimate for
I'* —I'LinLemma4.1. Taking the difference between (1.16) and (1.6), we get an equation
for the solution difference £ — fL. We then apply the energy method to the equation to
derive (1.28) by using the propagation result (1.26) and error estimate for I'* — I'L.

1.4.2. Proof of Theorem 1.3. We will apply the time-weighted energy method together
with the time-velocity splitting technique to establish the transition time-decay structure
(1.29) in Theorem 1.3. Such an approach was initiated by Caflisch [7, 8] to treat the spa-
tially homogeneous Boltzmann equation with cutoff soft potentials in a torus and later
developed by Strain—Guo [33, 34] in the spatially inhomogeneous setting as well as by
Gressman—Strain [17] for the non-cutoff case. The key for obtaining the time decay of
solutions is to impose an extra velocity weight on initial data that can be either polyno-
mial or exponential, inducing the polynomial or sub-exponential rate, respectively. In what
follows we explain the main points in the proof of Theorem 1.3.

First of all, we apply Caflisch’s idea to determine the time threshold T, as it plays the
most important role in carrying out the time-velocity splitting technique under the uniform
grazing limit. In terms of the energy dissipation norm | - |, ,,/» in (1.34) and (1.32) and the
function W¢ in (1.30), we introduce the following toy model for explanation:

o f+v-Vif+da.(v)f =0,

with the constant A > 0 suitably small, and

(v>y+2s

ag(v) = L (elo) (v)" 2 + [1 = L (el D] 5=y

82(1—s) :

The solution is explicitly given by f(z, x,v) = e *% W £ (x — vz, v). Assuming that
initial data f decays in velocity at an exponential rate exp(—A(v)?) with 0 < & < 2, one
can formally bound f(, x, v) as

|f(t, x, 0)[ S exp(=Abs(1,v)) < exp(=Ainfbe(t,v)),  be(t,v) == as(v)t + (v)”.

To look for a lower bound for b, (¢, v) in velocity which should depend only on time, we
may compute in the parameter range —2 < y < —2s that

belt,v) = Ll D) 2 + ()%} + 11 = DI ) s + (0)°)

82(1—s)
t K
= £(elol)e + [1 = L(elvD]( 555)
t K t Kk
> minit, ( ——— =tl;<T +(—) 1;>71..
£2(1=5) 1=<le £2(1=5) z1e
Here we have used the inequalities

~ y+2 9 - y+2s 1 9 I\
inf{ ()" + (v)7 = 1, “Jf{(”> 2 T e (82(1—s)) ’
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with k == 5———= +|3 T3] Moreover, the time threshold 7, > 0 has to be chosen such that
(zu=p)* =t att = T, implying that

T - ( 1 )IKTK . (l)ﬁigz;)
&7\ g201-9) e )

In such a way the solution f(¢, x, v) decays in large time as
|/t %, )| S Te<r, exp(=A1) + L7, exp(—Ae 20 7%1%)

b .. .
whenever sup, ,, M| fo(x, v)| < oo holds. Therefore, the transition time-decay struc-
ture motivates us to define

Actt) = €T 00 + (1 = 8T ) (=5 ) (136)

and to obtain the energy estimate on /(f, x, v) = e*<® f(¢, x, v) for A > 0 suitably
small. It turns out that after repeating these known energy estimates, it suffices to obtain
the uniform bound on

T . 2
X ([ aana-oienia)

keZ3

where the fact that 0 < AL(¢) < 1 and 1 — ¢ is supported in |v| > % has been used. Then,
whenever the velocity-weighted norm | exp(q(v)?) f(?)| LiLe is bounded uniformly in
time, the time-velocity splitting technique can be applied by separating the time interval

into three parts as
T = T: T
Jras= (e o)
0 0 i &

for any T > T,; cf. Section 5 for more details. Back to propagation of the exponential
velocity moments, using the commutator estimate in Lemma 3.7 and the upper bound
estimate in Theorem 3.1, we have the weighted upper bound estimate

(T2 (g 1) W2, ) S Wil IWighley 2l Wig fley /2. (1.37)

as shown in Lemma 3.8. Note that inequality (1.37) is stronger than [14, Lemma 4.1].
Therefore, by using the proof of [14, Theorem 2.1], we get the propagation of the norm
I exp(q(v))f(t)HL}cLz under the smallness assumption on || exp(q(v))f0||L]1€L2; cf. The-
orem 5.1. We remark that for the exponential weight exp(q(v)?) we can treat the case
¥ = 1 only (cf. [15] and [14]), due to the specific property of the non-cutoff Boltzmann
operator.

1.5. Usual notation and organization of the paper

Denote the multi-index 8 = (81, B2, B3), with |8| = B1 + B2 + B3. Further, a < b means
that there is a generic constant C such that a < Cb. The notation a ~ b implies that



Solutions to the non-cutoff Boltzmann equation in the grazing limit 17

a < band b < a. The weight function W (v) := (v)?. We denote by C(A1,A2,...,A,) or
Cj., .1s.....1, aconstant depending on the parameters A1, A, ..., A,. The notations ( f, g) :=
Jr3s f()g(w)dvand (f.g) = 3,3 f& dx dv are used to denote the two standard inner
products for the v variable and for the x, v variables respectively. As usual, 14 is the
characteristic function of the set A. If A, B are two operators, then [A, B] := AB — BA.
Define | f|LiogL = [gs | f(v)[log(1 + | f(v)]) dv.

Finally, the rest of the paper will be organized as follows. In Section 2 we will prove the
coercivity estimate given in Theorem 2.1 and the spectral gap estimate given in Theorem
2.2. In Section 3 we will focus on the upper bound estimate given in Theorem 3.1. In
addition, with some commutator estimates, we will also prove upper bound estimates with
polynomial or exponential weights. The two main theorems will be proved in Sections 4
and 5 respectively. For completeness, in Appendix A we include some known results that
are used in Sections 2-5.

2. Coercivity and the spectral gap estimate

In this section, in Theorem 2.1 we will prove a coercivity estimate for the linear operator
&£¢ and in Theorem 2.2 the spectral gap estimate. Unless otherwise specified, the parame-
terrangeis -3 <y <0,0 <s < 1.

In the rest of the paper, we will omit the range of some frequently used variables in the
integrals for brevity. Usually, o € S2, v, v, u, £ € R3. For example, we set f(- --)do =
Js2 (o) do, [(---)do dvdve == [q g3ygs () do dv dv.. Integration with respect to
other variables should be understood in a similar way. Whenever a new variable appears,
we will specify its range once and then omit it thereafter.

2.1. Elementary results

In this subsection we give some preliminaries which will be used frequently in the rest of
the paper. We first list some properties of W#¢ defined in (1.30). Note that W? is a radial
function defined on R3. By the definition (1.30), we have

() W) = (7)) if2i <yl =+ 2.1
& &
e = () ify] < 5 (.2)
&
WO = ()Y iz 3
WEO) 2 EE D). 4

W)z (1=¢elyD)e™)! ™ (n)° 2 (1= ¢(elye (2.5)
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For any x, y € R3, one can check that

We(x) = Wo(y) if |x] < |yl. (2.6)
We(x = y) S W)W (y). 2.7

Let us compute an integral regarding the angular function b® over the sphere S2.
Recall that b%(cos 0) = (1 — s)e2 2 sin"2725(6/2)1 Note that do = sin 0 df d¢
= 45in(0/2) dsin(6/2) d¢; we have

] .
sin 256‘

/ b®(cos 6) sin?(0/2) do
/4 2w
= 4(1 —5)e>572 / / Lin 8 < sin!=2%(0/2) dsin(8/2) d¢
0 0 -
€
=8n(l — s)gZH/ u'™28 du = 4x. (2.8)
0

Let us recall the cancellation lemma, which is used when one needs to shift regular-
ity between /& and f in the inner product (Q(g, /), f). By [1, Lemma 1], we have the
following lemma.

Lemma 2.1 (Cancellation lemma, [1]). Recalling that B¢ in (1.8), then
/ B®(v — v4,0)g«(h —h)dvdvedo = C(e)/ [v — ve|” guh dv dvs,

where C(g) is some constant depending on € and |C(g)| < 1 thanks to (2.8).

Next, let us present a result regarding the Riesz potential, whose proof can be found
in [26, Lemma 2.7].

Lemma 2.2. Set A = [ |v — v«|"g«hf dv dvs. Then
. / _§ < .
i3 <y <0 then |AI < (gl + gl )lhlzz If 2

e f-3<y< —%, then for n > 0,51, 52 > 0 such that s1 + s> =—%—y+r)there
holds

< s S
415 Cyllgley, + 181l 1F s,
As a result of Lemmas 2.1 and 2.2, we have the following corollary.

Corollary 2.1. Fix n > 0and let 51,5, > 0 verify s1 + 52 = max{—% — v+ n,0}. Then
‘ / B* (v — v, 0)ge(hf) —hf) dvdvido| 5 Cyllgly + lely)lhlys |f s,

2.2. Coercivity estimate

We present the coercivity estimate for £° in the following theorem.
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Theorem 2.1. There exists a constant g9 > 0 such that for 0 < ¢ < g9 and any smooth
function f, there exists a constant A1 > 0, depending only on y, such that

(L°f. f) + Iflii/2 = MIfIZ, -

In this subsection we will prove Theorem 2.1. Our strategy is based on the following
relation in the spirit of the triple norm introduced in [2] (see the proof of Theorem 2.1 in
Section 2.2.5):

LSV G2 2 N (03 f) + N7 (o), 2.9)
Y
NV (g, h) = /bs(cos 0) v — vi|"g2(h — h)? do dv dv.. (2.10)

Thanks to (2.9), to get the coercivity estimate for £°, it suffices to estimate from below
the two functionals N &Y (/ﬁ, f) and N&Y(f, ,u%). We will study N&Y(f, u%) in Sec-
tion 2.2.1 and N &Y (/ﬁ, f) in Sections 2.2.2, 2.2.3, and 2.2.4. The coercivity estimate is
obtained in Section 2.2.5 by utilizing (2.9).

2.2.1. Gain of weight from N %Y (f, [L%). The functional N &Y (f, M%) yields weight
W in the phase space as shown in the following proposition.

Proposition 2.1. There exists g9 > 0 such that for 0 < ¢ < g,
1 2 2
(N'é‘,}/(f’uz)_’_|f|L2 2C|st|L2 ’
v/2 y/2
where C > 0 is a universal constant.

Proof. The proof is divided into four steps.

Step 1: 16/ < |v«| <&/e. The parameter 0 < § < 1 will be determined later. We consider
the set A(e,8) = {(v«,v,0): 16/ <|v«| <48/¢, |v| <8/m, sin(6/2) <e}. When e < 1”—68,
it is easy to check that A(e, §) is nonempty. We restrict the integral on the set A(g, §) to
get

NS = [ Bl 2 b dodvdv.. @
1 1
Note that V,u% = —%v and Vz/ﬁ = %(—213 + v ® v). By Taylor expansion, we have
1
pde) by = 200

1
4 / (1= V2 H) W) : (v = v) ® (v — v) dx,
0

where v(k) = v + k(v" — v). Thanks to the fact that (a — b)? > % — b2, we have

u(v)

1
(@) =@ = B2 =0 = [Pl o dr.
0
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Plugging this into (2.11) we get

N (f.p2)

v

1
§ | Bliconlv: @ =P f2 do dvdv,

~ [ B Ll (PP’ = off £2 do dv dv. di

1
S 110) = I50). (2.12)

To estimate I5(6), for fixed v, v, we 1ntr0duce an orthonormal basis (h) , . h7 .
Y=Y« ) such that do = sin 6 d0 d¢. We express

and 2 ol using the basis as follows:

[v—vx| |v’ v|
/
v —v 0 0 0 v— v,
——— = CO0S < COS ¢>h , tcos —sin ¢hv v, — SiN =
[v" —v| 2 2 * 2 |v— v’
v v—uv
_ 1 2 *
fof — v M R
where c3 = \Z_I . ﬁj:z*l and ¢y, ¢, are constants independent of 6 and ¢. Then we have
*
v vV —v 0 o+ 0 . # .
— = (1 COS — COS €2 COS — sin¢ — ¢3 sin —
[v| |v/ —v] 2 2 2’
and thus
/ 2
v —v 0 6 . ., 0
‘ﬁ . ﬁ = c}cos? ECOS2¢ + ¢2 cos? Esmzq’) + ¢2sin? 3
v| |[vV—v

0 6 .0
+ 2¢1c5 cos? o) cos ¢ sin ¢ — 2¢3 cos 3 sin E(cl cos ¢ + ¢y sing).

Integrating with respect to o, we have
[bs(cos ) laeslv- (v —v)|*do

T 2n

= / b%(cos ) sin 01 4.5 v - (v — v)|* dgp dO
o Jo

> 1(c] + D)o — val* 1)

where B(e,8) = {(v«,v) : 16/ < |v«| < §/e, |v| < 8/m}. Plugging the above estimate
into the definition of I{(5), we get

IHOES: / (2 + D)o — a2 gy (v) £2 dv s

=n/(1—(” U)o Pl = al? oL ey () 2 dv .

[l o

where we have used the facts that ¢? + ¢ + ¢3 = 1 and

(1 - (i LU )2)_l|v — v = (1 =) Hua 2

[l vl
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Note that in the region B(g, §), one has %|v*| < v —vs| < %|v*| Since y < 0, then

3\7 1\7
(5) el =t =l = (3) Toul. (2.13)
We then get
3\ Vo Uk
5o z#(3) / (1_<|v| Iv*l) Yo7+ 20 Lpge sy a(v) £2 dv dv
3
=7 5 01/|v*|y+2ﬂjfv*‘§§f*2dv*,
where

47 /(1 -(ap |ZI|)2>|”'2“(”)ﬂlvls% dv

is independent of v..

We now estimate I5(§). Recalling that
=(1—s5)e>21_ |v — va]” sin"2725(0/2),

[v) —v| = |v — vy sin(6/2),

sin 5 <s

we have
156) = / B Lugesy | (V2 H) () 21 — vl* £2 do dv dv dic

— 22 / SN2 (0/2) Lage )| (V) () Plv — val 4 2 do dv v, d

(
(%)y+4825_2 /Oﬂ /027r sin>~2%(6/2)

) / Laes) (V23 ) ()P va]+ 2 5in 6 d6 dp dv dv. dc.

IA

N W

+4
)y e>~ 2/sm2 25(0/2)]1A(85)|(V2M )W) oa|"* 2 do dv dv. di

Fixing «, v, ¢, in the change of variable (v, 8) — (v(k), 6(k)), where (k) is the angle
between ¢ and v(k) — v, we have

‘3(U(K),9(K)) -1 < (1 K

=5
—_ — 5
3(v, 0) 2) =2=2,

0/2 <0(k) <0, sinfh <2sinb(x),
sin(6(k)/2) < sin(8/2) < 2sin(0(k)/2),
sin(6/2) < e = sin(f(k)/2) < e. (2.15)

(2.14)

Hence, we have
Laes) < 1,

16 8 o 060 s
7 <|vs|< ¢ .sin =5~ <e
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so that

T8(8) < 269225 3N e [T [ 0(c) /)1
2( ) < ) € o Jo sin (0(x)/2) 16§|v*|§§,sinM58

X |(Vz,ud%)(v(lc))|2|v*|1’+4f*2 sin@(k) dO (k) d¢ dv(k) dvs dk

3\ v+4 T
__ n9—2s e 25—2 s 228 .
=2 71(2) & (/(; sin (9/2)]15111%55 sm@dQ)

x ( [ et |<v2u%>(v)|2|v*|y+4f3dvdv*).

= B
Direct computation gives
& 4 84—2s

b2
[ sin? 25 (8/2)1. o _, sinfdo = 4[ w3 du = )
0 sin 5 <e o 4—92g

Letc, = f|(V2,u,%)(v)|2 dv. Then we get

3\rvt+4
150 =272 (3) (4—2s)—1c282( / EEELANS dv*)

3\v+4

where we have used |v,| < 6.
Plugging the estimates of I (§) and .I5(5) into (2.12), we get

N fpd) 2 (€= o) [ gy cslonl 2 2

where C; = 2737(2)7¢y, C, = 2"17257(2)7+4(4 — 25)"!¢5. By choosing § such that
C28% = C1/2, we get

1
N Ld) 2 560 [ Loy cs o2 f2 v, @.16)

=

Step 2: |v«| > R/e. Here, R > 1 is a parameter to be determined later. By direct compu-
tation, we have

N (f.p?)
= [ B2y - i doavan,
1 1
= / B L1 Rjy, -1 <in § <Rl Lol 8 Lol <1 £ ((12) = p2)? dodv dv,
= /b% =Vl Lyt Ry, 11 < § <Rl 1 Dz B Dpis1 S do dv doy

1 1
- Z/bsh) = Val" Lyt gpy, 11 <8 <Rppa 1 Lo 2 & i<t S (12) % do dv du

=d1(R) — F5(R).
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Note that
R\v*I*‘
252 —-1-2
/b8ﬂ4—1R|v*|‘1§singsR\v*l—l do =8n(l —s)e™ / u *du
4-1R|v, |1
425 _ 1
= A7 (1 _ S)R—2382s—2|v*|2s

= CyR™252572 |, |5, (2.17)

where Cy = 47{%(1 —s5).Ife < %, |vk| > R/e > 2, |v| <1, we have

1 3

§|v*| =< |U —U*| =< §|U*| (2.18)
Plugging (2.17) into the definition of g{(R) and using (2.13), we have

Fi(R) > CSR_ZSSZS_Z/ v — v*|”|v*|zsﬂlv*|2§]l|v|51f*zu do dv dvy
3\ 2 252 y+2s 2
> Cs<§) c3R ¢ [V ]l|u*|z§f* dvy,

where c3 = [ 1yj<14(v) dv.

