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On the Moore determinant

JEAN FRESNEL (*) — MICHEL MATIGNON (*%)

ABsTRACT — The existence of certain F,-spaces of differential forms of the projective line over
a field K containing [F, leads us to prove an identity linking the determinant of the Moore
matrix of n indeterminates with the determinant of the Moore matrix of the cofactors of its
first row. These same spaces give an interpretation of Elkies pairing in terms of residues
of differential forms. This pairing puts in duality the F,-vector space of the roots of an
F,-linear polynomial and that of the roots of its reversed polynomial.
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1. Introduction

Marco Garuti was rapporteur for Guillaume Pagot’s thesis [9, 10] and the origin of
this note is the following remark [9, p. 68].

Let K be a field with characteristic p > 0, n > 2 and W C K[X] be an n-
dimensional F,-subspace in K[X] whose non-zero elements have the same degree d,
and let P be a non-zero polynomial which is a common multiple of the polynomials
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in W.Let (Py, P2, ..., Py) be an [F,-basis of W such that for 1 <i < n each differ-
ential form w; = % dX is alogarithmic differential. Then (Proposition 4.1) there is
y € K* such that

(1.1) An(Pl, P,..., Pn) — ]/P1+p+P2+"'+Pn_2’

where A, (P1, Pa,. .., P,) is the Moore determinant of the polynomials Py, P,,..., P,
(Definition 2.1).

In Proposition 3.1, we adapt the method of [4,9], where such an [Fj,-space W for
n > 2 was built, in order to build some F,-space of differential forms in Q}<(K (X))
that we call an LZH’,L—space.

In Section 3.2 we give a first application to a construction of Elkies pairing [2,
§4.35]. Elkies takes up and extends the results of Ore. For an IF,-linear polynomial
P:=coX+c1 X9+ +c, X9 withcocy # 0, his pairing induces a duality between
the F;-space of roots of P and that of its reversed polynomial. In our construction,
the role of the IF,-vector space of the roots of the reversed polynomial is played by an
L;.]L-i-l,n
forms evaluated at the roots of the polynomial P.

The rest of the note deals with the evaluation of the constant y in (1.1) when we
apply it to LZ +1,n-Subspaces of LZ +1.n+m-SPaces constructed in Proposition 3.1.

-space of differential forms and the pairing is expressed by the residue of these

Thus, formula (1.1) takes the following form (Corollary 4.1):

CoROLLARY 4.1. Let (Y) := (Y1, Y2,...,Yy) and (X) = (X1, X2, ..., Xm) be
n -+ m indeterminates over Fy withn > 2, m > 0 and the convention that X = @ and
Am(X) = 1 form = 0. We write (Y;) i= (Y1,...,Yi—1, Yiq1,..., Yo) for 1 <i <n.
Then we have the following equality in Fy (Y, X):

An(An—l-i-m(&’ X)a e, (_l)i-l-lAn—l—i-m(&, )_(), R (_1)n+1 An—1+m(&, X))
Am (X" Ay (Y, X)1Ha++a"2
A, (An—l(&)7 ey (_l)i'HAn—l(g), e (_l)n—HAn—l(&))
An (Z)1+‘I+'"+q"—2

Thanks to the work of Ore and Elkies (cf. Proposition 2.5) we know that y € F.

We show (Theorem 4.1) that y = 1. We give three proofs. The first one shows it
for m = 1 and by induction on n. It is a technical exercise in computing determinants.
The second proof is a matrix equality which is in itself original and which translates a
relation between a generic Moore matrix and the Moore matrix of the cofactors of its
first row (see the theorem below), a relation analogous to the classical relation between
a square matrix and its comatrix. The m = 0 case of Theorem 4.1 is immediately
deduced.
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Tueorem4.2. LetY1,Ys,. .., Y, be n indeterminates over Fy, and let M, (Ay (&),
...,(—l)i_lAn(&), cees (—1)”_1An(§)) be the Moore matrix of the cofactors
(An(T1)s o (=D)AL (), o (1)L A (V) of the first row of My (Y), where
for 1 <i <n, we write (g) =1,....Yi—1,Yiq1,...,Yn). Then we have

Ma(Bn(T1), o (DT (T (D) AL (Fn)) ‘Mo ()

0 . . e 0 (=) 1 AL(Y)
An(Y) 0 . e 0 0
a1 AR(Y)4 0 e 0 0

=l o o4 AT 0 0
ano ol T AT 0

where

oy = An(&)qk+lY1 L (—l)i_lAn(g)quY,- L
+ ()" AT Y,

The third proof is a generalization of the above theorem, which gives a matrix
equality (Theorem 4.3) from which we deduce Theorem 4.1 without invoking Corol-
lary 4.1.

In Section 5, we offer two illustrations of the Moore determinant. In the first one we
study the application (a1, ...,an) € K" — (Ap—1(di))1<i<n € K" and in the second
we study a K-étale algebra defined by n Artin—Schreier equations. In this context we
express a group action in terms of an appropriate Elkies pairing.

2. Generalities and motivations
2.1 — Notation

In this note all rings are commutative and unitary and A (resp. K) denotes a ring
(resp. a field) of characteristic p > 0 containing the field I, where ¢ := p®. Finally,
F:A — A, with F(a) = a?, denotes the Frobenius endomorphism.

We denote by K2 a K algebraic closure. We adopt the following notation when
the context is not ambiguous.

e Letn > 1, m > 0 be integers.

e Let(a):= (ay,az,...,a,),witha; € Aandn > 1.
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e Let (X):= (X1, X2,..., X;m) be indeterminates over A and let m > 0 with the
convention X = @ if m = 0. The integer m is determined by the context.

o Let(a;,X):=(ai,....d;,...,an, X),ie. weomita; and X may be empty. The
integers n and m are determined by the context.

DeriNITION 2.1. Let A be a commutative ring containing the finite field IF,. Let
m,n > 1 be integers and a := (ay,...,a,) € A". We call the matrix of My, ,(A),
denoted by M, »(a) (My(a) if n = m), where

al az e an
a? ag . arq;
Mm,n(@) = : . . )
—1 m—1 m—1
q" q q
a; a, ce o dp

the Moore matrix of size m, n associated to a, and we call the determinant of M, (@),
denoted by A, (a), the Moore determinant associated to a.

2.2 — Additive polynomials and Moore determinants

DEerinNITION 2.2, Let K be a field containing ;. We call a polynomial of the form
cn X1 + cn_qun_] 4ot X? 44X € K[X] an F,-linear polynomial.

It is easy to see that a polynomial P € K[X]is an [F-linear polynomial if and only
if it satisfies the following two conditions:

(1) P(X+7Y)= P(X)+ P(Y) in the polynomials ring K[X, Y];
(2) P(AX) =AP(X)forall A € F,.

A polynomial is additive if it satisfies condition (1). An additive polynomial is said to
be reduced if it is separable. If it is non-zero, this means that the coefficient of X is
non-zero.

Let P € K[X] be an F,-linear polynomial, let Ker P := {x € K¢ | P(x) = 0}
be the set of roots of P; it is an [F,-subspace of K*&.

The application x € K — P(x) € K is an F;-linear endomorphism of K. Thus
we can consider the [F,-subspace of K which is the kernel of this endomorphism. It
coincides with Ker P when Ker P C K.

ProrosiTion 2.1 ([6, 8] and [2, Prop. 1, p. 80]). Let A be an integral commutative
ring containing ;. The n elements ay,as, . .., a, of A are Fy-linearly independent
if and only if Ay(a) # 0. In other words, the n elements ay,as,, ...,a, of A are
F,-linearly independent if and only if the n vectors a, F(a), ..., F""1(a) of A" are
Fy-linearly independent.
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This proposition is a consequence of Moore’s identity [2, formula (3.4), p. 80;
formula (3.6), p. 81], which says that if a, as, . .., a, are elements of A, then

@b M@= ] JI - I] @+emaioa+-+ean.

