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Integral Points on Certain Elliptic Curves.

Hui LiN ZHU (*) - JIAN HuAa CHEN (%)

ABSTRACT - By using algebraic number theory method and p-adic analysis method,
we find all integral points on certain elliptic curves
V¥ =@+a)® +bx+c), a,bceZ, b <Aic.
Furthermore, we can find all integer solutions of certain hyperelliptic equations
Dy? = Ax* + Bx* + C, B® < 4AC.
As a particular example, we give a complete solution of the equation which was
proposed by Zagier
¥ =x>—9x+28
by this method. In Appendix I and Appendix II, we give the computational

method of finding the fundamental unit and factorizing quadratic algebraic
number in the subring of a totally complex quartic field, respectively.

1. Introduction.

A. Baker [1] developed a method based on linear forms in the loga-
rithms of algebraic numbers, so as to derive an upper bound for the so-
lutions of certain Diophantine equations including elliptic curve. Un-
fortunately, this upper bound is too large and sometimes beyond the range
of computer searching.

Recent results on elliptic logarithm methods [2] [3] [4] have allowed the
determination of integral points on certain elliptic curves rank as big as 8,
but in order to apply it we need the generators of infinite order of the
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Mordell-Weil group and the torsion group of the elliptic curve, and the
rank should not be too high and the canonical heights of the generators
should not be too large either. Mathematicians are asking for simpler
method. In this paper, we use an elementary method containing algebraic
number theory and p-adic analysis to find all integral points on certain
elliptic curves.

In section 2, by this method, we find all integral points (x,y) = (—4,0),
(—1,4£6), (9,£26), (764396, + 668309460) of the equation proposed by
Zagier [5]

1.1) y? =a® — 9x +28.
In section 3, we find all integral points on a class of elliptic curves
1.2) y2 —@+a) @ +bx+c), ab,ce Z,

where the discriminant of «®+bx+c¢, denote as 4, satisfies
A =b? — 4¢ < 0. Furthermore, we can find all integer solutions of certain
hyperelliptic Diophantine equations

(1.3) Dy? = Ax* + Be® +C, B? <4AC.

In section 4, we discuss other cases of equation (1.2) where the dis-
criminant 4 > 0.

In Appendix I and Appendix II, we give the computational method of
finding the fundamental unit and factorizing quadratic algebraic number in
the subring of a totally complex quartic field, respectively.

2. Proof of Main Theorem.

THEOREM 1. All integral points of the elliptic curve (1.1) are
(x,y) =(—4,0),(—1,£6),(9,+26), (764396, + 668309460).

Proor.
Y=o —92+28=(@+4)0@—4x+17).

Put z = x + 4, then we have
0 — 4+ 7= (e+4°—12(x +4) + 39 = 2% — 122 + 39.

Let d=ged(z,22 —122+39), it is easy to obtain d|39. Because
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A= -12 < 0, we get

2 = du?
2.1) )
22 — 122 + 39 = dv?

where d = 1,3,13,39, ged (u,v) = 1.

When d=1, z—6+3=1% [v— @2 —6)lv+ @2 —6)]=3, it is
easy to show that there is no solution in rational integer u,v. So equation
(2.1) is equivalent to the following three equations

z = 3u?
2.2) :
22 — 122+ 39 = 3?
z = 13u?
2.3)
22— 122439 = 1302
and
z = 39u?
2.4) .
22 — 122+ 39 = 39°

In the following, we will discuss the three cases, separately.

CASE 1: We solve equation (2.2). Reducing mod4 to (2.2), we can get that
v is even and u is odd. Put v = 2vy, hence we can write (2.2) as

z = 3u?
{ 2 — 122 +39 = 32u0)*
Thus we have
Bu? — 6)* + 3 = 3(2w)°.

