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WOLFGANG LEMPKEN(*) - CHRISTOPHER PARKER(**) - PETER ROWLEY(***)

Introduction.

This paper, which is the last of the series of papers [LPR1], completes
the proof of the MAIN THEOREM stated in Section 1 of [LPR1]. More speci-
fically, here we shall be investigating Cases 4 and 5 (as given in Section 12;
just as before we continue the section numbering of [LPR1]). In both of
these cases we have that for each critical pair (o, o) in I', [Z,, Z,] = 1 and
o € O(Ss3). (For notation see Section 1.) Sections 17 and 18 deal with Case
4 and Section 19 is devoted to Case 5. The short Section 20 reviews the
main results of [LPR1] and this paper, and shows that together they es-
tablish our MAIN THEOREM.

Section 14 concentrates upon the non-central chief factors of Gy within
Wp (B € O(S6)), the main conclusions being contained in Theorem 17.3. Note
the crucial obstructing role the quadratic fours group (W, N Gy42,+3)Qp/Qp
(Gps42-conjugate to (s1,t) as given in Proposition 2.5(ii)) in the theorem as
highlighted in Lemma 17.4(ii). Also, the fact that Zy < W,_» when b =7
(so (17.3.2) doesn’t hold) leads us to a lengthy tussle with the situation b = 7
before we complete the proof of Theorem 17.3. As ever our old friend the
central transvection is never far from the centre of the action; see particu-
larly Section 18 where we build upon the results of the previous section and
establish that, for Case 4, b € {3,5}. Case 4 proves to be a slippery customer.
For example, we are unable till quite late in the day to establish, in full
generality, the following symmetry statement that for (a,a’) € C we have
Vy £ Qp (proved in Lemma 18.7, in fact).

(*) Indirizzo dell’A.: Institute for Experimental Mathematics, University of
Essen, Ellernstrasse 29, Essen, Germany.

(**) Indirizzo dell’A.: School of Mathematics, University of Birmingham,
Edgbaston, Birmingham B15 2TT, United Kingdom.

(**¥) Indirizzo dell’A.: School of Mathematics, University of Manchester, Oxford
Road, Manchester M13 9JL, United Kingdom.



98 Wolfgang Lempken - Christopher Parker - Peter Rowley

That Case 5 is not so elusive as Case 4 is very much due to our having
Yp > Zy (p € O(Sg)). This gives us extra leverage in the form of the sub-
groups F, = (Y[;G“> and Hy = <FO(G"> (where o € A(f)). These subgroups
first appeared in Section 12 and were also of use in analyzing Case 2.

Finally, we point out that this paper may be read independently of the
other parts with the exception of notation and module data given in Sec-
tions 1 and 2, and a small amount of material relating to the case divisions
in Section 12.

17. Case 4 - the non-central chief factors in W.

Sections 17 and 18 are concerned with Case 4. So, in these sections, we
shall be assuming

HyPOTHESIS 17.0. V3/Zp =2 4 and coreq,V=V,_1 NV =[Vp, Gup, Gypl =
~ F(2%).

Lemma 17.1. #(G,,U,) =3

Proor. Since b > 1 and G = Q,Qp by Lemmas 11.1(iii) and 12.2(ii),
Gy, U, /U, Q,]) = 1. Because coreg, Vi = [Vp, Gup, G,5] We also obtain
Gy, [Us, Qxl/ Va1 NVy) = 1, so giving n(G,, U,) = 3.

LEMMA 17.2.  Ifb > 3, then n(Gg, Wp) > 3.

Proor. By combining Lemmas 12.2(ii) and 12.4(i) with [Theorem 1;
LPR2] we obtain the lemma.

The main result of this section which gives us a foothold in analysing
Case 4 when b > 5 is the following theorem.

THEOREM 17.3. Assume Hypothesis 17.0 holds, and b > 5, and let
6 € O(Sg). Then n(Gs, Ws) = 3 with the non-central chief factors in W
being isomorphic natural modules.

We will present the proof of Theorem 17.3 in a sequence of results.
Since we shall suppose the theorem is false and seek a contradiction, we
shall assume in Lemma 17.4 and Theorems 17.5 and 17.6 that Hypoth-
esis 17.0 and b > 5 holds but not the conclusions of the theorem. An im-
portant intermediate step, achieved in Theorem 17.6, is that of finding a
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critical pair (6, ") for which [Zs,1, Wy] # 1. Lemma 17.4 contains various
observations needed for the proof of Theorem 17.6.

LEmMA 17.4. Let (a,0') € C and suppose that [Zg,W,]=1. Put
X = Wx’ N Gac+2a+3- Then

@A) [W, : X]1=2 and hence there exists o« +3 € V(I') such that
d',o/ +3) =3 and (¢/ +3,00+3) € C
(ii) X < Gy and, in the notation of Proposition 2.5(ii), XQp/Qp is
Gp.12/Qp-conjugate to (sy,t);
(i) Z,2 <[X, V3]l = E@?);
(iv) Z,r2 < Wy, and
V) [V, Gpor2] = [X, VpI(Vs N Vyy3).

Proor. Since [Zp, W] =1, [Zyy2, Wy] = 1. Therefore (Gyi2q+3, W)
normalizes Z, 2 and so is a proper parabolic subgroup of G,.3. Hence, by
Lemma 3.10,[W,, : X] < 2and X < Q42 < Gg. Note that, as W, is abelian,
X acts quadratically on Vj, so |[X, V]| < 23 by Proposition 2.5. If either
X=W, or |[X, V] < 22 hold, then Theorem 17.3 follows. Thus
[W, : X]=2and |[X, V]| = 23. We claim that [X, Vil # [V, Gpago; 2]. For
if not then [V, Gp.i2;2] = [X, V] < W, and Proposition 2.5(ii) yields that
Wy < Cq, ,([Viss, Goi2443; 2]) = Gyi2443, contradicting [W, : X] = 2. So,
since [X, Vg](V N V,43) < [V, Gpyie] we obtain (v). If | XQp/Qp| < 2, then
Wy : Cw,(Z,)] < 23 and again we have Theorem 17.3. Bearing in mind that
X acts quadratically on Vj, consulting Proposition 2.5(ii) gives that XQs/Q;
is Gpy+2/Qp-conjugate to (s1,t) and Z,,» < [X, V}]. This proves (i), and (ii)
and (iii), and (iv) follows from (iii).

THEOREM 17.5.  Assume that forall (5,8") € C,[Zs,1, Wy] = 1. Then for
each (x,o') € C we have V, £ Qp.

Proor. Let («,o') € C be such that V,, < Qp. Then Vyy < G, Vy £ Qy
and V,, interchanges . and p where A(x) = {4, p, f}. Further, we have
Zp =V, Vyl.

(1751) (l) Uoc < QaLZ < Ga’fl-
) Ifb > 7, then U, < Gy.

If there exists (¢ —2,0/ —2) € C, then Lemma 17.4(iv) applied to
(0 —2,0/ —2) gives Z, < Wy_o <Qy, as b > 5. Therefore U, < Q,_2 <
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< Gy—1. Next we verify part (ii). Lemma 17.4(i) yields the existence of
(o + 3,0+ 3) € Cwith d(o/, o/ + 3) = 3. Now using Lemma 17.4(iv) on this
critical pair gives Z,,;1 < W,,3. Because b >7 by assumption
W,.s3,U,]=1, and so [Z,,1,U,] = 1. Hence U, centralizes Z, 97, =
=Zy_1and thus U, < Qy_1 < Gy.

(1752) If U,<Gy, then [U,V,1>2E®2® and Z,<[U,V,]=
= CVG(/(U%) < Uo:~

Since U, acts quadratically upon V,,, |[U,, V., ]| < 23 by Proposition 2.5.
On the other hand, V, <G,, V, £Q, and Lemma 17.1 imply that
23 < |[Uoca fo’]| Hence CVyr(Uoc) = [Ucu Voc’] gE’(23) with er’ < [Uxa Voc’] < Uoc-

Set X; =W, NGy and X, =W, NG,.

(175.3) Ifb > 17, then [W; : X;] < 2.

First we show that W, < G, 3. If W, £ Q,_4, then we may find
(o — 4,0/ —4) € C. Applying Lemma 17.4(iv) to (x —4,o’ —4) and using
b>TgivesZ, o <Wy_4 <Qy.Butthen Z, < Z, o < @, forces Z, < Q.
So W, < Qy_4 < Gy_3 holds.

We now consider two following cases:- [U,,V,y 32]=1 and
[U,,Vy_21+# 1. Suppose [U,,V, 2]1=1. Then orders, (17.5.1)(ii) and
(17.56.2) give V, 2NV, =Cy,(U,) <U,. Hence, as b>5, W;NQy 3
commutes with V, oNV, =[V,y_2,Gy_2,_1;2] whence we obtain
W,NQy_3<Gy. So W,;NQ,y_3<X,. Since o —3¢c 0O(Ss), we have
shown that [W) : X;] < 2 when [U,,V,_2] = 1. So now we examine the
case [U,,V,_2] # 1. Since V,, centralizes V,_s and interchanges 4 and p,
we have [V, Vy 2] #1. 1t Vy 2 <Q;, then Z; =[V;,Vy 2] < Vy 2 < Qy,
against (¢,0/) € C. So V, 2 £@Q; and therefore (¢,1) € C for some
¢ e Al — 2). By Lemma 17.4(iv) Z,_3 < W,. Because W, in abelian this
gives W, < Q,_3 and then using Z, < U, (by (17.5.1)(ii) and (17.5.2))
together with the parabolic argument we conclude that [W; : X;] < 2.
This verifies (17.5.3).

Our next objective is to establish a weaker version of (17.5.3) when
b="T.

(17.5.4) Suppose b =7 and Zg # Z,5. Then [W; : X;] < 2.

By Proposition 2.5(ii)
Zﬁ = [V[}, Voc’] < Vﬂ N Va+3 N V1+5 NV (x).



(Ss3, Sg)-Amalgams VII 101

We divide the proof of (17.5.4) into the two following cases:- Zg < Z,,4 and
Zg £ Z414. Beginning with the former, the assumption Zg # Z, 5 and (*)
imply that

Zyra =Zplyis < Vi N Vs NV,

Also, Zp < Zyia yields Zyvo = Zpliyys = Lyia and hence
(Gyr20+3, Goigura) 7# Gours. This, when combined with Lemma 17.4(i),
yields the existence of (¢/ + 3,a + 3) € C for which V,9Q,3/Q.3 is not
a central transvection of G, 3,14/Qyi3 o0 V,i3/Z,3. Therefore
[Vz’+2> Vz+3] ﬁ Zo:+4- Since [V(x’+2; VOH-S] < Vz+3 N Voz+5 N Va’ (again by
Proposition 2.5(ii)), we deduce that

E(23> g Zoc+4 [Va’+Za Voc+3] < Voc+3 N Voc+5 N ‘/a’-

Consequenﬂy Voc+3 mvx+5 = Voc+5 N fo’- Since [Ua, Vot+3] = 1, [Uow Zoc+6] =1
and so U, < G, by (17.5.1)(i). Hence, using (17.5.2),

Vx+5 NVy = CVyr(Ua) <U,.

Now [W,,U,]=1 and Proposition 2.5(ii) (applied twice) force
W) < Gy, so proving (17.5.4) in this case. Now we assume that Zg £ Z, 4.
So, by (*)

Vours N Viuis = Zyyalip = ZiyaZisyo.

If Z,.5 <Z,2, then we obtain Z,.o = 7,4 whence V,,3NV, 5=
= Zy14Zyr9 = Zyi9, Which is impossible. Thus Z,.,5 £ Z,,2 and hence

Vs NVoss = Zypaliyio = Zyi5Z419 (x%).

We claim that [U,,V,.5] = 1. For suppose [U,,V,.5] # 1. Then, by
Proposition 2.5(ii) and (17.5.1)(1),

Zyis = [Us, Virs| < VN Vs N Vs

Now Z,.2 = ZpZ,+3 < VgNV,13NV,5 together with our earlier deduc-
tion Z, 5 £ Zyi2 forces VyN V5N V,5 = E@23). But then VyNV,y3 =
= V,43 NV, 5 whence Proposition 2.5(ii) gives W, < Cg . (VpNV,43) <
< Gyy2413, contradicting Lemma 17.4(i). Hence [U,, V,.5] = 1, as claimed.
So U, < Gy and therefore

Za+6 < CV,(/(Ua) < Uoz

by (17.5.2). Since [W,,U,] =1, we get [W,,Z,.¢] = 1 which, by (xx*), im-
plies that W, centralizes V,.3NV,,5. Consequently W, < G,,5. Since
[W;,Z,]1=1, employing the parabolic argument gives [W, : X;] <2 and
completes the proof of (17.5.4).
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We now show that we do in fact have some critical pairs to which we
may apply (17.5.4).

(17.5.5) If b =1, then there exists (5,6) € C such that Vy < Qs.1 and
Zsi1 # L5

If Zy + Z,.5, then we may take (5,0') = («,o'). So we may assume
2y =Zyrs. Thus Z, 9 =Z,,4 and therefore (Goi2448, Gouyi3uia) 7 Goys.
Then, by Lemma 17.4(i), we may find (¢/ +3,4+3) € C such that
Vy12Qy+3/Qyrs is not a central transvection of G y3,14/Qy 1300 V,13/Z,.3.
If V,.3 £ Qy 2, the there exists ¢ € A(x + 3) such that (£, +2) € C. Ap-
plying Lemma 17.4(v) to (¢, o' + 2) we see that

(Vus, Gorara) = [Vars, Warie 0 Goytors] (Vagz N Viss).