1<i<neg;_1€lFy e1€ly

ProrosiTiON 2.2. Let K be a field containing Fy and W an [F4-vector subspace of
K with dimg, W = n. Then there exists a unique unit polynomial of degree q", denoted
Pw, with W = {x € K | Pw(x) = 0}. Moreover, Py is an Fy-linear polynomial

which is reduced and if w := (w1, ..., w,) € K" is an Fy-basis of W then
Pw(X) =[] (X —w)
wew
A X n
(2.2) = Ll—v) =X 4.+ (—D"A(w) L X.

An(w)
The following proposition is the version adapted to hyperplanes in Proposition 2.2.

ProrosiTiON 2.3. Let W be an IF;-subspace of K with dimg, W = n. Let w ‘=
(w1, wa, ..., wy) be an Fy-basis of W and w*: (wy, ..., w;) its dual basis. Let ¢
be a non-zero [F-linear form on W and Ker ¢ the hyperplane of W kernel of ¢. Let
o= (ar,....an) €F} —{(0,...,0)} be such that o =}, _; ., «;w} and

o o oy 0
w1 Wy Wy X
q 4q q q
Ap(w, X) =| W1 Wy Wn Xa
qnfl qnfl qnfl q”_l
w; w, Wy X
oy (2%} Op
w1 w2 Wn
q q q
— | w w w
dp(w) == 1 2 n
qn—2 qn—2 qn—Z
wl wz cee Wy

Then §,(w) # 0 and like in (2.2) we can write

PKer(p: 1_[ (X_w)

w €Ker ¢
— A‘p(w,X) — Xq
S8p(w)

n—1

(23) R (—1)n+15¢(w)q_1X,
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which is an Fy-linear polynomial of degree q" ! that is reduced. Moreover, we have
for1 <i <n,

Awi*(w’ X) = (_1)i_1An(@9X)s
Dpw. X) = Y wibyr(w,X) = Y o(=1)'""An(@;, X).

1<i<n 1<i<n
Sp(w) = Z (—l)i_laiAn—l(@)'
1<i<n

Proor. First we show that A, (w, X) is not the null polynomial. Let us assume the
opposite. Since w, F(w),..., F"! (w) are [Fg-linearly independent and since for j €
{0,...,n — 1} the coefficient of X7’ is zero, we get o € D ic{0. n—1}it] F,F'(w);
thus its (j + 1)th coordinate in the F,-basis w, F(w), ..., F"~1(w) is zero, which
contradicts the non-nullity of ¢.

The polynomial A, (w, X) is thus an F,-linear polynomial of degree < ¢"~!. We
check that it is zero on the hyperplane Ker ¢; thus its degree is equal to ¢”~!. Hence
the proposition. |

CoroLLARY 2.1. Let K be a field containing Fy, w := (w1, w2,...,w,) € K" and
for 1<i<n, An—l(@) = An_l(wl, s Wi, Wig s e e wn). Then An(w) 75 0
if and only if Ap(Ap—1(0;)) = Ap(Ap—1(W1), Ap—1(W2), ..., Ay—1(Wn)) # 0.

Proor. Letus assume that A, (w) # 0. Then, by Propositions 2.1 and 2.3, 8, (w) =
leisn o Ap—1(W;) # O forall @ := (a1, az,....0,) € Fy —1{(0, ..., 0)}:where
@ = 1<i<piw;. It follows from Proposition 2.1 that A, (A,—1(W;)) # 0.

Let us assume that A, (w) = 0. Then, by Proposition 2.1, there is (1, £. . . .. &n) €
Fy —1(0,...,0)} with 3, _,_, &;w; = 0. Let f be the [Fy-linear form over [ such
that f((ot1,...,0)) = D 1<y &i@i and (a1, ..., a,) € Ker f —{0}. Then

al az Y an
wq w2 Wp
wi  wi o wi |
n—2 n—2 n—2
w w, Wy,
o) leisn(—l)i_laiAn_l(@) = 0. Thus, Ay (Ap—1(W;)) = 0. [

n—1

DEerintTION 2.3. Let P(X) = cn X9 + cpo1 X4 4+ -4+ coX € K[X] bea
reduced F,-linear polynomial (i.e. co 7# 0) of degree ¢” (i.e. ¢, # 0). With Ore we
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consider the reversed polynomial pP of the polynomial P, where

(PPYX) = ) cf

0<m=<n

which is a reduced F,-linear polynomial of degree ¢".
Ore shows the following result (see [2, Theorem 5, p. 88]).

ProprosiTION 2.4. Let K be a field containing Fy. Let P =Y _; _,, Ci x4 e K[X]
be a reduced T ;-linear polynomial of degree q", pP its reversed pol_yn_omial (Definition
2.3). We assume that the roots of P are in K. Let W := Ker P C K (Definition 2.2)
and w = (W1, W2, ..., w,) € K" be an Fy-basis of W. Let W c K, the [F4-subspace
of K spanned by the n minors Ap—1(W;), 1 <i < n. Then, if U := Ker pP, we have

U=c,! (%)‘1; this is an Fg-subspace of K of dimension n.

RemaRrk 2.1. It follows from Proposition 2.4 (see also [3, Corollary 1.7.14, p. 18])
that if the n elements wy, ..., w, in K are [F,-independent, so are the n elements
Ap—1(W;), 1 <i < n. Although not explicitly written, Ore [8] and Elkies [2] show
the following result

ProposITION 2.5. Let K be a field containing Fy, w = (w1, wa, ..., w,) € K"
and for 1 <i <n, An_l(@) = Ap—1(Wy, ..., Wi—1, Wig1,..., Wy). Let us assume
that Ap(w) # 0. Then

n—l_l

2.4) (An (A1 (@) = Ap(w)?

Thus,

Ay (An—l (@))

(2.5) A (w)mn_z € IFq .

Proor. Let W C K be the [F;-vector space @D 1<i<n Fqwi and Py the polynomial
associated to W by Proposition 2.2. Let W= Di<i<n FgAn—1(W0;) C K. With
(2.2) we have Py (X) = 228X and if Afi](w) = det(w, F(w)..... F (w)..
F™(w)) (i.e. the line F’(w) is left out), then

P = ¥ S,

0<m=<n

thus
Alm](w)

Pw(X)= Y  cuX?" withcy = (-1)"" A o)

0<m<n
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Applying the above to the family A, (w;) and the polynomial

Ans1(Dn1 (7). X) ”
—— = Y ux?",
An(An—l(uﬁ))

0<m<n

Pﬁ;(X) =

we obtain the following identities for 0 < m < n:

Alm](Ap—1 (W;))

b = D A @)

In particular ¢g = (—1)"(An(An—1 (@)))‘1_1.
Elkies [2, formula (4.28)] shows, following Ore, that

Py (X) = X" 4 (—D”( S A )T X 4 A ) X )

1<m=<n—1

Thus, (2.4) is fulfilled.
In the case where 1 < m < n — 1 we obtain the equality
Alm)(An—1 (@) i

em = (1" M @) (—=D"cl_,, An(w)? :

which taking into account (2.4) gives

(2.6) (A[m](Ap—1(@;)))? "

= Ap(w)?" 2" TN (A — m)(w))?" @D, -

REmARrk 2.2. If we take into account Theorem 4.1, we can specify the equalities

(2.5) and (2.6). Thus we have
An (An—l (@))

An (w)1+q+...+qn—2

where | % | is the lower integer part of 7, and

m—1

" Al —m)(w)?" .

~ n g"=1__ m—1
Alm)(An—1 (@) = (=D A, (w) 7T~
The next proposition takes up results of Ore and Elkies [2, Proposition 3] which

specify the link between composition of two [ -linear polynomials and the geometry
of sets of roots.
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ProprosiTION 2.6. Let K be a field which contains Fy. Let W be an Fy-vector
space of K with dimg, W = n, Wy be an Fy-subvector space of W and Pw (X) =
[Lew (X = x) (resp. Pw, (X) = [[yew, (X — x)). Let Py, (W) := {Pw,(x) | x €
W}, which is a finite-dimensional F 4-subspace of K and

2.7 Pw (X) = Ppy, (w)(Pw, (X)).

Conversely, if Q is a monic [F4-linear polynomial such that Pw (X) = O (Pw, (X)),
we have Q = Ple w)-

Proor. Let us assume that dimg, Wi = m. Then deg Py, = q™. Since x € W —
Pw, (x) € K is an F-linear map whose kernel is W, it follows that Py, (W) is an
F,-subspace of K of dimension n — m; thus the polynomial Ppy, w) (Pw,(X))isa
monic [F,-linear polynomial of degree g” "¢ = ¢". Since it is by construction zero
on W, it follows that Py (X)) divides Ppy, w) (Pw, (X)) in K[X], hence the equality.

