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The Problem of Invariance
for Covariant Hamiltonians (¥).

J. MuN0z MASQUE (**) - M. EUGENIA ROSADO MARIA (**%)

ABSTRACT - The problem of invariance for the covariant Hamiltonians attached to
first-order Lagrangian densities on the bundle of connections of a principal
bundle and to first- and second-order Lagrangian densities on linear frame
bundles, is solved.

1. Position of the problem.

In classical Mechanics, the Hamiltonian function attached to the La-
grangian density 4 = L(t, ¢*, ¢")dt on J(R, Q) ~ R x TQ is given by,

H=§—-L
If @, denotes the Poincaré-Cartan form attached to A, then
1) 6, = pidg' — Hdt
= o(L)"x — Hdt,

where o(L):R xTQ — R x T*¢) is the Legendre transformation,
pi = 0L /0§, and « is the canonical 1-form on T*Q.

As it was early observed in [9], the Hamiltonian function is not an in-
variant concept when an arbitrary fibred manifold ¢: £ — R is considered,
generalizing the notion of «absolute time» (e.g., see [4, 15, 13] for a general

(*) Supported by Ministerio of Ciencia y Tecnologia of Spain, under grant
#MTM2005-00173.

(**) Indirizzo dell’A.: Instituto de Fisica Aplicada, CSIC C/ Serrano 144,
28006-Madrid, Spain

E-mail: jaime@iec.csic.es

(***) Department of Applied Mathematics «G. Sansone», University of
Florence, Via S. Marta 3, I-50139 Florence, Italy

E-mail: rosado@dma.unifi.it



2 J. Mufnoz Masqué - M. Eugenia Rosado Maria

development from this point of view), instead of the trivial direct product
bundle R x @ — R. In this case, an Ehresmann connection is needed in
order to lift the vector field 9/0t from R to E. Then, the Hamiltonian
function is defined by contracting @, with the horizontal lift of 9/0%.

In the field theory — where no distinguished vector field exists on the
ground manifold — the need of an Ehresmann connection is even greater, in
order to attach a covariant Hamiltonian to each Lagrangian density; for
example, see [13, 4.1], [14], and the definitions below.

Let p: M — N be a fibred manifold over a connected manifold N, with
n = dim N, dim M = m + n, oriented by a volume form v. Throughout the
paper, Latin (resp. Greek) indices run from 1 to n (resp. m).

We consider only coordinate systems (') on N adapted to v, that is

(2) v=dxl A Ada”, vi:dacl/\---/\d/\xi/\--~/\dac”’.

Let y be an Ehresmann (or non-linear) connection on p, i.e., y is a differ-
ential 1-form on M with values in the vertical bundle V(p), such that
yX) =X, VX € V(p) (cf. [13, 2.2]). According to [14], the covariant Ha-
miltonian A’ associated to a Lagrangian density on J'M, A= Luv,
L € C*(J'M), with respect to y is the Lagrangian density defined by

(3) A = ((plo)*y - &1) Aawy — A,

where, p!%: J1M — M denotes the natural projection, 8" is the V(p)-valued
1-form on J'M governing the contact structure on the jet bundle, which is
given on a fibred coordinate system (x', y*), by 4" = (dy* — y2da’) @ 9/ 9y
(also see Section 3 below), and w, is the Legendre form attached to 4, i.e.,
the V*(p)-valued p'-horizontal (n — 1)-form on J'M given by

OL
oy

1

wg=(—1)""

V; ® dyav

where (', y*; y?) is the coordinate system induced from (', y*) on the 1-jet
bundle (see Section 2.1 below for the details). Locally, we have

(4) A= ((yi-‘ +y) 3;2 - L)v,

From (3) we obtain the decomposition of the Poincaré-Cartan form ana-
logous to (1), i.e.,

(5) @A:'ﬂl/\COA+A
= (pm)*)/ Nawy— A,
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An automorphism of the fibred manifold p: M — N is a diffeomorphism
&: M — M for which a diffeomorphism exists on the ground manifold
¢: N — N such that p o @ = ¢ o p. The set of such automorphisms is de-
noted by Aut (p) and its «Lie algebra» is the space Aut(p) C X(M) of p-
projectable vector fields on M, or equivalently, a vector field belongs to
Aut (p) if and only if each transformation &, of its flow, belongs to Aut (p).