But then V.o centralizes [V,.3, G,13,+4], @ contradiction. So V3 < Q2
and [V%/+2, V%_;,_g] = Z%/+2. Further Za/+2 7& Z05+5, since Va’+2Qa+3/Qfx+3 isnot
a central transvection on V,..3/Z, 3. Taking (5,6') = (¢/ + 3, + 3) we see
that (17.5.5) holds

(175.6) [X,,Vy]|[X.,Vy] < U,NGy.
Observe that b > 5 implies U, < Z(G,M. So, since [X;,V,] < Gam,
(X, V] < Cy, (U,NGy).
Suppose U, < G, holds. Then, using (17.5.2),
(X, V] <Cy,(U,) <U,NGy.

Now we consider the possibility U, € G,. From (17.5.1)(i) and Lem-
ma 17.1, we get [U,,Z,]1#1 and |(U,NG,)Qy/Qx| > 22. Hence, as
U, NG, acts quadratically on V,, /Z,, Proposition 2.5(ii) gives

UGy, Vi Zy > Cy, (U,NGy) > [X;,Vy].
From [U,,Z,1# 1, Zy £ G and so we deduce that
(X, Vy] = [UsNGy,Vy] <U,NGy.
A similar argument proves that [X,, V] < U, N Gy and so (17.5.6) holds.
(1757 [W,:W,nW,] <2

Since V, interchanges 2 and y, V,; acts upon X,X, and X; N X,. (Note
that X; and X, normalize each other since b > 5.) So, by (17.5.6),

(XX, Vo] = [X5, Vo] [Xoo Vir] < U, NGy < X5 N X,
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Letx € V,y besuchthat 1 o = p. If X; N X, 3 X, then [X;X,, 2] £ X; N X,
contrary to [X;X,,Vy]<X;NX, Therefore X;NX, =X, and so
X, =X,.If b > T, then (17.5.7) follows from (17.5.3). For b = 7, the above
argument in conjunction with (17.5.4), (17.5.5) and Lemma 11.1(vii) also
yields [W, : W, nW,] < 2.

Appealing to Lemma 11.1(vii), (17.5.7) implies that [W, : W, NW,_o] <
<2>[Wy_o: Wy_sNW,_4], whence [W,:W,NW,_4]<22 Since
[Z,, W, _4] =1, this forces n(G,,W,) < 2, against Lemma 17.2. From this
contradictory state of affairs we conclude that V,, £ Q.

We are now ready to begin the proof of
THEOREM 17.6. There exists (5,8 € C such that [Zs,1, Wyl # 1.

Proor. Arguing for a contradiction we suppose that [Zs.,1, Wy] = 1 for
all (8,9") € C.

(17.6.1)  For (o,o) € C, [V, Viyl < Zso N\ Zy_1.

Lemma 17.4(v) gives [V, Gpagel = [X, VpI(Vp N V,i3) (where
X = Wy N Gyi443). Since Wy, is abelian and [X, V] < W, together with
[Vy,VpNVyu3l=1, we get that V, centralizes [Vj,Gpyi2l. Thus
[V, Vul < Z,12. By Theorem 1756 V, £ Qp and so there exists
(«/ +1, ) € C. Then a similar argument gives [V, Vul < Zy_1.

(17.6.2) For (a,o') € C we have [W,, V3] = Z,,4.

It follows directly from (17.6.1) that [W,,V,. 3] < Z,.4. Hence
IWyQyi3/Qyis| <2 and so, by Lemma 174(G), W,NQ,3=X
(= Wy NGyi2ay3). B [X, V,i3] =1, then X centralizes [V, Gy2] by Lem-
ma 17.4(v) which implies [XQs/Qg| < 2, contradicting Lemma 17.4(ii). So
Zyz = [X, Vi3] < [Wy, Vi3l Since Wy £ Quis, [Wo, Vi3l # Z,y3 and
we have (17.6.2).

17.63) Zora < V.

For / with A # o —2 and d(.,o') =2 we have, as V,,3 centralizes
VunV,=1V,,G,_1,;2], that [V,.3,V,]<V,NV,. So, since W, =
=V, [I Vi, we get, using (17.6.2), that

Aoy =2

Zu+4 = [Wa’»Va+3} = H [VZ;VOH-S] < V.

d(.ol)=2
ol -2
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(17 6.4) Let (x,o/)eC and set X =W, NG,,2,,3. Then we have
a(+3 [Vﬁ,V ]_ o 2:Vx’m[X,V’[}].

By Lemma 17.4(iii) and (17.6.3), Z,.3 <V, N[X, V;]. Also we clearly
have [V, V] < Vi N[X, Vp]. Now suppose that |V, N[X, V]| > 2, and put
W, =W, /V,. Then, by Lemma 17.4(1), (i), |[V}, X1 <2>[W, : X].
Hence 5(G,,W,) <2 and thus #(G,,W,) =3 by Lemma 17.2, with Vg
acting as a transvection upon each of the non-central chief factors within
W.,. By (17.6.1) Vs also acts as a transvection on V,,/Z, and thus the non-
central chief factors in W, are isomorphic natural modules, a contra-
diction. Therefore we deduce that |V, N[X,V3]|=2 and so Z,.3 =
=V, N[X, Vsl =[Vp,V,]. Since V,; £ Qg by Theorem 17.5, a symmetric
argument gives [V, V] = Z, 2. This completes the proof of (17.6.4).

(17.6.5) For (a,0') € Cwe have Z,,4 = Zy_1.

By (17.6.4) applied to (o,o') we obtain Z,,3 =Z, 3. From Lem-
ma 17.4(i) there exists (o + 3,4’ + 3) € C and using (17.6.4) on this critical
pair gives Z,, = Z,.5. Therefore

Zot+4 = Z9<+3Zot+5 = Za’72Zoc’ = Zoc’fh
as required.
(17.6.6) b>9.

Suppose (17.6.6) is false. Then b = 7 or 9. Let (o, o) € C. Just as in (17.6.5)
we have Z,,5 = Z, and this rules out b ="7. Since V, £ Qg by Theo-
rem 17.5, we have (/, ) € C for some A € A(«') and likewise we deduce that
Zp="Zy_4.50,asb=09, Zp = Z,5 = Zy. Therefore

Ly = Z/g <VyN [X, V/;] =Zy3
by Lemma 17.4(iii) and (17.6.4), whereas Zg # Z,,3. Thus (17.6.6) holds.
Now we fix (z,0/) € C and let £ € A(e) \ {o/ — 1} be such that

(1) Ze # Zyi6; and
(i) (V/}, Gu) = Gy.
By Proposition 2.8(viii) we may choose p € A(o) \ {¢/ — 1} such that
(Vp,Gyp) = Gy. Since Z, £ Gy and [V, Z,16] = 1 clearly Z, # Z,6, S0 We

may take & = p.
Put R: = G§[4] and X = W, NGyi04.3.

1767 R: < Q5
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If R: £ Q,5, then there exists p such that d(¢, p) =4, d(p,2+5)=b
and Z, £ Q,45. So (p,x+5) € C. Applying (17.6.5) to (p,a +5) yields
Z: = Zy+¢ contrary to the choice of & Thus B < Q5.

(17.6.8) (i) Rg = (Ri N Gypi2,43)Wy; and
(i) (Re N Guro443)Qp = XQp.

By (17.6.6) G, is abelian. Since Z,,2 < W, and Z,4 = Zy_1 < Wy
by Lemma 17.4(iv) and (17.6.5), R; commutes with both Z,,5 and Z,.4.
Hence, using (17.6.7),

R: < Quia < Goys and (Gyios43,Re) # Goys.

Therefore [R;: R: N Gyio,48] < 2. Since Wy < R: and [W, : X]=2 by
Lemma 17.4(ii), we have (i). Further, note that B: N G,12,13 < Gp. From
[V, R: N Gyy2413] < Gy 5] we have that R: N Gyy2413 acts quadratically on
V. Because X < Re N Gyq2443, Lemma 17.4(ii) implies (B¢ N Gyi2043)Qp =
= XQp, which completes the proof of (17.6.8).

Since, by Lemma 17.4(iii), Z3 < [X, V], (17.6.8)(ii) implies that
[V, Re N Goionis] = [V, X] < Wy
Consequently
[V, Re] =[Vp, (B: N Grizaiz) Wi
=V, R: N Goy2043] [V, W] < Wy < R,

by (17.6.8)(i). Hence
R:< <V,3,Gar¢> =Gy,

a contradiction which completes the proof of Theorem 17.6.
We bring the following two groups into the fray:-
F(5 = [U(saQ(S}
H; = (F5%)

where 6 € O(S3) and A € 4(5). These groups will play a somewhat similar
role to the F', and H defined in Section 12; note that our present 5, H, and
their counterparts in Section 12 are entirely different groups.

LemMA 17.7. Let (x,o) € C.
A 7(G,, Fy) =2.
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(i) F,Vs 4 Gy.
(i) Hp < [Wp, QplVp.

Proor. Since n(G,, U,/[U,Q,]) = 1, (i) follows from Lemma 17.1.

Suppose (ii) is false. From [Qg, F, V] = [Qp, F,1[Qp, Vi1 = [Qp, F,1Z5 =
=[Qp,F,], we then get [Qg,F,] <Gy Since |[Qp F,1<2' and
Zp < [Qp, F,], we deduce that OZ(G,;) centralizes [Qg, F,,]. If (V,_1 NVp)N
N[Qp, F,] > Zg, then the uniseriality of G, on Vy/Zg gives Z, < [Qp, F.],
against Lemma 1.1(ii). Therefore (V,_1NVp) NI[Qp,F,]=Zs. Also,
[F,, Q] < Vi1 NVp and thus

[Qx N Qp, F,Vp] =[Q. N Qyp, F,] [Q. N Qp, V]
< [Q/},F@] N (Voc—l N Vﬁ) = Zﬁ.

Now we may obtain a contradiction as in Lemma 12.5(ii). This proves (ii).

Turning to (iii) we first show that V,_; N[Wy, QsIVs 2 Vs N V,_;. By
[Proof of Theorem 1; LPR2] (@, N Qp)Qs—1/Qx—1 is not contained in the
quadratic E(23)-subgroup of G, 1,/Q, 1 (on V, 1/Z, 1), and so
[Vi1,Q.NQpl £ V,-1NVp. Since [V, 1,Q, NQpl < Vo1 N[Wp, Qpl, we
see that V,_1 N[Wpg, QplVp 2 Vs NV,_;. Hence

Vo1 [Wp, Q] Vis/ [Wp, Qp] V| = 2

and therefore [V,,_1, Q,] < [Wjg, QzIV;. Since this holds for all o — 1 € A(x),
F,=1U,, Q] <[Wg,Qp]Vy and thus Hy < [Wy, QplV.

With Theorem 17.6 and Lemma 17.7 to hand we now start the

Proor oF THEOREM 17.3. We suppose the theorem is false and seek a
contradiction. By Theorem 17.6 we may choose (o,o’) € C such that
[(Zg, Wy]# 1. In particular, Zg £ W,, and hence V,, £ Qg. So there exists
p € A(') such that (p, ) € C.

(17.3.1) Wﬁ £ Qy2 and Wy £ Q3.

Suppose Wg < @, _2 holds. By Lemma 17.4(i) applied to (p, ) we de-
duce that [Z,,, Wg] # 1. In particular, Z, £ Wy. So, since Wy NG, acts
quadratically upon Vi, [[WsNGy,V,1| <22 But [Wp: WsnGyl<2
whence 7(Gg, Wp) = 3 with all non-central chief factors within Wy being
isomorphic natural modules. Thus we must have Wy £ Q2. A similar
argument shows that W, £ Q...

From now until (17.3.9) we assume, in addition, that b > 7.
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By (17.3.1) there exists (f — 3,0/ —2) € C with d(8, f — 3) = 3. We dis-
play the part of I' that will be of interest to us (/1 has yet to be introduced).

(1732) Zy £ Wy s.

Because b > 7, Zy < W,_» would imply [Zg, W] =1 contrary to the
choice of (a, o).

(17.3.3) () Wy_2 £ Ggp1.
(1) Wy : Wy_2NQpl > 22

(i) Suppose W,_s < Gpp-1 holds. Since [W,_2,Zs 1]1<Zp and,
by (17.3.2), Zp £ Wy_2, [Wy_2,Z11=1 and so W,_2 < Qp_1 < Gp-_s.
Thus |[Wy_2, V21| < 23 which implies 7(G,_2, W,,_3) = 3 with all non-
central chief factors within W, _s being isomorphic natural modules, a
contradiction. Therefore W, _» £ Gpp—1.

(ii) Assume that [W,_o: W, NQ] <2 holds. Since Zg £ Wy _s,
[W,_snN Qﬂ,Vﬁ] =1. So [W,n Qp,Zﬂ,l] =1 and thus W, _on Q/g <
< @p-1 < Gp_s. Since the theorem is supposed false we must have
|[Wa/_2 n Q/}7 W3_2]| = 23. Also from [Wy_sN Q/}7 Vﬁ] =1 we have

V/; N V/;_Q < Cvﬁf2 (W“r_g N Q/;)

Consequently, as W,_» N @ acts quadratically on Vs_» and not as a
transvection on Vp_5/Z s,

VN Vsa=Cy,,(Woae NQp) = W2 NQp, V2] < Wy_s.

Therefore [V N Vp_o, W,_2] =1 whence W,_» < Ggs_1 by Proposition
2.5(ii), contrary to part (i). So we have proved (ii).

(17.3.4) ) VyN Vs = ZglW, 2, Vgl = Cy, (W, _2); and
(i) [[Wy_z, Vpl| = 22

By (17.3.3)(ii) W, _2 acts as at least a quadratic fours group on Vy/Z;.
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Therefore Vs NV,3 = Cy,(Wy_2) and Vg NV, 13 = Zs[W, 2, Vj]. Because
(Wy—2, Vgl < Wy_2 (17.3.2) implies that |[[W,_2, V5] = 2%, and we have
(17.3.4).

