A note on the admissibility of smooth simple RG-modules

MIHIR SHETH (*)

ABSTRACT – Let G be a p-adic reductive group and R be a noetherian Jacobson algebra over the ring \mathbb{Z}_l of l-adic integers with $l \neq p$. In this note, we show that every smooth irreducible R-linear representation of G is admissible using the finiteness result of Dat, Helm, Kurinczuk and Moss for Hecke algebras over R.

MATHEMATICS SUBJECT CLASSIFICATION (2020) – Primary 22E50; Secondary 11F70, 20C08.

Keywords – Admissible representations of p-adic groups, Hecke algebras, Jacobson rings.

Unless mentioned otherwise, all rings are commutative with unity. A p-adic reductive group is the group of rational points of a reductive group defined over a non-archimedean local field of residue characteristic p>0. Let R be a ring and G be a p-adic reductive group. Let RG denote the group algebra. An RG-module π is called *smooth* if every $v \in \pi$ is fixed by some compact open subgroup in G, and admissible if for every compact open subgroup $K \subseteq G$, π^K is a finitely generated R-module.

For a compact open subgroup $K \subseteq G$, let $H_R(G, K)$ denote the Hecke algebra of compactly supported R-valued K-biinvariant functions on G equipped with the convolution product and let $Z_R(G, K)$ denote its center. The Hecke algera $H_R(G, K)$ is an associative R-algebra with unity. The following theorem is the joint work [1] of Dat, Helm, Kurinczuk and Moss:

THEOREM 1. For any noetherian \mathbb{Z}_l -algebra R with $l \neq p$ and any compact open subgroup $K \subseteq G$, the Hecke algebra $H_R(G, K)$ is a finitely generated module over $Z_R(G, K)$, and $Z_R(G, K)$ is a finitely generated R-algebra.

(*) *Indirizzo dell'A*.: Department of Mathematics, Indian Institute of Science, Bangalore 560012, India; mihirsheth@iisc.ac.in

M. Sheth

As an application of Theorem 1, we prove the following result:

Theorem 2. If R is a noetherian Jacobson \mathbb{Z}_l -algebra with $l \neq p$, then any smooth simple RG-module π is admissible.

Recall that a ring is called *Jacobson* if every prime ideal is the intersection of the maximal ideals which contain it. The examples of noetherian Jacobson \mathbb{Z}_l -algebras include all fields that are \mathbb{Z}_l -algebras, as well as finitely generated algebras over such fields, such as $\mathbb{F}_l[T_1,\ldots,T_n]$ or finite rings such as $\mathbb{Z}/l^m\mathbb{Z}$ for which Theorem 2 is a new result. When $R=\mathbb{C}$, Theorem 2 is a classical result in the representation theory of p-adic groups. The case when R is any field of characteristic not equal to p is given in [4, Proposition 4.10].

We remark that the authors of [1] expect Theorem 1 to be true for any noetherian $\mathbb{Z}[\frac{1}{p}]$ -algebra R, in which case Theorem 2 would also hold for any noetherian Jacobson $\mathbb{Z}[\frac{1}{p}]$ -algebra R (in particular for $R = \mathbb{Z}[\frac{1}{p}]$).

Theorem 2 follows from the following corollary to Theorem 1:

COROLLARY TO THEOREM 1. Let R be a noetherian Jacobson \mathbb{Z}_l -algebra with $l \neq p$, and let M be a simple (left) module over $H_R(G, K)$. Then M is a finitely generated R-module.

PROOF. To ease the notation, let us write $H=H_R(G,K)$ and $Z=Z_R(G,K)$. Choose a surjective map H woheadrightarrow M of R-modules. Let \mathfrak{m} be the kernel of the surjection H woheadrightarrow M and $\mathfrak{m}_Z := \mathfrak{m} \cap Z$. Note that \mathfrak{m}_Z is a two-sided ideal of Z because Z is the center of H. We claim that $\frac{Z}{\mathfrak{m}_Z}$ is a field. Let $\bar{z} := z + \mathfrak{m}_Z \in \frac{Z}{\mathfrak{m}_Z}$ be a non-zero element. Then \bar{z} is also non-zero in $\frac{H}{\mathfrak{m}}$. So the left H-submodule $H\bar{z}$ of $\frac{H}{\mathfrak{m}}$ generated by \bar{z} is equal to $\frac{H}{\mathfrak{m}}$ because $\frac{H}{\mathfrak{m}}$ is simple. Therefore, there exists $h \in H$ such that $\bar{h}\bar{z} = \bar{1}$ in $\frac{H}{\mathfrak{m}}$.