Since sin(0/2) > g, there holds |[v'| + |v] > |[v/ —v| = sin§|v — Vs| > 8| — vy =
e(lve] — |v]), and then |v’| + (1 + &)|v| > e|v«| = R. Thus, R? < (V| + 2|v|)? <
8(|v’|? + |v|?), which implies

o _3 P 3 b _R2
wWrpz2 = (2mw) 2e 4+ < (2m) 2¢” B e 26, (2.19)

Then by (2.19), (2.17), and (2.18), we have
11
F(R) = Z/b% = Vs Lyt Ry, 1t in § <R 1 Lo 2 B it S 1 2 12 do dv dv
_3 _R2 .
<2Q2m) 2e 2° /b |v_v*|yﬂ4*1R\u*\*1§singsRlv*\*lﬂlv*lzé

v|2
X ﬂ|v|§1f*ze_% do dv dvx

_R2 [
< 2(271)_%Cse 26 R—zsezs—zf v — v*|y|v*|zs]l|v*|2§ Liyj<1 f2e” 5 dvdus
3 (L B a5 252 y+2s 2 2
<2(2m) ZCS(E) e 2R ¢ |V | ﬂ\v*|z§ﬂ|v|51f*e 8 dv dvy

1\v _Rr2
= 2(271)—%@(5) cqe” 2 R—%ZH/ |v*|7+25ﬂ‘v*‘2§ff dvs,

v|2
where ¢4 = [ ]1|v|51€_% dv. Combining the above estimates for #7(R) and g5(R), we
arrive at, for any ¢ < %, R>1,

1 _R2 _
NEY(fip2) = (C3 — Cae™ 26 ) R2562572 / |0, 2 2 £
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where C; = Cs(%)”q, Cy = 2(2n)_%Cs(%)”C4. We choose R > 1 such that %Cg, >
2
C4e_12e76 and arrive at

1
NEY(f 7)) > §C3R’2Sszs’2/ |v*|y+zsﬂ|v*|2§ fZdv,. (2.20)

Step 3: 16/ < |v«| < R/e. Here, R is the fixed constant in Step 2. We also recall the
fixed constant § in Step 1. Since 16/ < |v«| < R/e = §/(SR™'¢), by (2.16), we have

_ 1
N (L) 2 ECI/ﬂ%s|v*|s§|”*|y+2f*2d”*‘
Observe that
bSRfl'E(cos 0) = (R/8)>7>(1 — 5)e* 2 sin"2725(0/2)1

< (R/8)* *b*(cos 0),

sin %séRfls

from which we get
NV (fop2) = (R/8)P2NIRTer(f u2)

1
SCURP [y, plon 2 f2du. 221)

A%

A%

Step 4: To recover weight W¥. Combining (2.20), (2.21), and

2 2
|f|L§/2 > /ﬂ‘v*‘slﬂj(v*)yf* dv,

we arrive at
NS+ 1By = [ 100 £2 v,
y T
1
+ O R [ o 2y, n f2dv,
1
+ ZCSR_ZSSZS_Z/ |v*|y+2S]1|U*IZ§f*2 dv*.

Since |v4| > 16/ > 4, we get |v4]? < 1 4 |v4]? < i—g|v*|2, which gives

|v*|y+2 > min{l, (17/16)_1’/2_1}(1)*)1’4‘2’
047725 > min{1, (17/16) /275 } (v,) 7 25

Supposing & < 1/4, we have £2572 > (17/16)*~1(¢71)2725_ Therefore, we get
1
NS I = [ e 0 £2 v,
Y
+Cs /(U*>y+211§5|v*|5§f*2 dvx

+ C6<8—1>2—2S/(v*)y+2s]1|v*|z£f*2 dU*,
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where {
Cs = Zcl(zre/(sfs—2 min{1, (17/16)7"/>71},

Cs = 3C3R_23(17/16)s_1 min{1, (17/16)7"/275}.
By (2.6) and (2.2), we have
Ly, <18 WE(s) = (v2) < W1(16/7) = (1 + 4(16/7)%)2.

Then we get
16 > (1+4(16/7)*) 71, <16 (W)? (). (2.22)

1
lvx|<

In the region 16/ < [v.| < &', by (2.2), we have
(v:)? = (W)?(va). (2.23)

In the region 36! < |v,| < &7!, by (2.1) we have

1 \2-2s 1\2-2s 1\2-2s
2= (37) T = (5) @ 0T = (5) ). @24
In the region 67! < |v«| < Re™!, by (2.3), we have
()2 2 (71272 (W) = (W) (v). (2.25)
In the region |v.«| > Re™!, by (2.3), we have
(€272 () = (W) (va). (2.26)

Then by (2.22), (2.23), (2.24), (2.25), and (2.26), we get

N Ld) +1F By = a6/ [ 1, e WP 0 2 v,

1

2—2s
+(5)7 0 [V a0 L oS d

+ min{Cs,C6}/‘(Ws)z(v*)(v*)y]l‘u*bsqf*2 dvy
= C(Va5)|W8f|iz )
v/2
which completes the proof. Here, C(y, s) := min{(1 + 4(16/m)?)" !, (%)272SC5, Ce} is

a positive constant depending only on y, s. It is easy to check that C(y, s) Z 1 uniformly
when -3 <y <0,0<s < 1. n

In the following, we show that Proposition 2.1 is sharp.

Proposition 2.2. The estimate N7 (f, p,%) S |\WESf |iz holds.
v/2
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Proof. First we have
ML) 5 [ B RAGAY — i ) do dv o,
< [ B2ty - Wit do v,
+ [ B2~ ihud dodvdv,
=KV + K (f).
By Taylor expansion, one has
((;ﬁ)’ - /ﬁ)2 < min{l, [v — v4[26%} ~ min{1, v — v, |>6?}.
By Proposition A.1 and (2.7), we have
[ 5 cosymin{ o = 0. 26%) dor £ (WPl = wal) £ PP,
which gives
K57 ()5 [ £210 = 0P WP @OVt dodo,

< [ £ e dv = WS,

Here we have used the fact that [ [v — v |pr£ dv < (v«)?. By the change of variable v —
v/, similarly we have K77 (f) < [Wef |22 . The proof of the lemma is completed. =
v/2

Remark 2.1. By the proof of Proposition 2.2, for a > %, the estimate N&V(f, u%) <
[Wef|2, holds.
v/2

2.2.2. Gain of Sobolev regularity from A'¢%(g, f). By [I, Corollary 2.1, Lemma 3],
and Proposition A.1, we have the following lemma.

Lemma 2.3. Let g be a function such that |g?|;1 > § > 0, |g2|L% +18%|L10gr. <A < 00,
then there exists C(8, A) such that

Ng, f)+ 11} = CEDIWED) f 7.

2.2.3. Gain of anisotropic regularity from A %%(g, f). In this part, we derive the
anisotropic regularity from N ®°(g, f). To this end, we apply a geometric decomposi-
tion in the frequency space. More precisely, we will use the following decomposition (see
(2.34) in the proof of Proposition 2.3):

+ +
[E+] [E+]

spherical part radial part

fO-Ffeh =7~ 7(el=)+/(g25) - fED. e
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The “spherical part” gives the anisotropic regularity. Namely, we have the following
lemma.

Lemma 2.4. Set A*(f) := [ b (- 0)| f (&) — f (&1 57> d& do, where &+ = £,
Then

ACS) + 1 f 122 ~ IWE(—Ag2) ) 120 + | f s

+
Proof. Letr = [£|, 7 =£/|€|,and ¢ = (=% Then -0 = 2(t -5)? — l and |s|% =rc.
In the change of variables (§,0) — (r,7,¢), one has df do = 4(v - ¢)r?drdrdc. Let

6 be the angle between t and . Then 2 sin % = |t — 0| and thus

b*(cos ) = (1 —5)e> 222250 — 0| 272 1|1 _g <2e. (2.28)
. . . _ 9
Since 6/2 is the angle between the two unit vectors 7 and ¢, we get [t — ¢ | =2(1 —cos 3).
It is easy to check that
Slt—ol=lt—¢l=|r—oal.
from which, together with (2.28), we get

b(cos 0) > (1 —5)e* 2|t — ¢| 2 2 1jr—c|<e,

ba(COS 9) S (1 _ S)82s—222+25|_[ _ §|_2_2S]l|1:—§|§28~

By (A.1) in Lemma A.1, we have

A+ [ = 4/b8<2<r-g>2 ~DIf D)~ fro)P(-¢)yrtdrdeds + |12,

¢ ; 2
_ rt) — r
= 41— [ L0 ZEO0 it ardrds +1 11

l ~ A
~ IWe(=As2)2) f172 + | f 72
By Remark A.1 we have

|f(ro)— f(ro)l?

|T_S-|2+23

A(S) + 172 < 4(1 —5)e 7222728
+1f1z-
l ~ ~
~ [We((=Ag2)2) fI72 + 1 1o
With the help of Lemma A.2 and Plancherel’s theorem,

IWE(—Ag2)?) f 122 = [WE(—Ag2)?) 122,

]l|,_§|528r2 drdtdc

which completes the proof. ]

The “radial part” in (2.27) can be bounded by weight W¢ gain in the phase and fre-
quency space. Namely, we have the following lemma.
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Lemma 2.5. Let

z7(f) = [b(5 o) 6|4 (i

+ 2
) €| dgdo
: — E+IEl
with §t = 5552 Then
Za’y(f) < |W8(D)Wy/2f|22 + |W€Wy/2f|zz~
Proof. We divide the proof into two steps.

Step 1: y = 0. As in the proof of Lemma 2.4, with the same change of variables (¢,0) —

(r,t,¢c) withé = rrand ¢ = Z&¢

oo We have

Z9(f) = 4 / Pt -6)* = DIf(r) - f((x-SIre)P(x-)r?drdrds.
Recall that ¢ O\ —2—2s
bes(E -0) =(1— s)825_2<sin 5) ﬂsingSS’

where 6 is the angle between t and 0. Let o = % be the angle between t and o. Let
u = r¢. Then we get r?> dr d¢ dt = sina du da d'S. Therefore, we have

g
20(f) =821 =962 [ [ ina) P Lipues
R3 Jo
x| f(u) — f(ucosa)|* cosa du da (2.29)
SIWED) 72+ W fl72, (2.30)
where the last inequality is given by Lemma A.S.

Step 2: y < 0. We reduce the case when y < 0 to the special case y = 0. For simplicity,
+
denote w = |§'|%. Then W, (§) = W, (w). Hence, we have

(€Y (f(w)— fET)?
= {[Wy2.) )W) = Wy 2 FYED] + Wy HIED 1 = Wy () Woy o ()}
< 2((Wy2 FIET) = W2 YW + 2[(Wy 2 FIE) P = Wy (w)Woy 2 (E5) 2.

Thus we have
Z5V(f) <22 (Wypaf)
+2 / b@(% )| (W2 NYEDPIL = Wy 2 )Wy 26 dE do
= Z5 Wy f) + A.

By noticing that |W, /2 (w)W_y2(§%) — 1| < 6%, we have |A| < [W,2 f]7,, where the
change of variable § — £ has been used. The desired result follows from estimate (2.30)
in Step 1. |
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Remark 2.2. With the same notation as in Lemma 2.5, we also have
ZH(f) S IWED) f132 + IWE 3.
Indeed, by (2.29) and Plancherel’s theorem, we have
Z=0(f)
T ~ ~
= 8n(l — s)szs*Z/ / (sina) " gna<el f () — f(ucosa)|? cosa du da
Rr3? Jo

= 8n(l — s)ezs_Z/ / (sina) " gna<e| f(u) — f(u/ cosa)|* cosa du da
R3 Jo
SIWED) I+ IWe Sz

where we have used the change of variable ¥ — u cos o and the estimate (2.30) in the last
inequality.
Now we are in a position to get |W"“((—A§z)%)f|22 from N®0(g, f).
v/2

Proposition 2.3. The following two estimates hold:
1
N(g, [) + |g|i%|W8(D)f|iz + 181 IWe 172 2 18172 IWe(—As2)2) f 172, (2.31)
1
N, [) S 1gl7IWe(—As2)2) f172 + |g|i%|W8(D)f|i2 18I 1. 232)

Proof. By Bobylev’s formula, we have

NS(g. f) = s [0 o) @1 7@~ P

+2R((82(0) — 26N f () F(€))) dE do
gl 2

= T I
a3 T @

where £t = % and £~ = % Thanks to the fact that gAz(O) — gAz(g*) =[(1-
cos(v-£7))g%(v) dv, we have

|12 = ‘/ba B 1—COS(v ENSWIN €D /(&) do dE dv

D=

(/ bs(é| )(1_COS(U'5_))g2(v)|f($+)|2d0d.§dv)

x (/ b(é—| 0)(1 - cos(v-£)gW)| f©) do dédv)z.

Observe that

)

_ a1 g2 £
L= cosv-£7) 5 P61 = g loPIeP | — o] ~ wPIE |
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thus
_ . £ 2 " 2
1 —cos(v-£7) < min |v|2|§|2‘——0) 1 ~ mind v |ET ‘——0) 1.
el o 1)~ min{io s Pl =1}
Note that é—l . 2(@—| 0)? — 1. By the change of variable from & to £T, and the
property We([v|[§[) < W*(Jv)W*([§]), we have
FEIRS f(Ws)z(lvIISI)If(E)IZgz(v)dv dé§
S IWEIL W (D) f 172 S Igl7:IW* (D) f 1. (2.33)

Now we study the lower bound for .I;. By the geometric decomposition

£ £

f&-Ffeh=7e-fe-m = =

)+ F(E2) - FED. @39

we have

1= [ 5 (5 0)lF© - FEhPdsdo

‘l/b(é JIGE f(|§|é+|)(2dgda
[ () (|§||§+|)—f(é+)‘2déda

= %Im — I
By Lemma 2.4 , we have
Tia + 1S5 ~ W (=8s2)) 172 + 1/ 72 (2.35)
By Remark 2.2, there holds
Tia S WD) f17 + IWE 1. (2.36)

Combining upper bound estimates (2.33), (2.36) and lower bound estimate (2.35), we get
(2.31). On the other hand, by N*%(g, f) < I1,1 + I1.2 + | 12|, one can get (2.32) by the
upper bound estimates (2.33), (2.35), (2.36). ]

1 .
2.2.4. Gain of anisotropic regularity from A ®Y (2, f). The strategy is to reduce
NEY to N&0 50 that the estimates in previous parts can be used.
For technical reasons, we define

N&Y (g, h) = [ b (cos 8) (v — vx)Y g2(h' — h)? do dv dvx. (2.37)

R6xS?2

Moreover, we need to consider the “velocity regular” version NEY of N&7 to reduce
N&Y to N0 in the following lemma.
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Lemma 2.6. Let y € R. Then

1
—CLN®O(W_ W, - GCslgl? 2
FCIN T Woyyiy28. Wyy2 f) 3|g|L‘zy/2+”|f|L5/2

< N&Y(g, f) <2C, N (Wi 28, Wyja f) + 2C3|g|i|2y/2+l||f|i§/2’ (2.38)

where Cy, C,, C3 are constants depending only on y that can be chosen as some generic
constants if =3 <y <0.

Proof. Set F = W, , f. By definition, we have

NoY(g, f) = /]Rﬁ 2b‘g(cos 0)(v — v4)Y g2(W-yj2 F) — W, ;2 F)* do dv dvs.

xS

Make the decomposition
(W_y)oF) —W_yoF = W_,p2)(F' = F) + F(le/2 —W_y2) = A+ B.

From A2 — B? < (A + B)? < 242 + 2B?, we get
D=L < B%7(g. f) <21 + D), 2:39)
where
I, = [R(stz b®(cos 0) (v — v*)ygiWiy(F' — F)?do dv dvs,

I, = AGXSZ b®(cos 0) (v — v*)”ngz(le/2 —W_y2)*do dv dv,.

Thanks to |vs — v| ~ [vx — V'], (V)71 < (Vs — V)7 (V)77 < ()17, we get
NEOW_py128. Wypa ) S T S N0 Wiy 128 Wy f). (2.40)

By Taylor expansion, one has (W', ,, — W_,2)> < [(v(k)) 7" 72[v — va|? sin®(9/2) d«.
Note that

(v =)o = P (G0)) 72 S (o= 0a) P 0())
< (i) — va) T2 (k) T2 < (v) V2L

Then by (2.8), we get
I, < /gi(v*)‘V“'devdv* < |g|124‘2/ I|F|§2. (2.41)
v/2+1

Plugging (2.40) and (2.41) into (2.39), we get (2.38). In addition, one can track the proof
for the dependence of C;, C,, C3 on y. [
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We are now ready to give a lower bound estimate for N &Y (M%, ).
Proposition 2.4. The following two estimates are valid:
1
N W2 ) +1f 122 2 IWDIWya f s (242)
Y.
1
NV (2, )+ WS DYWy o f 17 + W Wy 2 f 17
1
2 IWE(=As2))Wy2 f 72 (2.43)
By a suitable combination, we have
1
N (2, )+ |WeWy 2 f 172
1
2 IWE(=As2)2)Wya f172 + IWHDIWy 2 f 75 (2.44)

Proof. Since y <0, then |[v — v«|¥ > (v — v4)Y, and thus N &7 (g, f) > ﬂa’y(g, f). Then
as a direct result of Lemma 2.6 withn =0, g = u%, we have

1 1 1
NP2 )+ 1S 172 2N W22 Wya f) 2 NOW_3 12, Wy ). (2:45)

Note that [W_3u|;1 and |W—3M|L{ + |W_3t|L10gL are generic constants. Then according
to Lemma 2.3, we have

1
NEOW_3pu2 Wy f) + Iflii/2 2 W DIWyp2 f 172

from which, together with (2.45), we get (2.42).
Taking g = W_%y,% in (2.31) of Proposition 2.3, we have
1
NEOW_3 12 Wy )+ IWEDYWy 2 f 172 + W Wy 2 f 172
1
Z | We((_ASz) 2 )Wy/2f|iz s
from which together with (2.45), we get (2.43). The proof is completed. ]

2.2.5. Coercivity estimate. We are ready to prove the coercivity estimate for £° in The-
orem 2.1.

Proof of Theorem 2.1. By combining Proposition 2.1 and (2.44) in Proposition 2.4, we
get

1 1
N (>, f) + NV (fop2) + Iflii/2

1
2 IWE(=As2) )Wy pa f 172 + IWEDIYWy 2 f 172 + W Wy o f 172
=1/, (2.46)
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Observe that NE’V(/L%, )+ NEYV (S, u%) corresponds to the anisotropic norm ||| f|?
introduced in [2]. Recalling (1.17), we have

£F =5+ 25, Ligi=-T(u?.g). L5¢:=-T%(g.pu2). (2.47)

By [2, Proposition 2.16] and Corollary 2.1, there holds

(L3S S) 2 NG )+ NI L) =CIE, - 24)

By Lemma 3.3 in the next section, we have
(LSL 1) S s f12a S |f|§5/2- (2.49)
Combining (2.48), (2.49), and (2.46) completes the proof of the theorem. ]

2.3. Dissipation in microscopic space

In this subsection we consider the dissipative property of &£° in the microscopic space.
This is also referred to as the “spectral gap” estimate. Recall the kernel space ker defined
in (1.12). An orthonormal basis of ker can be chosen as {;ﬁ, ,u%vl, /ﬁvz, /ﬁv3,
/ﬁ (Jv]? =3)//6} = {e; }1<j<s5. The projection operator P on the kernel space is defined
as

5
Pfi=Y (fe))e; = (@+b-v+chPul, (250)
j=1
where for 1 <i <3,
|2

_ 5 |v|2 1 . 1 o |v 1 1
“‘A;(E‘T)“zfd”’ bt—ngWfd”’ C—/Ra(T‘z)“zfd”'

The dissipative property of £¢ in the ker" space is given in the following theorem.

