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A criterion for cofiniteness of modules
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Abstract – Let A be a commutative noetherian ring, a be an ideal of A, and m; n be non-
negative integers. Let M be an A-module such that ExtiA.A=a; M/ is finitely generated for
all i � mC n. We define a class �n.a/ of modules and we assume that H s

a.M/ 2 �n.a/

for all s � m. We show that H s
a.M/ is a-cofinite for all s � m if either n D 1 or n � 2 and

ExtiA.A=a; H tCs�i
a .M// is finitely generated for all 1 � t � n � 1, i � t � 1 and s � m.

If A is a ring of dimension d and M 2 �n.a/ for any ideal a of dimension � d � 1, then we
prove that M 2 �n.a/ for any ideal a of A.

Mathematics Subject Classification (2020) – Primary 13E05; Secondary 13D45.
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1. Introduction

Throughout this paper A is a commutative noetherian ring, a is an ideal of A,
m; n are non-negative integer numbers and M is an A-module, unless otherwise
stated. Grothendieck [4, Exposé XIII, Conjecture 1.2] conjectured that if M is a
finitely generated A-module, then HomA.A=a; H i

a.M// is finitely generated, where
H i

a.M/ is the i -th local cohomology of M with respect to the ideal a. The concept of
cofiniteness of modules was first defined by Hartshorne [5], giving a negative answer to
the Grothendieck’s conjecture, and later was studied by many other authors [1,3,6–10].

An A-module M is said to be a-cofinite if Supp M � V.a/ and ExtiA.A=a; M/ is
finitely generated for all integers i � 0. In [11], Nazari and Sazeedeh introduced a
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criterion for the cofiniteness of modules. Roughly speaking, the criterion estimates
how much a module is close to be cofinite. We recall that an A-module M satisfies the
condition Pn.a/ if the following implication holds:

Pn.a/: If ExtiA.A=a;M/ is finite for all i � n and SuppM � V.a/, then M is a-cofinite.

We denote by �n.a/ the class of all modules satisfying the condition Pn.a/.
We start this paper by describing and getting some explanations of the class �n.a/,

especially in the case where n� 2. We give several examples and results at the beginning
of the paper. However, our main aim of this paper is to study the cofiniteness of local
cohomology modules when they belong to �n.a/ without any condition on the ideal a

or on the ring A. The first result is devoted to the case n D 1 as follows.

Theorem 1.1 (Theorem 2.10). If ExtiA.A=a; M/ is finitely generated for all i �

mC 1 and H i
a.M/ 2 �1.a/ for all i � m, then H i

a.M/ is a-cofinite for all i � m.

In the case where dim A=a D 1, Melkersson [10] showed that �1.a/ DMod-A and
so the theorem implies that H i

a.M/ is a-cofinite for all i whenever ExtiA.A=a; M/ is
finitely generated for all i � nC 1 where n D dim M .

Moreover, we have the following result for the class �n.a/ with n � 2.

Theorem 1.2 (Theorem 2.11). Assume that m is a non-negative integer such that
ExtiA.A=a; M/ is finitely generated for all i � m C n and H s

a.M/ 2 �n.a/ for all
s �m. If ExtiA.A=a; H tCs�i

a .M// is finitely generated for all 1 � t � n� 1, i � t � 1

and s � m, then H s
a.M/ is a-cofinite for all s � m.

As an application of this theorem, let ExtiA.A=a; M/ be finitely generated for all
i �mC 2 and let H i

a.M/ 2 �2.a/ for all i �m. We show that if HomA.A=a;H i
a.M//

is finitely generated for all i � m C 1, then H i
a.M/ is a-cofinite for all i � m. In

case dim A=a D 2, where A is a local ring, Bahmanpour et al. [1] showed that
�2.a/ D Mod-A and so this application generalizes [1, Theorem 3.7] and [11, The-
orem 3.7]. For the case of dim A=a D 3, assume that depth.Ann M; A=a/ > 0 and
ExtiA.A=a;M/ is finitely generated for all i � 2. Then we show that �a.M/ is a-cofinite
if HomA.A=a; H i

a.M// is finitely generated for i D 0; 1.
We give a result on modules whose local cohomology modules are nonzero only in

two consecutive numbers. To be more precise, assume that t is a non-negative integer
such that ExtiA.A=a; M/ is finitely generated for all i � nC t C 1 and H i

a.M/D 0 for
all i ¤ t; t C 1. Then we show that H tC1

a .M/ 2 �n.a/ if and only if H t
a.M/ 2 �nC2.a/.