Given a subgroup G C Aut (p), a Lagrangian density A is said to be G-
invariant if

(6) (@)Y A=4, VOeg,

where @W:J'M — J'M denotes the 1-jet prolongation of . In-
finitesimally, the equation (6) can be reformulated as follows:

(7 LxoA=0, VX € Lie(9).
When a group G of transformations of M is given, a natural question arises:

(Q) Does a class of connections y exist such that A’ is G-invariant for
every G-invariant Lagrangian density 4?7

A natural answer to this question is to assume that the connection y, itself,
is G-invariant. In fact, for every X € Aut (p) we can define the Lie derivative
of ywith respect to X as follows (see [6, § XI]): Lxy(Y) =[X, y(Y)] — y((X, Y]),
for every Y € X(M), and the infinitesimal G-invariance of y means Lxy = 0,
VX € Lie (G). Then, the following result holds:

ProposiTION 1.1.  If y is infinitesimally G-invariant, then y solves
the question (Q), e, LywAd =0 VX € Lie(Q), implies LynA" =0,
vX € Lie ().

ProoF. If X =u'0/0x! +v*0/0y*, u' € C*(N), v* € C*(M), is the
local expression of X € Lie (G), then from the general formulas (11), (12) in
Section 2.2 below, we obtain in particular,

.0 0 0 on* on* ow
W g L o Y - DY Skl
X _uaxﬂ—v 6y“+v’8y§" vl_aaci+y18y/)’ Y, Tk

Furthermore, if y = (dy”* + y?dx") ® 9/9y*, 7+ € C*(M) is the local ex-
pression of the Ehresmann connection y (see the formula (13) in Section 3
below) we obtain Lyy = C*(X)dx' ® 0/9y*, where

ot
(8) CHOO = XGD +9F = G + ).
Yj
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We remark on the fact that Lxy(Y) = 0if Y is a p-vertical vector field on
M. Hence Lyy is p-horizontal, i.e., it defines a section of the vector bundle
p*T*N @ V(p).

Then, the formula (4) yields,

, OL
) Lo’ ={ (X0 +07) 5
oy’

OL AL oul
o o[ x® (= it )
Tt %)( (@%) o aoch> }”

As A is G-invariant, XL = —Lou" /0x". Hence

9 9L ou!

<6‘_y§‘ oX(D)L — = ot

Moreover, by computing the bracket [0/0y?, X V], from the previous for-
mula we obtain
X0 (8L> OL ou" ou' OL 0vF OL

82/;‘

and substituting the right hand side of this equation for the left hand side
into the equation (9) and taking the formula (8) into account, we finally
obtain Ly A" = C*(X)(OL/0y?) v O

Unfortunately, the infinitesimal G-invariance of y is a too restrictive
condition to assure the existence of Ehresmann connections solving the
question (Q). In fact, in general there is no solution to the system of
equations C*(X) = 0, VX € Lie (G), where C}(X) is given by the formula (8),
as proved in the next proposition. First, some preliminaries are required.

Every p-projectable vector field X € X(M) vanishing at a point y € M
induces a linear map Ay ,:V,(p) — V,(p) by setting Ay ,(v) =[Y,X],,
Vv € V,(p), where Y is any p-vertical vector field on M such that v =Y.

ProPOSITION 1.2, Ifforevery y € M, there exists a p-projectable vector
field X € Lie (G) such that X, =0, Ax, =0, jglb.X’ =0, where x = p(y) and
X' is the projection of X onto N, but jzllX =+ 0, then there is no infinitesi-
mally G-invariant Ehresmann connection on p: M — N.