For the reciprocal we remark that (Q — Ppy, o)) (Pw, (X)) is the null polynomial

in K[X] and that Py, (X) is transcendental over K. ]

Finally, the following corollary specifies Proposition 2.3.

CoroLLARY 2.2. Let K be a field which contains Fy. Let W C K be an -
vector space with dimg, W = n, w := (w1, w2, ..., w,) € K" an Fy-basis of W and
(wi,wj,...,w;) its dual basis. Let ¢ be a non-zero Fy-linear form on W and Ker ¢ be
the hyperplane of the W kernel of ¢. Let @ '= (a1, 2, ..., an) € Fg —{(0,0,...,0)}
and be such that

*
¢ = E o w;,

1<i<n
Do, X) = 3 e (1) A (@, X),
1<i<n
Sow) = Y (=) Ay ().
1<i<n

Let Py € K[X] (resp. Pkerp € K[X]) be the monic (resp. reduced) polynomial whose
set of roots is W (resp. Ker ¢).
Then (2.7) is satisfied with Wy = Ker ¢, and

Agp(w, X)
8p(w) ’

A, -1

PKer(p(X) =
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thus
Pxerp(X)  Ap(w) Ap(w,X) 1

Pw(X) — Sp(w) Aus1(w.X) Py, (X)a? _(_gn((]%))q—l'
(W

Proor. Since Ker ¢ is a hyperplane of W, it follows that Pp,,.,w)(X) = X9 —
ceX € K[X]. Thus, with (2.7) we have Py (X) = Pw,(X)? — ¢, Pw, (X). Since
coeffy Py = (—1)" A, (w)?7! (cf. (2.2) and (2.3)), coeffy Py, = (—1)”+18(p(w)‘1_1,
the corollary follows. ]

3. Vector spaces of differentials and Moore determinants
3.1-The LfH_l’n spaces

DerintTION 3.1. Let K be a field of characteristic p > 0. Let u € N with u > 2
prime to p and n > 1. We call an L, 41, space an [F,-vector space of dimension
n of logarithmic differential forms in Q (K (X)), whose non-zero elements have
(n — 1)o0 as zero divisor and their poles are in K (such a form has i 4 1 poles and
they are simple).

One can show [9, Lemme 6, p. 63] that if such a space exists then p"~! divides
u+ L

Such [Fj,-vector spaces have been constructed for # > 1 in [4] in order in particular
to lift in null characteristic certain (Z/pZ)"-coverings of the projective line Py
into Galoisian coverings of the group (Z/pZ)". See [7] for a presentation of recent
contributions on the subject.

The L, +1,, spaces have been defined and studied by Pagot in his thesis ([10, p. 19]),
a part of which is published in [9]. See also [5] for complements.

We will consider a generalization to the case where [F, is replaced by the field IF,
with g = p’.

DEeriNITION 3.2. Let K be a field which contains ;. Let 4 € N with u > 2

q

prime to p andn > 1. We call an L space an I, -vector space of dimension n of

n+1,n
logarithmic differential forms in Q (K (X)) whose non-zero elements have (u — 1)oo
as zero divisor, such that their poles are simple and in K (so there are i + 1 poles)

and such that their residues are in IF,.

ProrosiTiON 3.1. Let K be a field containing Fy, W an [F,-subspace of K with
dimp, W =n, w := (w1,...,wy) € K" an Fy-basis of W and w* = (wy, ..., w;)
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its dual basis. For j € {1,...,n}, we note that

&
wj = E
J n
X =D i &iwi

(£1,82,...,6n)EFY

dX.

Leta = (a1,...,0n) € Ff —{(0,...,0)}, ¢ = >, ;, ;w] and

fen OE)
Wy = Z oajw; = Z XZISJ#CZX.

n . .
1<j<n (e1,620ntn) RN & Yizr Eiwi
Then Ay (w. X)
w
W, = —A (w)q—l‘p;’ ax
Y " Ant1(w, X)

and Ayp(w, X) | Aps1(w, X) (cf. Proposition 2.3).
Thus, Qw = lejsn Fyw; C Q}((K(X)) is LZ+1,n withp +1:=q""(q—1).

Proor. Letw € Qw and o == (a1, 02,...,0,) € Ff —{(0,0,...,0)} withw =
lejsn ojw;. Then

Doi<icn OjE)
w = Z # dX.
— D e & W

(e1,6250-,6n)EFY i=1
It follows that the poles of @ are the elements of W deprived of the zeros of the
[Fg-linear form ¢ = ), _;_, @;w}, so they are of cardinal " — g" ' = pu+1and
they are simple. The residues by construction are in F,. In particular, @ # 0 and
therefore Qw is an IF,-vector space of dimension 7.

It remains to see that the zero divisor of w is (u — 1)oo. For that we consider the

fraction
Ayp(w, X)

Any1(w, X)
The poles of F are the elements of W — Ker ¢ and they are simple (Corollary 2.2).
Let w € W with ¢(w) # 0. Then

F(X) = -7, (w)?!

A‘P (wv w)

_ —1
resw FOO = =) R . Xy o)

We have w = Z?:l gi(w)w; with g;(w) € Fy; thus (cf. Proposition 2.3)

Bo(ww) = 37 @i (=17 A w)

1<i<n

= Z ai(—l)i_lai(w)An(@’ w;)

1<i<n
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= 3w e @)1 A w)

1<i<n

(X @ )a,w,

1<i<n

Finally (cf. Proposition 2.2), Ap+1(w, X) (w) = ()" Ap(w)4.
Thus,

(—1)"_1(2151'5” ;& (w))Ap(w) _ Z aig; (w)

_ —1
TréeSyw F(X) = An (LU)q (—1)" An (w)q

1<i<n

and so @ = w,. It follows that the zeros of w are concentrated at infinity (Corollary 2.2).
]

RemMaRrk 3.1. In [10, Remark 4, p.29], Pagot remarks that if K is algebraically
closed then the pullback by a morphism ®: Pgx — P{ with ®(X) = aX + X? P(XP),
where o € K* and P € K[X],of an L1, space is an L ;4 1) deg ®,» SPace. Similarly
an exercise shows that the pullback of an LY | , (1) deg @, SPACE. We
can thus construct new LZ +1.n Spaces, for example from Proposition 3.1.

space is an L

32— LZ+1,n spaces and Elkies pairing

In this section, K denotes a field that contains F,;, W is an [, -vector space
of K with dimp, W = n, w := (wy,...,w,) € K", an [ -basis of W and w* :=
(wi,...,wy) its dual basis. Finally, let W o= Di<i<n FgAp—1(W;) and U =
(T%)q. Recall that U = Ker pPy, where pPy is the reversed polynomial of the
polynomial Py (cf. Proposition 2.2, Definition 2.3, Proposition 2.4).

We will recall the construction of an Elkies pairing attached to the monic IF,-linear

polynomial Py . It puts in duality the two IF,-subvector spaces of K, which are W and

q

U, and we will give a differential interpretation of it using the L , ., ,

in Proposition 3.1.

spaces defined

(A) Elkies pairing. Elkies [2, §4.35] defines an IF,-perfect pairing £: W x U — [,

as follows. He first observes that if (w,u) € W x U then 0 = w((pPw)(u))? =~ —
uPw(w) = E(w,u) — E(w,u)?, where

Eww= Y > (a)?"w?, PpX)= Y cnx?

1<m<n0<j<m-—1 0<m<n

and ¢, = 1. It follows that E(w, u) € F,.
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(B) The pairing f: W x U — F,. We will see that Proposition 3.1 allows us to define
an Fy-pairing f: W x U — F, given by the residue of differential forms.