One of the substantial results in the local cohomology theory and cofiniteness is the
change of ring principle. We show that this result holds for �n.a/ as well. Let B be a
finitely generated A-algebra and let M be a B-module. Then we show that M 2 �n.a/

if and only if M 2 �n.aB/.
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We end this paper with the following theorem which is a generalization of [11,
Theorem 2.3].

Theorem 1.3 (Theorem 2.16). Let A be a ring of dimension d and M 2 �n.a/ for
any ideal a of dimension � d � 1 (i.e. dim A=a � d � 1). Then M 2 �n.a/ for any
ideal a of A.

2. The main results

We start this section by defining a class of A-modules which has an essential role in
this paper. For the basic properties of local cohomology modules, we refer the readers
to [2].

Definition 2.1. Let n be a non-negative integer and let M be an A-module. We
say that M satisfies the condition Pn.a/ if the following implication holds:

Pn.a/: If ExtiA.A=a; M/ is finitely generated for all i � n and Supp M � V.a/, then
M is a-cofinite.

We define a class of A-modules as

�n.a/ D ¹M 2 Mod-A jM satisfies the condition Pn.a/º:

We observe that �0.a/ � �1.a/ � � � �. We also say that A satisfies the condition Pn.a/

if �n.a/ D Mod-A.

In the rest of this section, we assume that a is an ideal of A, n is a non-negative
integer and M is an A-module, unless otherwise stated. In order to describe the class
�n.a/, we give several examples. The first example shows that the top local cohomology
modules lie in �0.a/.

Example 2.2. Assume that a is an arbitrary ideal of A and M is an A-module
of dimension d , where dim M means the dimension of Supp M . Then H d

a .M/

is in �0.a/. To be more precise, if HomA.A=a; H d
a .M// is a finitely generated A-

module, then it follows from [11, Theorem 3.11] that H d
a .M/ is artinian and so, since

HomA.A=a; H d
a .M// has finite length, according to [9, Proposition 4.1], the module

H d
a .M/ is a-cofinite.

The following example identifies some modules in �1.a/.

Example 2.3. Given an arbitrary ideal a of A, by virtue of [1, Lemma 2.2],
M 2 �1.a/ for all modules M with dim M � 1. In particular, if dim A=a D 1, then
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it follows from [10, Theorem 2.3] that �1.a/ D Mod-A. Furthermore, if dim A D 2,
then it follows from [11, Corollary 2.4] that �1.a/ D Mod-A for any ideal a of A.

For the class �2.a/, we have the following example.

Example 2.4. Let a be an ideal of a local ring A with dim A=a D 2. It follows
from [1, Theorem 3.5] that �2.a/ D Mod-A. Furthermore, if A is a local ring with
dim A D 3, then it follows from [11, Corollary 2.5] that �2.a/ D Mod-A for any ideal
a of A.

In the previous example we may have �0.a/ ¤ Mod-A or �1.a/ ¤ Mod-A.

Example 2.5. The Hartshorne’s example [5, §3] shows that if a is an ideal of A

with dimA=aD 2, then we may have both �0.a/¤Mod-A and �1.a/¤Mod-A. More
precisely, assume that A D kJx; y; u; vK, where x; y; u; v are variables and k is a field.
Let p D .x; u/ and M D A=.xy � uv/. Then H 1

p .M/ … �1.a/ and H 2
p .M/ … �0.a/.

Indeed, H i
p.A/ D 0 for all i ¤ 2 as depth.p; A/ D 2 and since depth.p; M/ D 1, we

have �p.M/ D 0; hence we have an exact sequence of modules

0 �! H 1
p .M/ �! H 2

p .A/
xy�uv
�! H 2

p .A/ �! H 2
p .M/ �! 0:

By [5], the module H 2
p .M/ is not p-cofinite, and it follows from [7, Proposition 2.5]

that H 2
p .A/ is p-cofinite, hence H 1

p .M/ is not p-cofinite. This said, we observe that
ExtiA.A=p; H 1

p .M// is finitely generated for i D 0; 1, so that H 1
p .M/ … �1.a/; more-

over, HomA.A=p; H 2
p .M// is finitely generated, so that H 2

p .M/ … �0.a/.

For the case dim A=a D 3, we have the following result.