(17.3.5) (Zy-2, Wy o] # 1.

If we have [Z_2, Wy _2] = 1, then Lemma 17.4(iv) applied to the critical
pair (f — 3,0’ —2) gives Zy_1 < Wy_s. Hence Zg < Zy_1 < Wy_s, contra-
dicting (17.3.2). Therefore [Z3_o, W, _2] # 1.

By (17.3.5) we have (f —3,¢' —2) € C with [Zg_5, W, _5] # 1. So we
may repeat the procedure that produced (8 — 3,a' — 2) from (o, o), this
time starting with (f—38,¢/ —2) to obtain (1, —4)€C with
d(2,p—2)=3 and [Zp_2,W,_2] # 1. As a consequence all the results
obtained for (f — 3,o’ — 2) also hold for (1,0’ — 4). In particular,

(17.3.6) () Zp—2 £ Wy_4 (analogue of (17.3.2)); and
(i) |[Wy_4, V2]l = 22 (analogue of (17.3.4)(ii)).

(17.3.7) [(Wy_4, V2l < Vy_4

This follows from the fact that W,y =V,_4 [] V, and, for each
W[V, Vo]l < VyunNV,. Ao —4)=2

(17.3.8) [W“/_4,V/;_2} = [W%r_z,V/;} < V[g N Vﬁ_g.

From [Vﬁ,W“/_4] = 1, [V/} n V/g_Q,W“/_gl] =1 and so Wa/_4 < Gﬁ_zﬁ_l
and [Wy_4, Vg2l <VpNVp o < Vs Now b>7 gives [Wy_ o, Wy 4] =1
and hence

(W4, V2] < Cy,(Wy_2) = V3N Vs,

using (17.34)A). If [Wy_4, V2] £ [Wy_2, V], then, as [VsN Vs :
[Wy 2, Vgl = 2 by (17.3.4)(ii),

VeNV,s = [W“/,4, Vﬁ,z} [Ww,z, V/j}.
Then, using (17.3.7), we deduce that
Zg < Zyio S VN Vg =[Wys, Vp_a| [Wo2, V]
Vs [Wa—2, V| < Wy_s,

against (17.3.2). Therefore [Wy_4,Vp_2] < [Wy_2,V3] and hence
[(Wy—s, Vg2l = [Wy_2, V] by (17.3.4)(ii) and (17.3.6)(ii). This establishes
(17.3.8).
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We now unveil the desired contradiction. Combining (17.3.4)(i)
and (17.3.8) gives

VN Vs = Zg[Wy 2, V] < Zg(Vp2NVp) <VpanVp
Thus VpNV,;3=Vp2NVp by orders. But then W,_» centralizes

V2 NVg whence W,_5 < Gps—1 by Proposition 2.5(ii), contradicting
(17.3.3)(@). From this we conclude that

(1739 b="1.

Before making essential use of (17.3.9) we observe the following gen-
eration result for Wj. For © € A(f), put A(B, 1) = {y € AP)|Z, £ [Vy,Gp1}.
(17.3.10) Let t € A(f) and « € Gy \ Qp. If [W/ Vs : Cyy, v, ()] < 23, then

Wy = (Uyly € A, 0)U-.

From Lemma 17.7 Hy < [Wjg, Qs]Vp. Also we note that [U,, Qp, @] <
<[U.,Q)<Hg and [U, Qs Qp,Qpl <Vg. Thus Wp/[Wp, QslVp,
[W/j, Q/}]V/;/H/j, H/;/[Hﬁ, ng] and [H/;, Q/}]V/}/V[} are all GF(Z)(G/}/Q[})-
modules. Now Hpy/[Hpg,Qs]V}y is generated by an involution centralized by
G, and [Hpg, Qp1Vp/V} is either trivial or generated by an involution cen-
tralized by G,g. Since #(Gg, Wg/Vj) > 2, our assumption implies

[Hl}/V/f : CH/f/V/i(x)] < 2?
and so Proposition 2.15 applies to both these sections. Thus Hy/[H 3, Q41Vp
4
and [Hg, Qp1Vp/Vy are both quotients of ( 1) @ 1. Proceeding as in Lem-
ma b.17 gives

Hy = ([U,,@Q]ly € A, ) [U:, Q]
The same arguments apply to Wy/Hj, and so (17.3.10) holds.

We shall make repeated use, often without reference, of the following
facts.

(17.3.11) Let (5,5") € C.

@ V51, Vel < Vo1 N V3N Vs5 N Vi
(i) [Visy3, Wyl <Vsi3nNVsisNVy.
(iii) Vsi1 N Visiz # Vsyz N Vsys. Further, if Vi £ Qs41, then Vs 3N
NVsis # Vsis N V.

Part (i) is a consequence of [Vs.1, V.51 = [Vy, Vsisl =1, and (ii) fol-
lows from (i). If V5,1 N Vs, 3 = V5.3 N Vs, then, using Proposition 2.5(ii),



110 Wolfgang Lempken - Christopher Parker - Peter Rowley

Wy < Gsi1. Hence |[Wy,Vs.1]| <23, a contradiction. Therefore V1N
NVsis # Vsig N Vs,5 and (iii) holds.

Our next goal is (17.3.25), which asserts that |W,Q,.3/Q.3| = 2 for
any (a,o') € C for which [Zg, W] # 1.

The results (17.3.12), (17.3.13) and (17.3.14) prepare the ground for the
proof of (17 3.25). For the duration of these results (5, §') is assumed to be a
critical pair for which [Z;.1,Wy]#1 and |WsQs.i3/Qs+3| # 2. (Recall
from (17.3.1) that Wy € Qs.3 and so |WyQs.3/Qs+3| > 2.) Also recall that
V&’ f Q6+1-

(17.3.12) (i) [Wy, Vossl = Vs N Vs N Vy 22 E(22).
() Zs+3 £ Vy.
(i) [Wy N Qsy3, Vsl = 1.

By assumption |WyQs.3/@s.3| > 2 and therefore [[Wy, Vs.3/Z5s.3]| > 2.
Thus parts (i) and (ii) follow from (17.3.11)(ii), (iii). Because

[Wé" n Q(5+3, V§+3] < Z(5+3 N Vé'a
(i) implies (iii).
(17.3.13) V3Qs.1/Qs.1 is a non-central transvection of Gs.1542/Qs11
(acting on Vi 11/Z5.1) and [V, V]| = 2.

First we demonstrate that |[Vs1,Vyl|=2. Put V =Vs1NVsi3N
NVsisNVs. If |[Vsi1,Vyl >2, then, by (17.3.11) (@), (ii),
[V5+1, Vé/] =V. Thus, by (17.13.12)(11), Z5+3V = Vv(prl N V5+3 and con-
sequently Wy centralizes [Vis,3/Zs3,Gsi2043;2]. This forces Wy <
< Gs12543, and so [Wy : Wy N Gsi1] < 2. Since [Wy,Zs511]1 #1 and Wy
acts quadratically on V;.;, we must have [WyNGsiq,Vsl=
= [Vs41, Vsl < Vs. But this gives the impossible 7(Gy, Wy /Vy) < 1. So
[[Vsi1, Vi1l = 2. Observe that VyQs.1/Qs+1 being a central transvection
of Gsi1542/Qs1 on Visi1/Z5,1 gives [V, Vyl < Zsi2. By (17.3.12)(ii)
[V5+1, V(;/] 75 Z5+3 and hence Z5+2 = [V5+17 V5/]Z5+3, which yields
[Zs+1,Ws] =1, whereas [Zs5.1, Wy] # 1. This proves (17.3.13).

From [Vs1,Vyl# Zsis, Vo1, Vsl < Vs1NVsi3N Vs and VN
NVsi3 # Vs N Vsys, we have that (V1 N Vsi3)(Vsyg N Vsys) 2 E(2%). Let
Es. 3 be such that Gsi 354 > Esi3> Qsis and Ejs,3 centralizes
(Vi1 N Vsy3)(Vsis N Visis)/Zs.s; note that K. 3 induces a transvection on
Vsi3/Zs43.

(17.3.14) () Wy NEsyz < Gspr and [Wy N Esy3, Vsl < Vs N Vs,
(ii) [Wy : Wy N Es.3] < 2
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From [Wy NEs.3,Vsi1NVsis] <[Wys,Vsi31NZsig and (17.3.12)(1),
(i) we deduce that [Wy NEs3, Vsi1 N Vsis]l =1, which yields part (i).
Because WyQ;.3/Qs43 is contained in the quadratic E(23)-subgroup of
Gs13514/Qs13 acting on Vi, 3/Zs. 3 clearly we have [Wy : Wy N Es,3] < 22.

Now, until the end of (17.3.24), let («,«’) denote a critical pair for
which [Zg, Wy ] # 1 and |W,Q,43/Qu+3| > 2 (so (17.3.12)-(17.3.14) apply
to (o,0)). By (17.3.14), as Zy £ W, and [V, V,1<VpnV,s,
(W /V. : Cw, v, (@)] < 23 for any x € V. Employing (17.3.10) we then
obtain

(17.3.15) W, = (Vi|t € AQy) for y € A, 0+ 6)) Uy

Our next assertion concerns critical pairs (t+1,x+3) where t +1 ¢ A[Z](y)
andy € A/, o + 6).

(17.3.16) Let y € A(¢/,a + 6) and suppose there exists t € 4(y) such that
Ve £ Quiz (so (t+ 1,0+ 3) € C for some t + 1 € A(z)). Then

(l) ‘/a+3 g Qr; and
(i) [W:,Z,:s]# 1.

If V(x+3 < Q‘U then
Z, = [Va+3a VI] < V3<+5 N Vac’a

which gives
Zy = ZrZoc’ < Va+5 N Va’ < [Va’a Ga+6a’]-

This is against y € A(«', o + 6), and so V13 £ Q..

Turning to part (ii), assume that [W,, Z,,3] = 1. By part (i) there exists
& € A+ 8) for which (¢,1) € C. Then applying Lemma 17.4(v) to (&, 1)
yields

[VHS, Got+3o:+4] = [Wr N Gyys, Voc+3] (Vx+3 N Voc+5)-
From [W,,V,.3] <V, we clearly get
[Wau Vigs, We N sz+3] =1
Furthermore, [W,, W. N G,,3] <V, and so
[Woc’7 W. NGy, Va+3] =1
Appealing to the Three Subgroup Lemma gives
Vi, We N Goys, Wy ] =1
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and therefore W, centralizes [V,.3,G,i3,:4], contrary to
Wy Qu13/Qy+3] > 2. Hence (17.3.16) holds.

Up until the beginning of (17.3.22) we assume that y € Ao/, o + 6) and
that there exists t € A(y) such that V, £ @,.3 and V.Q,.3/Q,+3 is NOT a
non-central transvection on V,,3/Z,.s. Let 1+ 1 € A(r) be such that
(t+1,0+3)eC. By (17.3.16)(i) we may find & € A(x + 3) such that
(¢,1) € C. The choice of 1 together with (17.3.16)(ii) and (17.3.13) (applied
to (¢, 1)) imply that

(17.3.17) |WrQa+5/Qo¢+5| =2

(17.3.18) () V.Q.:3/Q,+3 is the central transvection of G, 3414/Q,+3 (On
Vs /Zot3).

(i) Vors N Vs NV NV = [Voi3, Vil = Zyy5 and Zy6 = V5N
NV, NV.

Set V=V, 35NV, 5NV, NV, and assume that |V|>2. From
(17.3.17) and (17.3.16) we infer that [W,: W.NG,.3] <2® and
[W. NGyi3, V.31 =V < V.. Recalling that V,,3 £ Q,, we conclude that
the two G,non-central chief factors of W,/V, are isomorphic natural
modules. Transferring our attention to (o, o) where, by (17.3.13), we have
that Vp acts as a transvection on V,/Z,, and consequently
[W, : Cw,(@)] >2° for every « € Vp\Qy. However (17.3.14) gives
Wy : Cw,(@)] < 2¢ for each x € V. Hence |V| =2, and so V = [V,43,V:].
The choice of T now yields part (i).

By () [Viys, Vil < Zyys. I [V,43, Vi1 # Z,y5, then we have

Za+3 < Zo:+4 = [Va+37 Vr] Zoz+5 < Voc’a

which is untenable by (17.3.12). Hence [V,.3,V.]1=Z,.5. So
Ziyi6 = Zyrsly < Vyys N Vy NV, and we have proved (ii).

(17.8.19) [W,.3,Z.] # 1.

Suppose [W,.3,Z.] = 1 holds. Then, using Lemma 17.4(v), we see that
V.+3Q:/Q- acts as a central transvection of G,;/Q. on V./Z.. Hence, by
(17318)(11)7 ch+5 = [Va+37 Vr] < Zy- But then Zy = Zoz+6 < [Va’7 Ga+6o<’];
against y € A(¢/, o + 6). This verifies (17.3.19).

(17.3.20) |W,13Qy/Qu
If (17.3.20) is false, then |W,,3Q,/Qy|=2. Because [W,3,Z.]# 1

> 2.
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by (17.3.19), [[W,.3 N G, V,]| < 22 and hence we deduce that
Zy = [WusNQu,Vu| < Vs N Vs NV,
But then consulting (17.3.18)(ii) this gives
Zy < Vs N Vs NVy NV = Zy 5,
which is impossible. Therefore (17.3.20) holds.
(17.321)  [Wy N Quis, Wars] < Vs N V5.