To be precise, if w € W and u € U are different from 0, we can write w =
Yor_; &i(w, w)w; in the basis w of W where (g1(w, w), ..., &, (w, w)) € Fg — {0}
and by definition of U we can write

_ (leisn o (_l)i_l Ap—q (@) )q
" An(w) ’

where o = (a1, ...,a,) € F —{(0,...,0)}. Let ¢ :== >, _;, ;w;. Then (cf.
Proposition 2.3)

8p(w)

3.1) u = (A w

)" withS,w) = 3 (=1 Aua ().

1<i<n

Let Qp = 3" <, Fqw; C Qp(K(X)) be the L], space with yu + 1 :=
q"1(g — 1) as defined in Proposition 3.1 and let
Zl<j<n ajEj
Wy = ojw; = ————"—dX € Qs — {0}.
R A

(e1,82,..,6n)EFY

Then we define

Fw,u) = (=1)"resy 0, = (—1)"! Z ajej(w,w) € Fy.

I<j=<n

Lemma 3.1. The pairing f is perfect.

Proor. Letu € U and let us assume that f(w,u) = 0 for all w € W. It follows
from (3.1) that

y = (M)q with $,(w) = Y ;i (=17 Ay (),

An(w) Nl

where o '= (a1, ...,a,) € Fjand g =} ), o;w].

Thus, for any w € W, the residue at w of the differential form wy, = ) o w; is
zero and since the poles of wy are simple, this form is the null form. Thus, «; = 0 for
1 <i < n; it follows that §,(w) and thus u are zero.

Now let w € W, and let us assume that f(w,u) = 0 for all u in W . 1t follows from
Proposition 3.1 that 0 is the only element of W which is not a pole of one of the w;
forms, so w = 0. L]
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(C) Comparison of the two pairings E and f.

Prorosition 3.2. The two pairings E and f are equal.

Proor. Let wy, ws, ..., wy, be abasisof W, w e W —{0} and u € U — {0}. It
follows from (3.1) that u = (‘*w(“’) )4 where & = (a1,....0) € F? —{(0.....0)}
and g = ) o, iw;.

As from Proposition 3.1 we have w, = —A, (w)?~! % dX , it follows from
(2.3) and Corollary 2.2 that

8(/1 (w) PKer(a (w)
(D" Ap(w)Ap(w)d—1

fw,u) = (=1)""resy wp = (=1)"Ap(w)?™!
= u"9 Pyerp(w),

where Pxer(X) is a monic polynomial of degree g"~! (cf. (2.3)). On the other hand,
E(w,u) =u'/4P,(w), where P, (X) is a monic IF,-linear polynomial of degree ¢" !
[2, Lemma, p. 92, proof].

It then remains to compare the two polynomials Py, (X) and Pger (X).

As P, (X) and Pkery (X) divide Py (X) in K[X] and as Ker Pk, (resp. Ker Py,) is
a hyperplane in W, we have (Proposition 2.6) Py = Q4 0 Pkergp = Qu 0 Py in K[X],
where Qy,(X) = X9 — gy X and Q, = X9 — g, X with gy, g, non-zero elements
in K. In particular, coeffy (Pw) = —q, coeffx (Pkerp) = —qu coeffx (P,). We have
coeffxy (Py,) = —(—1)" A, (w)q_lu% [2, Lemma, p. 92, proof]. From Corollary 2.2
we know that
An(w)

)91 and  coeffx (Pw) = (—1)" Ay (w)? ™!
5<ﬂ (w)

g = (

(ct. (2.2)) and so coefty (Pkerq) = coeffx (Py,); hence g, = gqy.
The equality O, = O then follows from the uniqueness of the decomposition in
Proposition 2.6. ]

4. A property of L:IL +1,, SPAcCES
4.1 — The property

ProposiTiON 4.1. Let n > 2 and 2 be an LMJrl -space (Definition 3.2) and
w = (w1,w2,...,0,) anFy-basis. Let P (2) C K be the set of poles of the differentials
in Q@ and P(X) = [ epay(X —X). Let P; € K[X] withw; = Z-dX for1 <i <n.
Then there is y € K* with

n—2

4.1) An(Pi,..., Py) = ypPttat+a
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Proor. Thanks to (2.1) we can write

Aa(Proo Py =[] TT - [] (PiteiciPica 4+ a1 Py).

1<i<neg;_ €l e1€F,

By hypothesis, each factor P; 4+ ¢;—1 Pi_1 + -+ + €1 P; divides P and factorizes into
a product of distinct irreducible polynomials of degree 1. Thus, for x € & (£2), we must
show that x is aroot of 1 + ¢ + - -+ + ¢" 2 polynomials P; + &;_1P;_1 + -+ &, P}
with (e1,&2,...,8&-1,1,0,0,...,0) € ]F(;‘.

Let x € #(2). Since x is a pole of at least one of the w; forms, the tuple
(resx wi)1<i<n € Fg —{(0,...,0)}. Let ¢x: €2 — F, be the linear form with ¢x (w) =
Y l<i<n®irtesy wj, wherew =Y, _; _, a;jw;j. Then @y is an F,-linear non-zero form.
If (0?1_: oy et ay) € Py, then ;x(a)) =) |<i<p®iresy w; = 0if and only if
Zlfisn a; P;(x) = 0. Then, as {(e1, &2, ..., &—1, 1_()_0 ...,0),1<i<n}e IF; is
a system of representatives of the elements of P” (IF;), the multiplicity of the zero x in
An(P1,..., Py)is equal to the number of points of the hyperplane of P” (IF,) induced
by Ker ¢y, soitisequalto 1 4+ ¢ + --- + ¢" 2.

Finally, by Proposition 2.1, y is not zero since the n fractions % are [, -linearly
independent. ]

REMARK 4.1. Proposition 4.1 is a remark in [9, p. 68] in the framework of L1 -
spaces of logarithmic differentials (i.e. ¢ = p).

4.2 — An equality between Moore’s determinants (1)

CororrarY 4.1. Let (Y):=(Y1,Ya,...,Yy) and (X) = (X1, X2,..., Xm) ben +
m indeterminates over g, where n > 2, m > 0 and we apply the convention that X = 0
and Ap(X) =1ifm = 0. For 1 <i <n, wewrite (Y;) = (Y1,...,Yi—1,Yiq1,..., Vo).
Then we have the following equality in F4(Y , X):

An(Bpmtam (T, X)) Ay (B, X,
(1" Ayt m (Y, X))
Am ()_()q”—l An+m(z’ }_()l+q+...+qn—2

wy - An(Bpoy (V1) (=D A, (T, ()" T A,y (F)
: - Ap(Y)1+a+-+q"—2 o

Proor. Let A :=F,[Y, X] and K be its fraction field. For j € {1,...,n 4+ m},
we denote

Ej dZ
w; = E )
' Frm Z - Z?=1 &Y — Z:n=1 En+i Xi
q

(1,82, ,6n+m)€E
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Then Qy x = Y 1<j<pim Fqwj C Q(K(Z))isan L, ., -space, where u +
1:=¢" "G —1)and Qy = lejsn Fyw; C Q}((K(Z)) is an n-dimensional
F,-subspace €2 of Qy_ x, hence it is an L:’Hl,n—space.

We apply Proposition 3.1 to this last space €2.

For 1 <i < n, we have

An-i—m(gv )_(92) d7Z.
Antm+1(Y, X, Z)

w; = —Apym(Y, )_()q—l

It follows that () = {3 _7_; &Y + Y _i—; en4i Xi} With (1,62, .. .&n1m) €F) ™,
(e1,82,...,8n) # (0,...,0) is the set of poles #(2) C K of the elements of 2 .
Thus,

AM(X) An-i—m-i—l(z’ )_(’Z)
Apim(Y.X) Am+1(X,Z)

Pzy= [] z-2=

zeP ()
(cf. (2.2)) and w; = % dZ, where

P; Apam(Yi, X, Z
— = —Aptm(Y, X)q_l n+m(_l X.2) .
P An+m+l(zv )_(’ Z)

Equality (4.1) in Proposition 4.1 then gives
An(Brgm (Y1, X, Z), o (D) Ay (Vi X, Z),
(1" Dpsm(Ya. X 2))
43) = YAmi1 (X, 2)7" g (X, X, Z) 104",
where y € F, (Y, X).