We use algebraic number theory method to factor the equation
above(see [6][7][8][9]). In the quadratic algebraic field Q(v/—3), we have

Su? — 6) + \/——3} [(3%2 _6)— V—“?)] = —(V=3(24A"?,

where A,A’ are two algebraic integers in the quadratic algebraic field
Q(v/—38) and vy = AA’. The class number of Q(+/—3) is one and we get

(2.5) Bu? — 6) £ V-3 = £ vV—3uw"(24?),
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where w = yis aroot of unity in Q(v—3) and w® = 1,7 = 0,1 or 2.

From (2.5), we obtain
Bu)® + 6vV—3u"A? = 18 + 3V-3,
Bu)® £ 2v-3w"(V—3A)° = 18 + 3v-3.
Put A; = v/—3A4, then we have

2.6) Bu)? — 2v—-3u"A? = 18 + 3v/-3,
or
@7 Bu)? + 2V —-3uw"A2 =18 + 3v/-3.

CASE 1.1: First, we solve equation (2.6). We write equation (2.6) as
(2.8) Bu)? — 2V —3A2 =184 3V -3 =15 — 6w or 21 + 6w,

where A% = A2w", /-8 = 2w + 1.

Put 0 = \/2v/—3, 0 is an algebraic integer in a totally complex quartic
field and satisfies 6% =2v/—3 =2+ 4w. Define the subring R =
=7Z[1,0,w, 0w].

For simplicity, we denote o = a + b0 + cw + dbw as o = (a, b, ¢, d) and
denote the conjugates of « as the following:

o =a—bl+cw—dow = (a,—b,c,—d),
o =a+b0 + cw? +dow?, o =a—0b0 +cu® — dOw?,

where ¢ = v/ —2v/—3 is the complex conjugate of 0. And we denote the
coefficients of o as a = («)y, b = (#)1,¢ = (0)2,d = (2)3. Denote by |z| the
complex absolute value of the complex number z and denote
loel] = max (|ox|, |oe—]|, |o|, |e_|) as the greatest absolute value of a, o, a" and

o .

* Because 0 is an algebraic number in a totally complex quartic field,
according to Dirichlet’s unit theorem, there is only one independent fun-
damental unit in Q(0). By direct computation, the fundamental unit in R

(Appendix I) is
e=1+20+ 4w+ 20w.
From (2.8), we get
Bu + 0A2)Bu — 0As) = 15 — 6w or 21 + 6w.
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Thus we have
(2.9) 3u + 0As = +odu!, uk,teZ,t=01,2.

If algebraic number ¢ in the field Q(0) has & = ao/ = ' and f = o,
where ¢ is the unit in the field Q(#), we call « and f as relevant factors.
Otherwise, we call «,o’, 8 and f' as irrelevant factors. By computation
(Appendix II), the irrelevant factors of 15 — 6w and 21 + 6w are:

o1 = (37 27 07 1)7 a1 = (37 _27 07 _1)7
oz =(9,4,6,-1), - = (9,—4,6,-1).

Now we use p-adic analysis method [10] to solve (2.9). From (2.9), we
get
(2.10) Su—0A; =+a_fw', wkteZt=0,12
(2.9) x (2.10), since ez = 1, (3u)* — 0*A2 = (o0p_)(ee_)'e?, we get t = 0.
Because 45 € Q(v—3), we put Ay = b+ dw, b,d € Z, then we have
(Bu + 0As); = (£ 0é)y = 0.

It is the main reason that we take p-adic analysis to solve equations (2.6). To
take p-adic analysis, we need to find the prime p from the prime factors of
ged (€)1, (6o, (6%)3). Here we choose p = 109 to take p-adic analysis.

If o« = o or oo,

ee. =1, Bu)® —0PA2 = (opop Nee )" = g0 = —(21 + 6uw),

it leads to contradiction, so o« = oy or ay_.
By direct computation,

&5 = (— 40223, —45604, —89232, —35828) = — 1(mod 13),
(118)2 = — 1(mod 13), (016%)y = — 1(mod 13), (016%)y = — 6(mmod 13),
(1) = 4mod 13),  (216%); = 1(mod 13).