Theorem 2.2. Let —3 < y < 0. There are two generic constants £y, Ag > 0 such that for
any 0 < ¢ < gy, it holds that

(£°g.8) = holg —PglZ,, o

Remark 2.3. We address that from the proof below, A¢ depends only on y and the lower
bound for [ b®(cos §) sin*(8/2) do.

To prove Theorem 2.2, we first introduce a special weight function Uy defined by
Us(v) == (1 + 82[v]?)2 > max{|v|, 1}. 2.51)

Here, § is a sufficiently small parameter. We then introduce a new smooth function .
Recall the smooth function ¢ in (1.31). Let y(-) = ¢(-/2). Then y is a smooth function
verifying0 < y <1, y = 1on [0, 1], and y = 0 on [2, 00). Let yg(v) := y(Jv|/R). The
following lemma is [25, Lemma 3.2].
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Lemma 2.7. Set
X(r, R.8) =67 ((x&) (xR (U2 (U, = xr(xr) U2 (U)2))?
withy <0<8§<1<R.Then
X(r.R.8) £ (8 + R0 ()" () 1y <.

Proof of Theorem 2.2. Supposing Pg = 0, then it suffices to prove (£°g, g) = |g|§’y/2.

In the following, we specify the parameter y in the operator £¢ and denote it by £%7. For
brevity, set

TV (g) = 4(£57g. g).
AL g) = (fvg + fex — 18 — ['8%).
F(f.g) = A*(f.g).

With this notation, we have J?(g) = [ B*F (;ﬁ, g) do dv dvy. The proof is divided
into four steps.

Step 1: Localization of J®Y(g). By (2.51) and the condition y < 0, we get
[0 = a7 < G (Bl + Bloal) ) < 26,87 Uy (0)Us” (v.).

which gives |[v — v«|” 2 §7YUJ (v)U] (v4), so that
TV (g) 2 877 [ b® 1 ()« U (UD)F (12, g) do dv du.

We include the function x%(x%)«Uj (Uy )« inside F(uz, g), leading to }F()(RUSVDM%,
XR Ub?'/ 2g) with some correction terms. For simplicity, set 1 = y g Ugy/ 2 f = /ﬁ, then
1
XROUR)US U)F (12, )
= I212F(f.8) = (hha(fug + fg3) = hha(flg' + 'g0))
= (hha(fug + f&) = WH(f1g' + ['gL) + (I, —hho)(flg' + f'8L)”

1
> 2 (ha(fug + fg) = WHL(FI8' + f'80)" = W, = hha)*(flg' + f'80)

1
SF(hf.hg) - (W'hy —hh)*(fig' + '8
Hence, we get
1
JoY(g) = 587”/bEIF(XRUgy/ZM%,XRUS”/Zg) do dv dv,

Y o / bE(W'H, — hhy)2(flg' + f'gh)? do dv dvs. (2.52)
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We now move )(RU;'/Z before 412 out ofIF()(RUgy/ZM%,XRUSV/Zg), which leads to F (2,

XrRU 57/ 2 g) with some correction terms. That is,
1
F(xrUu2, xrUY"*g)
= A2(xrUJ* 1, v U g)
1 1 2
= (A2, 2rU}%g) = A((1 = xrUJ ). 21U} %g))

1 1 1
FA% (0., XU 9) — A2 (1 = xrUY Pz, xrUJ?g)

%

= JFGd R0 )~ F (1~ kU Pk a0 0). 259)
By symmetry, we have
/ bE(h'h, — hhi)?(flg' + f'gl)? do dv dvs
<4 / bE(h'h, — hhy)? f2g? do dv dv.. (2.54)
Thanks to (2.52), (2.53), and (2.54), we get
I (g) = %5‘?/;;81?(“%,“08”25:) do dv dv,
- %s—y / bR ((1 — xrUY )2, xrU]*g) do dv dv.,
— 4877 / bE(W'h, — hhy)? f2g? do dv dvy = %Jl - %Jz —4J5. (2.55)

Step 2: Estimates of J; (i = 1,2,3). We will give the estimates term by term.

Lower bound for J,. We claim that for ¢ < 16~ R~! and some generic constant C,

N2 87glp — CE + R7)Igl, - (2.56)

By Wang Chang—Uhlenbeck [39], for any function F it holds that
(£5°F, F) > (/ b¢(cos 6) sin2(9/2)do)|(]l —P)F|7.,
where I is the identity operator. Thanks to (2.8), there is a generic constant ¢y such that
(£5°F, F) = co|(I —P)F|3,. (2.57)
Applying (2.57) with F = ygr U57/2g, and using (a — b)? > a?/2 — b?, we have
Ji =87 / bF (2, xrUY?g) do dv dv, = 4577 (250 gUY % g, xrUY?g)

> 871 - P)(xrU} )2,
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1. _
2 367 11rUy el = 67 [P (aU P9
1._ 1._ _
2 571U gl = 55710 — Uy gl — 87 IPrUS P9l

=Ji,1—Ji2—J13.
* Sinced < 1andy <0, then USV/ 2 > W, /2, which yields the leading term
Jin 2 87gl7, (2.58)
v/2

~

e Thanks to the facts that §77 USV < W, and 1 — yg(v) = 0 when |v| < R, we have

1o
N2 = 28710 = U P8li2 S 10— xw)Wypaslis

< L= RE(EIWy 2813, + (1 = L(e) Wy 2832
< R72|0(e)Wy o182 + 2|(1 = L(e)e 2 Wy 2812,
S(R2+2)|WeW,y 087, (2.59)

where we have used (2.4) and (2.5) in the last inequality. By the assumption ¢ <
1671 R™!, we have
Ji2 S RP|WEWy28l7a. (2.60)

* We now estimate Jj 3. Recalling (2.50) for the definition of P> and by the condition
Pg = 0, we have

5 5
P(raU}%e) =Y e / eixrU g dv =3 e / ei(xrUY> = Dg dv.
i=1 i=1
Observing that
1= xrUJ? < 1—yr +8Jvlxr. (2.61)

and thus e; (1 — )(RUSV/Z) S+ R_l),u%,we have |fe,-()(RU8y/2 —Dgdv| S+
R_1)|,uég|Lz, which gives

— — 1 _
Jig=46 )’|]P>()(R(/'81’/2g)|i2 < (82 + R 2)|M8g|i2 < (52 + R 2)|g|iz/2, (2.62)
y

Combining the estimates (2.58), (2.60), and (2.62) gives (2.56).
Upper bound for J,. For simplicity, by setting f, = (1 — XRUSV/Z)/L% and g, =
)(RUay/zg, we get

Jy = 5—V/b81€((1 — xrUY )2, rUY?g) do dv dv..
:8"’/bSIF(fy,gy)d0dv dvs

<07 [ D&, — g dodvdva +57 [0Sy = £ dodvav,
=21+ J2. (2.63)
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Thanks to (2.61), we have
1 _ 1
(e = (1= rUY )% < (8 + R)pui. (2.64)
Plugging (2.64) into J> 1, we have
1
Jo1 S+ R85 / bui(g, — gy)*do dvdv,
= (2 + R)5T N0 (3, gy)
<82+ R85 |xrU] 82,5 < (6% + R7)g2, 5. (2.65)

&y/2 ~

where we have used (2.32) and Lemma A.3 with @ = §77/2yU}/? € Sly,{)z and M =
We eS|,

By Taylor expansion up to order 1, f; — f, = fol (Vi) (w(k)) - (v' — v) dk, from
which, together with

IV £yl = IV (1 = xrUY?)p2)|
= (1= x&UY") V2 = U} P p2 Vg — 12 VUL
Sus@+ R,
we get

1
|fy = HIP <8+ R_2)92/0 A W) (k) — va) 2 di. (2.66)

Since R < 167 1g71, by the change v — v(k), and (2.2), we have
Jos S (82 4+ R7H5Y / bSQZ(XRUsymg)iM%(U(K))|U(K) —v.|? do dv(k) dvs di
< (82 + R_2)|XRWy/2+1g|]2d2
S (8 4+ R)\WyoWogl7. S (8% + R7)glZ, ), (2.67)

Plugging estimates (2.65) and (2.67) into (2.63), we get

T2 S (8 + R)gl2, - (2.68)

Upper bound for J3. By Lemma 2.7, we have
57 (I, — hha)® < (82 + R0 (0) 2 (02) 1y <ar.

Since 8R < 1e71, by (2.2), we have

1
2
J3 =877 / bE(W' R, — hhy)*peg? do dv dvs

<%+ R7?) / b0 (vs)* (V) T2 sl |y <arg” do dv dvs
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S (8 + R j<arWy 2118172
< (8% + RO)WyaWegl?, < (8% + R7D)gl2, - (2.69)

Step 3: Case —% <y <0. Plugging the estimates of J; in (2.56), J; in (2.68), J3 in (2.69)
into (2.55), fore < 1671R71,0 < § < 1, we get

TR 287 1gls — CE + R)SE o
Choosing R = 87!, for some universal constants C, C,, we have
T 2 Cu8 Vgl — G818l e (2.70)
By the coercivity estimate in Theorem 2.1, for some universal constants C3, C4, we have
T (9) = Calglzyyn = Calslpz - 2.71)
Multiplying (2.71) by Cs82 and adding the resulting inequality to (2.70), we get
(1+ Cs8)T 7 (g) 2 (G187 = CaCs8)glz  + (CC5 = CIBIgL o

First, we take Cs large enough that C3C5 — C, > C5, for example let Cs = 2C,/C3. Then
we take § small enough that C;677 — C4C58% > 0, for example, let § = (%PKWFW =
%)1/(2'“’). Then we get

C1Cs )z/<z+y>
2C4C,

167'R71 = 16_1(%)2/(24'1’). Without loss of generality, we may

I (9) = G812, = Cof

2
8ley/2
for any 0 < ¢

<
CiC -
assume 5= <

1, which gives, for —% <y <0,

Ci1Cs
2C4Cy

8
I (9) 2 G50 ) 18, (2.72)

Note that Cz(zc(}fé )8 depends only on the parameter y and is a universal constant when

—F<y=o.

Step 4: Case =3 <y < —%. In this case, we take —% <a,B <Osuchthata + 8 = y.
Replacing b® by b®%|v — v«|* and y by B, similarly to (2.55), we get

1
J*Y (g) = Za—ﬂ /balv — v *F (12, xrUL?g) do dv dv.,
1
- Es—ﬂ /b5|v — v *F (1 — xrUL )2, UL g) do dv dv.,

—48_'3/b8|v—v*|°‘(h'h'*—hh*)z,u*gzdodvdv*

1 1
= Zjl%ﬂ - EJ;"'S — 4P, (2.73)

where h = )(RUSﬁ/Z.



Solutions to the non-cutoff Boltzmann equation in the grazing limit

39

Lower bound for J f‘ B . Since —% < a < 0, we can use the previous estimate (2.72) to

get

Jf’"6 = 8_’3J8’°‘()(RU8ﬂ/2g)
= 5P I = P)xrUL % g) 2 87 W1 — P)(x UL *9) 2.

Using (a — b)? > a?/2 — b2, we get
1 _ I._
TP 2 387 WapaUf gl — 287 Wapa (1 — ) Uf gl

— 5P| WeaP(xrUS *9) 12
— J{’f’lﬂ — Jﬁ’f — Jf"’f.

Thanks to Us < W, one has U(sﬂ/2 > Wg/» and
T 2 87 W Wy gl = 67 1gl7,
Y
Thanks to § A U(Sﬂ < Wg, similarly to (2.59) and (2.60), we have

TEE < W (1 = xR)Wp 222 < R2IWEW, agl2s.

Similarly to (2.62) we get

— — 1 —
T =87 WP rUf 20l 5 8 + R ndglia 5 6% + R)IglZ,
V.

Plugging (2.75), (2.76), (2.77) into (2.74), we get

TP 2 57 1glts — O+ R)IglE o
Y.

Upper bound for J*. Now we estimate
JeP = 8‘5/b8|v — v *F((1 = xrUL )2, x UL g) do dv dv...
For simplicity, set fg = (1 — )(RUéB/Z)/ﬁ, 8 = XRUf/zg. Then we get
P <P [b£|v — V([P (g — gp)* do dv dv,

+8_5/b8|v—v*|“(g§)*(fé — f3)*do dv dv.

=l + 57

(2.74)

(2.75)

(2.76)

2.77)

(2.78)

(2.79)
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Similarly to (2.64) we get fﬁ2 = (1 - )(1_qu8ﬁ/2)/JL%)2 < (82 + R™2)puz, from which,
together with 5B US'S/2 < Wg/2, we get
5P <@+ R8s ﬂ/b€|v—v*|°‘u* (g — gp)* do dv dv.
= (82 + R™)5 PN (. gp)
S B+ R8P IxrUS g2 45 < (62 + R7)Ig2, ). (2.80)

where we have used Corollary 3.1 and Lemma A.3 with ® = Wa/ZS_ﬂ/ZUSﬁ/Z)(R, M =
WE. Similarly to (2.66), we have

1
f) — fsP S (8 + R2)0? /0 A ) () — va? dic.

Thanks to |v — v«| ~ |v(k) — v«], since 2R < %8_1, by the change of variable v — v(k),
we have

3P <6+ R / b 02 (xRUL )2 105 (k)0 (k) — v4 |+ do dv() dvs di
S (% 4+ RN rWy 2118172 S 8+ R)gl2 0 (2.81)
Plugging (2.80) and (2.81) into (2.79), we get

7P <8+ R MlglZ, - (2.82)

Upper bound for J;x # Recall that

b — s b /b8|v — VLYK, — hhy)2peg? do dv dvy.
By Lemma 2.7, we have
§TB(WH, — hhi)* = X(B, R, 8) < (6% + R72)0%(v4)2 (v)P 21y <ar.
Thanks to [ [0 — v|* (v4)? s dvs < (V)% since 8R < 27! we get
J;x’ﬂ <%+ R7? / b¥|v — v*|°‘92(v*)2(v)ﬁ+zu*ﬂ\v|§4Rg2 do dv dv,
S (8% 4+ R\ <arWyj2118172 S (82 + R7)glZ, 0 (2.83)
Plugging estimates (2.78), (2.82), and (2.83) into (2.73), we get

J&V(gms—’ﬂgﬁ5 —C(E* + R )gl2, .
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Choosing R = §~!, for some universal constants Cs, C7 we get

TV (g) = C68‘ﬂlgli;/2 — C18%1812,, -

Together with the coercivity estimate (2.71), thanks to —7/4 < § < 0, by a similar argu-
ment to Step 3, similarly to (2.72) we get for -3 <y < —7/4,

CeCs3 )2/(2+ﬂ) 2 CeC3 \8 5
N Croren)
2C4C7 |g|g,y/2 — L7 2C4C7 |g|g,y/2

forany 0 < & < min{16! (%)8, 167! (%)8}. Note that C4 depends on y. And this

completes the proof of the theorem. ]

I (g) = O

3. Upper bound estimate

Unless otherwise specified, in this section the parameters y and s satisfy —3 <y <0,
% < s <1,y 4+ 2s > —1. In particular, we specify the parameter y in I'® and use I'*Y. We
derive a uniform upper bound for the nonlinear term I"*Y given in the following theorem.

Theorem 3.1. Let —3 <y < 0,1 <5 <1,y + 25 > —1. It holds that

(T7(g.h). f) < 18le2lhley 2l fleyy2- (3.1

Note that estimate (3.1) matches perfectly with Theorem 2.2, which enables us to
establish the well-posedness theory for the Cauchy problem (1.16) near equilibrium. We
remark that the parameter constraints s > 1/2, y + 2s > —1 are a condition of [21,
Lemma 1.1].

When y < 0, the relative velocity v — v4 has a singularity near 0, which creates some
difficulty in obtaining the L? norm for the position g in (3.1). To deal with the singularity,
we separate the kernel B¢ = B%""= 4+ B%Y> where BV~ := {(Jv — v«|) B%, B&®V"” =
(1 =¢(Jv — v«|)) BE. We recall that the function ¢ is defined in (1.31). We call |[v — v4| <1
(support of ¢ (Jv — v«|)) the singular region and |v — v«| > 1/2 (support of 1 — (v — v«]))
the regular region.

We associate Q%"-~ with kernel B>~ and denote £%%~, ii’y’>, :ﬁ;’y’>, s> cor-

respondingly. Without ambiguity, we explicitly define the Boltzmann operator Q%?>~ as

0" (g.h)(v) = / BV (0 = 04, 0)(g4h — gxh) do .. 5-2)
Similarly to (1.17) we define
To7> (g, h) = p~2 Q%> (u2g. u2h), (33)
£077 g i= =T (u, @) = T (g, pu2), (34
£577 g = =T (13 g), (3-5)

1
2577 g =~ (g, pu2). (3.6)
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Obviously,
PV (g h) = p2 QO (uig it h)

1
= /Ba’y’>(v — vy, 0) 2 (ghh' — gh) do dvs
- f B (v — va, 0)((n2 )Lk’ — (n2 g)uh) do du.
1
* / B (v — va, 0) (2 — (n2),) gLk do dv.

= Q5 (urg.h) + 197 (g h),
where 1
1977 (g, h) = /B'S’V(v — Ve, 0) (12 — (12),)gLH do dv.. 3.7

We use the kernel B®Y>=(v — v, 0) for the Boltzmann operator Q%?>= in the same way as
in (3.2). Asin (3.3), (3.4), (3.5), (3.6), we define I'®"=(g, h), £&"~g, £7" g, £5" ¢
correspondingly. In addition, 7%Y=(g, h) is defined using the kernel B®Y"=(v — v4,0) as
in (3.7). With this notation in hand, we have

I (g.h) = Q7 (uig.h) +1°7 (g h). (3.8)
T (g.h) = Q77 (uig.h) + 1977 (g, h). (3.9)
POr=(g.h) = QW1 (uig ) + 1977 (. h). (3.10)

0% (g.h) = Q77 (g.h) + Q"= (g.h). @3.11)

I%Y (g, h) = 1977 (g, h) + I*V=(g, h). (3.12)

We will give the estimates in the following propositions and theorems, as shown in Table 1.
The theorems in the table can be derived from the propositions:

* By (3.9), Propositions 3.1 and 3.2 give Theorem 3.2.
* By (3.11), Propositions 3.1 and 3.3 give Theorem 3.3.
* By (3.12), Propositions 3.2 and 3.4 give Theorem 3.4.
* By (3.8), Theorems 3.3 and 3.4 give Theorem 3.1.