Let ¢ec AP +3). Since [W,NQu3,Viisl=1 by (17.3.12)(iii),
Wy N Quys3, Vel < V:N V3. Because [W,Qy:3/@y13] > 2 it follows that
sz+3 N V3<+5 = CVH3(W3<’) and so [Woc’ N Qm+3; Vf] < Va+3 N Vot+5- This
proves (17.3.21).

Combining (17.3.20) with (17.3.21) and the fact that |V, 3 NV, 5| = 23
we deduce that 7(G,, W) = 3and |W,Q,3/Q. 3| = 23. Moreover, the G-
non central chief factors in W, are all natural modules. But W,/ acting
quadratically on W,,3 and |W,Q,3/Q.3| = 2° implies that the G,.3-non
central chief factors in W,.3 are all isomorphic, a contradiction. This
contradiction, together with (17.3.15), yields

(17.3.22) W,Q,+3/Q.+3 is generated by the two non-central transvections
of Ga+3a+4/Qo€+3 (On Va+3/Zot+3)-

Because of our assumption that the theorem is false, (17.3.14) and
(17.3.22) imply that E,,3/Q.+s must be the central transvection of
Goi3014/Quiz  (on Viyz/Zyy3) and so (VN Viu3)(V,3NViys) =
= [Vut3, Guysa14]. Hence, by Proposition 2.8(vi), VN Vi3 N Vs = Zyia
and so [V[)’, Vil < Zopa. H[Vﬁ7 Vul# Zyys,then Z, 4 = [V/}, VulZyis < Vi,
against (17.3.12)(ii). Thus

(17.3.22)  [V3,Vy] = Zyss.

We now seek to make use of (17.3.15) again. So, for the next statement,
let y € A(o, o + 6) be such that V; £ Q,.3 for some t € A(y). Recall from
(17.3.16) that [W,,Z,.3] # 1 and that there exists & € A(x + 3) such that
(&) eC.

(17.3.24) () I [W.Qus5/Quss] > 2, then [Vy5, Vil = Zy.
(11) If |WTQ1+5/QO(+5| = 2y then [Va+37 V’L’] < Z1+6 = Vx+5 N Va’ mV‘p

If |W.Q,+5/Q.15] > 2, then (&, 1) satisfies the same conditions as («, o)
and hence the analogue of (17.3.22) holds. Thus [V,.3,V.] = Z,/, and we
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have (i). While |W.Qui5/Qyi5| =2 implies, as [W;, Z,;3]# 1, that
|[W1: N Go(+37 Vx+3]| S 22' Consequeﬂﬂy [Wr N th+5» Vx+5] 7é 1 and so

Za+5 = [Wr N Qot+57 Vo:+5} < [Wn VO(+5] < fo+5 NVyNVe.

Hence, using (17.3.11)(iii), we obtain Z,,¢ = V,.5 NV, NV, so giving (ii).

(17.3.25) Let (a,0/)eC be such that [Zs W,]#1. Then
|Wa’sz+3/Qa+3| =2.

We assume (17.3.25) is false and argue for a contradiction; so (17.3.15)-
(17.3.24) are available to us. In particular, (17.3.15) and (17.3.24) yield that
[Vvu-&-?)a Wv’] < Zo:+61 and thus

Zec+6 = [Va+3; Wa’} = Vo:+3 N Va+5 N Va“

Suppose there exists y € A(o, o + 6) such that V; £ Q,.3 for some
1€ Ay) and |W.Qu15/Qu5] = 2. Then, by (17.3.24)(ii), Zyi6 = VyisN
NV, NV, and hence

VaH—S N Voc+5 N Vo:’ n Vz = Zo:+6-

Since |W.Q,+5/Qy+5| =2 and [W;, Z, 3] # 1, we may argue as in (17.3.18)
to obtain a contradiction. Therefore for all y € A(a/, o + 6) with V, £ Q,.3
(some 1 € A(Y)), [W.Qy+5/Qut5| > 2. Butthen (17.3.15) and (17.3.24)(i) give
[Virs, Wyl = Z,y, contrary to [WyQy13/Qy+3| > 2. This proves (17.3.25).

We continue to let (o, o) € C be such that [Z 5, Wyl # 1.

(17.3.26) () [W,:W,NGgl=2 and [W,, NGy, V] =Cy,rv,,,(Wy) = E25).
(11) Za+4 = Vo:+3 N Va+5 N sz’-

Since W, NGp acts quadratically on V; and [Z3 W,]#1,
W, NGp, Vil <22 Then (17.3.25) forces |[W, NGp, Vjll =22 and
W, : WoNGpl =22 So W, NQuis £ Quiz and then [W, NGy, Vj] <
<Vp NV, by the core argument, giving part (i). From W, N Qy43 £ Qu2,

Zyis = [Varz Wu N Qi3] < [Virs, Wy ] < Vius N Vs NV
and hence part (ii) follows using (17.3.11)(iii).
(17.327) V3, Vu| = Z1i3 < Zoia = Zoss.
We begin by proving that 7, < Z,.4.If Z,, £ Z,. 4, then, by (17.3.26)(ii),
Vors NVy = ZyiaZy.
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We have that [Wg,V, 5N V,]# 1, for otherwise we get Wp < G, with
[Wg, V,1] <28 which, as V, £ Qp, then yields the theorem. So
[Z., W] # 1. Consequently (17.3.26) also applies to (p, f5) yielding

Vﬂ N VO(+3 N V1+5 = ZOH~4 = V1+3 N VO(+5 N VO("

So, by (17.3.26)(@), (W, NGg, Vgl =Z,14 <V,. Putting Wy =Wy /Vy,
(17.3.26)(i) implies that [W,, : Cy, (Vp)] < 22 and so Vj acts as a transvec-
tion on each of the two non-central G,-chief factors in W,. Hence
[Vp:VsNQy]l=2. Because [Z,, Wsl#1, [V,,VyN@Qy]l=1 whence
[Vy : VuNQpl =2. Now [Zg, W,]#1 gives [V, V,y NQgl = 1. But then
I[V, V1| = 2 and the theorem holds. Thus we have proven that Z, < Z, 4
and hence Z,. 4 = Z, 6.

To conclude the proof of (17.3.27) we must show that [V, V] = Z,.s.
Suppose [Vg, V,s] # Z,,3. Then (17.3.26)(i) forces

(W NGy, V| = [V, V| Zois < [V, Vit Zia = [V, Vi | Ziyis < V.

Observe that Vj acts as a transvection upon V,/Z,, since [Vp,V,] <
<VusnNV,s5nNVy =2Z,,4 =Z,.6. We again deduce that the theorem
holds. Thus [V, V] = Z,43.

(17.328) Wy = (U,|y € A(B) and (3, o) € C)U, 2.

From (17.3.27) [V, [V, Gpar2]l = 1 and so [V, Gpuie] = VN Q. Now
(17.3.26)(i) and (17.3.10) imply (17.3.28).

(17.3.29) Wﬁ < Guys016-

Suppose (17.3.29) is false. Then by (17.3.28) there exists y € A4(ff) such
that (y,o') € C and U, £ Gyy5046. SO we may find y — 1 € A(y) such that
Vi—1 € Guysave; thus (p — 2,004 5) € C for some y — 2 € A(y — 1). Note that
Virs £ Qy—1, since Z, 1 £ V,i5 (as (y,&') € C). Hence there exists
& € A(a + 5) for which (£,7 — 1) € C. Assume that [Z,,5, W,_1] = 1. Then
Lemma 17.4(v) applies to give

[Vx+57 Got+41+5] = [VO(+5’ W,1n Go:+3o<+4] (Vm+3 N Vot+5>a

whence V,_1Q,15/Qq+5 is a central transvection of Gyi4y45/@u+5 ON
Viis/Zsi5. On the other hand, if [Z,,5, W,_1]# 1 (17.2.27) (applied to
(¢,y — 1)) also yields that V,_1Qs5/Q.15 acts as a central transvection
of Gyi4y15/Qus on V,.5/Z,.5. However, (17.3.27) implies that
(Gottay5, Goysays) # G5 and  consequently Vi1 < Guysure, after all.
From this contradiction we deduce that (17.3.29) holds.
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The final contradiction is now before us for, by (17.3.27), we have
[Zy,Wg]=1 and so Lemma 17.1(i) (applied to (p,f)) predicts that
Wy £ Goys0+6. Thisis contrary to (17.3.29), and so, at long last, the proof of
Theorem 17.3 is complete.

18. Case 4 - bounding b

Given the title of this section it is no surprise that our main result
here is

THEOREM 18.1. Asswme Hypothesis 17.0 holds. Then b € {3,5}.

The proof of this result will be given in a series of lemmas. Since our
proof is again by contradiction we shall suppose for this section that Hy-
pothesis 17.0 holds with b > 5.

LEmma 18.2. Let («,o') € C. Then

6] ([U., Q1]7 Qa N Q/}] < Zy
(i) (Qx NQpQu-1/Qs-1 is contained in the non-quadratic E(23)-
subgroup of Gy_1/Q,_1, but is not contained in the quadratic E(23)-sub-
group of Gy_1,/Qu-1 (on Vy_1/Z,_1); and
(ii) VpQ./Qx acts as the central transvection (of Gy_14/Qx) on
each of the non-central chief factors within W,.
(iv) n(Gg,Hp) = n(Gg,[Wp, QplVp) = 2.

Proor. Since b > 5, n(Gy, Wg) = 3 with the non-central chief factors in
W} being isomorphic natural modules by Theorem 17.3. Let Ga/;(l) < Gp

1
with G, < G,5% be the parabolic subgroup for which (V;/Z [;)\Gxﬁm = ( 2 )
1

and set Cp = Cq,(Vp). Observe that Qp/Cp=(Vp/Zp)" = Vy/Zs=4,
[Qs: QN Qpl =2, @, NQp<IGap and Q, NQy > Cy. Hence Q, NQp <G
Recall that [Q.,[U,,Q.]1=VsNV,_1. Hence there exists E <Gy
with Vg <E < HgVy such that HgVy/E is a non-central chief
factor of Gg. Observe that [U,, Q.lE/E < Ch,y,/p(Gyp). Conse-
quently [[U,,Q,],0%G.sM)1 <V, and thence

[V Qs], 0%(Goy™)] < [V, Qo] < U, Q).
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Therefore
(U, Q] 2(Gap, O (Gog)) = G ™.

Then we obtain
[[Us Qs], QN Q] G,
Since [[U,, Q,1,Q, N Q] < V,_1 NVj £ G4, we conclude that
[U2Qs), QN Qp) < Zs,

and we have proved (i).
From (i) we have

I:[VO(717QOC:| @y N Qﬁ} <Z,

which together with Z, /7, 1 = Cy, /7, ,(G41) yields the first part of (ii).
The latter part of (ii) follows by using the same argument as in [Proof of
Theorem 1; LPR2].

Suppose (iii) is false. Then, since V; < Qy_s N Qy—1, part (ii) and
Proposition 2.5(ii) yield [F :Cp(Vp)]>2% for each non-central chief
factor F' of G, within W,,.. Thus [W, : Cw,(®)] > 26 for any x € Vi \ Qu.
Now W, < Qy+4 N Q,45, part (ii) and W, acting quadratically on V,,,3/Z, 3
imply that [W, : W, N Q,.3] < 22. Likewise we deduce that [W, N Q,.3N
NQus2 : Wy NQuis N Qurz NQp] < 2% and so [W,, : W, N Q] < 2°. Clearly
Wy NQp, Vgl #1 and hence Zg < W,. Using the parabolic argument
(Lemma 3.10) gives [W, : W, N Q] < 2° and so [W, : Cw,(Z,)] <2° a
contradiction. Thus we have established (iii).

Finally, because #(Gg,Wy) =3 by Theorem 17.3 and #(Gg, Wy/
[Wg,Qp1Vp) > 1, Lemma 17.7(ii), (iii) yields part (iv).

For (o,o') € C it is often very helpful to know things like V,» £ Q4 and
U, < Q,_s. The former statement is established in Lemma 18.7. Then
Lemma 18.7 enables us in Lemma 18.8 to prove that U, < @, _». However,
in order to prove Lemma 18.7 we need the weaker form of Lemma 18.8
given in Lemma 18.4.

LEMMa 18.3. Suppose that (x,0)eC and U, £ Qy_2. Then
[Us, Vo ol=Zpand ZpZy 2 =Zy 3.

Proor. Using Lemma 18.2(iii)) we see that [U,,V,y 21 < Z,NZ, 3.
Since U, £ Qu_2[U,, Vy_21 £ Z,_o. In particular [U,, V,y_2] # 1 and so, as
[Uy, Vy—21 < Qu, [U,, V,y_2]1 = Z and then we also have ZpZ, o = Z,_s3.
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LEmMA 18.4. Suppose that (x,d/)eC and V, <Qp. Then
UO( < GO(LZO(LI-

Proor. IfU, < Q,_g,then clearly the lemma holds so we may suppose
that U, £ Q2 and argue for a contradiction. From V,, < @ and Lem-
ma 18.2(ii1)) Zp =[Vp,Vyl <Z,_1. By Lemma 183 Z; # Z,_» and so
Z“r,l = Zﬁza/,z. Thus

(18.4.1) (i) Zy_1 = Z,_3; and
(i) (Gy_sy—2,Gy_24+-1) is a proper parabolic of G, _o which re-

1
stricts to (2) onVy_o/Zy .
1

Now, by Lemma 18.2(iii), U,Q._2/Q,—2 is a central transvection of
Gy_3y-2/Qu—20nVy_9/Z, o and so U, < G,_z2,_1 by (18.4.1)(ii), a con-
tradiction.

Before we can begin the proof of Lemma 18.9 we need two further
results concerning ¥, which will also be important later on.