So we assume k = 6m, write k = 108n + 5,0 < s < 107, where actually
s =0,6,12,18,24, 30, 36, 42,48, 54, 60, 66, 72, 78, 84,90, 96, 102.
By direct computation, we know that only s = 0 meets

(01€%)2 = 0(mod 109).

In the following, we will prove equation (1.1) has the solutions (x,y) =
=(—1,£6)whens=0.
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Put 109" ||n. Because
&'%® = (1,9374, 0,8720)(mod 11881 = 109),
denote
% =1 41090, 86,0, 80) + 109%.
016" %" = 013 (1+109((0, 86, 0, 80) +109))" = o1 (1 +1097((0, 86, 0, 80) + 1099) + - - -),
0 = (016"™") = (1) + 1097(21(0, 86, 0, 80))5(mod 109" +2),
01(0, 86, 0,80) = (— 480,258, 36,240), 109 T 36,

we get n =0,u = +1,(x,y) = (—1,+6). Similarly, we deal with o = o;_
and get (x,y) = (—1,£6).

CASE 1.2: Second, we solve equation (2.7). Let 6 = —2v/=3, w=
= _1%\/__3, R =7Z[1,0,w, 0w, we have 0° = —2 — 4w. We use the similar
method above and get

Su+ 0As = +odw!, uk,teZ.
By computation, the fundamental unit in R is
e=(3,0,4,2),

the irrelevant factors of 15 — 6w and 21 + 6w in R are:

o1 =(3,1,0,-1), o =(@3,-1,0,1);

e =@3,1,6,-1), oz =(3,-1,6,1);

a3 =@3,5,—-6,1), a3 =(@3,-5,—6,—1);
oy =@3,7,-12,-1), oy =@3,-7,-12/1).

We can get t=0 by the same method with Casel.l. Because

ge_ = 1,009 = —(15 — 6w), agog_ = —(15 — 6w), it results in contra-
diction, then o = oy, 01, 014 OF 04_.
If o = o1,

5 = (49009, —9776, 89232, 35828) = — 1(mod 13),
(18)y = — 1(mod 13), (¢16%)s = — 1(mod 13), (x16%)s = — 6(mod 13),
(1eh)y = —4(mod 13), (a16°)y = 1(mod 13).
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So we assume k = 6m, write k = 108n + 5,0 < s < 107, where actually
s =0,6,12,18,24, 30, 36,42,48,54, 60, 66, 72,78,84,90,96,102. By direct
computation, we know that only s = 0 meets

(216%)2 = O(mod 109).
Put 109" ||n. Because
&% = (1,654, 0,3161)(mod 11881 = 109?),
denote
&% =1 410900, 6,0,29) + 109%.
o1 ™" = 1(14109((0, 6,0, 29) + 109))" = 0 (14 1091((0, 6,0,29) +1099) + - - -),
0 = (016 %")y = (a1)5 + 10972(c11 (0, 6, 0, 29))o(mod 109"+2),
11(0,6,0,29) = (138,18, —36,87), 109 1 36,

we get n =0,u = +1,(x,y) = (—1,+6). Similarly, we deal with o = o7
and get (x,y) = (— 1, £6). Similarly, we deal with o = o7 _,04 and o4, SO We
get (x,y) = (—1,£6).

CASE 2: We solve equation (2.3). By taking modula 8, we can get that v is
even and u is odd. It can be written as

[(13u2 — 6) +V—3][(13u% —6) — V—38] = (—1+2V—3)( — 1 —2v/—3)(24A4")%.
We have
(18u% —6) £ V-8 =+2(—1+2V-3)w"A?,

71%73 is a root of unity in Q(H/—3) and w?® =1,

n=0,1or2ucZA A are two algebraic integer in Z[w] and v = 24A4’".
Let Ay =(—1+2v—-3)A, we can get

2.11) (18u)* —2(—1-2V —3)w"A% =78 + 13V —3 = 65 — 26w or 91 + 26w,

where w =

or
2.12) (18u)*+2(—1-2V —3)w"A% =178 4+ 13V —3 = 65 — 26w or 91 +26w.