Proposition 2.6. Let A be a local ring with dimA=aD 3, depth.AnnM;A=a/ > 0,
and let ExtiA.A=a; M/ be finitely generated for all i � 2. If HomA.A=a; H i

a.M// is
finitely generated for i D 0; 1, then �a.M/ is a-cofinite.

Proof. There exists an element x 2 Ann M such that x is an A=a-sequence; hence
dim A=xAC a D 2. It follows from [3, Proposition 1] that ExtiA.A=xAC a; M/ is
finitely generated for all i � 2. On the other hand, using [3, Proposition 2], for each i � 0,
the module H i

a.M/ is a-cofinite if and only if H i
xACa.M/ is xAC a-cofinite. Set bD

xAC a and xM DM=�a.M/. Then there is an exact sequence of modules 0! xM !

E!N ! 0 in which E is an injective A-module with �a.E/D 0, so that �b.E/D 0 as
a � b. By assumption, HomA.A=a; �a.N // Š HomA.A=a; H 1

a .M// is finitely gener-
ated, and since a � b and �b.N / � �a.N /, the module HomA.A=b; �b.N // is finitely
generated. Since x 2 Ann M , we have �a.M/ D �b.M/; hence HomA.A=b; �b.M//

is finitely generated. Therefore, the isomorphisms H 1
b .M/ŠH 1

b . xM/Š �b.N / imply
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that HomA.A=b;H 1
b .M//ŠHomA.A=b;�b.N // is finitely generated. Now, it follows

from [11, Theorem 3.7] that �b.M/ is b-cofinite, so by the first argument we deduce
that �a.M/ is a-cofinite.

The following result establishes a relation between the classes �n.a/ and �n.pi /,
where pi are the minimal prime ideals of a for 1 � i � t .

Proposition 2.7. Let p1; : : : ; pt be the minimal prime ideals of a and let M be
an A-module with Supp.M/ � V.p1 C � � � C pt /. If M 2 �n.pi / for each 1 � i � t ,
then M 2 �n.a/.

Proof. Clearly, Supp M � V.pi / � V.a/. Now assume that ExtjA.A=a; M/ is
finitely generated for all 1� j �n. It follows from [3, Proposition 1] that ExtjA.A=pi ;M/

is finitely generated for all 1 � j � n and all 1 � i � t ; hence, by assumption,
ExtjA.A=pi ; M/ is finitely generated for all j � 0 and all 1 � i � t . Then it follows
from [3, Corollary 1] that ExtjA.A=a; M/ is finitely generated for all j � 0.

Proposition 2.8. Let x 2 a and M be an A-module with Supp M � V.a/ such
that .0 WM x/; M=xM 2 �1.a/. Then M 2 �2.a/.

Proof. Assume that ExtiA.A=a; M/ is finitely generated for all i � 2. Apply-
ing the functor HomA.A=a;�/ to the exact sequences of modules 0! .0 WM x/!

M ! xM ! 0 and 0! xM !M !M=xM ! 0 it is straightforward to see that
ExtiA.A=a; .0 WM x// is finitely generated for i D 0; 1; since .0 WM x/ 2 �1.a/, we
conclude that .0 WM x/ is a-cofinite. This implies that ExtiA.A=a; M=xM/ is finitely
generated for i D 0;1, and since M=xM 2 �1.a/, we conclude that M=xM is a-cofinite.
It now follows from [9, Corollary 3.4] that M is a-cofinite.

For the local cohomology modules of a finitely generated A-module of dimension 3

we have the following result.

Proposition 2.9. If M is a finitely generated A-module of dimension 3 such that
H 2

a .M/ 2 �0.a/, then H 1
a .M/ 2 �2.a/.

Proof. Assume that ExtiA.A=a; H 1
a .M// is finitely generated for i � 2. We may

assume that �a.M/ D 0 and so a contains a non-zerodivisor x of M . Applying the
functor �a.�/ to the exact sequence 0!M

x:
!M !M=xM ! 0 we get the exact

sequence

0�!�a.M=xM/�!H 1
a .M/

x:
�!H 1

a .M/�!H 1
a .M=xM/�!H 2

a .M/
x:
�! � � � :
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Since ExtiA.A=a; H 1
a .M// is finitely generated for i � 2, it is straightforward to

see that HomA.A=a; H 2
a .M// is finitely generated, so the assumption implies that

H 2
a .M/ is a-cofinite. On the other hand, dim M=xM D 2, so it follows by [9, Proposi-

tion 5.1] that H 2
a .M=xM/ and H 3

a .M/ are a-cofinite; hence, by virtue of [7, Proposi-
tion 2.5], the module H 1

a .M=xM/ is a-cofinite. Now, it is straightforward to show that
H 1

a .M/=xH 1
a .M/ is a-cofinite, thus it follows from [9, Corollary 3.4] that H 1

a .M/ is
a-cofinite.