LemMA 18.5. For (x,o) € Cwe have F, < G,.

ProoF. Suppose [F,,V,_2] = 1. Then there exists o« — 1 € A(x) \ {f}
and y € A/ — 2)such that[[V,_1,Q,],Z,] # 1. In particular, [V,_1, Z,] # 1.
So, since Z,_; £ Vy_s, (y,a—1) € C. Hence [[V,_1,Q.],Z,] < Zy_1 by
Lemma 18.2 (iii). But then Z,_1 = [[V,-1,Q.]), Z;] < V,_», a contradiction.
Thus [, Vy_2] = 1, which implies that F, < G,,.

LEMMA 18.6.  Let (a,0') € C. Then F,Q, = V3Qy.

Proor. Observe that, by Lemma 18.2(ii), V4Q. = Z,Q». So Z, < F,
implies that V3Q, < F,Q,. Thus if the lemma is false we have
|F,Qy/Qy| > 22 From Lemma 18.2(iii) [W, : W, N Q, 3] <2. Assume
for the moment that [W,,Zsl=1. Then W, NQ.,3 < Q2. Hence
(W, N Qy43)Qp/Qp is contained in the non-quadratic E(23) group on Vi) Zg.
Combining this with W, N@Q,;s acting quadratically on Vj gives
Wy NQy13)Qs/Qp| <22 Hence we obtain [W, : W, NQ, NQsl < 2%
Now consider the case [W,,Z] # 1. Then [Wy : Wy N Q.13 N Qupa] < 22
and, as above, |(Wy N Q3 N Qui2)Qp/Qp < 22. So [Wy : W, NQpl < 24
Since Zy £ W, we must have [W,, N Qp, Vgl =1 and hence W, N Qp < Q.
Thus, in both cases, [W, : W, N Q, N Qp] < 2.
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Using Lemma 18.2(i) gives
[FM7WO</ N ro ﬂQﬁ] < [FacyQot N Q[J’} <Z,.

Since F, <G, (by Lemma 18.5) and (o,o') € C we then infer that
[F, W, N Q, N Q]| < 2. Therefore [W,, : Cy,(x)] < 2° for all « € F,. But
|F,Qy/Q./| > 22 then dictates that 7#(G,, W,) < 2, a contradiction. Hence
Fy,Qy = VQ. holds.

At last we are able to achieve the following “symmetry” result.

LEmma 18.7. Let (x,a') € C. Then Vy £ Qp.

Proor. Let (o,o') € C and assume that V, < Qp. By Lemma 184
U, <Gy _9y_1. Combining Lemmas 18.2(iii) and 18.6 gives
[F,,Vy]1<Z, 1. Because V, < G,,V, £ Q, and n(G,, F,) = 2, we obtain
Zy 1 =1F,,Vy,1<F,. Hence U,<Qy_1<Gy. Then V,<£Q, and
Gy, U,) = 3 imply that |U,Q,/Q./| > 2? and E@23) ~ [U,,Vy] < U,. Let
a—1¢€ A)\ {p}. So, since b >5, W,_; centralizes both Z,_» and Z,.
Using Lemma 3.10 at o/ —4 and o« —2 gives [W,_;: W,_1NG,] < 22
From W, 1 NGy, > U, and b > 5 we get

[Wocfl mGz’;Va’] = [UouVa’] < UD(

Now arguing as in (17.5.4) and using Lemma 11.1(vii) we deduce that
(W - W, N Wy 4] < 24,

Observe that, as VpQy =Z,Q» <V,1Q» and V, £ Q,, U,Q, =
=V, 1Qy. So |V, 1Q,/Q.| > 22. We now investigate [V, 1, W, _4]. Let
p € V(I') be such that d(p, o’ —4) =2.1If p € A’ —5), then [V,_1,V,] = 1.
Now assume that p & A/ —5) and that V, £ Q,_1. Hence we have a
(p+1,0—1) €C for some p+1 € A(p) and so [V,,V,_1] < Z, by Lem-
ma 18.2(iii). Thus [V, 1, W, 4] < Z,. Since Z, £ W, we must have
V-1, Wy N W, _4]| < 2. Hence [W,, : Cw, ()] < 25 for all « € V,_; which
then forces 7(G,, W,) <2, a contradiction. Thus, for any («,a’) € C we
have V“/ ﬁ Q/;.

LeEmMA 18.8. Let (o,0/) € C. Then U, < Qy 2 NQy_1 (< Gy).

Proor. Let 4(x) ={o—1,4,8} and suppose V,_s £ @,_1. Hence
(p,a —1) € C for p € A/ — 2). So, by Lemma 18.7, V,_; £ Q,_2. Now let
p* € A/ —2) be such that (V, 1,Gy_2,) = Gy_2. Because (a,o') €C,
[Vy—2 N Qu1, Va1l = 1; also note that this gives [Vy_o, V11 = [Z,-, V,_1],
contrary to Z,- 4 Gy _s. Therefore (p*,o — 1) € C.
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By Lemma 18.6 F,-Q,—1 =Vy_2Q,—1 =Z,Q,—1 and so by Lemma
18.2(iii)
Zz > [thvatfl} > I:Zp*aVotfl] = [VocLZ,Vocfl}-

If [F),V,1]l=[Vy_2,V,_1], then we obtain F,-Vy_o(V,_1,Gy_2,+) =
= G,_9, against Lemma 17.7(ii). Thus Z, = [F,-,V,_11 < W,y_2 < Qy (as
b > 5), a contradiction. So we conclude that V, o < @, 1 and hence
[Vu—2,Vy_1] = 1. Similarly [Vy_2,V;]=1 and so, since [V,_3, V] =1,
[Vy_s,U,] = 1, which gives the lemma.

LEmma 18.9. Let(a, ') e C. Then |[V,Vy 1| = 2. Moreover, [VpNQy,Vyl=
=1=[VyNQ Vsl Vs NQyw = [Vp,Gpsi2land V,y N Qp = [V, Gyow—1].

Proor. Firstweprovethat |[Vg, V]| = 2. By Lemmas 18.2(iii) and 18.7
[V, Vyl < Zy1 N Zyye. Suppose that [V, V]| > 2. Then |[V;, V]| = 22
and [V, Vyl =Zy 1 = Zyro. f W, < Gg, then, as W, acts quadratically on
Vi, [[Wyr, V]| < 23 But then, as [V, Vel < Vi, [Wy [V, V]| <2 contra-
dicting n(Gy, Wy) = 3. Thus W, £ Gy. Consequently, from Z, o = [V, V],
W, £ Q,y3; also note that W, NQ,.3 < Qui3 NQ,u2. So, using Lem-
ma 18.2(iil), |[Wy : Wy N Quysl| = 2. Clearly [V, Vi1 < [V, Wy N Qyys]and
so Gy, Wy) =3 forces |[[Vg, Wy NQusll = 23, If [V, Wy N Quy3] =
= V/} n V9<+3, then W:x’ < CGlf ([Vc<+3§ G1+20<+3§ 2) < G1+2a+3 whence Waz’ < G,E
which has been ruled out. Hence

[V, Gparz] = (VN Vi) [V, War N Qs3]

which is centralized by V. By Lemma 18.7 we may argue similarly to de-
duce that Vj centralizes [V, G,_1.]. Therefore V, acts as an involution on
Vi with [V} : Cy, (V)] = 2 which yields |[Vj,V,]| =2, a contradiction.
Hence we must have |[Vp, V]| = 2.

Combining [[Vp,Vy]| =2 with Lemma 18.7 gives [VyN@Qy,Vy]=
=[Vy NQp, Vgl =1. So Cy,/7,(Vy) = VN Qy)/Zs and hence VN Qy =
= [V, Gpyt2] by Lemma 8.2(iii); likewise we obtain V,y N Qp = [V, Gyy—1l.

LeEmma 18.10. Let (a,a’) € C. Then
() there exists 1 € A() such that (1,0) € C and (G, V) = Gp;
(i) Zg £ Vy and Zy £ Vg; and
i) [F,,VyNQpl=1
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Proor. (i) By Lemma 187 we may choose A€ A(f) such that
(G, V) = Gp. Since [VpNQy,Vy] =1 by Lemma 18.9 and Z, £ G, we
must have (1, o) € C.

(ii) Assume that Z, < V; and let A be as in part (i). Using Lem-
ma 18.6 gives [F,;,V,]< [VﬁgVar]Zw < Vﬁ and then F;LVﬁS]G[;, against
Lemma 17.7(ii)). So Zy, £V and similarly (because of Lemma 18.7)
Zg L Vy.

(iii) Lemma 18.10 implies that V,N@p <, and hence
[F,,Vy NQg] < Z, by Lemma 18.2(i). Since («,o') € C, [F,,Vy N Qpl < Zg
and then Zy £ V,, yields [F,, V,, N Q] = 1, as required.

LEmMA 18.11. Let (x,0') € C and let A € A(o) be such that (A, ) € C.
Suppose that X <Gy, with X £Q; and that [X,Vgl=1 Then
U,Qp = VyQp.

Proor. Since (4,6)€C, Lemmal88 gives U;<Gp So
[U;,VpNQy1 <V and hence X centralizes [U,,VgNQ,]. Let
A+1eA)\{o}. Since [V NQy,Vy]=1and X £ Q; we note that

U, VN Qx| = [Viu1, VN Qy].

Also the core argument gives [V;,1, Vs NQx] < Vy NV;i1. Combining
[VeNQy,Vy]=1 and Lemma 18.2(ii) gives that (VN Qu)Q;+1/Q)+1 is
contained in the non-quadratic E(23)-subgroup of G;;.1/Q;11 (on
Vis1/Z;41).

Assume VN Qy £ Q1. If (VN Q)Q;+1/Qs41 acts as a transvection
on V,.1/Z,;1, then, in fact, it must be a central transvection. So
(VN Qy, Vi1l < Z;. From (4, ) € C and Z,, £ Vs (by Lemma 18.10(ii))
this gives [V N Q., Vii1] = 1. On the other hand, if (V3N Qx)Q,+1/Qs+1
does not act as a transvection on V),1/Z;1, then, bearing in mind that
(B €C, |[VgNQy, V4]l =22 Calling on Lemmas 18.2(1), 189 and
18.10 gives [U;,VyNQy] < Z,12. Then Z,.» =[U;,VpNQy] by orders.
Therefore

Zg < Zyo = Uy, VN Qy| = [Vir, VyNQu] <Vy NV

But Zg £ Vy by Lemma 8.10(ii). Thus we deduce that V3 N Qy < Q1.
Now (4,p) € C dictates that 1 =[V;;1,VpNQu]1=1[U;,VyNQy] which
establishes the lemma.

LEmMMA 18.12. Let (o, o') € C and let A € A(o) be such that (A, ) € C. If
[Fo' N Q%’aZX] 7é 15 then U)v N Q/f ﬁ Qfx-
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ProoF. Applying Lemma 18.11 with X =F,NQ, (£Q; as
[F,NQy,Z;] # 1) and using Lemma 18.2(iii) gives [U, : U, N Qpl = 2. If
U,NQp <Q, then Lemma 18.2(1)) implies that [F,,U,NQsl < Z,
whence [F,,U; NQpl < Zg as (a,o) € C. Since F, NQy £ Q; this gives
n(G,,U;) <2 contrary to Lemma 17.1. Therefore U, N Qg £ Q.-

The long sought final contradiction is now in sight. Let («,a) € C. By
Lemmas 18.7 and 18.10(i) we may select ¢ € A(a’) such that (¢, f) € C and
(Vg,Gwe) = Gy. Applying Lemmas 17.7(ii), 18.2(iii) and 18.6 we have

[Fe, V] = [V, Vs] [Fe N Qp, V] = [Vie, V] Zg

with [FCV N Q[;, V[;] = Z/;. Let A* € A(ﬁ) be such that [F’g n Q/}in*] 75 1. Then
(4%,d') € C, else Z;» < VN Qy which, applying Lemma 18.10(iii) to (¢, f), is
centralized by F':. So we use Lemma 18.12 with («,0/) = (¢, ) and 1 = 1" to
conclude that U;- N Q, £ Q:. Now using Lemma 18.11 with X = U, N Q
on (o, o) with 1 = & we get U:Qp = V,Qp. Hence
[Ue, Vi) < [Vir, V] Zp = [Fi, V] < Ho.

Consequently

H%rch d <V/}, Ga/§> = Ga/.
So, since W, = (UC;G”>, W, = HyU:. Because [Q: U:l=F:<Hy,
nG,,WyH,) =0 and hence, by Lemma 17.7(iii),

n(G1’7 WD(/) = n(G1’7HO£/) = 27

a contradiction.
The proof of Theorem 18.1 is complete.

19. Case 5 - the last lap

Finally we consider the last of the cases which were listed in Section 12.
Thus in this section we shall be assuming.

HyporHEss 19.0.  Vy/Zy =~ (4

1) and coreg Vg =VyNV, 1 = E23).

Recall, from Lemma 12.6, that Z, = [V}, G.s; 3] and that the following
holds (where Y = CVﬁ(OQ(G/;))).
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Let o € O(S3) and f§ € A(). In the ensueing arguments we shall use the
following two subgroups that were introduced in Section 12.

F, .= <Y/;G“>.

Hy = (F,°).

LEmMa 19.1. If o € O(S3) and f € A(x), then

(l) [F’otaQa] < Z(Xa n(GxaFoc) = 2, H[)’ 7& FotV/J and ”(G/}aHﬁ) > 2; and
() (G, Us) = 4.

Proor. (i) See Lemma 12.5.