Case 2.1: First, we solve equation (2.11). Let A% =w"A2 0=
= /-2 — 4y/=3, then * = —6 — 8w. 0 is an algebraic integer in a totally
complex quartie field. We define a subring R = Z[1, 8, w, 6w].
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From (2.11), we get
(2.13) 18u + 0Ay = odw', wkteZ, t=0,1,2.
By computation, the fundamental unit in R is
e=(11,3,4,4),

the irrelevant factors of 65 — 26w and 91 + 26w in R are:
op = (13,4,0,3), o3 =(13,-4,0,-3);
g =(1,4,10,1), o =(1,—-4,10,-1);
o3 =@3,1,4,-3), a3- =(3,-1,4,-3);
ag =(1,3,10,1), oy =(1,-3,10,-1);

o5 = (17,3,14,7), o4 =(17,-3,14,-7).

We can get u = +1, (x,y) = (9, £+ 26) by p-adic analysis method similar to
Case 1.

CASE 2.2: Second, we solve equation (2.12). Let A% =w'A% 0=
= V2+4v-3, then ¢* =6+ 8w. 0 is an algebraic integer in a totally
complex quartic field. We define a ring R = Z[1, 8, w, 6w].

From (2.12), we get

(2.14) 13u + 04y = +asu!, w,k,teZ, t=01,2.
By computation, the fundamental unit in R is
e=(3,1,2)0),
but there are no irrelevant factors of 65 — 26w and 91 + 26w in R, so there
is no solution.
CASE 3: We solve equation (2.4). It can be written as
[(39u% — 6) + V=31[(89 — 6) — V3] = (— 6+ V=3)(— 6 — V-3)(AA4')".
We have
B%u% — 6) + V-3 =+ (— 6+ V-3Ww"A>,

? is a root of unity in Q(+/-3) and w® =1,

n=0,1or2uecZ A A are two algebraic integers in Z[w] and v = AA’.

where w =
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Let A; = (— 6 +v/—3)A, we get

(2.15) (89u)* —(—6—v—3)uw"A? = 234 + 39v/—3=195—"T8w or 273+ 78w,

or

(2.16) (39u)*+(—6—V—3w"A? = 234 4+ 39v/—3=195—T8w or 273+ T8w.
CaSE 3.1: First, we solve (2.15). Let A2 = w"A2, 0=+ —6—+-3,

then 6 = —7 — 2w. 0 is an algebraic integer in a totally complex quartic

field. We define a subring R = Z[1, 0, w, w].
From (2.15), we get

2.17) 39 + 0As = +asfu!, wu,k,t e Z.
By computation, the fundamental unit in R is
e=(2,1,-1,1),
the irrelevant factors of 195 — 78w and 273 + 78w in R are:
o; =(0,5,0,-2), o3 =(0,-5,0,2);
o = (6,7,24,2), oy = (6,—T7,24, —2);
o3 =(9,4,-3,-1), og3- =(9,—4,-3,1).

We can get u = 0,140, so (x,y) = ( — 4,0), (764396, + 668309460) by p-adic
analysis method similar to Case 1.

CAsE 3.2: Second, we solve equation (2.16). Let AZ=w'A% 0=
=6++v-3, then 6* =7+ 2w. 0 is an algebraic integer in a totally

complex quatic field. We can define a ring R = Z[1, 0, w, Ow].
We get
39u + 04 = o w!, w,k,teZ,t=0,1,2.
By computation, we know that the fundamental unit in R is
e=(5,2,3,1),
the irrelevant factors of 195 — 78w and 273 + 78w in R are:
o; =(0,5,0,—-2), oy =(0,-5,0,2);
op =(6,1,248), o =(6,—1,24, —8);
og = (12,5,9,7), o3 =(12,-5,9,-7).