Finally, the comparison in equality (4.3) of the coefficients of higher degree in Z
gives the equality

An (An—l-f-m(&’ )_(), e, (_1)i+1An—l+m(g, )_(), e, (_l)n—HAn—l—{-m(&, )_())
— VAm(X)q"—l Apim(Y. X)l-}—q-l—..._}_qn—z.

By making X, play the role played by Z in (4.3) we deduce that

An(An-f-m—Z(&,le...,Xm—l),...,(_1)i+1An—l+m—1(&,X1,...,Xm_l),'“’
(_l)n—HAn—H-m—l(&,Xl,...,Xm_l))
nt n—2
= YAm—1(X1, -, Xm—1)T  Ap—t4ma1 (Y, X1, ..., Xppoy) TOTT47,
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By iterating the process we exhaust X, hence

An(Bne1(F1)s ooy (CD) T AL (B, (D) A (F))

= yA,(Y)Fera

’

as announced. [

4.3 — An equality between Moore’s determinants (II)

We show in two different ways that the constant y in (4.2) is equal to 1.
Thus we can state the theorem.

THEOREM 4.1. Let (Y) = (Y1, Ya,...,Yy) and (X) = (X1, X2, ..., Xm) be
n -+ m indeterminates over Iy, where n > 2, m > 0 and we apply the convention that
X =0 and Ay (X) = 1 form = 0. Wewrite (Y;) = (Y1,...,Yi—1,Yit1,..., Yy) for
1<i<n.

Then we have the following polynomial equalities in Fg[X,Y]:

Ann(Y, X) = Ay (An1om (T, X)) Ay (Yi, XD,
(_l)n—HAn—H-m(&’)_())

n—1 n—2

(4.4) = Ap(X)? Apym(Y, X)HOE

which is also (compare to (4.1))

A (An—l-ﬁ-m(&s )_() An—l-‘rm(gv‘x) An—1+m(&’)_())
TR T A T A
v n—2
= (-1t (M)”‘” +a
Am(X)

El

where | | is the lower integer part of 5. We remark that Ap, (X) divides Apym (Y, X)
thanks to (2.1).

We deduce by specialization of formula (4.4) the following corollary:

CorOLLARY 4.2. Let A be a commutative ring containing Fy. Let (a) := (a1, az,
...,ap) € A" and (b) := (b1, ba,...,by) € A™, where n > 2, m > 0 and we apply
the convention that b = @ and A, (b) = 1 form = 0. Then

An(Bnm14m(@1,0), o (D) Ay 14 (@i, 0), - (1) Ay 14m(@n, b))

= A" Apym(a by Hatta

n—2
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4.4 — First proof of Theorem 4.1. The case m = 1 by induction on n
(A) We check (4.4) for (n,m) = (2,1). 1i.e.

A (Az(Yz,X) _AZ(YLX)) _ AN, 12, X)
x X a X '

This is an equality between polynomials in the variable X of degree g> — 1. The terms
of higher degree are equal as Ax (A1 (Y2 X971), —A (Y1 X971)) = Ay (Yq, Yz)qu_l.
For Yy :=0a1Y1 + a2Y, witha € F2, we have A (A5 (Y>, Yy). Aa(Y1,Yy)) =0, thus
the two polynomials have the same zeros (see (2.2)). Hence the equality.

(B) We assume that m = 1 and we proceed by induction on n. Let us assume that
(4.4) is satisfied for m = 1 and up to rank n. We show it form = 1 and n + 1.

(B1) We show the equality of the coefficients of highest degree in (4.4) for m = 1 and
n—+ 1;itis also (4.4) form = 0andn + 1.

Let (Y) := (Y1,Y2,...,Yp41) be n + 1 indeterminates over IF,. Let j be such that
1 <j <n+ 1. Weapply (4.4) to the n indeterminates (¥y,...,Y;_1, ?j, Yigh,...,
Yoy1) = 171 over IF, and we specialize X in Y;. Thus,

An(Bn(T1ye o Yoo Y, X)),

An(Yi . Y Y YY)
A (Vs Yy Yo Vg1, 1))

= (_I)L%JZn,l(&, Y;) (cf. (4.4))

n—2

n n—1 o
= (_1)Lzlyjq Api1(Y1, .. Y, o Yygy, Yyt Fat ot
= (DI (1) A (D)) e
4.5) — (—I)L%J(—1)(”_1)(”+1_‘i)qun_lAn+1(Z)1+q+'"+qn_2.

Below, we use the following three identities:
e Forl <j<i<n+1,wehave
An(Y1 0 Y Y Yash)
= ()" ALY Y Yl YD),

e Forl <i<j<n+41,wehave

An(Yi,. . Yio o Y Yay)
= ()" A (Y1, Y Y Y YY),
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e Forl <i <n+ 1, wehave
An—l—l(Yl, LB ’?l's ceey Yl’l+17 }/l) = (_1)n+1_lAﬂ+1(Z)
Then it follows with (4.5) thatfor 1 <i <n + 1,

An(An(Y1). An(Y2). ... Ay (Y). ... Ap(Yag1))
= A (A1, Yoo oo Vi Y d)s o A (Ve Yist Vi Vo),
An(Yi,oo Yo, Y Yiga, oo Yag)s oo
An(Yr,. o Yis oo Yagn))
— (_1)(n+1—i)(i—1)+(n—i)(n+1—i)(_1)ng Zn,l(g, Y;)

n—1

_ 1-i)(i—1 —i 1—i z —1)(n—i+1
_(_1)(n+ DNE-1)+@n—i)(n+ t)(_l)LQJ(_l)(n Y(n—i )Yiq
X Ap gy (Y)1Fat-+a"
n n—1 g2
@6) = (DY A, ()Tt

Thus, by developing the determinant A, 41(A, (&), o Ay (ﬁ), s D (Yut))
along the first row, it follows that

A”"'I(A”(&)""vAn(ﬁ)’---’An(?n+l))
= AP ARy (F1), An(F2), . AT, A (Puir))?
= A () A (An(F1). R (Fa). o An(T). o Ay (i) + -+
+ (1" 2 A Tt ) A (An(T1). o An (). An(Fn). Ay (Fgr))?
B (_l)w( > (—D"“An@n"")An+1@)q<1+q+"'+q"2)

1<i<n+1

=(—1)L31(—1>"( > (—1)i+n+1Y;f”A,,@)An+1<2)q<1+q+"'+q”2)

1<i<n+1

= (~)E A,y (v) et

n—1

This is (4.4) for m = 0 and n + 1. This also shows the equality of the coefficients of
higher degree in (4.4) form = 1 and n + 1.

(B2) We compare the zeros with multiplicity in the two members of (4.4) for m = 1
and n + 1. We write

G = Apg1 (Bnp1 (1, X)s ooy (D) LA, (Vr, X,
(_1)n+2An+1(?n+17X)),
D = X" Ay (Y, X) 1 Hetta"!
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We are first interested in X = 0, for which we notice that

G An+1(&’X) i+1 An—i—l(&’X)
g = A (PR ST
X 1+q q X X

1y An+1(Yn+1,X))
X 9

whose constant term is
(D" OA, 3 (An (T (DAL (D), (D)2 A, (Vi)

On the other hand,

3

D (A (Y, X)\ e+t
X 1+g+-+q" - ( e )

whose constant term is

(_1)(n+1)n An-l—l (Y)q(1+q+...+qn—l)'

Then we have equality and non-nullity of constant terms by (B1), which ensures in
particular that the multiplicity of X =0is1+¢ +---+¢" in G andin D.

Thanks to (2.2), we can handle the other zeros. Let ¢ := (1,82, ...,6n41) €
Fp+t —(0,...,0),and xg := )" - ;<, 1 &Y. We need to show that x is a root of
G with multiplicity 1 + ¢ + -+ + ¢" L.