Therefore, it remains to prove Propositions 3.1-3.4 in this section.

3.1. Upper bound in the regular region

In this subsection we will give the upper bound for the nonlinear term """~ (g, &). Thanks
to (3.9), we have

(T (g, h), f) = (0577 (u2g. h), f) + (%7 (g, h), f). (3.13)

We first consider (Q%Y~ (g, h), f) in Section 3.1.1 and then (/%> (g, k), ) in Section
3.1.2.
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Functionals Proposition or theorem
(05" (g, h), f) Proposition 3.1
(127> (g, h), f) Proposition 3.2
(Q8’7’<(/L%g, h), ) Proposition 3.3
(I15"=(g,h), f) Proposition 3.4
(Ter=>(g,h), f) Theorem 3.2
(Q®Y (;ﬁg, h), f) Theorem 3.3
(I%Y(g, h), f) Theorem 3.4
(T&Y (g, h), f) Theorem 3.1

Table 1. Summary of results.

3.1.1. Upper bound for Q%7>>. We give the upper bound for Q%" in the following
proposition.

Proposition 3.1. The estimate |{Q%V~ (g, h), )| < |g|L‘1 |Rle,y/2] fle,y/2 holds.

yI+2

Proof. Define the translation operator Ty, by (Ty, f)(v) = f(v« + v). By geometric
decomposition, we have (Q%"~ (g, h), f) = A, + A, where

A= [4( ol (1 = Euyg (T ) )

Jul
ut
||

A= [05(2 0 )l (1 = Sy (T )0

Jul

x (1o, ™) = (T, N)(Iul 5= ) ) do dvs .

(o (15) = (o 0) do doe

Note that “r”” and “s” refer to “radial” and “spherical” respectively. We divide the proof
into two steps.

Step 1. Estimate of 4,. By Lemma A.4 and Remark A.2, we have
Ad % [ lgalAW Wy o Tuuhlis + W DIy T, h12) (3.14
X (|WeWy 2Ty, flr2 + IWE(D)Wy )2 T, f12) dvs.
Thanks to (2.7), for u € R3, we have
IWETy flrz S W)W fLe. (3.15)
Foru e R3,1 € R, we have (T, W) (v) = (v + u)! < C(1)(u)"(v)!. As aresult, we have

T f 12z < )" 13- (3.16)
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By (3.15) and (3.16), we have

|VV€VVy/Z’]—'v*]'l|L2 < I’V‘s(v*)VV\)/I/2(7~)>1<)|VVSVV)//ZhlL2
S Wiylj2+1 ) WEWy 2h 2. (3.17)

Since W* € S|, W2 € S%z, by Lemma A.3, we have

(W (DYWy 2 Tou Lz < Wy 2 W (D)To, b2 + | To bl

-1

= |Wy 2Ty, WE(D)h|p2 + |Tv*h|H°/ .

< Wiyl ) (IWy 2 WH (D)2 + 1Al )
< Wiy12(0) |[WE(D)YWy j2h] 2, (3.18)

where we have used the fact that T;,, and W#(D) are commutable, inequality (3.16), and
Lemma A.3. Plugging (3.17) and (3.18) into (3.14), we have

| AL < 1glL

lyl+2

X ((WDYWy 2 flrz + IW Wy 2 flL2).

L.o=2(-¢)*>—1and

[ue]

(WEDYWyj2hlp2 + |WEW)y 2k 12)

Step 2: Estimate of #s. Let u = rt and ¢ = % Then

|u|% = r¢. In the change of variables (u,0) — (7,7, <), one has du do = 4(v - ¢)r? x
drdtdc. Then

A= [ = o) - DT
% (Ton £)6) = (To, D) (x - )2 dr d ds dv,
=2 [ (= LoD = V(T r0) = (T r5))
% (T )6) = (o, YD) (@ - )r2 dr d dg do,

- [ (s a)|u|y(1—c<|u|>)g*((Tv*h>(|u|| =)~ ()

x (T ) (Il |) ~ (Tu, /)(0)) do dv. du.

Then by the Cauchy—Schwarz inequality and the fact that |u|” (1 — ¢(|u])) < (u)?, we
have

A < { [ (o) gl (€ (i Il)—m*h)(u))zdodv*du}z

{/ba(ﬁ U)(M)y|g*|((Tv*f)<|M|| +|>—(Tv*)f(u)>2dadv* du}
= (A1) 2 (A(f)2.

1
2
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Note that 4 () and 4A,( f) have exactly the same structure. It suffices to estimate Ag( f).
Since

(e (1) = (@) =2 () = (o)
2((To. @) = (o, ),

we have

) 5 [0 (o) el () () = (T £)600)) o v

+ [ 5 ( o) gl (o 1)) = (T £)0) do ds

= As,l(f) + As,Z(f)'

By Lemma 2.5, and the facts (3.17) and (3.18), we have
At % [ 1841257 (Do) dvn % leluy, (WO DWWy f o WS Wy 2 ).

Recalling the notation in (2.37), we observe that A (f) = NEY(/ lgl, f). By Lemma
2.6, we have

N (VgL ) S N W2V 18l Wypa f) + 18l |f|i§/2-

ly+2

Then by (2.32) in Proposition 2.3, we get

O Wyi2VI18l Wys2 f) S [Wiyj2 Vgl |Lz|f|g sz Sl 112,

lyl+2

which gives Asa(f) < Iglpt
s 2(f), we get As(f) < gl

| f |s /2 Combining the estimates for +;(f) and

s |+2|f|s,y/2' Then we have

sl S (A (A 5 [glp

lyl+2

|h|8,y/2|f|8,y/2-
Then the proof of the proposition is completed by the estimates of A, and ;. ]

3.1.2. Upper bound for 7%¥>>. We now turn to the upper bound estimate for the term
(157> (g, h), f) that is given in the following proposition.

Proposition 3.2. The estimate |(15V~ (g, h), )| < |g|Lz|11|,;,,,/2|W‘9f|Lz/2 holds.
Y.

1 1 1
Proof. Noticing that (1¢2), — (112)x = (07, — ) + 2ud (u4), — pd) and h =
(h—h'") + I, we have

(177 (g.h). f) = f B> (12, — (12)5)guh " do dv. dv
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= [ B+ )2 - h)enf dodu,dv
* 2/ BEr (b, — pnd) (b @) (h — W) £ do dvs dv
42 [ B (e, — i) o)l 1 do dv. o
= I + I + Is. (3.19)

We divide the proof into three steps for I, I2n, and I3 defined in (3.19) respectively.
In the proof, the following estimate is used often:

(%), = (#)x)? < min{1, v — va* sin® (0/2)}
~ min{1, |v’ — v|? sin® (6/2)}
~ min{1, |[v — v}|?sin® (6/2)}. (3.20)
Step 1: Estimate of 1. Recall that
I = / BV () 4 (1)) () — (19)0)2guh f' do dv. dv.
Since |[v — v«| > 1/2, we have
[v— i)V ~ (v — i) (3.21)
By (3.21) and the Cauchy—Schwarz inequality, we have

1
2

FARS { f b®(c0s ) (v — Vi) ((13) + (F)) 2 (5, — (13)s)?g2h> do dus "”}

1
2

| [55tcos 8100 = 00 (bt + bbb 7% dr o
= (11,1)%(11,2)%-
Estimate of I1,1. We claim that
A= / b¥(cos 0) (v — v)” (U3 + (UF))2(UF) — (5)4)? do
< (W92 )(v)?, (3.22)
which yields I71 < |g|]%2|W€h|i§/2. Now we prove (3.22). Since ((,u%)’* + (,u%)*)2 <
2(ut), + 2@, we have
A% [ Beosonto = v d (eb), = (ub)o)? do

- / b¥(c0s 0) (v — va)? ()4 (1) — (15)a)? do = sy + o,
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By (3.20) and Proposition A.1, one has

A1 S (0= 0 1d (WO (0 — va) < (0 (o) id (WO (0) (W) (0)
< (WE2()(v)”, (3.23)

where we have used (2.7). As for #A;, since [v — vi| ~ [v — V]| so that (v — v4)? <
(v —vl)” < (V) (VL) we have

Ay < (v)Y / b (cos ) (u#)., min{1, [v — v«|* sin® (6/2)} do.
If |[v — v«| = 10|v|, then it holds that

1 1
vl = —v+u > —v|—|v >(———)v—v > —|v — vy,
0l = ol = v+ 0l 2 1ol — vl = ol = (5 = 75 )lv = vel = glo v

V2
and thus (u% S uﬁ(v — vy ), Which gives
A2 S () 7 (0 = 0 ) (W20 = 2) S (0)7.
If |[v — v«| < 10|v|, by Proposition A.1, we have
Ar S (v)Y / b®(cos §) min{1, |v]? sin? (0/2)} do < (W2 (v)(v)”.

Combining the estimates of #; and +, gives (3.22).

Estimate of I . By the changes of variables (v, v«) — (v/, v}) and (v, Vs, 0) —
(v«,v,—0), using (3.21) and y < 0, we have

Ty < /bE(COS O)|v — val? (u3) — u5)? f2 do dv, dv
= Nty S VeI
14

where we have used the estimate in Remark 2.1.
Combining the estimates of I ; and I;», we have

& &
Iy < gl IW h|L§/2|W f|L§/2- (3.24)
Step 2: Estimate of I,. By the Cauchy—Schwarz inequality, we have
1
= Zf B (%), — ) (@) (h — ) f' do vy dv

< (/ BV |(ui g)x|(h — 1)? do dus dv)
%

x ( / B> (1), — w2 (ut g)sl £ do dvs dv) = (1) (120)%.
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Estimate of I,,1. Noticing that (h — h’)? = (h?)' — h? — 2h(h’ — h), we have
Ly = [ BE> (1 ), (1) — 1) do dv. dv —2(Q° (it gl h). h).
By the cancellation lemma and (3.21) we get

'/ B (k) (h?) — h?) do dv, dv

1
< /(v —va)|(u# g)«h?| dv dv.
1
S |usgllhlys
v/2
By Proposition 3.1, we have

1 1 1
Q&Y (nig. h), h)| < |n3glp |h|§,y/2 S |ﬂ8g|L2|h|§,V/2’

lyl+2

Then the above two estimates give

1
[ 12.1] < |M8g|L2|h|§,y/2‘

Estimate of I, . Using the change of variable v — v’ and estimate (3.23) of /4;, we
1
have T < |M§g|L2|WEf|i2/ :
2

Putting together the estimgtes of I5,1 and I, we get
1
| 12| < |:u8g|L2|h|s,y/2|W8f|L§/2- (3.25)

Step 3: Estimate of I5. By the changes of variables (v, v«) — (v/, v}) and (v, vs,0) —
(v, v, —0),

I3=2 / BSP (13 — (u3)) (1% g)' hs fu do dvs dv.
For notational convenience, let

E = {(v,v*,a) D vk| = 1/e, sin(6/2) < |v*|_1},
Ey = {(v,04,0) : [vs] = 1/e, |vi| ™! <ssin(6/2) < &},
E; = {(v,v*,a) Dok < 1/8}.

Then I3 can be decomposed into three parts: I3, corresponding to E; fori = 1,2, 3.

Estimate of 13,1. By Taylor expansion, one has

1
i = (u¥) = (VpH)() - (0 =) + /0 1=V u ) () : (v = v) & (v = V)] dK,
where v(k) = v" + k(v — v’). Observe that for any fixed v, it holds that

1 1
/ Bs,y?ﬂ\v*\zi,sin%Slv*lfl(vlf«“)(v/) (v — v/)(,L,L4g)/dG dv =0,
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which gives

&y>
/;E [0.1] B ﬂlv*lzé,sings\v*l“
3X10,

x (1= )[(VuH) ) : (0 =0) ® (v = V)14 g) hx fi dic do dvy dv

| Z3,1] =

0
S / (03 0)(0" =) 2 8i0% S0y, ot g, 1104 ) e Sl do dv
T / (072 0y 113 ) e fol v

1
< T€ & &
S lniegloalWehlz WSz .

where we have used the fact that |v” — vi«| ~ |v — v4|, the estimate (3.21), the change of
variable v — v’, the estimate

., 0 _ _ _ _
/bs(cos 6) sin® Eﬂsings\v*\—l do < X720y |22 ~ 572 (0,) P72,

(V) = 0.)72 S ()72 (0) P2 and (0) P2 iy < (ut.

Estimate of I3 5. By the estimate
0
/bs(cos 6) sin? 5]1|v*|_158in%58 do < P72, |* ~ 272 (1,)%S
and a similar argument to that used for I3 ;, we get
1
|I3’2| S /bE(COS 9)H|U*|Z%,‘U*|71§Sin%Ss(v/ _ U*)yl(u4g)/h*f*| do dv* dv/
S /(U*)y—i_zsﬂ\v*\zé|(M%g)/h*f*| dvs dv'
1
< T & &
< |pieglp W h|L§/2|W f|L§/2~
Estimate of 13 3. By estimate (2.8) and the similar argument used for I3 ;, we get
0
T3] £ / b (cos )V — )2 sin® 21y, (2 ) h ful do dvn v’
< [0 21, 2y b b £ dv. dv
1
< Te € €
S lpiegla|W h|L§/2|W f|Lf,/2'
The estimates of I3 1, I3, and I3 3 give
1
173 S b gloa WEohl 2 IW* f1p2 (3.26)

The proof of the proposition is completed by combining (3.24), (3.25), and (3.26). =
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3.1.3. Upper bound for I'®:?*> (g, h). Recalling (3.13), by Propositions 3.1 and 3.2,

noting that | /ﬁ gl g < |g|L2, we have the following theorem.
yl+2

Theorem 3.2. The estimate |{I'*"~ (g, h), f)| < |glr21hle,y/2] f e,y 2 holds.

3.2. Upper bound in the singular region

By (3.10), we have

(D7 =(g.h). f) = (QF=(ubg. ). f) + (1™ (g.h). ).

We will give estimates for (Qe’y’<(,u%g, h), f) and (I5"=(g,h), f) in Sections 3.2.1
and 3.2.2 respectively.

3.2.1. Upper bound for Q%7>=. Recall [21, Lemma 1.1],
(0% (g. h), f)I < (|g|L11V1 + |g|L§Vl)|W8(D)WNzh|L2|W€(D)WN3f|L2» (3.27)

where Ny, N,, N3 satisfy Ny > |N,| 4+ |N3| and Ny + N3 > y + 2. Note that estimate
(3.27) requires (y + 2)-order weight on the latter two functions, while (3.1) allows only
y order. On the other hand, we only need to consider { Q%"= (;ﬁg, h), f) for which there
is a factor u% for g. In addition, when |v — v«| < 1 asin Q%=, one has u(v«) < M%(v),
which means weight can be exchanged between v and v.. By the above observation, we
can apply (3.27) to get the following upper bound on Q%7-=<.

Proposition 3.3. The estimate

1 3 1 1
(05"=(uzg,h), f) < |nsglr2|We(D)usih|p2[WE (D)ot f 12
holds.

Proof. We omit the detail of the proof for brevity because we will use the weight exchange
idea in Lemma 3.2 and Proposition 3.4 by using Lemma 3.1. With the weight exchange
idea and the proof of (3.27) in [21], the proof for this proposition is straightforward. [

As a result of Propositions 3.1 and 3.3, we have the following theorem.
Theorem 3.3. The estimate |(Q*Y (u2g.h), £)| S |fgl2|hle.y /2] fle.yya holds.
We turn to derive the upper bound on N &Y (/ﬁ, f) by applying Theorem 3.3.

Corollary 3.1. The estimate N&Y (u?, f) < |f|iy/2 holds for any a > %

Proof. By (2.10) and the identity (/' — £)? = (f2) — f2 =2f(f' — f), we have

NE (. f) = —2{05 (42, f). f) + / BEL29((f2) — ) do dvs dv.

1 then by Theorem 3.3 and Corollary 2.1, the estimate follows directly.  m

Since 2a > 1
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3.2.2. Upper bound for 1%Y=(g, h). The weight exchange idea in Proposition 3.3 is
based on the following more general result.
Lemma3.1. Fork,t€[0,1], letv(k) :=v + k(v — v), V4 (t) := vy + 1 (V] — V). Suppose
a,b,c,d e Rwitha+b+c+d>0.1If|v—uvi| <1, then
3 1
H @R R ! ©(0) < @m) 3D exp( S C(abic.d)).
4 + 4b +
C(a,b,c.d) = (a<—a - 1)) + (b(_ — 1))
e e
4 + 4d +
(T (G -)
e e
withe =a+b+c+d, AT := max{4,0}.

Proof. Since |[v — v«| < 1, we have |v —v(k)| < 1, |[v — v« ()] < 1. We assume without
loss of generality @ > 0. Let e = a + b + ¢ + d; without loss of generality, we assume

e = 1. Otherwise, one may consider % l;’, % %. Nowa +b+c+d=1and

1 1
alo? + blo.l? + elo(O) + d o = 7o + (5 = b) o] + bva]?

+ G - c>|v|2 + clv(k)?

+ (% —d>|v|2 +d ().

To estimate (% — b)|v|? + b|v«|?, note that for any 0 < & < 1, it holds that

o

x> > aly* — Ix —y|%. (3.28)

l—«a

If b < 0, by taking @ = —b(3 —b)~" and (3.28), we have
(1 —b>|v|2 F blog|? > 4;9(l —b>|v 02> 4;;(l —b).
4 =*\3 =*\1
If0o<b < %, it is obvious that
(l —b)|v|2 ¥ blusl? > 0.
1 >
Ifb > 1, by taking @ = (b — $)b~" and (3.28), we have
1 5 5 1 5 1
<Z —b>|v| + blvg|? > 4b(Z —b)|v — 02> —4b(b - Z>'
In summary, we get

(3 )P +blual? = ~b(ab — )"
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Since |v — v(xk)| < 1, |[v — v« (1)] < 1, similarly, we have
(3-c) P+ elo@P = ~(cte —1)*, (7 =d)vP +dloa) = ~(@ddd ~1)*.
Therefore,
alv? +blvs|? + c[v()|* + d v O> = —=(b(4b = 1)" = (c(4c = 1))" = (d(4d —1))*.