We can get there is no solution by p-adic analysis.
Theorem 1 has been proved.
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3. Method Discussion.
By using algebraic number theory and p-adic analysis method, we can
find all integral points on certain elliptic curves
V¥=@+a) @ +br+c), abcel,

where the discriminant of «®+bx+c, denote as 4, satisfies
A= b% — 4¢ < 0. Furthermore, we can solve all integer solutions of certain
hyperelliptic equations

Dy? = Ax' + Ba* + C, B? <4AC.

Now we give the complete solution of equation (1.2). Put z = x + a, from
(1.2), we get

2+ br+c=2>4(b—2a)z+ (@ —ab+c),
z = du?
3.1) )
2+ (b -2a)z+ (@ —ab +c) = dv?

where d = ged (z,2% + (b — 2a)x + (a® — ab + ¢)), so d|(a® — ab + ¢). Actu-
ally, when d has a square factor, we can extract it to « and v. For some cases
of d, we can solve the equations by elementary method. Next we use al-
gebraic number theory method and p-adic analysis method to solve all in-
tegral points on certain elliptic curves (1.2).

From (3.1), we have

Cut + (b — 2a)du? + (a® — ab + ¢) = dv?.
It can be written as the form of equation (1.3)
Dy? = Aa* + Ba? + C, B? < 4AC,

where u = x,v =y,A =d?>, B = (b —2a)d,C =a® —ab+c,D =d.
Equation (1.3) can be written as

3.2 Dy = af + Biah + Cy,

where D; = AD,B; = AB,C; = A3C,x; = Az and B? < 4C;. So we have
4Dyy? = 242 + By)® + (4Cy — B?).

Let f = 4Cy — B2 = lg? > 0 (I is square-free positive integer), we have

(3.3) 4D1y? = 22 + B1)Y + Ig°.
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We factorize equation (3.3) in complex quadratic field Q(,/—g) to get
(3.4) @% + By + 1 /=g) = (KLM?),

where K is the common divisor of ideals (290% +B;1+1/=¢g) and
(290% + By — 1/=9), L is the ideal factorization of 4D; and N(L.) = 4D;.
We suppose the ideal classes in Q(,/—¢) are 11,1z, - -,I}, and their re-

presentatives are J1,Js, - - -,J;,. There is no loss of generality by assuming
that KL ~ I7', M ~ I;!. From (3.4), we have
3.5 J1J2@2x2 + By + 1/=g) = JIKL(J2 M.

Since J1KL and J2M are principle ideals, J;J3 is a principle ideal. Let
J1KL = Sy,JoM = S, J1J% = S3, we have

(3.6) S322% 4+ By +1/—g) = S155.
Suppose the conjugation of Sz is S, and S3S; = a. From (3.6), we get
3.7 2a0% + By = S'S3,

where By = a(B; +1/=9),S" = 8185 € Q(,/=¢) is an algebraic number in
Q(,/=9). From (3.7), we obtain
2ax% — S'S2 = — By,
3.8) Qax;)* — 2a8'S2 = —2aBs.
REMARK 1. Aslong as2aS’ in (3.8) has a square factor f € Q(,/—¢), we
put 07 = 2“—5,7S’2 = fSs. Define the subring R = Z[1, 0,w, 0w]. 0 is an al-

gebraic integer in a totally complex quartic field. We choose the basis
1,0,w, 0w in order that ||0|| and ||¢|| in the subring R is by far least and p
which we choose to take p-adic analysis is the smallest possible.

From (3.8), we have

3.9) 2ax; + 08, = +uw'eba,
where w is a root of unity, ¢ is a fundamental unit in the subring R, « is an
irrelevant factor of —2aBs in Q(0)(the irrelevant factors « of —2aBs are
finite).