The following result is the first main theorem about cofiniteness of local cohomology
modules lying in �1.a/.

Theorem 2.10. If ExtiA.A=a; M/ is finitely generated for all i � m C 1 and
H i

a.M/ 2 �1.a/ for all i � m, then H i
a.M/ is a-cofinite for all i � m.

Proof. We proceed by induction on m. If m D 0, then the isomorphism

HomA.A=a; �a.M// Š HomA.A=a; M/

and the exact sequence 0 ! Ext1A.A=a; �a.M// ! Ext1A.A=a; M/ imply that the
module ExtiA.A=a; �a.M// is finite for i � 1; moreover, since �a.M/ 2 �1.a/, we
deduce that �a.M/ is a-cofinite. Now, suppose m > 0 and that the result has been
proved for all values < m. Considering xM DM=�a.M/, there is an exact sequence of
modules 0! xM ! E ! N ! 0 in which E is injective and �a.E/ D 0. The case
m D 0 implies that �a.M/ is a-cofinite, so that ExtiA.A=a; xM/ is finitely generated
for all i � mC 1. Thus, the isomorphism ExtiA.A=a; N / Š ExtiC1

A .A=a; xM/ for all
i � 0 implies that ExtiA.A=a; N / is finitely generated for all i � m; furthermore,
H i

a.N /ŠH iC1
a .M/ 2 �1.a/ for all i �m� 1. Now, the induction hypothesis implies

that H i
a.N / is a-cofinite for all i � m� 1, and the isomorphism H i

a.N /ŠH iC1
a .M/

for all i � 0 forces H i
a.M/ to be a-cofinite for all i � m.

We now extend the above theorem for the class �n.a/, where n � 2.

Theorem 2.11. Assume that m is a non-negative integer such that ExtiA.A=a; M/

is finitely generated for all i � mC n and H s
a.M/ 2 �n.a/ for all s � m. If

ExtiA.A=a; H tCs�i
a .M//

is finitely generated for all 1� t � n� 1, i � t � 1 and s �m, then H s
a.M/ is a-cofinite

for all s � m.
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Proof. We proceed by induction on m. Assume that m D 0 and consider the exact
sequences

0 �! �a.M/ �!M �! xM �! 0;(1)
0 �! xM �! E0 �!M1 �! 0;(10)

:::

0 �! �a.Mi�1/ �!Mi�1 �!Mi�1 �! 0(i)
0 �!Mi�1 �! Ei�1 �!Mi �! 0:(i0)

In view of the exact sequence (1) and the fact that �a.M/ 2 �n.a/, it suffices to show
that ExtiA.A=a; xM/ is finitely generated for all i � n � 1. Fix i � n � 1. The case
i D 0 is clear. For the case i D 1, in view of (10), the module Ext1A.A=a; xM/ Š

HomA.A=a; M1/ Š HomA.A=a; �a.M1// Š HomA.A=a; H 1
a .M// is finitely gener-

ated by assumption (consider t D 1 and i D 0). For 1 < i � n� 1, using (10), we have
an isomorphism ExtiA.A=a; xM/ Š Exti�1

A .A=a; M1/. Now, using the exact sequence
(2), it suffices to show that Exti�1

A .A=a; �a.M1// and Exti�1
A .A=a; M1/ are finitely

generated. The module Exti�1
A .A=a; �a.M1//Š Exti�1

A .A=a; H 1
a .M// is finitely gen-

erated by assumption (replace t by i � 1 and i by i � 2). Continuing this way, we
have to prove that Ext1A.A=a; �a.Mi�1// and Ext1A.A=a; Mi�1/ are finitely generated.
Using the above exact sequence, we obtain

Ext1A.A=a; �a.Mi�1// Š Ext1A.A=a; H i�1
a .M//;

and so it is finitely generated by assumption (replace t by i and i by 1). On the other
hand, in view of (i0), Ext1A.A=a;Mi�1/ŠHomA.A=a;Mi /ŠHomA.A=a;�a.Mi //Š

HomA.A=a; H i
a.M// is finitely generated by assumption (replace t by i and i by 0).