In the general case when e # 1 or the case when a < 0, we have
a + b +
alv]® + blve]® + clv)|* + d v (1)]* > —(a(4— — 1)) — (b(4— — 1))
e e
c + d +
~(e(45-1) (a5 -1)
By noting u(v) = (271)_% exp(—|v|?/2), we have the desired estimate. |

To keep the proof of Proposition 3.4 to a reasonable length, we prepare some estimates
in advance in the following Lemma 3.2. First, define

X(G.H. F) = / BT ((13), — () ) (% G)ap T H
x (1”16 FY do dvy dv. (3.29)

According to (3.56), we have (I5Y"<(g,h), ) = X(G,H, F) if weset G = /L%g, H =
/L%h, F = /Lﬁ f . We have two decompositions on X (G, H, F). The first is

X(G,H,F) = A(G,H,F)+ B(G,H, F), (3.30)
AGH.F)i= [ B=(d), = ()G — b
X (;f% F) do dvy dv,

B(G,H,F) = /Bf”‘((u%); — (U)W (16 G) (W VBHFY do dvy dv. (3.31)
Note that decomposition (3.30) uses regularity of H since A(G, H, F') contains ;L_ll? H—
(u_ll? H)'. The second decomposition is

X(G,H, F) =€(G,H,F)+ D(G,H, F), (3.32)
€O H.F) = [ B (Y, — () ) 56y H

x (W16 F) — w16 F) do dvs dv,
DG H.F) = [ B7=(uh), — ) 56t

x W16 F do dvy dv. (3.33)
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Note that decomposition (3.32) uses the regularity of F since €(G, H, F) contains
(W16 FY — p~16 F.

We now give some rough estimates of X (G, H, F) in the following lemma. Based on
this, a refined estimate will be given in Proposition 3.4.

Lemma 3.2. Let j be an integer satisfying 2/ > -L. Then the following estimates hold:

4g"
|X(G.H,F)| <|G|p2|H|g1|Flp2, (3.34)
1X(G. H.F)| < |Glp2|H|p2|Flg + |Gz Hls | Flas. (3.35)
1X(G. H, F)| < e*722@527|G| 2| H |1 | F |12

+£2722@5 VG 2| H 2| F 2. (3.36)

Proof. The following is divided into three parts.

Part 1: Proof of (3.34). We first estimate A(G, H, F). By applying Taylor expansion to
(;ﬁ); — (,u%),k and ,ufll?H — (,u*% H) up to order 1, we get

1 1 1 1
l(n2)y — pi| = ’/0 (Vi) (vk(1) - (v —v) du

1
< sin(8/2)|v — v*lf |/ﬁ(v*(t))| di. (3.37)
0

1
| 16 H —(u 16 H)| = ‘/{; (Vu~ 16 H)(v(k)) - (v —v) dk

1
< sin(8/2)[v — va| /0 1 ) ([ H )| + [VH())]) dk.

This implies

|AG. H. F)| 5 / B 5in?(0/2)[v — va 215 (02 (0) | (1776 G| 177 (0(k)
x (|H@()| + [VH@)|) (16 F)'| do dv. dv didk
< / B sin(0/2)|v — va |G| (| Hw(K))| + |[VH(v(k))])
x |F'|do dvy dv dk, (3.38)

where we have used Lemma 3.1 in the last inequality. By the Cauchy—Schwarz inequality
and the change of variables (v, 8) — (v(x), 6(k)), we get

|A(G, H, F)| < ([ B*V=sin*(0/2)|v — v+ *| G| (|H(v(x))|* + [VH (v(K))|?)
X do dvs dva’lc)2

X (/ B =sin*(0/2)|v — v« |?|G«| | F'|? do dvs dv)
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< ( [ 503 ) sin? 6/2)106) = va v, <1 G
1
2

X (|H(v(/c))|2 + |VH(v(K))|2) sin 8 dO(k) d¢ dv dv(k) d/c)

X (/ b®(cos 0) sin*(0/2)|v" — v P21 y—y, <1 |G| | F'|?

x sin6 d6’ de¢ dv, dv’) ) (3.39)

Here, 6(x) is the angle between o and v(k) — vx and 6/ = % is the angle between o

and v’ — v,. By noting that b®(cos ) = (1 — s)e2*~2sin">">%(6/2)1, s ,» and relations
(2.14), (2.15), we have

/On b®(cos ) sin?(6/2) sin O dO (k)
<2 /0”(1 —5)e>s? sin_25(9/2)]lsm 8 < sin 0(k) d6(x)
<8 /:(1 —5)es 2 sinl_zs(G(K)/Z)Ilsm@ﬂ d sin(0(k)/2)
=38 /08(1 —$)eX 21725 gy = 4, (3.40)

Hence,

1
2

IAG. H. F)| < (/ 10— 0l 2o <1 G (H? + [VH]?) dos dv)

X (/ v — v*|y+2]1|v_v*|51|G*| |F|? dvy dv) .

Since y > —3, for any v € R3, we have

1

[ 10 =0 lGl dv. < (61 ( [ 1o= o dv*)
<1Gla, (3.41)

which yields
|A(G. H, F)| S 1G|2|H| g |Flpa. (3.42)

Similarly, we also have

[€(G. H. F)| < |Gl2|Hl2|Fla. (3.43)
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By Taylor expansion and v}, — v« = v — v/,
(). — i = (Vud)e- 0 =)
+ /01(1 — (V2 2) (04 (k) 1 (v, = v2) ® (v, —va)dk.  (3.44)
Plugging this into (3.31), we have B(G, H, F) = 81(G, H, F) + 8,(G, H, F), where
B1(G, H, F) := / BEY= (16 G) (WS HF) (V2 )y - (v — V') do dvs dv,

B2(G.H. F) 1= [ B (Gt HEY
X (/1(1 - K)(VZM%)(U*(K)) D (V) — k) ® (V) — v4) dic) do dvs dv.
0

Note that for fixed vy, one has [ BS’V‘(M_%HF)’(U —v)do dv = 0, which gives
B1(G, H, F) = 0. By using the arguments in (3.38), (3.39), (3.40), and (3.41), we get

|B(G.H. F)| = |B2(G. H. F)|
< [ B = sin?(0/2)|v — v«|*|G+« H'F'| do dvy dv
S G2 |H 2| Flpa. (3.45)
Combining (3.42) and (3.45) and noting (3.30), we have (3.34).

Part 2: Proof of (3.35). Plugging (3.44) into (3.33) gives D(G, H, F) = D1(G, H, F) +
D, (G, H, F), where

D1(G.H,F) = / BV (W16 G) 16 Hu 16 F(Vp2)y - (v — v') do dvy dv,
Dy(G. H. F) = [ BOP= (1 G)up™ s Hy s F
x (1= K)(VZ}L%)(U*(K)) D (U, — vx) ® (V, — v&) di do dvy dv.
By the symmetry of the o integral and (2.8), we have
/be(v —v)do = (v—vs) / besin?(0/2) do = 4 (v — vy), (3.46)
which gives

1D1(G, H, F)| = 4n

/ 10— 0P E(( — va ) (™ G~ Hp 16 F(V i),

(v —vy)dve dv
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5/|v—v*|y+1n|v,v*|51|(M%G)*HF|dv* dv
< [ 10— o P ol G HE v do,

where we have used y + 25 > —1. By the Hardy inequality, we have [ |[v — vy | H?dv <
| H |grs and thus
|D1(G, H, F)| < |G|p2|H |as| Flas.

Similarly to B,(G, H, F), we get |D2(G, H, F)| < |G|2|H |1 2| F|p2- Therefore,
|D(G. H, F)| S |G|r2|H s |Flas. (3.47)
By combining (3.43) and (3.47) and noting (3.32), we have (3.35).
Part 3: Proof of (3.36). Let C;(v) := min{27/|v — v4|7!, &}. We decompose as
AG, H, F)=A<(G,H,F)+ A>(G,H, F), (3.48)

where A< (G, H, F) stands for the integration over sin(6/2) € [0, Cj (v)] and A> (G, H, F)
stands for the integration over sin(6/2) € [C; (v), €]. For A<(G, H, F), similarly to (3.38),
we get

A<(GH.F) 5 [ B Sin?(8/2)1 4,0~ 021G
x (|[H@(K))| 4+ [VH(K))|)|F'| do dvs dv dk.

By the Cauchy—Schwarz inequality and the change of variables (v, 8) — (v(k), 6(k)),
similarly to (3.39), we get

|A<(G, H, F)|

< ( [ 54603 ) Sin76/2)11 s [0 ) = 02 L0116
1

X (|H(v(lc))|2 + |VH(v(/<))|2) sin 0 d6(x) d¢ dvy dv(k) dl()

X (/ b®(cos 0) sin2(9/2)]lsingscl_(v/)|v’ L i T
%

X |G| |F'|?sin @ d6’ d¢ dv, dv’) , (3.49)

where we have used the fact that C;(v) < Cj(v(k)) since |v(k) — v«| < |v — v4| for
k € [0, 1]. Similarly to (3.40), we have

4
/0 b®(cos 0) sin2(9/2)]1Sin 8 <C; (0() sin 0 df (k)

Z_j‘v(K)_U*I_l '
<8 / (1 —5)e® 721725 dt = 4 x 27225727 |y (k) — v, > 2.
0
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Plugging this into (3.49) gives
|A<(G. H, F)|

1

< 2572905 D) ( / [0 = Ve[ g <t | Gal (H P + [VH ) do, dv)

X (f [0 — 0a [V T2 Ly, <1 |G| | F > dvs dv) .

Since y + 2s > —1, similarly to (3.41), for any v € R3, we have
[ v — U*|y+2s]1|v—v*|§1|G*| dvs < 1G]z, (3.50)

which yields
|A<(G. H, F)| < &> 722@5 |G| 2| H | | F 2. (3.51)

For A> (G, H, F), by (3.37), we get
A= (G, H. F)| S / B () cint <o SN0/ D)0 — vl 02 0)| (1 % G
X (9T H |+ (w16 H) DI Gu™ 5 F|
< /B"’"”"]lcj(v)ssmgss sin(8/2)|v — v«| |G« (|H| + |(H)'DI(F)'],

where we have used Lemma 3.1 in the last inequality. By the Cauchy—Schwarz inequality
and the change of variables (v, 8) — (v(x), 6(k)), similarly to (3.39), we get

|A=(G, H, F)|

< [(/ b* (€08 0) $in(8/2)1, 4y <gin 8 <6V = Vol oy 21 |Gl | H |2

1
2

x sin 6 dO d¢ dv dv)
([ 038150006/, 0y g e’ = 0a g |G 1P

2
x sin 0 d6’ de dv. dv’) i|

s ([ 5508 6)sin@/2)1¢, gy el = 0P i 1 G 1P

=

x sinf d6’ de¢ dv, dv’) ) (3.52)
Similarly to (3.40), we have

1 €
/ b®(cos 0) sin(8/2) L. () <gin 8 < SIN O dO = 4[ (1—5)e?72t725 g4t
0 A Ci(v)
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1—ys

— 42S — 1823—2(((:]_ (v))l—ZS _ 81—25)
1— .
< 42S _Sl 82s—22(2s—])] |U — Uy |2S—1 ; (353)

where we have used 25 > 1 and (C;(v))!725 —g!728 < 225=DJ |y — 1,2~ in the last
inequality. Note that

Cj(v) = min{27/ v — v, e} > {277 [/ — vy [T127V2 e} = Ci(v)
and 6’ = %. Thus
Cj(v) <sin(§/2) < e = C/(v') <sin(0’) <e.

By this, similarly to (3.40) and (3.53), we have

/ b®(cos 6) $in(6/2) L, (y)<sin o <, Sin 0do’
o <sin § <

&
< 4/ (1—5)e> 2725 dt

C/(v)

< l—s 257250 |y _y, 2571, (3.54)
2s — 1

Plugging (3.53) and (3.54) into (3.52) gives

1

. 2
| A= (G, H, F)| < &25722@s=1J (/ [0 = 0|25y <1 |G| | H|? dvs dv)

x (/ 10— 072 Ly, <1 G| | F I don dv)z.
By (3.50), we obtain
|A=(G. H, F)| 5 &¥722%5" V|G| 2| H| 2| F| 2. (3.55)
By combining (3.51), (3.55), and (3.45), and by noting (3.48), (3.30), and that
g25720@2s=Dj > =1 > | pecause 2/ > ¢! and 25 > 1,
we obtain (3.36). ]

We give an estimate for (/%"<(g, h), f) in the following proposition.

Proposition 3.4. For suitable functions g, h, and f, it holds that

< 1 e 1 P 1
(I5"=(g. h), f) S |utsglp2|WE(D) w16 h|p2|WE(D) s £z,
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Proof. Recall that
(1= (guh). ) = [ B7=(eh), = wdguhs do dv. do,
LetG = ,u%g, H = /,Lllfeh, F = Mﬁf. By (3.29), we have

(1°7=(g.h). f) = / B ((12), — () (W6 Gt ™16 H(u ™16 FY do v dv
= X(G,H, F). (3.56)

By the function ¢ in (1.31), define & f := {(¢|D]) f and KEf = f —C(e|D]) f. We
then decompose as

X(G,H,F) = X(G,FH,F) + X(G,F H, FF) + X(G,F H,FF).
By (3.34) and (2.4), we have

|X(G, & H, F)| < |Gr2|F¢ Hlp1 | Flp2
S |G |WH(D)H [ 2| F| 2. (3.57)

By (3.35), (2.4), and (2.5) , we have

1X(G. F H. Fe F)| < |Glr2|F H2 1§ Fla + |Gz | & Hlgs | ¢ Flus
S |Gl |WE(D)H |2|WE(D)F 2. (3.58)

For X (G, &% H, &% F), by (3.30), the dyadic decomposition (A.2), (3.36), the Cauchy—
Schwarz inequality, and (2.5), we have

|X(G. F H & F)| =

T X(G.g(D)FH, %ZF)‘

j=[—log, ]2

SIGIIFFl: Y, 72V g (D)F H e
Jj=[—log, £]-2
1

5|G|L2|F|Lz( )3 e“—zzzﬂwj(D)%fH&z)

Jj=[—1log, e]-2

1
« ( Z 25-29(25-2) j) 2
Jj=[

>[—log, £]-2
S |Gl IWE(D)H | 2| F| 2. (3.59)
Combining (3.57), (3.58), and (3.59) completes the proof. [

3.2.3. Upper bound for 7%Y. Combining Propositions 3.2 and 3.4 gives the following
theorem.

Theorem 3.4. The estimate |{(157 (g, h), )| < 1gl121lley /2] f ey 2 holds.
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3.3. Upper bound for the nonlinear term

Furthermore, by recalling (3.8) and by Theorems 3.3 and 3.4, we conclude the proof for
Theorem 3.1.

Taking g = ;ﬁ in Theorem 3.1 and recalling that £7"h = —F‘*”V(/ﬁ, h) in (2.47),
we have the following corollary.

Corollary 3.2. The estimate |(£"h, £)| < |hleys2| fle.y/2 holds.
Recalling that £57h = —T'*7 (h, /ﬁ) in (2.47), we have the following lemma.
Lemma 3.3. The estimate |(£57h, f)| < |ush|p2|u® f L2 holds.

For brevity, we omit the proof of Lemma 3.3. In fact, with Corollary 2.1, one can refer
to [2, Lemma 2.15] to prove Lemma 3.3.

Noting that £&Yh = £7"h + £5"h, by Corollary 3.2 and Lemma 3.3, we have the
following lemma.

Lemma 3.4. The estimate [{L>V h, f)| S |hley 2| fle,y/2 holds.

3.4. Weighted upper bound for the nonlinear term

In this subsection we give an upper bound estimate for I'>Y with weight.
We will consider both polynomial and exponential weights together. For [/, g > 0, let

Wiq() = (v} explg(v)).
Since (v + u) < (v) + (u) and (v + u) < (v){u), we have
Wi (v +10) < Wi (0) Wi g ). (3.60)
In addition, the following estimates hold:

VWig = W 4(v) 20+ qW, 4{v) v,
VzVVl,q = ”’Vl,q (U)_2[3 + qI’Vl,q(U)_lIS - 2lVVl,q(v)_“U UV — qVVl,q(v)_3v Qv
+ Wi ()0 @ v + ¢ Wi g (v) 20 ® v + 21gW 4 (v) v @ v.

Hence

IVWigl S U+ q)Wig, (3.61)
VWi S +q> +1+ @)Wy (3.62)

We first estimate the commutator [Qs(,u%g, ), Wi gl

Lemma 3.5. Letl,q > 0. It holds that

1 1 1
|<Q8(/'L2g’ I/Vl,qh) —Wiq Qg(/“g,h),fﬂ < |/’L16g|L2|W/l,qh|s,y/2|f|s,y/2~
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Proof. Note that
1 L
(QF(n2g. Wigh) — Wi Q% (n2g. h). f)

1

= / B*(Wi g — W/ Juigshf'do dvidv
1

_ /BS(WM — W] JuZgh(f — f)do dv. dv

1
+ [ Bf(Wiq — W/ Jpi g«hf do dvi dv
= A + As.

We divide the proof into two steps.

Step 1: Estimate of #A1. By the Cauchy—Schwarz inequality, we have

1
1 2 1
[A] < {/ Bu2(f' — f)*do dvs dv} {/ B¢(W 4 —W/l:q)zuigihzdadv* dv}
= (A11)? (A1)

Note that A} = N®Y (/ﬁ, )= |f|§ y2 by Corollary 3.1. It remains to estimate A1,2.
By Taylor expansion,

1
I/Vl,,q —Wiy = /0 VW (k) - (v —v)dk.

Since |v(k)| < |v| + |v«|, together with (3.61) and (3.60), we have |VW ,(v(k))| <
Wi.q ()W 4(vs), and thus

.0
|VV1/,q - VVl,q| < I’Vl,q(U)I’Vl,q(v=|<)|v — Vx| Sm§~

By (3.60) and |v’| < |v| + |v«| , we also have |W} ; — Wl’q| < Wi q (W)W 4(v4). Combin-
ing the above two estimates gives

W)y = Wigl* S Wiy ()W, (va) min{[v — v sin® (6/2). 1}.