Proor. With the same notations as in the proof of Proposition 1.1, the
assumption is equivalent to the following: ul(e) =0, (O / ox9)(x) = 0,
v (y) = 0, (Ov*/oyP)(y) = 0, for all indices «, f, 1,j, but (9v*/dx')(y) # 0 for
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some indices a, ¢. Then, from the equation (8) for these indices, we obtain
C*X)(y) = (0v*/ 0x')(y), thus leading us to a contradiction. O

Fortunately, in the cases we shall deal with below, the vertical bundle
V(p) decomposes as V(p) = p*T*N @ W for a certain vector bundle W, so
that Lyy can be viewed as a section of the bundle p*(T*N @ T*N) ® W, and
the invariance of A" is assured by the assumption of the vanishing of the
antisymmetric part of the tensor field Lxy for every X. In these cases,
there are plenty of Ehresmann connections answering the question (Q)
above. Specifically, we deal with the following three cases: 1) First-order
Lagrangian densities on the bundle of connections of a principal bundle; 2)
First-order Lagrangian densities on the bundle of linear frames of a
smooth manifold; and 3) The class of second-order Lagrangian densities on
the bundle of linear frames of a smooth manifold, which admit a second-
order Hamiltonian formalism, i.e., second-order Lagrangian densities
whose corresponding covariant Hamiltonian is also of second order. In the
first and third cases, the question (Q) imposes an algebraic condition on the
antisymmetric part of the horizontal part of the Ehresmann connection
under consideration, but in the second case the solution to (Q) leads one to
a true system of partial differential equations. This asymmetry should
deserve a subsequent analysis.

Finally, a summary of the contents of the present work is as follows: in
Section 2, the notations and preliminary results on jet bundles, contact
transformations and Lagrangian densities, which are used below, are
introduced. In Section 3, the notion af an Ehresmann connection of ar-
bitrary order on a fibred manifold p: M — N, is reviewed, several geo-
metric properties of these non-linear connections are proved, and the
action of the group Aut(p) on the space of Ehresmann connections is
defined. Section 4 is devoted to state the basics of diffeomorphism in-
variance on the bundle of linear frames n: FN — N of a smooth manifold
N. Namely, we first reduce the problem of determining Diff N-invariant
Lagrangian densities on J"(FN) to that of Diff N-invariant functions and
then, we explain why Diff N-invariance can be reduced to consider only
the infinitesimal notion of invariance; i.e., X(N)-invariance. Finally, bases
(previously obtained) for X(N)-invariant functions for the cases » = 1,2,
are introduced. In Section 5 the invariance problem for first-order cov-
ariant Hamiltonians, is considered in two particular cases: First, for the
bundle of connections on an arbitrary principal bundle under the gauge
group of the bundle; second, for the bundles of linear frames under the
group of diffeomorphism on the ground manifold. In both cases, a geo-
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metric characterization of Ehresmann connections providing invariant
covariant Hamiltonians for every invariant Lagrangian, is given. In
Section 6 a class of second-order Lagrangian densities admitting a sec-
ond-order covariant Hamiltonian, is introduced. In Section 7, the in-
variance problem for second-order Lagrangian densities on linear frame
bundles belonging to the class defined in Section 6, is solved for second-
order Ehresmann connections induced by a 2-jet field, the explicit form of
which is given in Theorem 7.4.

2. Preliminaries and notations.

2.1 — Jet bundle notations.

For every fibred manifold p: M — N there is a homomorphism
Aut (p) — Diff N, @ — ¢, whose kernel is the subgroup Aut“(p) of fibred
(or vertical) diffeomorphisms inducing the identity over N. A system of
coordinates (¢, ) on an open subset U C M is said to be a fibred coordinate
system for the submersion p if (+) is a coordinate system for N on p(U). The
vertical bundle of p is the sub-bundle V(p) = {X € TM : p.X = 0}. Let
M, = p~!(x) be the fibre over x. We have T,M,) =V,M),Vy € M,;i.e.,the
vertical tangent vectors at y are the vectors tangent to the fibre passing
through y. If &: M — M’ is a fibred map, then @.: TM — TM’ maps V(p)
into V(p'). Let p*:J*M — N be the k-jet bundle of local sections of
p:M — N, with natural projections p*:JEM — JIM, p*(js) = jls, for
k > 1, j*s denoting the k-jet at x of a section s of p defined on a neigh-
bourhood of x € N. If I = (i1,...,1,) € N" is a multi-index of order
II| =iy + ...+ i, then we set dIf /ox! = dIf /(@) ... (D™, for every
f € C*(R"). Multi-indices are added and subtracted componentwise
and I <J means i, <j, for 1<h<n. We set I'=1!---7,! and