Since Sy € Q(,/—9), we put S} = b + d6®, b,d € Z. From (3.9), we get

(8.10) 2011 + b0 + dOP = +w'éa.

From (3.10), we have
(3.11) 2021 — b0 — dOP = +w'd o
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(3.10) x (3.11), we get t = 0. The coefficient of ¢? is 0 in the left of (3.10), so
(3.12) Qaa; + b0 + d6), = (£ Fa)y = 0.

From equation (3.12), we know there must be another equation corre-
sponding to the unknown k. Finally we solve it directly by p-adic analysis
method.

In [11][12], Ljunggren and Tzanakis proved that solving equation (1.3)
is equivalent to solve the integer solutions of a class of quartic Thue
equation

p(e,y) = Ax* + By + Ca®y? + Day® + Ey* = +m,

where p(x, 1) = 0 has two real roots and a couple of complex roots. Suppose
0 is a root of p(x,1) = 0, then by Dirichlet’s unit theorem there are two
independent fundamental units ¢;, & in Q(0). It is complicate to compute
them. In [6], Ljunggren’s method need compute a relative unit in a quartic
field. Obviously, their methods are not easy.

REMARK 2. Tt is necessary to point out that the method works theo-
retically. Our computations involved can be carried out successfully but in
very exceptional cases. The first point is that there is no control on the size
and the computation time of the fundamental unit ¢, even though we find a
proper 6 in order that R = Z[1, 8, w, Ow] is a domain. The second point, is
that computing a set of representative of ideal class group of an imaginary
field can take a lot of time. That is to say, we can not multiply the examples
at will. But in fact, many equations can be solved by this method. We
compute all integral points on another elliptic curve which Don.Zagier
proposed

(3.13) y* =a® — 300+ 133

are: (x,y)=(—"7,0),(—3,+4),(2,+9),(6,+13), (5143326, +116644498677).
Many famous problems are the examples of equation (3.2), for ex-
ample[13][2][14]:

vl —1)\2 yly—1)
() =2,
(3.15) 6y” = 2® +5x + 6 = (x + 1)@* — x + 6),
(3.16) 31y% = a® — 1,

8.17) y? = (x + 337)(® + 337%).
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4. Other Cases’ Discussion.

When the discriminant 4 = b? —4c =0 in equation (1.2), we have
c= bzz, then b is even and c is a square number. Let b = 2[, [ € Z, then
c=10[ so
4.1) ¥ = @+ a)@? + 2 + ) = (@ + a)e + )P
So x + a is a square number. Put x 4+ a = m?, m € Z, then we get
4.2) y? = mP(x + P
Thus we get the solution
43) { o= .

y=+mm?—a+1)

When the discriminant 4 = b? —4c¢ > 0 in equation (1.2), we have
2

c <Z’ then %2+ bx+c=0 has two different real roots x; and wxs.

_b—
Especially when 4=b%—4c=n2 neN, we have x; = 5 " ond
Lo = —b+ n. Hence equation (1.2) can be written as
-b—n -b+n
2 = — —
4.4) Y —(x+a)<ac 2 )(x 5 )

We can refer to Pell Equation’s method in Zagier [5]. When 4 = b% — 4c is
not a square number, we refer to linear forms in the logarithms of alge-
braic number[1] and elliptic logarithm method [2].

Appendix I

Find a fundamental unit in R = Z[1, 0, w, Ow], where 0 = v —12,w =
—1+v-3
= —

If e=a+b0+cw+dOw is a fundamental unit in R, where
a,b,c,d € Z,then e = a — bl + cw — dOw is a conjugate of &. So we have

ee_ = (a + b0 + cw + dOw)(a — b0 + cw — dOw)
= (a? — 2b% + 8bd — ¢ — 2d?) + Rac — 4b® + 4bd — & + 2d®)w = F + Guw.
N@E =N@E)=NEF +Gw)=F +Guw)F +Gu?) =F?> —FG+ G? = +1.
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Thus we get
FG+ 1=F?+G* >2|FG|.