By this and Proposition A.1, we obtain
1 1
/ BE(Wig = W{ 212 do S Tuu, 210 — 0) W2, ) W2, () (WP (0 = v i

1
+ ﬂlv—v*lfl v — v*|}/+2u/l?q(v)u/l?q(v*)/i:

1
< Do 21 (V) W2, () (W) (0)

1

+ Lpmv <1 [0 = val T 3 (3.63)
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Here, when |v—vy| > 1, we use (v — vx)? < (v)? (v4)"/ and W2 (v —v,) S WEW)W 2 (vs)
1 1

by (2.7). When |v — vi| < 1, we use Lemma 3.1 to get us < u%uﬁ. Then in both cases,

the additional weights can be absorbed by the exponential decay in w. Plugging (3.63)

into ;o gives

1 1
iz s [ W2 @00 gt dvdv+ [ o= d g dv. ao
1 1 1
S |6 gl Wy s WeWy ghl7 s + Iwﬁglizluwhliﬁ
1
S i gl7aWighl2, . (3.64)

where we have used the Hardy inequality and | - |,,/2 > | - [ 1/2 because s > % Combin-
ing the estimates for /1 ; and +; », we have vz

1
[A1] < |/fL16g|L2|I/Vl,qh|s,y/2|f|s,y/2- (3.65)

Step 2: Estimate of #,. We want to show that

1 1
\ / BE (W], — Wi do| S Tu—uujz1 (0)? (W) (0) Wy g (vt

1
+ Ly <t v — a7 S (3.66)
By Taylor expansion, one has
Wiy =Wig= (W)@ @ —v)

a4

1
+ / (1= k)(V2W ) (v(K)) : (v —v) ® (V' —v) dk. (3.67)
0

We first consider the case |[v — vy| < 1. By (3.67), (3.46), (3.61), (3.62), and (3.60) and
Lemma 3.1 with |v — v«| < 1, we have

1
[ Bevi, - Wit ao

<

[ B0 @ = vt do

1
+ [ B W @ v~ vPid dicdo

1
<|v-— U*|y+lﬂf VVl,q(v)I/Vl,q(U*)

1
<o —va? T s (3.68)

We next consider the case |[v — v.| > 1. Similarly to (3.68), since |[v — v«| ~ (v — v4), We
have

1 1
‘ / BE(W/, — Wiui do| < (v — v P2ui Wi g)Wig(vs).  (3.69)
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If [v] < &1, then W8(v) = (v). By (3.69) we have directly

1
S ()PP uEWig(v)

1
[ Brow, - Wit ao

< (0) (W2 (0) Wi (0) 3. (3.70)

If |u| > &1, v — vi| < &™), then W8(v) = &5~ 1{v)*. By (3.69), we have

1 1
[ Be0v = gt do| 72 - )

< (0)7 (WE)2 (0) Wi g (0. (3.71)

It remains to consider the last case |[v| > ™1, [v — v«| > &~'. We divide the angle 6 into
two parts:

[ B, - Wik ds =81+ 82,
81 = [ B'Li gy Wy~ Wil do.
Bz = /Beﬂsmgzw—m—l(m/,q — Wi do.
For 8B, by using the expansion (3.67), similarly to (3.68), since
/ Bsﬂsmgf‘v_v*l,l sin? g do < 72|y — v, [VT2572,

we have .
|B1] < &7 |v — val " U W ()W g (va).

For 8,, by the fact that |W; , — Wl”q| < Wi g (v) Wy 4(vs), since

e 25—2 y+2s
/B ﬂsmgzw—v*rl do Z¢ |[v — vy ,

we have .
|Ba| <720 — val VTP U W ()W g (va).

Similarly to (3.71), the estimates B; and B, give

1 1
[ B0~ Wik do| < 7 — W )W (00)

1
< () (W2 (0)Wig (v (3.72)
By combining (3.68), (3.70), (3.71), and (3.72), we have (3.66). Then (3.66) implies

Aa] < / () (W) () Wiy ()it [guh | dvs dv

1
* / Ly—va <1V — Va1 08 1 E | guh f| dvs .
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Obviously,

L 1
[y R @d e 1 dve v < b gl W Wighlzz, W £1sz
1
< |I’L 16g|L2|I/Vl,qh|£,y/2|f|£,y/2-

By the Cauchy—Schwarz inequality, when y > —3, similarly to (3.64), we have

1 1
[ o= s v o < (/|v—v*|—1u%uﬁ|g*h|2dv* dv)

1
< i€ gloa Wighloy ol o2
Then the above two estimates give
[Aa] S 1175 gl Wighlesy /2] fles2- (3.73)
Finally, (3.65) and (3.73) complete the proof. ]

The next lemma gives an estimate for the commutator [/*7 (g, ), W; 4].

Lemma 3.6. Letl,q > 0. If =2 <y <0, it holds that

(757 (8. ). Wi, )] < 11828 |2 Wi ghley ol WE £ 12,
W W 4h we .
+ Wiggle2Wighlez IW"flL2 |

If g = 0, it holds that

{57 (g2 Waolh, £)1 < 1812 Wi ohley 2 WS flpz -

1
Proof. By recalhng I &Y in (3. 12) the structure (3.7), and the identity (,u2),‘< e =
((l“), Mo )2 + 2#* ((l“)/ /L*) we have

1
(157 (g.). Wiglh. f) = / BU((r3), = ) Wi = W] )guhf " do dv. du
= [ B = w00y~ W gt do dv. o

1 1
42 [ B, = w0y = W g do dv. do
= Al + 2&%2

We divide the proof into two steps.



Solutions to the non-cutoff Boltzmann equation in the grazing limit

Step 1: Estimate of 4,. By the Cauchy—Schwarz inequality, we have

Ay < {/ BE((ub). — ud)2 £ do dv, dv}
1

1
x { [ By = 2 0ny - w2 do dv, dv}
= (Al,l)%(a“’l,z);

By the change of variables (v, v«) — (v}, v") and Remark 2.1 , we have

65

Arg = /Bs((u%)/_u%yffdgdv* dv < |W8f|§2/2. (3.74)
Y

Since

(4 = = (b + w2 = ) = 2000 + e (Geh), = b2,

we have
1 1 1
Az < / Bl (b, — pud P Wig — W) )2 g2h? do dv dv

1
4 [ BRG0P do du do

= A1o,1 + A2

We first estimate # 2 ». Referring to [15] (more precisely, equation (2.10) on page 170),

we get

Wig =W/ | S ' =) (0))2 Wy g (0) W4 (v). (3.75)

This, together with the assumption that y > —2, gives
[ By~ wd P on - w2 do
S )2 W2 00 [ o= 072G, ) cos ) sin? 2 do
< (W) W2, (W2, (v)

sothat Aj 22 < |Wl,qg|i2|Wl,qh|i2 .If g = 0, by [26, proof of (2.84)], we have
v/2

1 1 1 /
/ BE(uh)(uh), — b 2 (Wig — W] do < (0)217.

which implies ef‘)l,z’z < |g|i2|Wl=0h|12} .

y/2
Similarly to the estimate for #;, in Step 1 of Lemma 3.5, we obtain Ay ;

1
|/¢“6g|]2d2|wvl,qh|§,y/2~

<

~
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In summary, the estimates of /1 2,1 and /A 5 » imply that A; 5 < |Wl’qg|i2‘| Wi qh |i2
/2

when ¢ > 0, and A; 5 < |g|1242|1/1/1’0h|i2 when ¢ = 0. Hence, we conclude that when
g >0, /2
< &
AL S Wiggle2IWighlpz WSz .

When g = 0,
< h € .
|A1L < |gl22 (Wi |z§/2|W f|z§/2

Step 2: Estimate of #4,. By the Cauchy—Schwarz inequality, we have

) ,
As| < {/ BE((ubY, — ud)2 7 do dv, dv}
1 !
x { [ Bk g = Wy g do v, dv}
= (Az,l)%(f\wz,z)%-

Note that 4, ; = +,1, then by (3.74), we have A, 1 < |W€f|i2 . Similarly to the esti-
v/2

mate for #4; 5 in Step 1 of Lemma 3.5, we get
Az < |M%g|iz|W1,qh|§,y/2'
The estimates of #A5 ; and A, » give
|Aal S 1116 gluz | Wighley ol W 112 .
Then the proof of the lemma is completed by combining the estimates of #4; and A,. m

Recalling (3.8), the following lemma is a direct consequence of Lemmas 3.5 and 3.6.

Lemma 3.7. Letl,q > 0. If -2 <y <0, then

(T(2, Wigh) = WigTe(g, h), £)] 5 1?2812 Waghleyal fley 2
+ |Wl,qg|L2|W/l,qh|L§/2|W€f|Lf,/2'

Ifq = 0, then

|(F€(g, I/Vl,Oh) - I’Vl,Ol—‘g(gv h), f)| Y |g|L2|W/I,Oh|s,y/2|f|e,y/2~

Then Lemma 3.7 and Theorem 3.1 give the following lemma.

Lemma 3.8. Letl,qg > 0.1If -2 <y <0, then
(Te(g, h), W2, ) S IWigglolWighley2lWig ey
Ifq = 0, then

|(1-e(g, h), VV]?ofH ) |g|L2|W/l,0h|s,y/2|I/Vl,0f|s,y/2- (3.76)
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Recalling that £57h = L5V h + £57h = —T¢(uz, h) + £57h, the next lemma fol-
lows from (3.76) and Lemma 3.3.

Lemma 3.9. Let! > 0. The estimate |{£%7 h, Wfof)| S AWiohle,y/21Wio f e,y 2 holds.

In the following, we give an estimate for the commutator between £ and W, , as a
special case.

Lemma 3.10. Let [,g > 0, =2 < y < 0. The estimate |{[£>7, W 41f, Wiq ) <
|Wl,qf|i2/ holds.
y/2

Proof. Recall that £&7 = £57 + £57, where £77f = —Fs’y(/ﬁ, ), LV f =
—TIer(f, ;ﬁ). Direct computation gives

1
(£ Wl W f) = [ Bk WSS Wy (W = W) dvdv, do
1 1
=5 [ B Af Ohig = W], dv v do

By using the change of variables (v, v«) — (v, v,), one has

(3 Wl f Wi )] = 5 [ B f2 Oy = W2 dv v do.
Then (3.75) gives
[ Bty ong - w2 do
< o — v P2 0) 2 W, () [b*’(cos 6)sin®(6/2) do,
which implies
(7 Wl £ Wi 15 [ To = 0alF20) 207 el £ dvdvs < Wiy f 12

By Lemma 3.3, we have

1
LS Wigl f Wig ) S 1118 f175.

Then the above two estimates complete the proof. ]

4. Propagation of regularity and the asymptotic formula

In this section we will give the proof of Theorem 1.2. With the coercivity estimate in
Theorem 2.1, the spectral gap estimate in Theorem 2.2, and the upper bound estimate in
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Theorem 3.1, we can derive the global well-posedness result (1.24) in Theorem 1.2 as
in [14].

Then it remains to show the propagation of regularity and the asymptotic formula.
We will derive propagation of regularity in Section 4.1 and the asymptotic formula in
Section 4.2.

4.1. Propagation of regularity

In this subsection we prove (1.26) as stated in Theorem 4.2. We recall (1.18), (1.19),
(1.20), (1.21), (1.22), and (1.23) concerning the norms used.

We first consider propagation of spatial regularity with polynomial weight, i.e. the
norm |- I3 7.

Theorem 4.1. Let m,l > 0. Suppose f is a solution to the Boltzmann equation (1.16)
with initial data fy satisfying ||f0||L]1< 13 < oo There is a constant § > 0 such that if

”fO”LliLz < 6, then

WAl gerz + MMy 1222, S W folley 20+ folly 12)- 4D

el+y/2

Note that we will show propagation of the norm || - || Ll 12 only under the smallness
m

assumption on ||f0||L’1cL2 and finiteness on ||f0||L]1 L
Proof of Theorem 4.1. Consider
0 f +v-Vif+£5f =T f). (4.2

with the initial condition fy. For simplicity, denote # = T'*(f, f).
Recall (1.24) as

||f||L}€L°T°L2 + ”f”L}CL%Lg,y/Z < ”fO“L}CLZ' 4.3)

The proof of the theorem is divided into three steps, where | - ||L,1c 12 |- ||L]1(le, and
m

-1z 1, L3 are considered respectively.
Step 1: | - ||L11{ 12. Following the proof of [14, Theorem 5.1], we have
Ma.boelligy rz SNA=P)fllzy rzrz  + 1SNy Lore + 1 folly 22
T 2
~ 1
2 Z(/ |<Jf<k>m,P,-w>|2dz) , (44)
i kezd O

where { P} }; is a set of polynomials with degree < 4.
Taking the Fourier transform of (4.2) with respect to x, at mode k € 7.3, we have

3 f (k) +iv-kfk)+ L5 f(k) = F(k). (4.5)
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Taking the inner product with (k)2™ f , similarly to [14, equation (3.7)], we have
1ALy, pgore HNA=P) fllpy g2z

&,y/2

S ol o + Z(/O @ n fa) . @)

keZ3

By suitably combining (4.4) and (4.6), and noting that

la.b.ellzy 3 ~ WP Fley, 1202, -

we have

WA lzy  rgere + 0 F MLy 1222, S W folley 12
sm m &,

v/2
1

P23 ([ 1w e

J keZ3

+k§3(/ G aom. wm A ar) . @)

Recalling that J?(k) = Zpezg, I‘E(f(k —-p), f(p)), by Theorem 3.1 and
(k)" < (k=p)" + (p)" (4.8)

2
dt)

el ey 1202 -

&,y/2

we have

NI=

' 3 r 1
Z (/0 ‘<(k)m Z Lé(f(k — p), f(p)). Pj,u2>

kez3 pEZ3

S VAP TIEL VATV VE IR

and (similarly to the estimate for the upper bound for [14, equation (3.8)])

() ar)

keZ3
AR WEE L) VSV

<<k>’" R NA) <k>’"f>

PpEZ3

<
S allf “L}(’mL%LiV/
1

—||f||L1L<><>L2||f||L1 L312
57/2

Plugging the above two inequalities into (4.7), for 0 < n < 1, we get

||f||L1 ZLPL? + ”f”L‘ L3 L2

&,y/2

S Wollzy, 2+l SNy 1202 —IIfIILl el flleizee

v/2 &,y/2

_||f||L L°°L2||f||L‘ LZL?;//Z
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By choosing 1 small, recalling (4.3), and under the smallness assumption on || fo| LlL2s
we arrive at

WALy egere + 1Sy 2222 < Wolley ) 22 4.9)
Step 2: || - || L3 We now consider propagation of polynomial moments. Starting from

(4.5), taking the inner product with W5; f , similarly to [14, equation (3.7)], we have

Iz pger + A =YW fllpparz |

1

< folly iz + Z(/O (. ) dr) 4.10)

kez3

In this step, J(k) = [£°, Wil f (k) + Wi ¥ pezs T°(f (k = p). f(p)). By (2.50) and
(4.3), we have

IPWiflliezez , S Wfllkezrz < Wolleyze- (4.11)

A suitable combination of (4.10) and (4.11) gives

||f||L lrger2 + ||f||L 17212

&l+y/2

!
Sl + X ([ 12 mAd) @

keZ3

For the term involving [£?, Wl]f(k), by Lemma 3.10 we get

T R R 3
Z(/O |<[x8,Wz]f,sz>|dr) Sl

l+y/2
kez3

Since | loy = |+ Iz, = |-1zz,,  wehave | fl2 < ulflz2
which gives

vy TE@DIS 2 |

> ([ e wifom

keZ3

Solfleiezez, , +CODISli2ez - (4.13)

I+y/2 v/

For the term involving W} ZpEZ3 Fs(f(k - D), f(p)), by (3.76) in Lemma 3.8 we

2

keZ3

<Wl YT k=p). f(p)). Wlf>‘dt)2

peZ3

1
||f||L1L L2||f||L 11212 (4.14)

l+/2

Sl fllzrare

I+/2
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Plugging (4.13) and (4.14) into (4.12), by choosing 1 small and using (4.3), under the
smallness assumption on || fo|| Lirz We have

Iz egerz + M Mz ez, S Wfollpiez + 1 Fllezarz < Wfolliizz. (415

where we have used (4.3) in the last inequality.

Step 3: | - |l Ll 13 We now show the propagation of spatial regularity with polynomial

moment. Starting from (4.5), taking the inner product with (k)™ Wy, f , similarly to [14,
equation (3.7)], we have

£y, eserz + NA=PIWi Ly r2r2

T A~ ~
Sl + 3 ([ 1R wrmwpa) @ie

keZ3

In this step, K (k) = [£°, Wil f (k) + Wi ¥ pezs T2(f (k = p), f(p)). By (2.50) and
(4.9), we have

WPWiflley  e2ez , S WSllzy 22rz < Wolley go- (4.17)
A suitable combination of (4.16) and (4.17) gives

ey ez + 0 MLy 32,

SPED> (/OTI(

keZ3

J, (k)2 Wy )] dt) . (4.18)

Similarly to (4.13), we have

2 (/OT (e Wil (02wl )

keZ3

SolSley ezez,, , FCODIS LY 1222 - (4.19)

/2

For the term involving W} Zpeza Fe(f(k - p), f(p)), by (3.76) in Lemma 3.8 with
(4.8), we get

T . . . 3
) (/0 (kW S Tk - p). F (o). <k>’"sz>|dt)

kez3 pez?
- L
Sy, 502, T g W gag el ey, 502,

1
+ 4_;7”f”Lzlc,mL%oLz”f”L}cLZTLz (4.20)

s,l+y/2.
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Plugging (4.19) and (4.20) into (4.18), by choosing 7 small, recalling (4.3), under the
smallness assumption on || fo|| Lir2s We have
”f”L}C’mLC}OLIZ + ”f”L}{’mLZTLiHy/Z
SWolley, 2+ 0 0y 1202, 10y 2l Flliiezez,, -
By (4.9), (4.15), and (4.1) we complete the proof of the theorem. [
We now turn to the propagation of spatial and velocity regularity with polynomial
moment. Taking the v-derivative of dg of (4.5), we get

9,05 f (k) +iv - kdg f (k) + £505 f (k)
= i[v-k,35)f (k) + [£°, 6] f (k) + 5T (£, F) (k).