1

whose components are (i), = 52, and we set (@) = @)+ (), (k)=
= (@) + (j) + (k), etc. Hence the symbol (¢;...1,) thus defined depends
symmetrically on the indices i,...,%,. The identity 55% = (5}‘5}; +
+5Z5} — 015]d) for Kronecker’s deltas of multi-indices, will be used.

A fibred coordinate system (x',%*) for p on an open subset U C M,
induces a coordinate system (.oci,y‘f,"), 0<|I| <7 on (p’"o)’l(U) =J"U;i.e.,
yi(jrs) = (OMl(y* o 8)/0u! )(x), with y% = y*. For first-order derivatives we
simply write y7 instead of y{;. Every fibred map &: M — M’ whose induced

<J> =J!/(J — D! whenever I <J. We denote by (i) the multi-index
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map on the base manifolds ¢: N — N’ is a diffeomorphism, induces a map
7 J"M — J"M' by setting &7 (jrs) = jl (Do sod ).

Below, we make repeatedly use of the affine-bundle structure of the
projection p""~1:J"M — J 1M modelled over the vector bundle

@' (P STN@V(P) =STN @1y Vp),

which is expressed on a fibred coordinate system (', y*) as follows. We set

@) = dxhyo " o) o...ode o . o da for every multi-index
I=(y,...,10), Where the symbol © stands for the symmetric product. If

br = ‘;: 1! Ada)y, @ D)0y, w0 = Plyo)

is an element in S"7T,; N ® V,(p), then the rjet ji s =t, + 7, s is de-
termined by the equations

.7;0 ls/ _.7000 ’
G os' 3”0 8)
TGS ) = i+ PW 2D 11 =

2.2 — Contact forms and contact transformations.

Let p: M — N be a fibred manifold. A differential 1-form J on J"M is
said to be a contact form if (5”s)*d = 0 for every local section s of p. The set
of contact forms is a sheaf of C%,,-modules, denoted by Cj,, which is locally
spanned by the forms

For every X € X(N), Dx: C*(J"M) — C>(J"*'M) denotes the total deri-
vative with respect to X, which is defined by Dxf(j71s) = X,(f 0 j"s) for
every f € C=(J"*1M). The operator Dy is the only derivation on J>M that
satisfies: 1) Dy projects onto X, and 2) J;(Dx) = 0, for all I, o.. In particular,
we denote the total derivative with respect to the coordinate x' by

Fra Z Yivi) 5y
|1\ 0 8?“’1

WesetD! =Djo...oDjo---0D, 0./ oD,. Recall that [D;,D;] = 0.
The horlzontahzatlon of a— poss1bly Vector valued—covariant tensor field
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7 of degree q on J"M is the p"*1-horizontal covariant tensor field hor(z) of
degree g on J™'M defined by hor(t)(j71s) = (p"+1)*((j"s)* )(x). The total
differential of a p”-horizontal form w; on J"M is the p"*!-horizontal on
J'1M defined as follows: (D)o = (p"t1)* (d((jvs)*wk))x. Hence, we
have D (fdx A - -+ A dait) = (le)doc Adxt A - Ndate, V€ COWJ"M).
If @;: M — M is the flow of a p-projectable vector field X € X(M), then
(D))" J"M — J"M is the flow of a vector field on J"M, denoted by X and
called the infinitesimal contact transformation of order r associated to X. The
map X — X is an injection of Lie algebras. If X = u'd/0x" + v*0/0y",
where u! € C*(N) and v* € C®(M), then (e.g., see [16, 19, 21]) we have

(11) X0 =y —+ Z Lirw Vi =%,
171=0
y . I\ o7yt
(12) V¢ = DIy — Z(J) Bl T YT+ 1< <.
J<I

2.3 — Lagrangian densities.