(i) By Lemma 1.2(v) #(G,, U,/[U,, Q,]) #0. Since [U,, Q1 # [V, Qx]
(as [V, Q.1 > coreg,Vj), we also have n(G,,[U,, Qy1/[Us,, Qy;2]) # 0. Be-
cause [U,,Q,;2] #1, Z, <[U,,Q.;2] and therefore n(G,, U,) > 3. Now we
assume that 7(G,, U,) = 3 and seek to uncover a contradiction.
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Set R = V[g NV,-1.
19.1.1) [UaaQa;z] = [Vﬁanx;Z] <R.

Since [U,,Q,;3] > Z,, our assumption that #(G,,U,) =3 forces
WGy, [Uy, Qy;21/[Uy,Q;3)) =0 whence we obtain [Vp,Q,;2] =
= [U,, Q4; 2] 4 G,. This establishes (19.1.1).

(19.1.2) |[V4,Q.]/R| = 22 and [V, Q,1/R is centralized by Gop.

From Proposition 2.5(i) we have |[Vj,Q,]1/R| = 22. Since G, = Q,Q;
and [Qg, V] = Zg, (19.1.2) follows from (19.1.1).

(19.1.3) [U,,Q.1/R § 2@ 1@1 (asan Sg-module) with #(G,, [U,, Q,1/R) =1.

Observe that [U,,Q,]/R is a GF(2)(G,/Qy)-module by (19.1.1). Now
(19.1.3) is a consequence of (19.1.2) and 5(G,, U,) = 3.

Because E(2%) = [V, Q,1/R < Ciy, o,1/r(G4p) (19.1.3) yields
([V5,Qu]/R) N Crir, 0,1/r(G) # 1,

which contradicts the fact that R = coreg, Vs and so we conclude that
Gy, U,) > 4.

The main objective of this section is the verification of
THEOREM 19.2. Assume Hypothesis 19.0 holds. Then b = 3.

We suppose the theorem is false and derive a contradiction in a series
of lemmas. So, by Lemma 11.1(iii), we have b > 3.

LEMMA 19.3. For (5,0') € C, F5 < Gy.

ProoF. Because Vy_, <Gs_1 for 6 —1€ A46)\{6+1} we have
[V(;’iz, Y(S,]] < V5’72 < Q(S, and S0, as (5, 5,) S C, [1/(;'727 Yé*l] = 1. Therefore
[Fs5,Vy_o]l =1 and hence F's < Gy.

LeEmMA 19.4.  Let (4, 1, 0) be a path of length 2 in I where 1 € O(Sg). If
X<G and[X,V,NnVs] =1, then X < Gs.

Proor. Put V)v =V,/Y,.Since V, N Vs = [Vg, Gw; 2] and V;V =~ 4, Pro-
position 2.5(ii) gives X < G, whence X < @, < Gs.

From now until the end of Lemma 19.13 we shall assume that b > 5.
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LEmma 19.5. Let (x,o') € C, and suppose X < G, with X £ Q,. If
[XvHo(’—Z] = 1, then Ux S Qaliz‘

Proor. We suppose the lemma is false, and seek a contradiction. So
there exists o — 2 € V(I') with d(ox — 2,0) = 2 and (o« — 2,0/ —2) € C. Set
{a =1} = Ao —2) N A(x). Note that [Vy_2N@Qy1,V,—11=1. For
Ve 2NQ,-1,V, 1] # 1yields, as b > 3,

Zy1=[VueNQu1,Var1] <Vy2 <Qu,

against («, o') € C. In particular, V,_o £ Q,_1.
Since V, 1 £ Qy_2, we may select p € Ao/ — 2) so as

<Va(71a Ga’72p> = Ga’fz‘

IfZ, < Qy-1,thenZ, < V,_5 N Q,—1, which commutes with V,_; and hence
Zy(Vy-1,Gy—2p) = Gy—2, a contradiction. Thus (p,o —1) € C, and so
F, <G, 1byLemma 19.3. Since F,V, 2 #H, s and (V,_1,Gy_2,) = Gy_2,
[Fp, Vy,—l] ﬁ Vy/_z. SetY = [Vy/_g, Va_l][Fp, Voc—l]' Observe that Y < Ha/_g N
NV, 1 and therefore X centralizes Y. Hence, as X £ @, by hypothesis,

Y<V,.1NnV,= COI'eG“V/;

U(e) ={oe—1,4,}). Fromb > 5 H, o < @, andthus Z, ; £ Y. So, since
Zy1<7Z,<V,10V;and |V, 1 NV,| = 2% we conclude that |Y| < 2.
If |[Vy_2,V,1]| = 22, then we obtain

[FP)VO(—I] < Y= [Vx’—27Va—l} < Vo:’—27

a contradiction. Therefore |[V,_2,V,_1]| = 2. Consequently, as [V, _o,V,_1]1£
% Zo«,fla [Vocfl N Qa’72a Voc’72] =1and [Vaﬁl : Vocfl N sz’f2] = 2. Thus fol N
N ro’72 < Qp andso[V,_1 N Qa’727Fp] < Zp.Hence (Va1 onc’f2an] <Zy_2
as(p,o— 1) € C.Suppose[V,-1 N Qw_2,F,] = 1.Then[V,_; : Cy, ,(F))] < 2.
Because Z, 1 £ [F,,V,-1] and F, < G,_; we obtain |[F,,V,_1]| = 2. Since
[Zp7Vo(71] 7& 1 and [Zp7V171] < [Fp7V9£71]y we then get [Fp7V9<71] =
=[Z,,V,-1]1 £ Vy_9, a contradiction. Therefore [V,_1 N Qy_2,F,] # 1, and
so[V,_1 NQu—_2,F,] = Z,_,. However this also leads to a contradiction. For
we then have Z, o <Y which, together with [V, 1,V, 2]# Z, 2 and
|Y| < 22 forces

[vavozfljl < Y= [Vufla VaLZ]ZaLZ < sz’72~

This completes the proof of the lemma.
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LEMMA 19.6. For (a,o') € C, Vy NGy < Q..

PrOOF. Suppose the lemma is false, and set A(x) = {a — 1, 4, }.
19.6.1) U, <Gy.

Since b >5, [V, NGy, Hy 2]=1 and so using Lemma 19.5 with
X=Vy,NnG, we infer that U, < Qy_2 <Gy_1;. Now assume that
U, £Qy_1. Then [U,NQ,,Vyl=1else b >5and Z, =[U,NQ,,V,] <
< Wy yield that U, centralizes Z, 22, = Z,_1, against U, £ Qy_1.
Recalling that Z,_1/Z, =[Vy,Gy-14;31/Zy, U, £ Qy_1 and the core
argument imply that (U,NG,)Qy/Q, doesn’t contain the central
transvection of G,_1,/Q, (acting on V,/Z,). Consequently
[U,: U,NQy]< 2% and therefore [U, : Cy,(V, NG,)] < 23. But this, as
Ve NG, £Q,, forces n(Gy,U,) <3, contradicting Lemma 19.1(ii). Thus
U, <Qy_1, and so (19.6.1) holds.

(19.6.2) U,Q,/Q. is the quadratic E(2%)-subgroup of G, 1, /Q, (acting on
Vx’ /Zac’)

Since b > 5, U, acts quadratically upon V,. Now (19.6.2) follows
from (19.6.1) and |[U, N Q,,V,y NG,]| < 2.
(19.6.3) [fol W1 N W,} <2

From 7(G,, U,) > 4 we get |[U,,V, N G,]| > 2* and so, with the aid of
(19.6.2),

Yaz’ (Vz’ N Va’—Z) = [Ux;Va’] = [Uoca Vo(’ N Gx] < UO!
Hence, as b>5, [W,_1,V,NV,y_s]=1. Therefore W,_; centralizes
Zy 4liy 9 =Xy g and hence, wusing the parabolic argument,

W,_1:W,_1NGy_2] <2. Thus [W,_1: W,_1NGy] <2 by Lemma 19.4.
By (19.6.2) and b > 5, (W,_1 N G4)Q, = U,Q, and consequently

[fol N Gz’a Vot’] = [Uata Va’] < Uat < Wozfl N W)w
Arguing as in (17.5.4) we now obtain (19.6.3).

By Lemma 11.1(vii) and (19.6.3) [W, : W, NW, _2]1<2, [W,_o:W,_oN
NWy_sl <2and [Wy_s : Wy_s N Wy_s] < 2. Thus [Wy : W, N W_g] < 23
and so [Wy : Cyw,(U,)] < 23. But then, by (19.6.2), #(G.,, W,/) < 1 which is
impossible. This completes the proof of the lemma.

LEMMA 19.7. For (¢,o') € C we have V,; £ Qp.
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Proor. This follows from Lemma 19.6 since [Z,, V] # 1.

LEmma 19.8. Let (a,0') € C be such that [V, NQp, Vgl =Zg. Then
Zg="Zy.

Proor. Since [V, NQp, Vsl =Zp, there exists 1€ A(f) such that
[V, N Q/;,Z/l] = Z[;. So Vyn Q/; <G; but V,n Q/; £ Q. Therefore
(4,o') € C by Lemma 19.6. Hence Z, < Q. and so [Z;,V,] < Z,.. Thus

Zy=VuNQp,Z)) < [Z:,Vy| < Zy,

so proving the lemma.

LEmMA 19.9. Let (a,0') € C. Then there exists A€ Af) such that
(Gip, Vi) = Gg and (),) € C.

Proor. By Lemma 19.7 and Proposition 2.8(viii) there exists 2 € A(f)
for which (G4, V.) = Gg. Suppose Z; < Qy. Then Z; < VyNQy. Since
Z; £ G, [V NQy,Vy]#1,and so [V N Qy, Vy] = Z,. Choosing u € A(o)
such that (¢, f) € C and using Lemma 19.8 gives Z; = Z,,. Hence

I:Z/anot’:l S Zoc’ - Z/? S Zb
which forces the impossible Z; <Gg. Thus (4, o') € C, as required.

LemyA 19.10.  Let (2,o) € C. If [VsQu Qx| > 22, then [VyQu/Qy| > 22.

Proor. Suppose |V,Qp/Qp] <2. Then [V, NQp,Vsl#1 and so
[Ve N Qp, Vsl = Zp. Hence Zy = Z, by Lemma 19.8. But then Vj cen-
tralizes (V,y N Qp)/Z, which has index at most 2 in V,,/Z,, and this is im-
possible. Therefore |V,,Qs/Qp| > 2.

LEmMa 19.11. Let «€ O(S3) with f,a—1€ Aow), BAa—1 If
n(Gp,Wg) =2, then an elementary abelian  subgroup of
(Q: N Qp)Q—1/Qs—1 has order at most 22.

Proor. Put R =VNV,_ ;. As in [Lemma 4; LPR2] we may choose
E <G with Wy > E > V[Wp, Qpl so as n(Gp, E/Vp) = 0. Also we may ar-
gue as in [Proof of Theorem 1; LPR2] to eliminate the possibility
[Q: N Qp, Rl < Z,_;1. Thus (Qx N Qp)Qu—1/Q»—1 does not act as the quadratic
E(@23)-subgroup of G,_1/Qy-10nV, 1/7Z, 1.
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Set X =V,_1NE and @ = [Q, OZ(G,;)]. Arguing as in [Proposition 3;
LPR2] we may show, as Vj/Y; = 4, that [X, @] < Y;. Hence, since Z; < X,
[[X,Q1X : X] <2. Now Q@ <, by Lemma 12.4(i) and ¢ normalizing
[X,Q1X, together with the core argument yields [X : R] < 2. Therefore
[V,—1:X]> 22 Since [V,_1,Q, N Qp] < X, we immediately deduce that
(Qx NQp)Qy—1/Q—1 is not equal to G,_1,/Q,—1 nor to the non-quadratic
E(23)-subgroup of G,_1,/Q,_10nV,_1/Z, 1. This completes the proof of the
lemma.

LEMMmA 19.12. For (o, o) € C|V3Qy /Qx| =2 = |V, Qp/Qp|.

ProoF. Suppose the lemma is false. Then, in view of Lemmas 19.7
and 19.10, we have [V3Q,/Qy| > 2% < [V,Qs/Qs|. Without loss of gen-
erality, by Lemma 19.9, we may suppose (G.3, V) = Gp.

(19121) ﬂ(G/;,W/;) =2

Supposing (19.12.1) is false, we argue for a contradiction. So
n(Gg, Wp) > 3. First we show that [Wy,Z,]#1 (and so Z, £ Wp). If
[(Wp,Zy]1=1, then [Ws: WpNGy] <2, using the parabolic argument.
Because W; NG, acts quadratically on V,,|[Ws NGy, V,1| <24 Since
[V5Qu/Qu| > 22, |[Vp, V1| > 22 and thus

[Wﬁ/Vﬁ : CWﬁ/V,;(-')C)] < 28

for any x € V,,. This, as |V,Qs/Qp| > 22, implies n(G4, Wp) < 2, a contra-
diction. So [Wy,Z,] # 1, as asserted.

Set W = WgNG,_1. We next prove that W < Q,_;. By Lemma 19.3
[Fy, V] <V . W £ Qy_1, then[F,, V, [V, V] < V,_2 NV, by the core
argument. Since |[Vy, V,/1| > 2% and, by Lemma 19.1(i), [F,, V1 £ V,

V1’72 N Va’ = [FCMVS(’] [V[)’>V1’] < Wﬁ7

contrary to Z, £ Wj. Thus we must have W < @,_; and therefore
(Wp:Y]< 23 where Y = WenGy. I [Y,Vy]1=1[Vp,Vyl, then
[W[;/V/j : CW,,/V/,(V«/)] < 23, whence I/](G/;, W/}) < 2. Thus [Y, Va/] 75 [V/}, Vlf]
and so, as Z, « Wj, we deduce that |YQ,/Q,| =23, |[Y,V,]| =2® and
[[Vp, V1| = 22 with (G, W) = 3. Further, |[V}, V]| = 22 and Propositio-
n 2.5(ii) imply that V;3Qy /Qy # Z(Gy_1»/Qy) and therefore all the non-
central chief factors of Wy are isomorphic natural modules.