Taking the inner product with (k)2 (v)2d5 f, where € Z3, m, 1 > 0, similarly to
[14, equation (3.7)], we have

19 fllzy ez + IA=PIYWidp fllps 1272
1

T . 2
S lop flley a3 ([ I kpmitap flar) ', a2

keZ3
where
F (k) = iWi[v -k, 9] f (k) + (25, Wi)dp f (k) + Wi[£2, 9] f (k)
+Widg Y T°(f(k - p). f(p). (4.22)
pEZ3

By (2.50) and integrating by parts, it holds that
IBWidp flley 1222, SWSlley 1322, S 1follzy ) 22s (4.23)
where we have used (4.9) in the last inequality.
A suitable combination of (4.21) and (4.23) gives
19 S lzy , roorz + 198 SNy 1212

gl+y/2

T A~ N 2
Sl ot 3 ([ 10 G wiap Alar) . a2

keZ3

We now estimate the last term in (4.24). Recalling (4.22), we will estimate term by
term.
For the term involving i[v - k, dg] f (k), if B = (B1. B2, B3), then

3
[v-k, 351 (k) = = Bk, / (K.

j=1
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Hence,

1

T A N 2
> ( /0 ([v-k. 961/ (k). (k)2 (v)* 3 )] dr)

keZ3

(/ Zﬂjl( )" 9p—e, £ )] 12 Ok 35/ ()2, . dt)z

keZ3 j=1

Snldpflley, 1212 ||f||L1

k,m+1

LN : (4.25)

el+ /2 &,y/2+1—(y+2s)

Similarly to (4.19), we have

T ~ A 2
S e witdg £, (k)2 widg f)| dt
0

keZ3

< 77||aﬁf||L1 L2 L? + C(’?J)”aﬂf”L}(’mLz L2 - (4.26)

&l+y/2 T ey/2

By Lemma 3.9 we get

T . . 3
Z( [ it an1 70 <k>2'"Wza,sf)|dr)

kez3
(/0 > 1030 Flsz,, 10738 Pz, )

k€Z3 B1<B

1
2

||f||L1 L HN (4-27)

&l+ /2

< 77||aﬂf||L1 SL3L2

&1+ /2

For the term involving dg Zpeza I’s(f(k - p), f(p)), by (3.76) in Lemma 3.8, with
(4.8), we get

T . . . 3
> (] Kaﬂ ST K - ). (). (k>2’”(v)2laﬂf>‘dt)

keZ3 peZ3

< 77||a;3f||L1 LL3L2

&l+y/2

+ —||f||L1L°°L2||an||L1 L L? ||f||L1 L°°L2||a/3f||L1L2L2

&l+ /2 gl+y/2
" —||aﬁf||L1LooLz||f||L1 a2, ||aﬂf||L1 el g,
1 1
ol egsen ey sy, g MgV gy, 429)

With the above preparation, we are ready to prove the propagation of both spatial and
velocity regularity with polynomial weight in the following theorem.
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Theorem 4.2. Letn € N, m,[ > 0. Suppose f is a solution to the Boltzmann equation
(1.16) with initial data fo verifying || follmn1 < 0o. There is a constant § > 0 and a
polynomial Py, with P,(0) = 0 such that if||f0||L]1<Lz < 6, then

Er(fim,n.l)+ Dp(fim.n. 1) < Pu(ll follmn,0)- (4.29)

Proof. Recall the notation E7(f;m,n,[), D7(f:m,n,l) in (1.22) and || folm,n,; in
(1.23). We will prove (4.29) by induction. First, by (4.1), we see that (4.29) is valid for
n = 0 with Py(x) = x(1 + x).

Let N > 0 be an integer. Let us assume that (4.29) is valid for any 0 <n < N and
m, [ > 0. We will prove the above statement (4.29) is also valid forn = N + 1, m,[ > 0.
To be clear, we fix two parameters m«, [, > 0 and prove (4.29) forn = N + 1, m = my,
[ = .

We concentrate on || - || i, BN+ We divide the proof into four steps for the estima-
tion on || - "LIHN‘H’ Il - ||L1 ”Z,N:l, Il ||L LN and || - ||L1 LN respectively.

Step 1. | - ”L}(HNH‘ We start from (4.24) by taking || = N + 1, m =1 = 0. In this case,
[£8, W;] = 0in (4.22).

Plugging (4.25), (4.27), and (4.28) for the case m = [ = 0 into (4.24), taking the sum
over || = N + 1, by choosing 7 small and under the smallness assumption on | fp || L1
which implies ”f”L,ch%oLz and ”f”L;chZTL?,y/z are small, and by using (4.29) withn = N,
m=1,1 = —(y + 2s), we have

1Al L) e prnn + ||f||L]1€L2Tg£1’Vy721
S Mfollpgve + Py (I folli,n—+25) (1 + Pl folli,n—p+25)))-  (4.30)

Let us denote PON+1.0(x) := Py (x)(1 + Px (x)). Adding (4.30) and (4.29) withn = N,
m = 1,1 = —(y + 2s), we have

Er(f;0,N +1,0) + D&(f:0,N +1,0) < POV TR0 follov+10). (43D

Step 2. || - ||L1 HN+ We start from (4.24) by taking || = N + 1, m = my,l = 0. In
this case, [£°, Wl] = 0in (4.22).

Plugging (4.25), (4.27), and (4.28) for the case m = m4, [ = 0 into (4.24), taking
the sum over || = N + 1, by choosing 7 small and under the smallness assumption
on ||fo||L]1€L2 which implies ||f||L]1€L%oL2 and ||f||L]ch2TL2 » &Te small, using (4.29) with

&Y.

n=N,m=ms«+1,l =—(y 4+ 2s) and (4.31), we have
”f”Lllc,m*L%OHNH + ”f”Ll L2 HN721
S W ollzy, e + Pollfolm.00) PN Sl 1.0

+ PNl follmy+1,8,—y+25) (1 + Pn (Il follmst1,8,—(r+25)))- (4.32)
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Let us define PN +10(x) := Py(x) POV FT1.0(x) + Py (x)(1 + Py (x)). Adding (4.32)
and (4.29) withn = N,m = m« + 1,1 = —(y + 2s), we have

Er(fimx, N + 1,0) + D5(fims, N + 1,0) < P™NHL0(| foll . N41,0). (4.33)

Step 3. || - ||L11(I_'IIN+1. We start from (4.24) by taking |8| = N +1,m = 0,1 = I,.

Plugging (4.25), (4.26), (4.27), and (4.28) for the case m = 0,/ = I, into (4.24), taking
the sum over || = N + 1, by choosing 1 small and under the smallness assumption on
||f0||L}cL2 which implies ||f||L]1€L%oL2 is small, using (4.29) withn = N, m = 1,1 =
I« — (y 4+ 2s) and (4.31), we have

1/ N zgeies + 1F Iy s

elx+y/2
< ||f0||L,1€HlN+1 + Po(ll follo,o.. ) POV 0 follo,n+1,0)
+ Pn(l foll1, N, —y+25) (1 + P (Il foll 1, N1 —y+25)))- (4.34)

Let us define PON+1l (x) := Py(x) PON+T10(x) + Py (x)(1 + Py (x)). Adding (4.34)
and (4.29) withn = N,m = 1,1 = I, — (y + 2s), we have

Er(f;0,N 4 1,1,) + D&(f;0,N + 1,1) < PONTU ) (|| followv+1.s).  (4.35)

Step 4. || - ||L’1c HNH- We start from (4.24) by taking |B| = N + 1, m = my, [ = ls.

Plugging (4.25), (4.26), (4.27), and (4.28) for the case m = my, | = I, into (4.24),
taking the sum over || = N + 1, by choosing 1 small and under the smallness assumption
on ||f0||L11L2 which implies ”f”L’ch%oLz is small, and by using (4.31), (4.33), (4.35), and
4.29) withn = N,m =my + 1,1 = 1« — (y + 2s), we have

||f||Lllc,m*L(7)"Oler+l + ||f||Lllc,m*L%'H€1,\;:—iy/2
~ 0 Lllcm*HlN+1 0 0llmy,0,l« 0 10 0ll0,N+1,0
< /ol + Po([l foll YPONELO(| fo] )
B *

+ Po([l follme.0.0) POV 1 () follow+1,0,)
+ Po(|l follo,o..) P™ N T follme,n+1,0)
+ PN (Il follme+1,M0—r+25) (1 + PN (Il follmu+1,M, 1 +25))).  (4.36)

Define
Pyii(x) = PO(X)PO,N+1,I*(X) + PO(X)PO,N+1,O(X)
+ Po(x) PN L0y 4+ Py (x)(1 4+ Py (x)).

Note that Py 41 is independent of my, [«. Summing (4.36) and (4.29) withn = N, m =
my + 1,1 =l — (y + 2s) gives

Er(fims. N + 1.1.) + D7 (fims. N + 1.1) S PN follm,,v41.1.)-

And this completes the proof of the theorem. ]
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4.2. Global asymptotics
We will prove (1.28) in this subsection. We first give an estimate of the operator ' — 'L,

Lemma 4.1. For suitable functions g, h, f, there holds
(T =TE) (g h). N S elglaalhlag, 1122 -

9+y/2

Proof. Note that
(T° = TL)(g.h). f) = (Q°(u2g. u2h) — QL (uig w2 h). u™2 f).
By the proof in [41], it holds that
(Q°(G. H) — Q"(G. H). F)| S ¢lGlyy, |Hlpa [Flzz .
By using the fact that
IV3(u2h)| < ()2 (Bl + V] + [V2h] + [V3h]). (4.37)

and the proof in [41], the estimate in the lemma follows. Note that the additional 3 weight
(from 6 + y/2 to 9 + y/2) for the function & comes from (v)3 in (4.37). On the other
hand, the factor /,L% before g absorbs any polynomial weight. |

We are ready to prove (1.28) in Theorem 1.2.

Proof of (1.28). Let £ and f be the solutions to (1.16) and (1.6) respectively with the
initial data fo. Set Fg := e~ (f¢ — fL). Then it solves

WFg+v-ViFg+ 2EFh =" [(£L — 25 f¢ + (Tf = TL)(fe f1)]
+T(f%, FR) + TH(FR. 1)

For simplicity, we denote the right-hand side by #,

H o= (L - £ fF + (T =TH)(f7, )]

+T(f%, FR) + TH(F. 1)
Taking the Fourier transform with respect to x, for the mode k € Z3, we have
3, Fa(k) +iv - kF&(k) + £LFa(k) = R (k). (4.38)
where
(k) = 7N (LE — £°) 2 (k)
+ 3 e = TE (R - p). L)

pEZ3
+ Y. T(f(k — p). Fi(p)
pEZ3
+ 3 PL(FRG— ), FE()). (4.39)

peZ3



Solutions to the non-cutoff Boltzmann equation in the grazing limit 77

We divide the proof into three steps.

Step 1: Macroscopic part. For the estimate of [a, b, c] of Fj, defined by (2.50), by [14
Theorem 5.1], since F(0) = 0, it holds that

[a, b, C]||L1L2 < (T _]P)FR”LILZLZ ,t ||FR||L1L°°L2

Yy (/ Gl )P )

J kez3

where {P;}; is a set of polynomials with degree < 4.

Note that J?’(k) has four terms in (4.39). For the term Zpez3 Fs(f\e(k —-p), I/*"I\%(p)),
by Theorem 3.1, we have
2 3
dt)

S

keZ3

< 3" LE(Fk — p). F(p)). Pju%>

pEZ3

SN eg e PRl g ez,

Similarly, for the term Zp€Z3 FL(F/‘I\% (k — p), fX(p)), we have

£

kez3
N ||FR||L1L°°L2||f ||L1L2TL§ vz

1

2 2
dt)

For the term ) _ .73 e~ I(I? — FL)(}”\&(k - p), fL(p)), by Lemma 4.1 we have

i e L 1
2 (/0 K Y e T =TH (k= p). fH(p)), me>

keZ3 pEeZ3

L
SN nl o mg,,

3 rL(FRk - p), fE(p)), Pm%>

peZ3

1

2 2
dt)

Similarly, for the term e~ (££ — 1’,"’“)7’7’“(/(), by Lemma 4.1 we have

T 2
Z(/O e (2L — 29 TP (K), Pt >|2dz) 1Ny

T 9+y/z'
keZ3

In summary, we have
lla.b.cllyza = CHl@—P)FRllizaza  + Cill Pl oo

+Cill f° ||L1L°°L2 ||FR||L1L2 L2

T+0,y/2

+C1||FR||L1L°°L2||f ||L 17272

T™0,y/2

+ Cill /g L°°H3||f lziezmg,

+Cillf e zmg, - (440)

9+y/2
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Step 2: Microscopic part. From (4.38), taking the inner product with If”;‘g(k), similarly to
[14, equation (3.7)], with F(0) = 0, we have

o :
Pl + 10 =P PRl 5 ([ 1RG0, Frontar)

0,y/2
keZ3

We estimate JA(’(k) term by term as follows. For the term ZPGZ3 Fa(f\s(k - D),
I?I\%(p)), by Theorem 3.1, we have

T Py _ - 3
3 ( [ ‘( S° (7K - p), Fa(p), Fz%(k)>‘ dt)
keZ3 pEZ3

< &
= 77||FR||L}€L2TL3W

0y/2°

" + 4_n”fe”L}cL%oLZ”FIg{”L}(LZTLZ

Similarly, for the term ZpeZ3 FL(I/T;Se (k —p), ﬁ(p)), we have

S

keZ3

1
2
dl)

__ & L
+4n||FR”L}cL°T°L2”f ”L}CLZTLg,y/Z'

< > TE(FRk - 2. L)), f;%(k)>

pEeZ3

< &
~ 7)||FR||L}€L§L3,V/2

For the term ZPGZ3 e~ I(I¢ — FL)(}’\a(k - p), ﬁ(p)), by Lemma 4.1 we have

2

kezZ3

< S e (0 - PYGFEGk - p). E ), f?%(k)}‘ dr)2

pEZ3

< £ —|fe L
SFRNL 2323, , + g 1 Mg 1 P e g,

Finally, for the term e ~! (£% — Is)ﬁ(k), by Lemma 4.1 we have

2

keZ3

, L ;
[ e et - 27w, Frao dr)

0

< &
< RN 252z, FH

1
/2 + E”fE”L}CLZ[-ﬂ

Combining the above estimates gives

||F181||L,1L%°L2 + 1T — P)FIEQ”L}(L%Lg’V/z

2
< U||FI§||L,1L2TL§,V/2 + 7||f8||L}cL;°L2||F§||L]1L2TL§,V/2

2 e L 2 re L
+ " ”FR”L}CL%OLZ”f ”Llch%'Lg,y/Z + 0 ”f ||L]1<L?-°H3”f ||L]1¢L2TH§”+y/2

4.41)

oty/2”

&)
S ey
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Step 3: Micro-macro components. The combination (4.40) x 2171 + (4.41) gives

1
”FR”L lrgerr + —||(]I —]P)FR”L L3213 C ~—lla.b, C]”L 172

/22

G 1
<RIy, + (50 + ) Mg Rl 03

T™0,y/2 T™0,y/2

Cz 1
+ (2 + ) Fkl gl gz

n T+0,y/2
C2 1 C2 1
G LU VR D VRPN G [ P PSYRV N
Note that

1 1
SNA=P)Frlirzz  + 56 II[a b.elllizz = el Frllzizzzz -

Then by choosing n = 5+, we have

R [T PN I

SIFRIL L2 w4 ||FR||L1L 212,

2C2 1
G | YR T IS

Tr0,y/2

2C2 1

+ (2 ) o iy,
2C2 1

+< o )||f ||L1L2H93+y/2

Under the smallness assumption on || fo|| L1 by (1.24) we have

IFRlL er> + 1 Frllz 2212 2

L
SV Nyzmg,,, + 1 Mpegmsl fo i mg,

< P3(| follo,3,9)(1 + P3(I| follo,3,9)).

where we have used the propagation estimates (1.26) and (1.27) withm =0,n =3,/ = 9.
Note that F§ = e~ 1(f* — fL) and this gives (1.28). n

5. Propagation of moment and decay transition

With Lemma 3.8 and [14, proof of Theorem 2.1], we have the propagation of moment
stated in the following theorem.

Theorem 5.1. Under the assumptions in Theorem 1.2, letl,q > 0, =2 < y < 0. There is
a constant §1 > 0, such that if ||W 4 foll L2 < 81, then the solution ¢ to the Boltzmann
equation (1.16) satisfies

”VVl,qfs”L}cL;"LZ ~ ||quf0||L1L2
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We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Consider
0 fe+v-Vifo+L52=T°8(f°% 5. 5.1

2(1—s)
Recall that T, = (%) r+2sl k= and the function A.(¢) defined in (1.36) is

1
I+[y+2s]°
Aet) = (T 0 + (1= (T f))( 2(1— >)

Here, the function ¢ is defined in (1.31). Multiplying (5.1) by g(¢) := exp(AA4,(¢)), with
he(t) :== g(t) fe(t), we have

3h + v - Vih® + £5h° = TE(f2,h°) + AAL(0)h.

Similarly to [14, equation (6.3)], we get

> sup [lAc, k)||Lz+\/_Z(/O |h(t. k)2, d )

kezs 0<t<T

keZ3
A T . 2
< S 1A®Ie+VE Y ( / AL K2, dt) .
keZ3 keZ3 0

Now we use dissipation and propagation of moment to cancel the last term. Note
0<A,() <1land

h(t. k)2, 5 = [(0) TY20h )2, > [Cht. k)2,

which gives, for A /1y < 1,

> sup A, k)||L2+\/_Z(/ (e, k)2, d )

kez3 0=t=T kez?
R T R z
< S 1A®le+ Vi Y ( [0 AL = Oh 02 dr) 62
keZ3 keZ3

We claim that for any 7" > 0,

> sup [lAt.K)z2 + VAo Z(/O h(t. k)2, d ) S Wogfollpyr2e (53)

keZ3 0st<T keZ3

Note that the support of (1 — ¢) is |v]| > 2—18 We prove the claim by considering three
cases.
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Case 1: T < 5-. In this case, 1 < T < 5- < |v|. With the fact that 4.(r) < 2¢, by the
propagation of moment in Theorem 5.1, we have

T A~
3 ( | aona-oicwz; dz)

keZ3

1
2

T ~
D> ( /0 exp(4rr —2g0)[|(1 = &) exp(g{v) £ (¢ k)13 dt)

keZ3
$C@. ) Y =) explq() f (k)02
keZ3
< Clg, Ml explg(v) follL) 12 (5.4)

because ¢ > 2A. Plugging (5.4) into (5.2), we have (5.3) for T < Zi

&€

Case 2: ﬁ < T < T, Inview of (5.4), we only need to consider

T ) 3
Z( / A;(r)n(l—z)h(z,k)nzzdr) .

keZ3 " 2¢
The domain of 5- < ¢ < T, v € R can be divided into two parts:

Dy ={(v) = Te}. Dz:={(v) > Te}.

