On a complex collar neighbourhood theorem

C. Denson Hill (*) – Mauro Nacinovich (**)

Abstract – In this note we review and add an extra precision to the proof of our collar neighbourhood theorem for strictly pseudoconvex complex manifolds with boundary.

MATHEMATICS SUBJECT CLASSIFICATION (2020) - Primary 57T15; Secondary 14M15.

Keywords – CR-manifold, Levi form.

The purpose of this note is to review the complex collar neighbourhood theorem of our paper [6] and add an extra precision to its proof. This is motivated by the importance of the subject, which has attracted the attention of several authors, (see e.g. [2–4]). The two main ingredients are a local *extension* (or *realizability*) result (see [5]) and an ingenious use of the Zorn lemma which, in the non-compact case, is a substitute for the *bumping* technique of [1].

Our result is the following.

Theorem 1. Let Ω be a paracompact smooth manifold of real dimension 2n, D an open domain in Ω with a smooth boundary M = bD and $J_0: TM \to TM$ a smooth almost complex structure on Ω , with the following properties:

- J_0 is formally integrable on $\bar{D} = D \cup M$;
- M = bD is strictly pseudoconvex for J_0 .

Then we can find an open neighbourhood ω of \overline{D} in Ω , and an integrable almost complex structure $J: T\omega \to T\omega$ such that $J|_D = J_0|_D$.

^(*) *Indirizzo dell'A*.: Department of Mathematics, Stony Brook University, Stony Brook, NY 11794, USA; dhill@math.stonybrook.edu

^(**) *Indirizzo dell'A*.: Dipartimento di Matematica, Università di Roma "Tor Vergata", Via della Ricerca Scientifica, 00133 Roma, Italy; nacinovi@mat.uniroma2.it

The proof consists of several steps.

- (1) We consider the family \mathfrak{X} consisting of pairs (X, J), where X is an open set with $D \subseteq X \subseteq \Omega$ and $J: TX \to TX$ is an integrable almost-complex structure on X with $J|_D = J_0|_D$.
- (2) We take the quotient $\tilde{\mathfrak{X}} = \mathfrak{X}/_{\sim}$ by setting

$$(X_1,J_1)\sim (X_2,J_2)\Leftrightarrow \begin{cases} X_1\cap M=X_2\cap M,\\ \exists\, G^{\mathrm{open}} \text{ with } X_1\cap M\subset G\subseteq X_1\cap X_2 \text{ and } J_1|_G=J_2|_G. \end{cases}$$

Denote by [X, J] the equivalence class of $(X, J) \in \mathfrak{X}$.

(3) On $\widetilde{\mathfrak{X}}$ we introduce the order relation " \prec " by setting

$$[X_1, J_1] \prec [X_2, J_2] \Leftrightarrow \begin{cases} X_1 \cap M \subsetneq X_2 \cap M, \\ \exists G^{\text{open}} \text{ with } X_1 \cap M \subset G \subseteq X_1 \cap X_2 \text{ and } J_1|_G = J_2|_G. \end{cases}$$

- (4) We prove that every chain in $(\widetilde{\mathfrak{X}}, \prec)$ has an upper bound.
- (5) We prove that a maximal element of $(\widetilde{\mathfrak{X}}, \prec)$ is of the form [X, J] for an $(X, J) \in \mathfrak{X}$ with $M \subset X$.

While the other points are explained in full detail in [6], the proof of the fifth was somehow sketchy. For this reason we provide in the lemma below a more detailed proof of this item. Lemma 2 replaces and gives more precision to the construction of \tilde{D} on [6, p. 26].

Lemma 2. Let (\widetilde{D}, J) be the pair consisting of an open subset \widetilde{D} of Ω and an integrable complex structure J on \widetilde{D} . Then we can find an open subset B of Ω with the following properties:

- $D \subseteq B \subseteq \widetilde{D}$;
- $B \cap M = \tilde{D} \cap M$;
- the closure of B in Ω , with the restriction of J, is a complex manifold with a strictly pseudoconvex boundary.