We now display the required contradiction to the supposition
n(Gg, Wp) > 3. Let x € Y be such that @, is a transvection on V,,/Z, and
(€)VpQy = YQy. Set X = Cy, (). Since Z, £ Wp, [V, : X]= 2. Also we
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have [X,Y] = [V, X] < Vg which,as [Wy : Y] < 28 implies that X acts as a
transvection on at least one of the non-central chief factors of Wy/Vj.
Hence X acts as a transvection on Vj/Y; and so as a transvection on
Vi /Zg. Symmetrically we have Zy £ W, and consequently |[X, V]| = 2.
But, by Proposition 2.5(ix) applied to V,,/Z, we see that |[X, V]| = 22
and thus (19.12.1) holds.

Combining #(Gy, Hg) > 2 with (19.12.1) clearly gives
(19.12.2) Wy = HgU,;o.

(19.12.3) Wj < Qu_s.

Weassumethat Wy £ @, _s, and argue fora contradiction. So, by (19.12.2)
Hg £ Q—2. Hence there exists f—2¢c V(') with d(f —2,) =2 and
Yo £ Qy_2. Thus (f—3,0/ —2) € C for some ff —3 € A —2) and by
Lemma 19.9 we may assume f§ — 3 is chosen so that (G_sp_2, Vy_2) = Gp_a.
Of course we must have [Y3_2,V,_2] # 1 and so, since V,_ < Gp_3, we
have [Yp,27V1/,2] = Zﬁ,z. Hence we have |[Vﬁ,27vxr,2]| > 22 If Zﬁ,z =
=Zy_g,then [Yp_5,Vy ol =Z,_5 and Yy_» < Q,_2 a contradiction. Thus,
by Lemma 19.8, [V,_2N Q/;_Q, V[;_z] =1=[V,_o, V/;_z N Qy_2]. Suppose
that |Vg_2Q.2/Qy—2| = 2. Then, Vg_2Q, 2 = Yp 2Qy 2 and[Vp_2, Vy_2] =
= [Yﬁ_z(V/g_g NQy_2),Vy_o] = Z[;_g, which contradicts V, o £ Q/;_g.
Hence we have, from Lemmas 19.10 and 19.11 and (19.12.1), that
[Vi—2Qy—2/Qu—2|=|Vy_2Qp—2/Qp_2|=2%. Therefore Vs_2Q,_2 > Y5 2Qy 2
andso [Vp_z : Vp_a N Yp_9Qy_2] = 2. Hence we have

V2, Vo NYp2Qu_2] = [Vi—2,Yp2(Vs2 N Qu2)] = Zp_2.

Thus V,_ induces a transvection on Vj_2/Zg 5, which contradicts
|Vy—2Qp_2/Qp2| = 22. This completes the proof of (19.12.3).

(19.12.4) Wy <Qu-1.

By (19.12.3) Wy < Gy _;. Also, from Lemma 19.3, [F,, V] < V,. So if
Wy £ Q—1, the core argument and b >5 yields [Fy, V[V, V,]<
< Vy_2NV,. Since |[Vg, V1| > 2% and, by Lemma 19.1(i), [F,, V1 £ V,
this gives

V2 NVy = [Fy, V| [V, Vo] < Wy

Hence [Wj,Z,_1] = 1, a contradiction. Thus Wy < Q,_;.

Combining (19.12.3), (19.12.4) and Lemma 19.11 yields |WsQ, /Q./| < 22
and hence W;Q, =V;Q,. But then |[[W;/Vp, V] <2 which, as
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[V Qp/Qp| > 22, forces the untenable (G, Wg/Vj) = 0 and completes the
proof of Lemma 19.12.

LEmmA 19.13.  Let (¢, o) € C be such that {(G.p, Vy) = Gg. Then

(1) FaQac’ = VﬁQa’;
() [FyNQu,Vul=2Z, £ Vp;
(i) [VgNQy,Vyl=1=[VyNQy, Vsl

Let p € A()) be such that F, N Qy £ Q, (by part (ii) such p exist).

@iv) (p,p) €C;

) U, <Gy and

i) E@)=[U,,VNQu1<Vy NV, (p+1e Ap)\{«'}), |U,Qp/Qp| =2?
and (U, N Q.. F, N Qy] = Zp.

Proor. (i) From Lemma 19.6 V, N Qs < Qy and so [V, N Qp, Y,—1] <
<Zy1(—1€d)\{f}). Thus [V, NQs, Fy,] < Zpandif [V, NQp, F,]1 =
=Zg then Lemma 19.8 yields that Zg=Z,. Hence F, centralizes
Vy NQp/Z, and then Lemmas 19.3 and 19.12 imply that F,Q, = Z,Q. =
= VﬁQa’-

(i) Using (i) gives

[FmVoz’] = [ZOU Va’} [Fa N Qa’avx’]~

By Lemma 19.1(i) [F,, Vs] £ Vp and therefore [F, N Qy, Vy1=Zy £ Vp.

(iii) By (ii) Z, # Zp and so (iii) is a consequence of Lemmas 19.7
and 19.8.

(iv) Note that (iii) gives [F,,V,NQsl=1. Thus Z, < Qs implies
[F,,Z,] =1, against I, N Qy £ Q,. So (iv) holds.

(v) Observe that [F,,H,.3]=1 for otherwise we would obtain
Zy1=2,forsomeo —1¢€ A)\ {f} and some A € A2V (o + 3), contrary to
(o,0/) € C. Applying Lemma 19.5 to (p,f) with X =F,NQ, yields
U, < Quy3, since F,NQy £ Q,. By Lemmas 19.7 and 19.9 there exists
A € A for which (4, p) € C and (G, V) = G. Part (ii) applied to this
critical pair gives Zy < W,. Since b > 5, we get [U,,Z3] =1 and conse-
quently U, < Q.42 < Gy, as required.

(vi) We first prove that |U,Qp/Qp| > 2%. Suppose that |U,Qs/Qp| < 2.
Then [U, : U, NQ,] < 22 Since [U, N Qy, F,1 < Qu, [[U, N Q,, F,1| < 2Dby
Lemma 19.1(i). But then, as F, NQ, £ Q,, #n(G,,U,) < 3, contradicting
Lemma 19.1(iii). Thus we conclude that |U,Q;/Qs| > 22. Next we claim
that [U,, VN Qy]# 1. For [U,, Vs NQ,] =1 together with Lemma 19.12
and part (ii) gives U,Qs = V,Qp, contrary to |U,Qp/Qp| > 22.
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Let p+1 € 4(p) \ {o/}. By (iil) VN Q» < Q, and so F, N Q, £ Q, and
the core argument yield

[U;MVB N Qac’] < Vx’ N Vp+1-

If[U,,VsNnQyINZ, #1,then,as (p,) € Cand U, < Gy, [U,, VN Q1N
NZ,=Zy. But then Z, <Vjy, against part (ii). Hence [U,,V;N@Q.]N
N Z, =1 from which we infer that |[U,, Vs N Q]| = 2.

Since U, acts quadratically on Vz and [Vs:VzNQy]l=2,
[U,,VgNQy1| =2 and Proposition 2.5(ix) imply that |U,Q;/Qp| = 22.
From #(G,,U,) > 4 we see that [U, NQ,,F,NQy]#1 and hence that
[U, N Q. F,NQy1= Zj, so proving (vi).

LEMMA 19.14. b =5.

ProoF. Assume b >5; thus Lemmas 19.5-19.13 apply. Since
[U,NQy, Yy 11=1 for « —1 € A(o) \ {f}, Lemma 19.13(vi) implies that
(U, N Qy, Yl = Zp. Lemmas 19.7, 19.12 and 19.13(3ii) together yield that
Zg £ Vy also. Consequently [Y;,V,]=1 and so Y3 <V;NQ,. Hence,
using Lemma 19.13(vi),

Zg = U, NQu, Yp| < [U,, VN Qu] <VunVy,

contradicting Zg £ V,,. Thus b = 5.

In order to complete the proof of Theorem 19.2 we must now analyse
Case 5 when b = 5. This is the subject of the next four results; we uncover
the final contradiction in Lemma 19.18.

LemMA 19.15.  Let /. € O(Se).

(i) H; is abelian.
() If H), < Q;.2 for some 1+ 2 € V(I') with d(A, A+ 2) =2, then
H;, < Z(W)).
(i) #(G,,W,/H,) # 0; in particular n(G,, W,) > 3.

Proor. The key observation is the following

(19.15.1). Let 1 —2,2+2¢€ V(I') with d(i—2,72) =2 —=d(i, 7 +2) and
d(h—2,2+2)=41fY;, 2 <Q,i2, then[Y; 2,V 2] =1

Suppose that [Y; 2,V,.2]# 1. Then there exists A1+3¢
€A +2)\{A+1} such that [Y; 2,Z;:3]1#1. So Y, 2<G,;3 and
Y2 £Q13. For ped+3) we have Y, <V, <G, and so if
[Y,,V;:]#1 we then get Z, =[Y,,V;] <V,. But then Y, » centralizes
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Ziy2ly = Zjys. Thus [Y,,V;]=1 and so [F;;3,V;] =1. Consequently
F,.3<G;,_» and therefore [Y, o, F;,,3]<Z, » which implies that
n(G,43,F;.3) <1. This contradicts Lemma 12.5(i) and so (19.15.1)
holds.

We now establish parts (i) and (ii). If (i) is false, then there exists
A=2,A+2eV({I)withd(/ —2,1) =2 =d(A, A+ 2)andd(1 — 2,1+ 2) =4
for which [Y; 2, Y21 # 1. Thus [Y; 2, Y2l =Z) o = Z,,2. Since Vo <
<Gz, [Y,—2,V,2l=2Z; 2 whence [Y, 2,V;,2]=Z,,2, which forces
Y, 2 < Q2. Now applying (19.15.1) gives [Y; 2, V). 2] = 1, a contradiction.
Turning to part (ii), Lemma 11.1(vii) and the assumption that H; < Q)¢ for
some A+2 € V() with d(A,A+2)=2 imply that H; < Q; s for all
A+2e V() with d(4,4A+2) =2. Now (ii) follows immediately from
(19.15.1).

Finally, considering part (iii), we assume that #(G,, W,/H,;) = 0. Then
W), = H,V,,2 by Lemma 11.1(vii) and so

(Wi, W,] =[H,\Vys2, H; V2]
=[H,, V2],
using part (i). Since V;, < Z(W,), [H;,V; N V,,2] = 1 and thus
(W, W] = [H), Vise] < (ViNVi2) Yo = E(24).

For 2—2 e V({I') with d(A—2,1) =2, [Y;_2,V,,2] < Z,_» and therefore
[H;,V;.2] <V,.Consequently [W;,W,;] <Y,. But then

(Y2, Vi) <[W,, W, NZ,2
<Y;,NZ;3 =1,
whence [W, W;]=[H;,V,.2]=1 contradicting b=5! Therefore
nG;,W,/H,;) # 0 and Lemma 19.15 is proven.
LEMMA 19.16.  Let (a,0') € C. Then (VN Vyi3)Y,i3 # (Vs N V) Y,ys.

Proor. Supposing (VN V,y3)Y,i3 = V3N V,)Y,3 we show this
leads to a contradiction. From [W,, V] = 1 and the parabolic argument we
have

(19.16.1) W, < Gaus

Since H, is abelian by Lemma 19.1560) and VgNnV,3<
< V,3NV,)Y, .3 < H,, we also obtain
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(19.16.2) () Hy < Q12 < Gy; and
i) [Vp, Vel <[V, Hyl < (VN Vyi3)Yp

(19.16.3) (i) [Vp,Hyl % VN V,.3; and
(i) Yy < H,.

Suppose (i) is false. Then
[V, Hy] <V Vi < (Ve Viis)Youz = (Viuz N V) Yis.
This then yields
[Hy /Vy[Hy, Qx| V5] < Cu,vir, 0,1 (QuraQx).

Consequently V3Q. /Q. acts as the central transvection of G, 4, /Qy on
the non-central chief factor within H,/V,[H,,Qy]. (Note that
”(Gu’aHot’/Va’[Ha’; Qa’]) 7é 0 since Hac’ 7é Vaz’Fot+4-) Because [V/s’7 Vx’] S
<[Vp,Hy1 <VpNV,3 we have [V, V,]1 <V, 3NV, and thus V3Q, /Qx
does not act as a transvection on V,//Z,. Hence |[V}, V]| > 22 Note that
this implies V., £ Qg. Since #(Gy,H,/V,) #0, [V, Hy] £V, and thus
[V, Vyl# [Vg,Hyl. Thus we have |[[V4, V]| =22 and [Vj,Hy]l=
=VpNVys. So Zy £ [V, V] for otherwise we get VQy/Q. acting as
a transvection on V,/Z,. Therefore [VyNQy,V,y]=1 and so, as
ViQy/Qu| =2, V,Qp/Qp acts as a transvection on Vg /Zy. Hence Zy <
< [V/f; Va’] and thus Zoc+2[vﬁ7 fo’] < Voc+3 N fo’- Since [Vﬁ7 Voc’] < I//} N Voc+37
VyQp/Qp cannot act as a central transvection on Vg/Z; and so
Zy+2 # [Vp, Vy], whence Z, o[Vp, Vy] = V,13 NV, Thus we conclude that

[V, Hy| =V Vg =Zyi2 [V, Vi
=Vats N Vs < Va’»

against #(G,/, H, /V,/) # 0. This completes the proof of part (i).
Combining [(Vy N V,43)Ys : V5N V.3l =2 and (19.16.2)(ii) with part
(i) gives
(Vi Vars) Yy =(V N Vi) [V, Ho |

S(Vx+3 N Vo:’)Yot+3 [Vﬂ7fo/] < Ho:’-
Therefore Yy < H,/, so proving part (ii).