A Lagrangian density of order » on p: M — N is a p"-horizontal dif-
ferential n-form A on p":J"M — N. If N is orientable and oriented by a
volume form v, then every Lagrangian density can be written in a unique
way as A = L(p")*v, where L € C*(J"M). Usually, we shall simply write
A = Lv. In this case, we confine ourselves to consider coordinate systems
(¢") on N adapted to v, as shown in (2).

3. Ehresmann connections.

An Ehresmann (or non-linear) connection of order » on p: M — N is a
differential 1-form 7" on J"~!M with values in the vertical sub-bundle
V(p"1) such that y"(X) = X for every X € V(p"!) (e.g., see [14, 20, 21]).
Once a connection y" is given, we have a decomposition of vector bundles
TWJIM) =V(@"') @kery", where kery” is called the horizontal sub-
bundle determined by y". In the coordinate system on J" 1M induced from
a fibred coordinate system (x/, y*) for p, an Ehresmann connection can be
written as

r—1

B
(13) Y= (dyf + jda’ L oy ¥ € CWJ" I M).
[1]=0
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There is a bijective correspondence between the r-th order connections "
on p:M — N and the linear sections 7":(p"1)'TN — T(J""'M) of the
homomorphism (p"1),: T(J "IM) — (p" )TN given by the following
formula: X = y"(X) + 7" (57 ts, (p" 1), X), VX € Ty M.

The sections of the affine bundle p" ! J’”M — J""IM are usually
called -th order jet fields (e.g., see [21, §4.6, §5.4]). If o: J" M — J"M is
such afield and §" = 3/, | 9] ® 0/0yj is the structure form on J"M (see
the formula (10) and [16]), theny! =o *9" is a connection of order r. As an
affine bundle admits global sections (e.g., see [11, I, Theorem 5.7]), this
proves that every fibred manifold admits connections of any order. Fur-
thermore, the map ¢ )" = ¢*¢" is an injection from jet fields into con-
nections. In fact, with the same notations as in (13), we have

7= Yy 0<|I| <r—2,
(14) 7] ;(])
V5= —Yli(H° 0 || =r—1.

For r =1 the correspondence ¢+ yL = o8 is bijective. Hence & is the
«universal» connection form. Every »-th order jet field o:J" M — J'M
can be viewed as a first-order jet field g o g: J" 1M — J1(J"1M) along the
projection p"~1:J""'M — N, where ¢:J"M — J'(J""'M) is the natural
embedding. The 7-th order connection ¢*" coincides with the first-order
connection induced by ¢ o 7; i.e., *y, = (9 0 0) I}, 1.

ProrosiTION 3.1.  Every r-order connection y" on p: M — N induces
an affine map of affine bundles over J" 1M,
hy: "M — Hom((p" ")*TN, V("))

given by hy(jis) = ((77 1)y ) whose associated linear mapping is the
mclusion STT*N Ry V() T TN @jo1y V(' 1), Moreover, ify" = o* "
for a jet field o:J" 1M — J’M then imh, C S"T*N ® 1y V(p) and we
have hy(5s) + a(j~1s) =

Proor. From the formula (13) and the definition of /,- we obtain

e (75) =

r—1
a\l|+1(ya os) - ) b
2 (W( SR S)> e (ay%>j;13’

17|=0

thus proving that £, is an affine map whose associated linear map is the
injection of S"T*N ® 13y V(p) into T*N ®j-13; V(J""IM). Moreover, if
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y" = ¢*d", then from the formulas (14) we obtain

rr— a
hy = Z (Z/H(j) Yiooop” l)dx] ® oy
[I|=r-1

and the result follows. O

The action of the group Aut (p) on the space of r-th order connections is
defined by the formula @ -y" = (@), 090 ((P’"*l)gl, Vo € Aut(p). As
@ 1. J 1M — J"'M is a morphism of fibred manifolds over N, (¢ 1),
transforms the vertical sub-bundle V(p"1!) into itself; hence the previous
definition makes sense.