With (2.1) we get

G = l_[ 1_[ l_[ (ALY, X) + ai Al = 1](Y, X) + -
Isisnai€Fy ai€Fq | o A[1)(Y, X)),

where A[i](Y, X) := (—1)"+1An+1(&, X) and so with Proposition 2.3,

1<i<noa;_1€Fy a1 €Fy

where A, o 1,1,0,..,00 = Ay With ¢; = oY + -+ + ;1 V" + Y*, and
(Y;*)1<i<n is the dual basis of (¥;)1<i<n. The roots of A, ..a;_;,1,0,....,00(¥, X)
seen as a polynomial in X and coefficients in [F; (¥) are simple (Proposition 2.3) and
A@y,oai_1,1,0,...,0)(Xe) = Oif and only if &; + @j—16;—1 + -+ + @1&1 = 0. Thus, the
multiplicity of x, in G is equal to the cardinality of the (o1 1@z 1 -+t ap41) € P"(IFy)
which belong to the hyperplane ), _; _,.; &ia; =0,ie. 1 +g+---+ g"~'. Hence
we get (4.4) form = 1andn + 1. o
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4.5 — Second proof of Theorem 4.1 by a matrix interpretation in the case m = 0

The following theorem is of interest independently of the rest. It gives indeed a
relation between a generic Moore matrix and the Moore matrix of the cofactors of its
first row, a relation analogous to the classical relation between a square matrix and its
comatrix. The m = 0 case of Theorem 4.1 is then an immediate corollary by taking
the determinants.

Tueorem4.2. LetY1,Ys,. .., Y, be n indeterminates over Fy, and let M, (A, (&),
o (=DITA, (g) o (=DTA, (&)) be the Moore matrix of the cofactors
(A (M), (D)ITTAL (), ., (1)1 AL (V) of the first row of My (). Then
one gets
Mo (AP0 GO AR (T (D" A (F)) Mo (Y)
4.7)

0 . . S 0 (=)' 1A,(Y)
An(Y) 0 . e 0 0
ar A(Y)? 0 0 0
=| o o AT 0 0 ;
Uyl : 0/1]”_3 Ap(Y)1"? 0

where
= Ag(P)T Yy 4+ (D) TIAL @)Y
+ (=) AT Y

Proor. We write
Ma(An(T), o (D T AL (T (D) T AL (V) M (Y) =t i ]1<ij<n-

Since (—1)I71A, (ﬁ)q is the cofactor of Y; in the Moore matrix M, (Y ), we get
the following formulas:

4.8) Ap(Y)IY1+ -+ (=D T A (F) 1Y+ -+ +(=1)" A (Y)Y, = An(Y),
andforl <k <n-—1,

4.9) Ap(F)IYE 4o (1) T ATV 4 (1) AL ()Y = 0.
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. ~ n—1
Since (—1)""' A, (Y;) is the cofactor of ¥,/ we get the following formulas:

n—1

A~ n—1 . A n— N
AnPYE (D T A EDYE T (=) A (R Y]
(4.10) = (D" An(D).

andfor0 <k <n -2,

A k . ~ k A
An(POYE + o4 (D) IA,(TDYS 4o 4 (1) A (T Y
4.11) =0.

It follows from relations (4.10) and (4.11) that m,; = 0 for 1 < j < n; and that
min = (~1)"" A (Y).

Now let 2 <i < n. Raising (4.8) and (4.9) to the power g1, it follows that
mii—1 = An(Y)4 ™" and mi; =0fori <j <n.

In conclusion, the matrix [m; j]1<;,j<n satisfies (4.7). [

By taking the determinant of the matrices in (4.7) we obtain that y = 1 in the case
m = 0 of Corollary 4.1; Theorem 4.1 follows.

4.6 — A matrix interpretation of the general case (n,m)

The following theorem is a generalization of Theorem 4.2 adapted to a matrix
interpretation of the general case of Theorem 4.1. Theorem 4.2 corresponds to the
casem = 0,ie. X = 0.

TueoreM 4.3. Forn >2, m > 1let Y1,Y>, ..., Yy, X1, X2, ..., X;y be n +
m indeterminates over [y, §; = (—l)i_lA,hLm_l((g), (X)) for1 <i <mn,é; =
' Apm—r (V). (X)) forn +1 < i <n+m.

Let A= [a; ]1<i,j<n+m> Where a;; = (8;)4  forl<i<n, 1<j<n+m
and ajjpn =1forn+1<i<n+manda;j=0forn+1=<i<n+mand

j#En—i.
Hence,
. Mn(81’82w~78n) Mn,m(51+n»82+n7---’8n+m)
@iz A= (o € My (F[Y. X)) 1d, |
Then

(4.13) A ttMn—Fm(X,)_() = [mi,j]lsi,jsn =M,
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with
my,j =0 Jor1 <j<n+m-—1,
Min+m = (_1)n+m_1An+m(Z,)_(),
ma1 = Apim(Y, X),
my ;=0 for2 <j<n+4+m,
i—1
mi;=ol | for3<i<nl<j<i-2,
mii—1 = Anm(Y, X)7, m;j =0 fori <j<n+m,
with

1 it k+1 k+1
ag =8 ¥+ 4 84 1Yn—I—SZH X1+ 80 m Xm.

In matrix notation we have M = ( M1 M2 , where
Mz My

0o . 0 0
Bo 0 ) 0 0
o B1 0 0 0

n—3
Un—z y3 . oo Pua O
with ﬂi = An+m ()_]’ )_()qi’
0 0 (=D A (Y X)
M, = 00 - 0 ’

00 --- 0

Mz ="My m(X1. X2, ..., Xm).
My ='"Mu(X? X", X",

Proor. We can consider 51(-1 as the cofactor of Y; or X; in the Moore matrix
My, (Y, X), so we have the following formulas:

I+ 8o+ +81Y, + 81 X+ 8 X+ 4+ 81 Xm
(4.14) = Aptm(Y, X),

AU S CURRE () SR N CURE 1P AR
(4.15) +680,, X4 =0

forl<k<n+m-—1.
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1 1

n+m— n—+m—
We can also consider §; as the cofactor of Yi”7 orof X iq in the Moore
matrix M, (Y, X). We thus have the following formulas:

n+m—1 n+m—1 n+m—1

+ 8,7, +- 48,7,

n+m—1

+ 8n+ngI

n+m—1

§iY{ + Sn1 X

= (_1)n+m_lAn+m(Zv)_()
5179 4 8V 1 8, YT 81 XY 4 Spia XTI 4 4 S XL =0
1y + 0¥, 4 ---F05t; +0pt1X] F+Oont2X, + A Onimdk, =

forO<k<n+m-2.

It follows from the relations (4.12) and (4.13) that the first line of 4 ‘M, (Y, X) is
the same as the first line of M = [m; j]li<i,j<n.

Then, to show the equality between the lines of index i with 2 <i < n, it is enough
to raise relations (4.14) and (4.15) to the power qi_l and to use the definition of o
forl <k <n-2.

The equality between the lines of index i withn + 1 <i < n 4 m is immediate.
All this shows relation (4.13). ]

CoROLLARY 4.3. Theorem 4.1 is a consequence of the matrix equality in Theo-
rem 4.3.

Proor. Expanding the determinant of M according to the first line, we have
(4.16) detM = Ay (Y, X)det N

with N = (%; %42; ), where

Bi O . e 0

[04)) ,81 0 . 0

N1= (6%) O(‘II ﬁz . 0
q q’;_3

Wy dfy ol B

with Bi = Anam (Y, X)7',

N, is the zero matrix in M, n—1(F4[Y, X]),
N3 = "Mp—1.m(X1, X2, ..., Xm),

n—1

n—1 n—
Ny ="Mpu(X?" X2, x2"h),

m

It is then clear that

n—2 n—1

(4.17) det N = Ay (Y, X)'FH 477, (X))
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Thus, with (4.16) and (4.17), one gets
(4.18) det M = Ap (Y, X)Apym (Y, X)FTHH A, ()"

It follows from (4.13) that det M = A, 4+ (Y, X) det A and from (2.6) that det A =
An((gl, o T (Sn), thus

(4.19) det M = Ao (Y. X)An(81. 8. ... 8p).