Employing (19.16.3)(ii) we can now investigate the action of V upon
Wy /Hy.

(19.16.4) Put W,y = W, /H,. Then [W,, : Cs (Vpl =2 with Cz (V) nor-
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malized by Q4. In particular, V3@, /@, acts as the central transvection on
the non-central chief factor within W, and |V;3Q. /Qx| = 2.

First observe that Cy, (Y,3) = W, N Cg,,,(Y,,3) is normalized by Q4
and that [W : Cyw,(Y,;3)] < 2. Also we have that Cy,(Y,3) centralizes
Vs NV,)Yyis = (V/g NV,3)Y,.3.S0 CWx/(Yoc+3) centralizes Z, . » whence,
by (19.16.1), Cw,(Y,,3) < Qx2 < Gg. Further, because Cy,(Y,;3) cen-
tralizes V3 N V,.3 we have that

[Cw, (Yors), Vi] < (V5N Viys)Yp
Using (19.16.3)(ii) we see that
(Ve Vi)Y < (Vs N Vo) Yoi3Hy < Hy,

from which we deduce that Cy, (Ya+3) < C~ (V/;) By Lemma 19.15.(iii)
Cw, (YH3) = C~ (Vﬂ) and now (19.16.4) follows

(19.16.5) V3Q./Qy acts as a transvection on V,, /Z

Assume that V;Q, /Q. does not act as a transvection on V,/Z,. So
VsQx/Qy does mot act as a transvection on V,/Y, and therefore
(Vars NV)Yy = [V, V1Y, From |[V}, V]| > 22 we have V, £ Qp; so
(o +1,p) € C for some o +1 € A(o/). By (19.16.4) VyQ. /Q, acts as a
transvection on the non-central chief factor within W, /H,, and so this
non-central chief factor is not isomorphic to V,, /Y. Applying (19.16.4) to
(o + 1, p) yields that V,,Qp/Qp acts as a transvection on the non-central
chief factor within Wy/Hg and consequently V,,Q;/Qs does not act as a
transvection on Vj3/Zg. Thus (VN V,43)Yp = [V, Vy ¥ If Wy < Gy,
then, as [[Vg, V], W] =1, using (19.16.3)(ii) we get

[Wer, V] < (V0 Vas) Y = [V, Vi ]V
<H,.
This contradicts the fact that #(G,, Wy /H,) # 0. Thus W, £ Gy. In par-
ticular, (19.16.1) implies that Zz £ [V, V,]. By (19.16.3)(ii) applied to
(o' +1,p) Y, < Hgandsoasymmetrical argument gives Z,, £ [V}, V] also.
Therefore [V, V,NQpl=1=[V,,VsN@Q,] which, as |VQ./Qx|=

=2 = |V,Qp/Qpl, gives the untenable |[Vy, V]| = 2. So we conclude that
VsQ. /Qy acts as a transvectionon V,, /Z .

Now (19.16.4) and (19.16.5) force [V, V] £ V,,3. Consequently, as
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[V, Vy1 < (Vg V,13)Yp, we deduce that
(Vﬁ N V“JrS)Y’B = (V[; N V1+3) [V/;, Va/] .

Since [Vy, Vil < Vi and [V NV, : Vi N Vs N V] < 2, (19.16.2)(i) im-
pliesthat [V, H, /V. ]| < 2.So Vj acts as atransvection on the non-central
chief factor within H, /V, and thus, by (19.16.5), this non-central chief
factor is isomorphic to V,, /Y.

From [V, V1< (Vyu3nNV,)Yy we also have (V,3NV,)Y, =
= (Vg3 N V[V, Viy ). Therefore

VirsYp = Vs [Vp, V| = VirsYa.

(Recall that H,,3/V,3 = (YsVyi3/ VMS)G’*).) Applying Proposition 2.15
t0 Hyy3/ViislH s, Qurs] gives that H.5/X,.3 = 4 for some X,,39G,43,
Hm+3 > Xoc+3 > Vz+3[Hoc+37 Qx+3]- Put Hoc+3 = Ha+3/Xot+3- Then

?/3 = ?oc’ d <ro+27 Qa+3a Qa+4> = <Go<+2a+3» Goc+3fx+4> =P,

1
and so H“_._g’ p = (2 . But, since (VpNV,3)Y, 13 =V,03NVy)Y,1s,
2\\ 1 _

(Viuis/Yois)|p = < 2) and so H,,3 and V,,3/Y,3 are not isomorphic G, 3-
chief factors, contrary to our earlier deduction. This contradiction com-
pletes the proof of Lemma 19.16.

LEmMMA 19.17. For (o, o) € Cwe have [V, V] < V3.

Proor. Assuming R :=[Vy, V] £ V,.3 we derive a contradiction.

Immediately this yields that
(19.17.1) Vi £ Qp.

Put P = <_Goc+2a+37 Goc+31+4> and Ha+3 = H1+3/Vx+3[Hoc+37 Q1+3]; recall
that ﬂ(GOH,S, Ha+3) # 0

(19.17.2) (i) P # G,.3; and
(ii) Z1+2 = Zoc+4 < Vﬁ N Va+3 N Vac’-

From B < (VpNV,3)Ys B < (VyysNV,y)Yy and R £ V, 13 we have
Va+3Y[5’ = Voc+3R = Vat+3Yoc’~
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So Yp<P. Since H,.3=(Yy G“”}, Propositions 2.6(i) and 2.9(1) give
H,.3/X,.3 = 4(some X, 3G,,3). Clearly then P # (3,3 and this together
with Lemma 19.16 yields Z,,3Y,,3 = Z,.4Y,.3. Because O*(P) centralizes
Z.,.2Y,.3 and there exists g € O?(P) such that (x+2) - g = o + 4 we have
established (19.17.2).

(19.17.3) Vj acts as a transvection upon V,,/Z, and V, acts as a trans-
vection upon Vg /Zp.

Suppose V; does not act as a transvection upon V,,/Z,,. Then V; does
not act as a transvection upon V,/Y, and hence R covers
(VyssNV,)Y, /Yy Consequently Wy NG, centralizes (V3N V,)Y, /Yy
and therefore

[Wﬁ NGy, Vzl] < (VaJrg N Vw) Y,.

From (19.17.2)(ii)) we have |R(VzNV,3nV,)|>23 and so
|[(Wﬁ N Ga/)/V/g,Vm/:” < 2. Since ﬂ(G/;,W/;) >3 by Lemma 19.15(iii) and
[Wg : W NGyl < 2, we deduce that all the non-central Gg-chief factors in
W are isomorphic. Therefore V; does not act as a transvection on each of
the non-central G, -chief factors in W,,. Now

(W NGy, V] < [Quiz, V] = E(2°).
and

R(V/} N V1+3 N Vxl) < [Qa+27 V[)’}

imply that |[((W, N Gy)/V., V]| <22 which is incompatible with V; not
acting as a transvection on each of the non-central G, -chief factors in W,.
This together with a symmetric argument establishes (19.17.3)

From (19.17.3) we have

(19.17.4) VsQu/Qu
(19.17.5) Zy=Zy.

=2=|V,Qp/Qp| and |R| < 2°.

Assume that Zy # Z.,. Then at least one of Zy £ R and Z, £ R holds.
For otherwise, by (19.17.4), we get R =Z3Z,y < Z,12 = Z,4, against
R £ V,.3. So without loss of generality [V N Q. , V] =1; as a result we
may suppose « is chosen so as (Gus,Vy) = Gp. If F,Q. = VsQy, then,
using (19.17.2)(ii)

[F,,Vy] <RZy <RZ,.4 <Vj,
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contradicting 7(Gg, Hg/Vy) # 0. So F,Q. # VsQy. Hence [V, N Qp, V] =
= Zyg else, as I, < Gy, we get [F,, V,, N Qg] = 1 which, by (19.17.4), gives
F,Qy =VQ,. By (19.17.1) we must have |R|= 22 which, as Z, £ R,
contradicts (19.17.3). Thus Zg = Z,,.

(19.17.6) |F,Qy/Qy| > 2% and (so) [V, N Qp, Vy] # 1.

If (19.17.6) were false, then F,Q, =Z,Qy = VpQ,. Arguing as
in (19.17.5) and using the fact that Z; = Z,» we may deduce a contradiction
to (G, Hg/Vp) # 0.

Note that [VyNQ.,,Vy]#1 by (19.17.1) and (19.17.6). So, as
Vu,Wyl=1 VpnW,ysVsNQy,, whence |VzNnW,|<2' Thus
[V, W, N Ggl| < 2* and consequently |(W, N Gp)Qs/Qp| < 23. Therefore
Wy : W, NQ,] <2° Using (19.17.5) we deduce that [W, NQ,,F,] <
< Z, and now (19.17.6) forces n(G,, W,) < 2. This is the desired contra-
diction which concludes the proof of Lemma 19.17.

LEmma 19.18. A contradiction

Proor. Let (a,0/) € C, and put B = [V, V1.
19.181) HpN Vs = (V3N Viis) Vs,

If (19.18.1) is false, then, as Q.2 normalizes Hg N V,,3,
Hy N Vi3 > [Vias, Quez).

Thus, since Hp is abelian by Lemma 19.15.(i), either H3Q,+3/Q,+s acts as
the central transvection on V,,3/Z,,3 or Hy < Q,3. If the former possi-
bility holds, then there exists §—2 with d(f,f —2) =2 such that
Yy 2Q.43/Qu+3 acts as the central transvection on V,,3/Z,.s; also
(f— 3,0+ 3) € Cfor some § — 3 € A(f — 2). But then, using Lemma 19.17,

(Yp2,Voys] < Vo, Vays] S VpNViys,

a contradiction. On the other hand Hy < Q.. 3 yields H s < Z(Wp) by Lem-
ma 19.15(ii) and hence WyQ,3/Q.+3 acts as the central transvection on
Vois/Zyyg (recall that Wy £ Q,43 by Lemma 11.1(vii), as b =5). So we
obtain (f —3,a + 3) € C with Vp_2Q,,3/Q,43 acting as the central trans-
vection on V,,3/Z,.3 and again Lemma 19.17 gives a contradiction.
Therefore (19.18.1) holds.
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By Lemmas 19.16 and 19.17, since R £ Z, 4,
(19.18.2) Z,4 # VN V3NV, = RZ,.5 = E(2%).
(19.183) Zy, £ Hy

Suppose that Z, <Hg holds. Then (19.18.1) forces Z, <
< (VpNV,43)Y,43 Hence, by (19.18.2),

VarsNVy =ZyuR =ZyZy 3R < (Vg N V,i3)Yass,

against Lemma 19.16. Thus Z,» £ Hp.
(19.184) V., £ Q.

Assume that V; < Q. Then R = Z; and so V;Q. /Q, acts as a trans-
vection on V, /Z,. Because [Y, 1,Vy NQyl=1for o — 1 € A(o) \ {f} we
see that F',Qy = Z,Qv = V3Q,. Since Z,, £ Hy by (19.18.3), this implies
that [F,,V,]=14,,Vy,] < Z,, contradicting n(G,,F,/Z,) =1, and so we
have (19.18.4).

In view of (19.18.4) we have symmetry and thus
(19.185) Zpz £ Hy.
(19.18.6) |V.Qp/Qs| > 2% < |V4Qx/Qx| and |R| > 22.

Since [V N Qy, Vy] = 1 by (19.18.3), we may choose o s0 as (G, V) =
= Gy. Also, by (19.185), [V, NQp, V] =1 and thus [F,,V, NQpl = 1. If
[V : Ve NQpl=2,thenwe get F',Q., = Z,Q. = VQy whence, by (19.18.3),
[F,,V,]= R, which gives ﬂ(G/},Hﬁ/V/}) =0.Thus [V, : V, N Q/;] > 22 and
by symmetry (19.18.6) follows.

(19.18.7) [Hﬁ7vx+3] =1and H/; < Gy.

We claim that Hp < Q.43 for Hp £ Q.43 implies there exists
(ﬁ —3,0+ 3) € C with Z[;,z = [Y/;,z, Va+3] < sz+3 which is ruled out
by (19.18.5) applied to (f—3,a+3). Hence Hy < Z(Wy) by Lem-
ma 19.15(ii) which then yields (19.18.7).

We are now in a position to deduce the desired contradiction.
From (19.18.7) [Hg, V] < (Vyy3 N V)Y, and then |R| > 22 and Z, £ Hyg
force |[H;/Vp, V]| < 2. Therefore, by (19.18.6), n(Gg, Hp/Vs) = 0 and we
have our contradiction.

Now Theorem 9.2 is a consequence of Lemma 19.18.
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20. The main Theorem.

We now survey the route that we have traversed in these seven parts
and check that we have indeed reached our destination. In Theo-
rem 4.12(d), 5.1 and 7.7 the non-commuting case was handled giving the
conclusion b € {1,2}. Proposition 9.1 considers the commuting case when
o € O(Sg) (where (o, o) € C) and yields that b € {1,3}. Theorem 12.1 and
Lemma 12.6 produce a five case subdivision in the remaining commuting
case. Each of these possibilities are analysed in Theorems 13.1, 13.11, 14.1,
18.1 and 19.2, the end result being that b € {3,5}. So the MAIN THEOREM is
proven - and we've arrived, finally!
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