Suppose m > 0 and that the result has been proved for all values < m. By the inductive
hypothesis, �a.M/ is a-cofinite, so that ExtiA.A=a; xM/ is finitely generated for all
i � m C n; so, in view of (10), the module ExtiA.A=a; M1/ Š ExtiC1

A .A=a; xM/ is
finitely generated for all i � mC n � 1. On the other hand, for all 1 � t � n � 1,
i � t � 1 and s � m, the modules

ExtiA.A=a; H tCs�1�i
a .M1// Š ExtiA.A=a; H tCs�i

a .M//

are finitely generated and hence, using the inductive hypothesis, H s
a.M/ŠH s�1

a .M1/

is a-cofinite for all s � m.

The following corollary is a generalization of [11, Theorem 3.7] and [1, Theorem 3.7]
without any conditions on A and a.
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Corollary 2.12. Let ExtiA.A=a; M/ be finitely generated for all i � mC 2 and
let H i

a.M/ 2 �2.a/ for all i � m. If HomA.A=a; H i
a.M// is finitely generated for all

i � mC 1, then H i
a.M/ is a-cofinite for all i � m.

Proof. The proof follows by the previous theorem considering n D 2.

When the local cohomology modules of a module are nonzero only in two consecu-
tive numbers, we have the following result.

Proposition 2.13. Let t be a non-negative integer such that H i
a.M/ D 0 for all

i ¤ t; t C 1 and let ExtiA.A=a; M/ be finitely generated for all i � nC t C 1. Then
H tC1

a .M/ 2 �n.a/ if and only if H t
a.M/ 2 �nC2.a/.

Proof. Consider the Grothendieck spectral sequence

E
p;q
2 ´ ExtpA.A=a; H q

a .M// H) ExtpCq
A .A=a; M/:

For each p, consider the sequence

E
p�2;tC1
2

d
p�2;tC1
2
����! E

p;t
2

d
p;t
2

����! E
pC2;t�1
2 :

By assumption, E
pC2;t�1
2 D 0 therefore we have E

p;t
3 D Ker d

p;t
2 =Im d

p�2;tC1
2 D

Coker d
p�2;tC1
2 . Now consider the sequence

E
p�3;tC2
3

d
p�3;tC2
3
����! E

p;t
3

d
p;t
3

����! E
pC3;t�2
3 :

Since E
p�3;tC2
3 and E

pC3;t�2
3 are subquotients of E

p�3;tC2
2 and E

pC3;t�2
2 respec-

tively, the assumption implies that

E
p�3;tC2
3

d
p�3;tC2
3
HHHHD E

pC3;t�2
3 D 0;

so that E
p;t
4 D E

p;t
3 . Continuing this manner, we deduce that E

p;t
3 D E

p;t
1 ; hence there

is an exact sequence of modules

(�) E
p�2;tC1
2 �! E

p;t
2 �! Ep;t

1 �! 0:

Using a similar argument, we have the exact sequence of modules

(�) 0 �! Ep;tC1
1 �! E

p;tC1
2 �! E

pC2;t
2 :

As E
p;t
1 and E

p;tC1
1 are subquotients of ExtpCt

A .A=a; M/ and ExtpCtC1
A .A=a; M/

respectively, they are finitely generated for all p � n by assumption. Assume that
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H tC1
a .M/ 2 �n.a/ and that ExtpA.A=a;H t

a.M// is finitely generated for all p � nC 2:

The exact sequence (�) implies that ExtpA.A=a; H tC1
a .M// is finitely generated for

all p � n, whence H tC1
a .M/ is a-cofinite. It now follows from (�) that H t

a.M/ is a-
cofinite, so that H t

a.M/ 2 �nC2.a/. The converse is obtained by a similar argument.

Example 2.14. Let k be a field of characteristic 0, and let RDKŒXij � for 1� i � 2

and 1 � j � 3. Let p be the height two prime ideal generated by the 2�2 minors of the
matrix .Xij /. As p is generated by three elements and A is a domain, H i

p.A/D 0 for all
i ¤ 2; 3. Since HomA.A=p; H 3

p .A// is not finitely generated, we have H 3
p .A/ 2 �0.p/,

hence the previous proposition implies that H 2
p .A/ 2 �2.p/.

We show that the change of ring principle holds for �n.a/.

Proposition 2.15. Let B be a finitely generated A-algebra and let M be a B-
module. Then M 2 �n.a/ if and only if M 2 �n.aB/.