From FG > 0,FG=0,FG <0, we obtain (F,G)=(+1,+1), (£ 1,0),
(0,£1), where

F =a?—20% +8bd — ¢® — 2d?
(%)

G = 2ac — 402 + 4bd — 2 + 202

There is no loss of generation of assuming ¢ # 0, otherwise ¢ = 0 is the
easier condition. From

G = 2ac — 4b% + 4bd — ¢ + 2d2,

2

wehave a =& W , where W = 4b? — 4bd — 2d? + G. Then we obtain

(62+W

2
) — 202 4 8bd — 2 —2d% = F
2¢

Thus we have

3¢t + 2(8b% — 32bd + 8d% — 2W + 4F) — W? = 0.

We regard this equation as a quadratic equation with one unknown ¢; = ¢?,

then

, —B+ VBZ{12W?

G ., where B = 8% — 32bd + 84 — 2W + 4F.

C1 =C

We limit the ranges of b and d to find the integers a, b, ¢, d which meet
(). We suppose |b] < 5,|d| <5, then in the ranges we search ¢; = 2 If

there exist two integers by and dy to get ¢; = c(z], ¢o € Z, we can compute ay
2

from @ = W. If ay is an integer, we have already found a unit in R. If

we can not find a, b, ¢, d in the ranges, we should extend the ranges of b and
d till we find a unit gy = ag + byl + cow + doOw.

Now we will compute the fundamental unit e = a + b0 + cw + dfw from
& = ap + bof + cow + dobw, where a, b, c,d € Z. If ||¢]| is not the least, we
have gy = + ¢, |t| > 2.
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Denote
& 1 0 w  Ow a a
e | _ |1 =0 w —0w b Iy b
N I O w? Gwz c | c |’
g 1 -0 w? —-0u? d d
then
a €
b :M,I 8/_
c g
d g
1+w 1+w w w
1+w 1+w w w
A A |
From M1 = 0 , we obtain
dw+2| 1 1 -1 =
1 1 1 1
0 0 g ¢
o 1 / /
a = 4w+2[(1 +w)e + (1 +we— + we' 4+ we_]
__1 [H_WH (_H_W)g LW (_@M
T 4w+ 2 0 0 g 0/
_ _ / _ /
C_4w+2(8+8_ §—¢)
1 e e & &
~wiz 77
g ==+¢ ezigé/t
g =+& e,:jza(l)/t
From (where [t| > 2), we get
86 = :|:8/t d = :I:gé)l/t
g ==& ¢ =+e/t
1
< . . . J
lal <[ gz 01+l + 1+ w0l + ool + ool
1 1/t 1/t 1/t
=| gz (1wl 1+ ol + oy + ol |

1 1/2
<4‘ } /
<4 i l[ol| %,

15

—, thus we obtain
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< gl L [+ |2 1 [
:’m’( 1+w‘| 0|1/t ’1+w“ _|1/t 0/ |0|1/t % |8£)7|l/t)
‘4@0—}—2‘(‘90 )”80”1/2’
e N P [ (P R PR LT

If we can not find integers a,b,c,d in the ranges, then & = a+
+ byl + cow + dybw is just the fundamental unit.

If we can find integers ajg,by,c),d;, then we get a unit & =
= ag + byl + cyw + dyw whose absolute value ||| is smaller than ||&]|.
We use the same method for ¢ till we find the fundamental unit. By
computation, the fundamental unit of the subring R = Z[1, 0, w, Ow] is
e=14 20+ 4w + 20w.

The method of computation here is more effective than the ones in
[15][16].