Since (cf. Proposition 2.1) A, 1, (Y, X) # 0, and F;[(Y, X)] is an integral ring,
equality (4.4) in Theorem 4.1 for m > 1 follows from (4.18) and (4.19).

Finally, the equality of the coefficients of highest degree in X in formula (4.4) in
Theorem 4.1 for m = 1 gives, as noticed in the first proof, formula (4.4) in Theorem
4.1 form = 0. ]

5. Two illustrations of the Moore determinant
5.1-Themap (ay,...,an) € K" — (Ay—1(4i))1<i<n € K"

ProrosriTion 5.1. Let K be an algebraically closed field with characteristic p >
0. Let us denote V(A,) = {(a1,az,...,ay) :=a € K" | Ap(a) = 0}. The map
@:a = (ay,az,....ay) € K" — (Ay—1(4i))1<i<n € K" induces an onto map from
K" — V(A,) to itself. Moreover, for a and a’ in K™ — V(A,,), one has ¢(a) = ¢(a’)
ifand only ifa' = Aa, where M Ta+-+4""% = 1,

Proor. Let (a1, az,...,a,) € K" —V(Ay) and b; := Ap_1(@;) for 1 <i <n.
Since Ay (h) = (=12 A, (q)1F9++4"7? (we recognize (4.4) for m = 0), it follows
that 9(K” — V(An)) C K" — V(An). Then

9%(@) = (Ap—1(bi))1<i<n
= (An-1(An=1@@1); - - A1 (@i=1), Ap=1@@it1); - Dne1(@n))) 1 2 <

n—1 =3 gn—2
= ()" ZHA, (@) et Ha" gl

as seen in equality (4.6) at rank n obtained in the first proof of Theorem 4.1. It follows
that

n—3 n—2

02(a) = (—)"T AL (@) 1T (o)
Let A € K —{0}. Then

¢%(Aa) = AQHTaT-+" " DA+g+-+a""D4a" 72 2 (g
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Note that we have the equality (1 +¢ +---4+¢" D)1 +q+ - +q¢"3) +q¢" 2 =
(1+ ¢+ -+ ¢"2)? according to the fact that p(Aa) = A1 +9++4" "> y(a). Thus, by
taking A with A(+a+-+a""D% = A, (g)=0+a+-+4"7) one oets p2(ha) = (@) .
Hence the surjectivity of ¢? and therefore of .

Let us now examine the injectivity defect of the map ¢.

Let @ and @’ be in K" — V(A,) such that ¢(a) = ¢(a’). Then ¢?(a) = ¢?(a’)
and so A, (c_z)1+q+"'+qn73a?n_2 = A, (4)1+q+...+qn*3al{q”—2. Thus, there is A € K
such that @’ = Aa, hence A1+4+-+4" 2 (g) = ¢(a) and so A1H4+-+4""> = |, The

converse is immediate. n

RemaARrk 5.1. Proposition 5.1 works the same if we replace the map ¢ by the
map ¢y where ¢1:a = (a1,d2.....a,) € K" = ((=1)' "' Ap_1(di))1<i<n € K" as
p? = (-Dizlp?.

5.2 - On K-étale algebras and Elkies pairing

In this paragraph, unless expressly mentioned, K is a field of characteristic p > 0,
K¢ is an algebraic closure of K and F is the Frobenius automorphism defined by
F(x) = x? for x € K¢,

Let /== (f1. f2. ..., fu) € K" with A, (f) # 0,1 f1, f2,..., fu are Fp-free.
We intend to study the K-algebra

K[W;, 1 <i <n]
(WP —Wi — fidi<i<n

A=

in particular its group of K-automorphisms Autg A, and to exhibit a special generator
of the K-algebra A and a subgroup (Z/pZ)" C Autx A whose action on A is dictated
by an associated Elkies pairing (Section 3.2 (A)).

ProprosITION 5.2. Letn > 1 and]_‘ =(f1, f2,..., fu) € K", where An(i) #£ 0.
Let V' be the IFp-vector space

QP i<i<n Fp fi) + (F = 1d)(K)

(F —1d)(K)
of dimension r < n and I U J be a partition of {1,2,...,n} such that f;, i € I
induces an Fp-basis of the vector space V. Let A be the K-algebra %,

where Py = Wkp — Wi — fx. Then A is an étale K-algebra isomorphic to LP"™" the
cartesian product of p"~" copies of L, where L C K¢ is a field which is a Galois

; R ~ KW kel
extension of K of group (Z./ pZ)" and L ~ Pker *
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The group of K-automorphisms Autg A is then isomorphic to a semidirect product
n—r

of the groups Gpn—r and (Z/pZ) )P .
Moreover, if w; denotes the canonical image of W; in A and if

w1 Wy cee Wy
N o o fa
w:=8w(j_”) = flp fzp W € K[wy, wa, ..., wy],
n—2 n—2 n—2
flp fzp fnp

then

An(Bna (f). oo D Ay (fim) w (SD A (fien). -
=D Ape1 ()
An(Bn1 (1) (CDTT A1 () (D A (f)
i+ S 4+ 7Y e K],

where An_1(f) = An1(fis for o fict fivro. .o fo) and

(5.1) A = K[wi,ws, ..., w,] = K[w] ~ (S([Zi)

where

Ani1 (Bnei (f1)s ooy A1 (fu) W)
oW) = = = — Au(f)P
An(An—1(f1). - Due1(fn)) =

=W (X oAy

1<i<n-—1

n—1

n—l_pi—l

=i )

n—1

+ (=D AHPTTIW = A ()P
A[I)(f) = det(f. F(f).....F'(f)..... F*(f)) and Q(w) = 0.

ProOF. (i) Let us show that A is isomorphic to the K -algebra L?"~" . By definition

of 1, we have
 Cier Fp fi) + (F —1d)(K)
B (F —1d)(K) .

Artin—Schreier theory [1, §11, Theorem 5, p. A V.88] says that

Vv

(F — Id)‘l(ZIpr,- + (F — Id)(K)) C K"

iel
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is a Galois extension L/ K of the group Hom(V,F,) ~ (Z/pZ)" and that

(5.2) L= @ Kl_[xf‘i, where x; € K¥ and P;(x;) = 0.
0<a;<p iel
iel

Let 7 be the K-algebra homomorphism of K[W;,i € I] onto L mapping 7 (W;) to x;.
It follows from (5.2) that 7 induces a K-algebra homomorphism

K[Wiel
KW el] Klw;,i eI]— L,
(Pi)ier

which is surjective, and as

Klw;,i el]= Z Kl_[wf”,

0<o;<p iel
iel

we get a K-algebra isomorphism
KWiiel]
(Pi)ier
On the other hand, we have for j € J, fj =D . c; Aji fi + gj‘-v —gjwithd;; e,
and g; € K. Thus, for j € J,andiij’ =W+ epAjiWi,one gets K[Wg, 1 <k <
n]=K[W;,iel,W/,jeJ]andfor j € J onehas W/* — W/ —(¢] —g;) = W;? —
Wi — £+ Yier Apa(Wi? — Wi — f;) and soif P/(W/) := W/” = W/ — (g7 — g;)
we have

(5.3)

K[Wi.i e LW/,j €]
(Piicl Pljel)

Now we can apply the following general lemma:

LemMa 5.1. Let K be any field (no condition on the characteristic) and K¢ an
algebraic closure.

Letn > 1 andfor 1 <k <n, P, € K[Wy] be a non-constant polynomial. Let A
be the K-algebra

K[Wk,1 <k <n] — Klwe. 1 <k <n]

(Pk)lskfn

where wy is the canonical image of Wy.