Proof. It is clear that SuppA M � V.a/ if and only if SuppB M � V.aB/. Assume
that ExtiB.B=aB; M/ is finitely generated for all 0 � i � n. Consider the Grothendieck
spectral sequence

E
p;q
2 WD ExtpB.TorR

q .B; A=a/; M/ H) H pCq
D ExtpCq

A .A=a; M/:

By assumption, E
p;0
2 is finitely generated for all 0 � p � n; moreover, since

SuppB TorA
q .B;A=a/� V.aB/ for all q � 0, we deduce by [3, Proposition 1] that E

p;q
2

is finitely generated for all 0 � p � n and all q � 0. For any r > 2, the B-module E
p;q
r

is a subquotient of E
p;q
r�1, so an easy induction yields that E

p;q
r is finitely generated for

all r � 2, 0 � p � n and all q � 0, whence E
p;q
1 is finitely generated for all 0 � p � n

and all q � 0. For any 0 � t � n, there is a finite filtration

0 D ˆtC1H t
� ˆtH t

� � � � � ˆ1H t
� ˆ0H t

� H t

such that ˆpH t=ˆpC1H t Š E
p;t�p
1 , where 0 � p � t . Since E

p;t�p
1 is finitely gen-

erated for all 0 � p � t and 0 � t � n, we deduce that H t is finitely generated for
all 0 � t � n, and since M 2 �n.a/, we deduce that M is a-cofinite. Consequently,
using [3, Proposition 2], the module M is aB-cofinite. Now, assume M 2 �n.aB/

and that ExtiA.A=a; M/ is finitely generated for all 0 � i � n. By induction on
i � n, we show that ExtiB.B=aB; M/ is a finitely generated B-module. For i D 0,
we have HomB.B=aB; M/ Š HomA.A=a; M/ is finitely generated. Now, assume
i > 0 and that the result has been proved for all values smaller than i � n. This
means that E

p;0
2 D ExtpB.B=aB; M/ is finitely generated for all 0 � p < i . Since

SuppB TorA
q .B; A=a/ � V.aB/, we conclude that E

p;q
2 is finitely generated for all
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0� p < i and all q. The exact sequence E
i�2;1
2 ! E

i;0
2 ! E

i;0
3 ! 0 and the inductive

hypothesis imply that E
i;0
2 is finitely generated if E

i;0
3 is finitely generated. Continuing

this manner, we deduce that E
i;0
2 is finitely generated if Ei;0

1 is finitely generated. Now,
the filtration

0 D ˆiC1H i
� � � � � ˆ1H i

� ˆ0H i
� H i

is such that Ei;0
1 Š ˆiH i=ˆiC1H i D ˆiH i is a submodule of H i D ExtiA.A=a; M/;

hence it is finitely generated. Therefore, ExtiB.B=aB; M/ is finitely generated for all
0 � i � n; eventually, since M 2 �n.aB/, we deduce that M is aB-cofinite, and it
follows from [3, Proposition 2] that M is a-cofinite.

The following result is a generalization of [11, Theorem 2.2].

Theorem 2.16. Let A be a ring of dimension d and M 2 �n.a/ for any ideal a of
dimension � d � 1 (i.e. dim A=a � d � 1). Then M 2 �n.a/ for any ideal a of A.

Proof. Assume that a is an arbitrary ideal of A such that Supp M � V.a/ and
ExtiA.A=a; M/ is finitely generated for all i � n. We can choose a positive integer
t such that .0 WA at / D �a.A/. Put xA D A=�a.A/ and xM D M=.0 WM at /, the latter
being an A-module. By [11, Lemma 2.1], the module .0 WM at / is finitely generated;
hence for any ideal b of A it is clear that M 2 �n.b/ if and only if xM 2 �n.b/. Taking
a as the image of a in xA, we have �a. xA/ D 0. Thus, a contains an xA-regular element
so that dim A=a C �a.A/ D dim xA=a � d � 1. Now the assumption implies that
M 2 �n.aC �a.A//, and the previous arguments yield xM 2 �n.aC �a.A//. Using
the rings homomorphism A! xA, it follows from Proposition 2.15 that xM lies in �n.a/.
In view of the exact sequence 0! .0 WM at /!M ! xM ! 0, the assumption on M

implies that ExtiA.A=a; xM/ is finitely generated for all i � n; hence xM is a-cofinite.
Now the previous exact sequence implies that M is a-cofinite.
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