4, Diffeomorphism invariance on linear frame bundles.

Let n: FN — N be the bundle of linear frames of N. A Lagrangian
density 4 defined on J"(F'N) is said to be Diff N-invariant— or even, in-
variant under diffeomorphisms (resp. X(N)-invariant) if the following
equatlon holds: (qS A=A, V¢ € Diff N (resp. Lg,4 =0, VX € X(N)),
where ¢ (resp. X € X(FN)) is the natural lift of ¢ (resp. X) to FN ([11, VI,
§1, §21), and X denotes the 7-th jet prolongation of X, as introduced in
Section 2.2. We can write

(15) A=LO"A---NO",

where 0= (0',...,0" is the canonical 1-form on FN ([11, III, §2,
p-118]), and L € C*°(J"(FN)) is called the «canonical Lagrangian»
associated to A. A density A is Diff N-invariant (resp. X(N)-invariant)
if and only if £o@" = L, V¢ € Diff N (resp. XL = 0, VX € X(N)), as 0
is Diff N-invariant and hence, X(V)-invariant. The problem of de-
termining invariant Lagrangian densities is thus reduced to that of
determining invariant Lagrangian functions. Moreover, Diff N-in-
variance implies X(N)-invariance and both notions are equivalent ex-
cept when N is orientable and admits an orientation-reversing dif-
feomorphism onto itself (see [18, §2.1]). Because of this, we consider
only X(N)-invariance.

Each coordinate system (&%) on an open domain U C N induces a co-
ordinate system (x’, x}) on FU = n~1(U) by setting

(16) w=(0/0),,...,0/0"),) - (@w), @=nw),
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alld aI.SO, aCCOI‘dlng tO Sectl()ll 2-1 a Coor dlnate S}StEIn (xz’x; x‘; (/{31 k ))
’ ? s e Kg ’

@y ) (Tn8) = (07 0 8) /0 ... ') ().

From the local expression of the canonical 1-form
(17) 0 =yidel, ()= @),

we deduce that the relation between L and £ in the Lagrangian density

A=Lv=LO0"N---NO"is L = Ldet (y§), or equivalently, £ = L det (x}).
Every X(N)-invariant Lagrangian on J'(FN) can be written as a dif-

ferentiable function of the following $7*(n — 1) Lagrangians:

(18) ab = (xgﬂci,d - xgxgﬁd)?/ga a<b,

and every X(N)-invariant second-order Lagrangian on JZ(FN) can be

written as a differentiable function of the

%Mm-n+%#m_nm+nzéﬁm_n@n+a

Lagrangians: £, a < b; Ly, 4, @ < b,a < d, where L7, ; is given as follows:

c R c
(19) ab,d = w3Dy(Lgy)
71~(ue_ue)c+r(ue e )c
=g xamwb,u xb,rwa,u Yo T%g xaxb.(m) Ly xa,(m) Ye
R Upal o pn C,q
xdxq,r (%‘axb,u Ly xa,u)ypye .

The geometric meaning of such functions is the following. If s: U — FN is
the section induced by a linear frame (Xi,...,X,) on an open neighbour-
hood of a point « € N, we denote by V* the only linear connection on FU
that parallelizes each vector field X;; ie., (V¥)xX; =0, for 7,7 =1,...,n.
Then, we have

20) L5, (jrs) = —af (Torg: (Xa, Xp)) (@),
Loy 4(28) = —" (V*Torys ) (Xg, Xa, Xp) (),

where (o', . .., »") denotes the dual coframe. Moreover, the inequality a < d
is due to the constraints imposed by Bianchi’s first identity for the linear
connection V*; namely, L£y,L5; + LigCh,+Lh Ly =Ly 0+ Loy +Liya-
For the details of these facts, see [8, 18]. '
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5. First-order covariant Hamiltonians.
5.1 — Covariant Hamiltonians on the bundle of connections.