Consider the $\frac{Z}{\mathfrak{m}_Z}$ -algebra $\frac{Z}{\mathfrak{m}_Z}[\bar{h}]$ generated by \bar{h} . It is commutative because $\frac{Z}{\mathfrak{m}_Z}$ is commutative. Moreover, as $\frac{H}{\mathfrak{m}}$ is a finitely generated $\frac{Z}{\mathfrak{m}_Z}$ -module and $\frac{Z}{\mathfrak{m}_Z}$ is noetherian, $\frac{Z}{\mathfrak{m}_Z}[\bar{h}]$ is a finitely generated $\frac{Z}{\mathfrak{m}_Z}$ -module. Hence, we have that \bar{h} is integral over $\frac{Z}{\mathfrak{m}_Z}$, i.e.

$$\bar{h}^n + \bar{a}_{n-1}\bar{h}^{n-1} + \dots + \bar{a}_0 = 0,$$

for some $n \in \mathbb{N}$ and $\bar{a}_{n-1}, \bar{a}_{n-2}, \dots, \bar{a}_0 \in \frac{Z}{\mathfrak{m}_Z}$. Multiplying both sides of the above by \bar{z}^{n-1} and then using that $\frac{Z}{\mathfrak{m}_Z}$ commutes with \bar{h} , we obtain that

$$\bar{h} + \bar{a}_{n-1} + \bar{a}_{n-2}\bar{z} + \dots + \bar{a}_0\bar{z}^{n-1} = 0.$$

Hence,
$$\bar{h} = -(\bar{a}_{n-1} + \bar{a}_{n-2}\bar{z} + \dots + \bar{a}_0\bar{z}^{n-1}) \in \frac{Z}{\mathfrak{m}_Z}$$
.

Now, the field $\frac{Z}{\mathfrak{m}_Z}$ is a finitely generated R-algebra. One of the characterizations of Jacobson rings implies that $\frac{Z}{\mathfrak{m}_Z}$ is a finitely generated R-module [2, Theorem 10]. Since $\frac{H}{\mathfrak{m}}$ is finite over $\frac{Z}{\mathfrak{m}_Z}$, we get that $\frac{H}{\mathfrak{m}} \cong M$ is also a finitely generated R-module.

PROOF OF THEOREM 2. Since G has a fundamental system of neighborhoods of identity consisting of open pro-p subgroups, it is enough to show that π^K is a finitely generated R-module for $K \subseteq G$ an open pro-p subgroup. Let $K \subseteq G$ be an open pro-p subgroup such that $\pi^K \neq 0$. Since π is simple and $p \in R^\times$, π^K is a simple $H_R(G,K)$ -module by [6, I.6.3]. Hence, π^K is a finitely generated R-module by the corollary to Theorem 1.

REMARK 3. The requirement for R to be Jacobson in the corollary to Theorem 1 is necessary. Indeed, if R is a commutative ring and if all simple modules over $H_R(G, K)$ are finitely generated R-modules for all p-adic reductive groups G and compact open subgroups K, then R is Jacobson. The following proof of this converse statement was communicated to us by M.-F. Vignéras: By Satake [5, §8], if G is a classical simple group with trivial center and $K \subseteq G$ a natural maximal compact subgroup, then $H_R(G, K)$ is a polynomial ring over R in M variables, where M is the rank of a maximal split torus in M. Thus, a finitely generated M-algebra M is a quotient of some M1 is a field, then M2 is a simple module over M2 is a Jacobson.

Remark 4. Let $R=\mathbb{Z}_l$ with $l\neq p$ and $G=\operatorname{GL}_2(\mathbb{Q}_p)$. As \mathbb{Z}_l is not Jacobson, Remark 3 suggests that G admits a smooth irreducible R-representation that is not admissible. Indeed, let $K=\operatorname{GL}_2(\mathbb{Z}_p)$. By [3, Proposition 2.1], $H=H_R(G,K)\cong R[T_0,T_0^{-1},T_1]$. One can make $M:=\mathbb{Q}_l$ into a simple H-module by defining the action via the surjective map $H \twoheadrightarrow M$ which takes T_0 to 1 and T_1 to l^{-1} . However, note that M is not a finitely generated R-module. By choosing a prime l so that the pro-order of K is invertible in R, there exists a smooth simple RG-module π such that $\pi^K \cong M$ as H-modules [6, I.4.4 and I.6.3]. Since π^K is not a finite R-module, π is non-admissible.

ACKNOWLEDGMENTS – The author thanks Radhika Ganapathy and M.-F. Vignéras for many helpful discussions.

Funding – The author thanks the support of the Raman Postdoctoral Fellowship of the Indian Institute of Science, Bangalore.

M. Sheth 4

REFERENCES

- [1] J.-F. Dat D. Helm R. Kurinczuk G. Moss, Finiteness for Hecke algebras of *p*-adic groups. *J. Amer. Math. Soc.* (2023) DOI 10.1090/jams/1034.
- [2] M. Emerton, Jacobson rings. http://www.math.uchicago.edu/~emerton/pdffiles/jacobson.pdf, visited on 1 December 2023.
- [3] E. Grosse-Klönne, On the universal module of *p*-adic spherical Hecke algebras. **136** (2014), no. 3, 599–652. Zbl 1305.22021 MR 3214272
- [4] G. Henniart M.-F. Vignéras, Representations of a reductive *p*-adic group in characteristic distinct from *p. Tunis. J. Math.* 4 (2022), no. 2, 249–305. Zbl 07584409 MR 4474372
- [5] I. Satake, Theory of spherical functions on reductive algebraic groups over p-adic fields. *Inst. Hautes Études Sci. Publ. Math.* (1963), no. 18, 5–69. Zbl 0122.28501 MR 195863
- [6] M.-F. VIGNÉRAS, Représentations l-modulaires d'un groupe réductif p-adique avec $l \neq p$. Progr. Math. 137, Birkhäuser Boston, Boston, MA, 1996. Zbl 0859.22001 MR 1395151

Manoscritto pervenuto in redazione il 3 ottobre 2022.