2(1—s)
In Dy, recalling that 7, = (1)+2s, we have (v)? 725207 > 1 50 that

T . 3
v Z (/1 AL()|[1p, (1 = O, k)I7» dt)

kez3 " 2
T 3
2
703 (/1 A k)IIZ, dt) . (5.5)
kezZ3 " 2

Note that by taking A small enough such that A/A¢ < 1, this can be absorbed by the
dissipation. In D,, since (v) > T, > T > t, similarly to (5.4), by using Theorem 5.1 we
have

r A 3
([, Atn - i )
kez3 ™" 2

1
2

T ~
D> (/1 exp(4Ar —2¢1)[|(1 = {) exp(q(v) f (. k)17 d;)

kez3
< C(g, Ml explg(v) follL) L2 (5.6)

Plugging (5.5) and (5.6) into (5.2), we have (5.3) for 2%3 <T<T,.
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Case 3: T > Tg. In view of (5.4), (5.5), and (5.6), we only need to consider

T R 2
Z( [ A;(t)u(l—z)ha,k)nizdz) ,

keZ3

where A (¢) gives some decay since 0 < x < 1,

A _ t k=1 1
(1) = K(82(1—s)) g2(1=s)"

Note that when 7 > T, we have A¢(t) = (5q=)"-
Divide the domain T, < ¢ < T, v € R3 into two parts,

t k—1
— y+2s
Ds = {(”) = (gzu—s)) }

D, = {(v)y+2s<<ﬁ)lc—l}'

In D3, we have

1 t k=1 1
y+2s ’
(v) 20-5) = (82(1—s)) 2= = A1)

so that

- R 3
iy (/ Ay (1 = DA, K17 df)

keZ3 T:

T }
VY ( /T [LICol dr) :

keZ3 e

82

5.7

Note that by taking A small enough such that A/A¢ < 1, this can be absorbed by the
dissipation. In Dy, since (v) > (Ez(f—_s))" , similarly to (5.4), by using Theorem 5.1 we

have
T R ) 2
! —Oh(t, k)|7.d
kZZ(/T A1, = O D1 d1
T P ) 3
= 3 ([ aorexn(2i( i) Wioat - 0.
keZ3 €

T K A
<y ( / AL exp(20: w(ﬁ) N =0 expa) f .02 dr)

keZ3 Te
S C@. k) Y 10 =0 exp(g(v) /(.03 -
keZ3
< Cg, A1) exp(g(v)) follL: 125

1
2

(5.8)
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where for 0 < ¥ < 1, A < ¢, we have used the estimate

/TT A0 exp(20.- ) (=) ) e

r N U | N
Z/T K<82(1—s)) c2(1—s) eXp<2(A_q)(£2(1—s)) )dt

< / 2 expQ(h — q)z) di < C(g. A k).
0

Plugging (5.7) and (5.8) into (5.2), we have (5.3) for T > T5.
Since hf(t) := exp(AA:(2)) f4(¢), by (5.3) we get

17 @12 < exp(=Ade(0)]l exp(g(v)) follL; L2

By the definition of 4., we obtain (1.29).

A. Supplementary formulas and estimates

Lemma A.1 ([23, Lemma 4.1]). For any function f defined on S?, it holds that

2
_ o) — T
(oo [ VOO it
S2xS?2

lo — 7|2+2s
1
~ |W8((_AS2)2)f|22(§2) + |f|i2(§2)-
As consequence, for any function f defined on R3, it holds that

|f(ro) = f(ro)]?

25—2 2 2
(1— 5)> /R o T Nomzer o drdr +1 /1
+XS2x

1
~ WE((—As2)2) f172 + | f172.
Remark A.1. Lemma A.1 also holds if we replace 1j5—r|<¢ by 1jg—z|<2¢-
Similarly to [23, Lemma 5.8], we have the following lemma.

Lemma A.2. Let ¥ be Fourier transform operator. Then
FWE(~hg2)?) = WE(~Ag2) )T

Proposition A.1. Suppose

E(§) = ﬁ /Sz bS(é—| -0) min{|£|? sin®(6/2), 1} do.

Then we have

ol _ -
E*(§) = Lgizet 2 + L™ 2 [ <8P =672 4672,

83

(A.1)
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As a result, we have
E°(§) + 1~ (W9)*(§),

where W€ is defined in (1.30). Here, the constants in ~ may depend on s.

Proof. Recalling (1.7) and do = 4sin(8/2) dS dsin(6/2), we have

sin 5 <&

E®(§)=2(1 —s)82“2/7r sin™'72%(0/2) sin 01 o _, min{|€|*sin?(6/2), 1} dsin(6/2).
0 2

By the change of variable ¢ = sin(6/2), we have

E*(§) = 2(1 - 5)e™ 2 / I min(g 1) di.

0

When [£| < e71, we have
&
EA©) =20 - 9220 [ 1720 ar = g
0

When [£| > ¢71, we have

-1

€] .
E®(§) =2(1 —s)s“‘ZIElZ/ 1172 dr 4 2(1 —s)s”_zf 125 gy
0 €1

orl - -
— g2 2[;(|§|2S —e ) e 2si|.
The proof is completed by combining the above two cases. |

We now recall the definition of the symbol class ST%.

Definition A.1. A smooth function a(v, §) is a symbol of type 7’ if a(v, §) satisfies, for
any multi-indices « and S,

|(3g5a)(v. §)] < Cap (€)™,
where Cy g is a constant depending only on o and f8.
Lemma A.3 ([23, Lemma 5.3]). Let [,s,7 € R, M € Sio ®€ S{,o‘ The estimate
[[M(D),®]flgs = |f|le_+1571 holds.

We now recall the dyadic decomposition. Let B4/3 == {x € R?: |x| <4/3}and C =
{x € R3:3/4 < |x| < 8/3}. Denote two radial functions ¢ € C$°(By43) and ¢ € C{°(C)
which satisfy

0<¢, ¥y <1 and ¢(x)+ ZW(Z_jx) =1 forallx € R3, (A2)
Jj=0

Set p_1(x) == ¢(x) and ¢;(x) := ¥ (277 x) for any x € R3 and j > 0. Then the dyadic
decomposition f = Y %2 | ¢; f holds for any function defined on R>.
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Proposition A.2. ([26, Proposition 5.2]) It holds that

|u]
/]R3x82 (ﬂ a)h(u)(f(u+)—f(| oy +)) do du
B ; VAN
= [ o o) (e —i( et ) fe do ae.
Lemma Ad4. Let YV (h, f) :=fb8(|’;—| -a)(u)”h(u)[f(uJ“)—f(|u||Z—j:‘)] dudao, where
ut = “+|"|0 . Then
1YY (h, I < AIWEWy2hlp2 + [WE(D)Wy 2hlL2)
X ((WEWya flrz + [WEDYWy 2 fL2).
Proof. We divide the proof into two steps.

Step 1: y = 0. Since the support of b° is in ﬁ c0 >0, we get |ul/~/2 < [ut| < |ul.
Recalling the function ¢ in (1.31), we define {4(-) := {(7). We apply the decomposition

YO h, ) = Y0 (h, t(ev) ) + Y5O (h. (1 = {(ev) f)
= Y20 (La(ev)h, S (ev) ) + YO (b (1 = £ (ev) f). (A.3)

Note that the second equality is ensured by the definition of ¢ and the fact that |u|/+/2 <
[t | < |ul. The first term in (A.3) can be decomposed further as

Y0 (La(ev)h. L (ev) f) = Y20 (L (eD)Ea(20) . (V) f)
+ ¥°0((1 = {(eD))Zalev)h. L (ev) f). (A4)

Step 1.1: Estimate of Y5°(¢(eD)C4(gv)h, L(ev) f). By Proposition A.2 and the fact
that |£]/+/2 < |E1] < |£]|, we have

Y*2(¢(eD)Ea(ev)h, {(ev) f)
= Y*0(L(eD)Ca(ev)h. La(eD)E (ev) f)

= [ 5 (o) @Dz e wla(eD)gen) )
+
= @eD)e0) ) (Jul g ) e o

By Taylor expansion,

ut
(GaleD)Ee0) @) = Ca(eDI 0 Nl )

(! oD . .
= ( ‘cose)/o( (Ga(eD)(e0) ) 't () - ut dic
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where u™ (k) = (1 — «)|u| % + ku™. Then by the Cauchy—Schwarz inequality, we get
Y*0(L(eD)Sa(ev)h, E(ev) f)
of U 1
= [ ¥ o) (1= o) €D

x/ (V(¢a(sD)Z(sv) f))(u™t (k) - u™ di du do.

< (/b€(| | 0) sin? —|(§(8D)§4(£v)h)(u)| 2+ 2 du do)

D=

X (/ bs(ﬁ a) sin? 5|(V(§4(8D)§(8v)f))(u+(/c))|2 du do)

< [8(eD)8a(ev)h|L21a(eD)E(ev) f | g
< IWShIL2IWS(D) £ 12, (A5)
where we have used the fact that [u™| ~ |u|, the change of variable u — u ™ («), and the
estimate (2.8).
Step 1.2: Estimate of Y5°((1 — ¢ (eD))¢4(ev)h, L (ev) f). By Proposition A.2 and the
dyadic decomposition in the frequency space, we have

YO ((1 — &(eD))talsv)h, L (sv) f)

= / ”g(é o) ((1 = ¢ enGa(eln) ™)

e £ \1—
(=G (16l Joe) @ de do

= > Y. (A.6)

[>[~log, e]—4
ek = (e E et
v [ b (g )@ GEmE ~ @l (Il ) [@iee) /e s do

where @1 :=3_|;_j <5 j>—1 ¢;- Decompose as ¥; = Y} < + ¥, > according to sin(6/2) <
2! and sin(A/2) > 27!. By Taylor expansion,

@GaERE) — (pilale )h)(|s|é—+|) =(1-

where £ (k) = (1 — k) |€] % + k£ . Then by the Cauchy—Schwarz inequality, we obtain

o= [ 5( 50V (1= ) ([ Vonta@mE £ )

X (¢18(e) [)(E) dE do

/ VaG@m E ) - £ dr,

cos 0
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0 S
<2 ( [ (550 )i st ST ETEIIE (P dsda)

0 — 2
x ( / bs(é—| 0) 10 g <y si2 5|(¢lz(s-)f)(5)|2d5do)

< 27220 Vg (e 2 @1 E (e) 12
< &2V Ca(eh| 12|31 (&) L2 (A7)

where we have used the fact that |[ET| ~ |§] ~ 2! ol > s~ the change of variable & —>
£7 («), and the estimate

0 2!
/bs(é_| a) sin? 2]lsm rdo S (1=s)e 2s—2/0 11725 gp < g25-291(25=2)

Since

1

IVrZa(e)h] = l@1la(e)vh + (Vo) Za(e)h| < l@ila(evh| + 27 (@1 Cale)hl,

we have

2. Ys

I>[—1log, e]—4

S ). e (@lale vkl + 27 @ila(e)h] L) @i (e) f 2
I>[—log, €]—4

s( 3 <|¢zz4/<aw\h|iz+z’|¢zm|zz>)
I>[—log, e]—4
1

« ( Z 82s—2221s|¢l@|22)2

I>[—log, e]—4
S |Weh|2|WE (D) fL2. (A.8)

By the Cauchy—Schwarz inequality, the change of variables § — £+ and £ — |£| é—i‘, and
the estimate

be(i 0) L do < (1 — )52 ° (172 gy < g2s—292sl
|%-| sin 3 >2 ~ -1 ~ ’

we have similarly

o < [ 050 o z[|(¢z§4(8)h)(5+)|+‘(<pz§4(8)h)(lél|s+|)u

x |(@18(e) £)(E)| d& do
< 7202 La(e)h| 12|31 (6) f |- (A.9)




R.-J. Duan, L.-B. He, T. Yang, and Y.-L. Zhou

By taking the sum, we get

1

o — 2
) yz,zs( > 8“—222“@1:4(8-)11@2)

[>[—log, e]—4 I>[—log, ]—4

x( ) ezs—zzﬂﬂ@@m)

1>[—1log, e]—4

1
2

< IWED)A|2IWE(D) f L.
By combining (A.8) and (A.10), (A.6) gives

Y=0((1 = £(eD))ea(ev)h. L (ev) f)
S (IWeh|2 + [WH(D)h|2)[WH(D) f 2.

Step 1.3: Estimate of Y5°(h, (1 — ¢ (ev)) f). Note that

YO (A=t f)= Y. ¥@h o f)

k>[—log, e]—4

- Z Y= (grh, L(eD)gr f)

k>[—log, e]—4

Y YOGk, (1 - LD ).

k>[—log, e]—4

We first consider Zkz[— logy £]—4 Y& (@rh, L (eD)gy f). Decompose as

Y0 (@rh. ¢ (eDYpr f) = Yie< + Yi

according to sin(6/2) < 27% and sin(6/2) > 27,
For Yy <, by Taylor expansion of {(eD)gx f, similarly to (A.7), we have

Y= [ b”"(é—l Yy (1 - — =) @Eh

1
x[ (Ve(EeD)gr fYu™ (k) -ut dic du do
0
< & 71201 Ghl 2| VE (D) f 2.

By taking the sum, since |V(eD)og flr2 S |WE(D)gy f |12, we have

Yo Y Y e T2RGh L WE(D)gr f 112

k>[—log, e]—4 k>[—log, e]—4
< [WEh|L2AWE(D) f L2,
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(A.10)

(A.11)

(A.12)

(A.13)
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where we have used

DTIWED)er 7. = Y 27K IWED) 2 er £ 12,

k>—1 k>—1

S Y 22 WE D) f 17 + | o)

k>—1
SIWED) f17,. (A.14)

because W¢ € Sl1 0 2Kqr € Sllo, and Lemma A.3.
For Y. >, similarly to (A.9), we get ¥y > < 25722285\ h|12|E(eD) g f |12, and

Yo Y= Y & TPIGkhlelen f L

k>[—log, e]—4 k>[—1log, e]—4
S IWEh|L2|W? fLa. (A.15)

Combining (A.13) and (A.15), we get

> YOGh. L(ED)gr ) S IWEh| L2 WE(D) fl2 + [WEh| 2| WE £ 2.
k>[—log, e]—4
(A.16)
Now we consider "> [_jog, -4 ¥ (@r/t, (1 = £ (eD))¢x /). By Proposition A.2 and
the dyadic decomposition in the frequency space, we have

Y& (@rh, (1 — L(eD))gxc f)

= [ ¥ (s -o)[@)(sﬂ — (181 ) 0 ~ ket € de do

e T
. = %’ —
) *(a MED = @igeh ded
N 4/ o) @) = @i (16l Joror © de do
= Z iyk,l.
I>[—log, €]—4

Decompose as ¥ ; = Yx1.< + Yk 1> according to sin(f/2) <2~ k+D/2 and sin(6/2) >
- (k+l)/2.

For Y 1 <, by Taylor expansion for ¢l(§;;71, similarly to (A.7), we have

Yej< = [bg(é_| 'G)Hmn%fr("*”/z(l B (:0159)

1
X(/o (V@1 @eh) (£ () - €+dl<)<0z¢kf(-§)d§d0

< 2le2 226 VD NG Gl 2@ or f 12
— g25—29s(k+D)y—

KIV@1 @il 2 orn f L2
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Since
IV@1@ih| = |Grvgeh + (V@)Gh| < |@rogih| + 27 |G @rhl,
where ¢; = D j—l|<4.j>—1%j> We have

> Vs

k,I>[—1log, e]—4

s Y 2% DR (Gugihl e + 27 GGl leier £
k,l>[—log, e]—4
1

<( 7

o~ 2
x( ) s2s—222“|mkf|zz)

k,l>[—log, e]—4

1
(82s7222sk272k |¢l U@kh |i2 + 82s7222sk272k272l |(ZZ (ﬁkh Iiz))
k,l>[—log, e]—4

< IWEh|2|WE(D) f g2 (A.17)
For Y ; >, we have
Yerz < 22611 Gih 2l oror S 112

Thus by (A.14),

Yo Yuss Y, e NG Gkl o f L
k,1>[—log, e]—4 k,1>[—log, e]—4

SIWEh|2IWE(D) f 2. (A.18)

Combining (A.17) and (A.18) gives

> YGrh, (1= L(ED)gr f) S IWEh|L2[WE(D) L2 (A.19)
k>[—log, e]—4

With (A.16) and (A.19), (A.12) gives
Y20 (h, (1 = ¢(ev) f) S IWEhlL2IWE(D) f |2 + [WEhlL2[W* f L2 (A.20)
Back to (A.3) and (A.4), by combining (A.5), (A.11), and (A.20), we get
Y500, )] S (Wehl + WD) (WS £l + WD) f112)2.  (A21)

Step 2: y # 0. For simplicity, denote w = |u||Z—L. Then W, /»(u) = W, /2(w). Note that

) h)[f ™) — fw)] = Wy ) ) [(Wyp2 ) ™) = (Wy 2 f)(w)]
+ Wy 2) @)Wy 2 ) ) (W 2 (W)Woy 2 (u™) = 1),
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which yields
,0
YoV(h, f) =Y (Wyoh, Wy )2 f) + A,

A= / b7 (2 0) Wy ah) () Wy )@ ) Wy o @)Wy o ut) = 1) dt dor

By the Cauchy—Schwarz inequality, | W, /2 (u)W_, 2 (u™) — 1| < sin? % and the estimate
(2.8), we have

Al S ( / D (11 O ) P2 h QP I, 2 o)Wy 20 ) = 1] do)2

( / D (11 a2 IO Wy o)Wy o) = 1] do)

S AWy 2hl2IlWy o £,

1
2

where the change of variable u — u™ has been used in the estimate for f. This together
with (A.21) completes the proof of the lemma. ]

Remark A.2. Set
+

X7 f) = [ 0 (20l (1 = upin] ft) = 7 (el )| o

Then
| X5V (h, )] S AWEWy 2hlp2 + [WE(D)W,y 2h|12)
X (|WEWy 2 flrz + IWE(DYWy 2 f12).

Indeed, by the identity
" (1= () = () (ul” ()™ = DA = E(ul) + @) (1= E(|ul)),
we have
XV (h, £) =YV (|- 177 = DA =Oh, f) + YV (1 =D, f).

Then the estimate follows from Lemmas A.4 and A.3 because (| - |Y ()77 — 1)(1 — ?),
1-¢eSY,

Lemma A.5. It holds that
2¢e
(1— s)sZS_Z/ / 071725 f(v) — f(vcos )P dvdl < |WE(D) fI2, + |WESI3,.
R3 Jo
We omit the proof for brevity because the localization techniques used in Lemma A.4

can be applied similarly by considering f(v)(f(v) — f(vcos8)) and f(vcos8)(f(v)—
f(vcos0)) separately.
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