Appendix I

Factorize the quadratic algebraic number ¢ = 15 — 6w and & = 21 + 6w

in R = Z[1, 0, w, 0w], where w — _HT V=3 gy

Let é¢=15—6w=21+6u?=4o0_, & =21+6w=15—6u? = oo’
The factorization is only defined “up to multiplication by units”. If there are
two factors ocl (ay,b1,c1,dy) and ae = (ag, be, c2, d2) which meet above

condition, and — 1s an algebraic integer and is a unit ¢ = OC—(N (e) = +1),then

they are relevant algebraic numbers. We have
N = N(E) = (15— 6w)21 + 6w) = 351 = ao_ool_,
and we have an important inequality[10]

| < NI/l
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where ¢is the fundamental unit in a totally complex quartic field Q(0). In the
following, we will give a simple proof for above inequality.

By a logarithmic mapping [, we can establish the relation between ¢
and the fundamental unit ¢ That is to say, from n =1 + 21 =
=1x0+2 x 2 =4, we suppose

m = le) = Rlog le|,2log [€']), 75 = (2,2),
(o) = log |o, 21og |o]) = @17y + 22113 = X1L(e) + X2,
so we have

2log |o/| = 2a; log |¢/] + 2w

'

{ 2log || = 21 log |e] + 2a2

where ¢ and & are &’s conjugates whose absolute values are different, o and
of are o’s conjugates whose absolute values are different. Hence we obtain

21og || + 21og |o| = [2(x1 log |e]) + 2a2] + [2(x1 log |€]) + 2w2] =
= 21 log |ed'|* + 4y = 4acs .

So we have
1 2 2 1 1
7 = log [P |o/[* = 1og IN()| = 5 log N

Therefore we get

o = [aa]]e™ | = [N |en].

1 . -
Put &1 =mq +y1, 1] < é,ml € Z. From o = g™, we have & = oag™"™,
then

1
5 < IN@OM max (—=, Vel ) = INOM* |l
3 < IN(@)| ( . ) 0

where ¢ is the fundamental unit in R = Z[1, 6, w, Ow]. Because we factorize
the quadratic algebraic number ¢ in the subring R, the o’s that we will find

are stable under multiplication by powers of ¢ and actually we compute a set
of representatives & modulo this action.

REMARK 3. If there is a factorization of &, then up to changing o by a
relevant integer, the important inequality is fulfilled. Of course it is clear
the inequality does not work for any algebraic integer “relevant” to o.
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If

then

We get

lal <
0] <

el <

~rzl ()t (5 )+ ()7

:4w+2(oc+oc,—oc’—ozi)

“aw sl

1
2w+1
1
2w+1
2
2w+1

In the range of

Hui Lin Zhu - Jian Hua Chen

/
0 w? c c

—Ou? d d

—_ = e
o8
g, S, € S

o o
Il
|
)

ROR

[A 4w + A +w)o_ +wo’ + wo!_]

bl

=g 51

(|1 +w|+ IWI>||O<H < ix/“ 351+/|le]] = 18.5294 - - -
2 V351
(1551 + 7 ) 1 < S5 Il = 26013

o < 7\“/351\/”,9” = 13.5204 - -

1
a\*

V351

7l < Z===

la| <13,[b] <7, [c] <13,|d] <1,

there are some a, b, c,d € Z satisfying

+& =415 - 6w) = oo = (a + bl + cw + dOw)(a — b0 + cw — dOw)
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= (@ +cw)® — P(b + dw)? = (a2 + 2acw + w?) — (4w + 2)(B? + 2bdw + d2u?)
= (a® — 2b% + 8bd — ¢ — 2d?) + Rac — 4b® + 4bd — & + 2d®)w = F + Guw.

If there are two factors oy = (a1,b1,c1,d1) and ag = (ag, b2, c2, d2) Which
meet above condition, and % is an algebraic integer and is a unit. We should
2

filter one of them(for example «p) and remain another(for example o). We
do the procedure till all remained factors « of £ are irrelevant.

By computation, we get the irrelevant factors of &= 15— 6w and
& = 21 + 6w factoring in the subring R are:

o = (37 27 Oa 1); OC/1 = (37 —2, 07 _1)7
op = (9,4,6,~1), o —(9,—4,6,1).
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