PROOF. Fix a smooth retraction $\pi: \Omega \setminus D \to M$ and take a locally finite open covering by relatively compact coordinate patches $\mathcal{U} = \{U_i\}_{i \in I}$ of M in Ω such that $\pi(U_i \setminus D) \subset U_i$ for all $i \in I$. On each U_i we have smooth real coordinates x_i^1, \ldots, x_i^{2n} , in which the complex structure J is represented by a matrix J_i having real-valued

smooth coefficients. For a multiindex α we denote by D_i^{α} the higher-order derivative $(\partial/\partial x_i^1)^{\alpha_1}\cdots(\partial/\partial x_i^{2n})^{\alpha_{2n}}$. Fix a Riemannian distance "dist" on Ω and let

$$\delta(q) = \operatorname{dist}(q, M \setminus \tilde{D}).$$

Since $M \setminus \widetilde{D}$ is closed, this is a continuous function on Ω . Next we define an open subset X of Ω by fixing a smooth partition of unity $\{\phi_i\}_{i \in I}$ subordinated to \mathcal{U} , a sequence $\{\chi_{\nu}\}$ of smooth real-valued functions with

$$\begin{cases} \chi_{\nu}(q) = 1 & \text{if } \delta(q) < e^{-\nu}, \\ \chi_{\nu}(q) = 0 & \text{if } \delta(q) > 2e^{-\nu}, \end{cases}$$

and setting, for $U = \bigcup_i U_i$ [the expression below makes sense as the matrix J_i is defined on a neighbourhood of the support of ϕ_i and the sum is locally finite in $(\tilde{D} \cap U) \setminus D$],

$$X = D \cup \{ q \in (\widetilde{D} \cap U) \setminus D \mid \sum_{i,\alpha} \sup |\chi_{|\alpha|}(q)\phi_i(q)(D_i^{\alpha}J_i(q) - D_i^{\alpha}J_i(\pi(q)))| < \delta(q) \}.$$

Clearly, X satisfies the first two conditions on B set in the statement of the lemma. To complete the proof, we fix a locally finite open covering $\mathcal{V} = \{V_k\}_{k \in K}$ of $M \setminus \widetilde{D}$ by relatively compact open subsets and a positive partition of unity $\{\psi_k\}_{k \in K}$ subordinated to \mathcal{V} . If $D = \{\rho < 0\}$ for a real-valued smooth function on Ω with $d\rho(q) \neq 0$ on M, then we can choose a sequence of positive $\{\varepsilon_k\}$ such that, for

$$\rho_B(q) = \rho(q) - \sum\nolimits_k \varepsilon_k \psi_k(q) \quad \text{and} \quad B = \{\rho_B < 0\},$$

we have that B is an open subset of Ω with a smooth boundary in Ω ,

$$D \subseteq B \subseteq X$$
,

and the pair (B, J) defines a complex manifold with strictly pseudoconvex boundary ∂B in Ω .

References

- A. Andreotti H. Grauert, Théorème de finitude pour la cohomologie des espaces complexes. Bull. Soc. Math. France 90 (1962), 193–259. Zbl 0106.05501 MR 150342
- [2] D. Catlin, Sufficient conditions for the extension of CR structures. J. Geom. Anal. 4 (1994), no. 4, 467–538. Zbl 0841.32012 MR 1305993
- [3] S. Cho, Extension of complex structures on weakly pseudoconvex compact complex manifolds with boundary. *Math. Z.* **211** (1992), no. 1, 105–119. Zbl 0759.32012 MR 1179783
- [4] S. Cho, Extension of CR structures on three-dimensional pseudoconvex CR manifolds. Nagoya Math. J. **152** (1998), 97–129. Zbl 0934.32026 MR 1659381

- [5] N. Hanges H. Jacobowitz, A remark on almost complex structures with boundary. *Amer. J. Math.* **111** (1989), no. 1, 53–64. Zbl 0847.32016 MR 980299
- [6] C. D. HILL M. NACINOVICH, A collar neighborhood theorem for a complex manifold. *Rend. Sem. Mat. Univ. Padova* **91** (1994), 24–30. Zbl 0815.53047 MR 1289628

Manoscritto pervenuto in redazione il 21 marzo 2022.