Let I U J be a partition of {1,2,...,n} and B be the K-algebra B := %.
Letu: K[Wy,k € I] — A be the K-homomorphism with u(Wy) = wi fork € 1. Then
Keru =) ,c; PiK[Wk.k € I] and u induces on one side an isomorphism between
the two K-algebras B and K[wy,k € 1] C A and on the other side an isomorphism

between the two K-algebras BWiekell jnd A.
(Pi)kes
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Proor. We have
Keru := {P S K[Wk,k S I] | P = leksn QkPk},

where QO € K[Wi,1 < k < n]. Let z; € K¥ with Pi(zx) = 0. Let o: K[W,,
1 <k <n] — K¥[W,, k € I] such that o(a) = a for a € K, (W) = W, for
k € I and 6 (W) = z for k € J. Then

54)  P=o0(P)=) 0(Q)Px and o(Qk) € K"¢[Wi.k € I.

kel
It follows that there is a finite field extension L /K inside K¢ with o (Qy) € LWy .k €
I].Let{eo =1,eq,...,em,m} beabasisfor L/K.Then L{Wi,k € I] =Dgy-gen K[Wk.
k € Ies. It follows from (5.4) that there is R € K[Wj.k € ITwith P =3, o; Ri Pr;
thus Keru = )", .; PiK[Wk, k € I].

Let : K[Wy,k € I] — B be the canonical K-homomorphism and let v: B — A
be the unique K-homomorphism with ¥ = v o w. Then v induces an isomorphism
from B to K[wg,k € I] C A.

So we have the following commutative diagram:

K[Wk,k? A
B.

It extends in the following commutative diagram:

KW,k € 1][Wk,% A

B[Wy,k € J],

where u(Wy) = wg, 7 (Wy) = Wy, 5(Wy) = wy fork € J.

We claim that Ker v = ) ;o ; Pk B[Wi. k € J].

Let Q € Kerd and O € K[Wj., k € I1[Wi.k € J] such that Q = 7(Q). Then
i(0) = 97(0) =0andso O € > 1<k<n K[Wi, 1 <t < n]Py and

Qeﬁ( > PkK[Wt,lftfn])=ZPkB[Wk,keJ]. .

1<k<n keJ

KW, iel W.jelJ]
(Piyiel,Pljeld)’
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it follows from Lemma 5.1 that
Klw;,i € IN[W}.j € J]
T (Pljeh

KW, i€l
(Piiel)

where K[w;,i € I] =

LW)jel]

Now with (5.3) we deduce that A ~ oy = LP"™" Moreover, A is a K-étale
J

algebra since L /K is separable.

(ii) We show that the group Autg A is a semidirect product of the groups &,»—r and

((Z/pZ)")?"™". This follows from (i) and the following lemma:

LemMma 5.2. Let K be a commutative field (no condition on the characteristic) and
L/K be afinite Galois extension of group G. Lett > 1 and A := L' and Autg A be the
group of K-automorphisms of A. Let p: ©; — Autg A, where p(0)(x1,X2,...,X;) =
(Xo=1(1)» Xg=1(2)» - - - » Xg—1(r)) and ¢: G* — Autg A such that

(81,825 > &) (X1, X2, ..., X¢) = (g1(x1), 82(x2), ..., &¢(X¢)).

Then p and ¢ are two injective homomorphisms of groups with

p(0)¢(g1.82.- . &)P(O) " = p(-1(1)- &o=1(2): - - -+ 8o—1(z))

and Autg A is the internal semidirect product of the groups p(&;) ~ &; and
o(G") ~ G

Proor. We can assume that ¢ > 2 and we show the last assertion.

Let M; == {(x1,....%i-1,0,x;41,...,x;)} withx; € L for j #i.ThenIN; isa
maximal ideal of A and Emii ~ L. Then {N;, 1 <i <t} is the set of maximal ideals
Spm(A) of A.

Now, if ® € Autg A, ® induces a bijection of Spm(A), so there is 0 € S, with
DIM;) = My—1;) for 1 <i <1, hence p(o~H)OM;) =M; for 1 <i <1.

Let W := p(0~")®. We have W(();,; M;) = ;. M; = (0,0,...,L,0,...,0)
for 1 <i <t, where only the ith component is not zero. Thus, ¥ induces a K-
automorphism g; of L. Thus we have ¥ = ¢(g1, g2,...,g:) and so ® = p(0)¢(g1,

g2,...,81)- ]

(ifi) We show (5.1). Letv; = w; + (fi + £ + -+ £ ). Thenw = 8,,(f) =
8y(f) and P = + fl-pnil. It follows that w?’ = 89(]_”’1) for0<j <n-—1and

w?" =8y (f7") + An(f7"7). Since 8y (f71) = 31 g p (1) T Apt ()P i, for
1 < j < n, we deduce from Cramer’s formulas the announced formula for w; as a
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polynomial function of w. Finally, the previous formulas also give a non-trivial linear
relation between the columns of the determinant

An—l({ﬁ) An—l({i;l) w
An—l(ﬁ)p An—l(ﬁ)p w?
An_l(i"l)pn—l An_l(f_’;l,\)pn—l wpn—l
Anct(SDP" oo Apct ()P w?" = Ag(f7")
which is zero. We get (5.1), where
Ans1(Bno1(fD) o Auc1(f), -
o) i DBt (o). W) — AP

Ay (An—l(ﬁ)v ce An—l(ﬁ))

whose first term is the monic additive polynomial whose roots are the IF,-space
Di<i<n FpAn (/i) Then the equality

Q(W)=WP”+( Ty AL
1<i<n-—1

- )

n—1

(D" AP TIW = A (f)?
follows from Elkies [2, formula (4.28)] and the proof of Proposition 2.5. [ ]

ReMARK 5.2. (i) Since A,(f;,i € I) # 0, Proposition 5.2 applied to the K-

_ K[Wy.kell
algebra L = “Poeer

(i1) One may consult [5] for an application in the case where K = k((¢)) is a field of
formal power series.

gives a generator of the extension L/K.

CoroOLLARY 5.1. We keep the notation of the propoAsition.

Let F := D<i<n Fpfi, Z = D1<i<n FpAn—1(fi) be two Fp-subspaces of K
associated to f. Let z € Z and o, be the K-algebra automorphism of K[W] such
that o, (W) = W + z. Then o, induces a K -algebra automorphism of A that we still
denote by 0,. The map z € Z — 0, € Autg A is an injective group homomorphism
and its image is a subgroup G of Autg A which is isomorphic to (Z/pZ)". Let
U = (ﬁ(f))p C K be the Fp-space of roots of the reversed polynomial of

pet) = Tk — gy = 20

=X 4. (=D)"AL()PTIX
11 A + o+ (=D An(f)

(cf. (2.2) and Section 3.2).
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Let z € Z. We can write z = An(]_‘)ul/p withu € U and for ¢ := (e1,€2,...,&n) €
Fy —(0,0,...,0) let we := Y |, ciw; € A(resp. fe =) 1 i<, i fi € K). Then
wl —w, = f; and K[w,] C A is isomorphic to the K-algebra

KWl
(W = We — fo)

and so is a K -subalgebra of dimension p. Moreover, o, (wg) = we + (—1)" "V E(fg,u),
where E: F x U — F, is the Elkies pairing (see Section 3.2 (A)).

In particular when r = n, i.e. A is a field and the group G is the full group Autg A,
then the set {K[wg] | € € &}, where & is a set of representatives of P"~1(F,), is equal

n__ . . . .
to the 1;_11, p-cyclic extensions of K inside A.

ProoF. (i) We show the equality 0, (w;) = we + (—=1)""LE(fe, u).
We have z = leisn o; (—l)i_lAn_l(ﬁ) with (a1,...,a,) € ]FI',‘. Thus,

0z (wg)

An(Anc1(f). oo (D2 A0 (fim)o 2 (=1 Aut (i),

. (—1)"—1An_1<f;)))
e Z Si

w; + = - = =
\<i<n ( An(An—l(ﬁ),--~a(_1)171An—1(ﬁ)a-~-s(_1)n71An—1(é))

= wg + E &0

1<i<n

=ws + (D" E(fe,u),

where E: F x U — [, is the Elkies pairing (see Proposition 3.2 and Section
3.2 (B)).

(ii) We show that K[w,] C A is a K-subalgebra of dimension p. As the w;,0 <i <n
are [F,-linearly independent, after an IF,,-linear change of variables we can assume
that e = (0,0,...,n — 1, 1). Then the result follows from Lemma 5.1.

The case n = r in Corollary 5.1 then follows from Galois theory. u
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