First of all, we introduce some basic notations. For further details we
refer the reader to [3, 6]. Let n: P — N be a principal G-bundle. Connections
on P are identified to the splittings of the sequence of vector bundles over N
(cfr. [1, 5, 7, 12]), 0 — ad P — TgP =5 TN — 0, where ad P — N is the
adjoint bundle, i.e., the bundle associated withP and the adjoint re-
presentation of G on its Lie algebra g, and T¢P = (TP)/G. Hence
ad P = V(n)/G. The sections of the quotient bundle TP are identified to
the G-invariant vector fields on P, and the sections of ad P are identified
to the gauge algebra (e.g., see [10]), that is, I'(N,Tg¢P) = AutP,
I'(N,ad P) = gau P. We think of gau P as being the «Lie algebra» of the
gauge group GauP (cfr. [2, 5, 7, 10]).

Consequently, there exists a bundle p: C(P) — N whose global sections
can be identified with the connections on P (e.g., see [1, 5, 7, 12]). This
bundle is affine and modelled over 7T*N ® adP. We denote by
sr: N — C(P) the section of the bundle of connections induced tautologi-
cally by I.

Let U C M be an open subset such that 771(U) =~ U x G. For every
B € g there is a flow of gauge transformations ¢?: U x G — U x G given
by (ptB (xx,g) = (x,exp (tB) - g). The infinitesimal generator of qztB is denoted
by B, which is an infinitesimal gauge transformation on 7~ 1(U).

Let B = B (mod G) be the orbit of B in ad P. If (B,) is a basis of g, then
(E“) is a basis of I'(U,ad P) = gaunY(U). Accordingly, every gauge field
X € gau P can be written as

(21) X =¢"B,, ¢"€CU).

Coordinates on C(P) are introduced as follows: Let (U, ') be a coordinate
domain in N such that 7 1(U) =~ U x G. We can define functions
A%:pY(U) — R, by setting

()
&xr

(22) (8/027) "= (9/00) ,~AHT By

for every connection /', at a point x € U, where i(I",) denotes the hor-
izontal lift with respect to I",.. The functions (x/ ,A}*) constitute a coordinate
system on p~1(U). According to the general notations introduced in Sec-
ti;)n 2.1, we denote by (acj,A;f;Aﬁk) the induced coordinate system on
JIC(P).
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Each gauge transformation @ € GauP acts on connections by pulling
connection forms back (see [11, IT, Proposition 6.2-(b)]): I" = @ - I", where
wp = (@ Y*wr. Hence a unique diffeomorphism @q: C(P) — C(P) exists
such that @ o s; = sg.1, for every connection I” on P.

If @, is the flow of a gauge field X € gau P, then (&;)¢ is a flow on C(P)
and the corresponding infinitesimal generator is denoted by X; its local
expression is (see [3, 6]),

B
(23) Xo = (c'f} P 3& ) 0
7

where cj, are the structural constants, [Bg, B,] = c%;,Ba, and X is given by
the formula (21).

According to the general equation (7), a Lagrangian L € C*(J'C(P)) is
gauge invariant if X(DL 0, vX € gau P. Since Xé) is pl-vertical, we have

D(Lv) X(D(L)v Hence the gauge invariance of the density Lv is re-
duced to that of the Lagrangian function.

The classification of gauge invariant Lagrangian densities is given by
the geometric formulation of Utiyama’s theorem ([2, 7, 23]), which estab-
lishes that a Lagrangian L is gauge invariant if and only if there exists a
smooth function L: A2T*N @ ad P — R, which in turn must also be in-
variant under the natural action of the adjoint representation on
A2T*N ® ad P, such that L = L o Q, where Q: J'C(P) — A2T*N ® ad P is
the curvature mapping, i.e., Q(jlsr) = (Qr),.

Let R% oo J <k, be the coordinate system induced by (a7 ) and (B,) on the
curvature bundle; i.e., Ny = ZJ ” k(ﬂz)(dﬂﬁ] )e A (dacF), @ (B, )z, for every 2-
covector 7, € /\ZT*N ® (ad P),. Then the equations of the curvature
mapping are (e.g., see [6]),

(24) RjoQ=A% - A;; — ¢ AVA]

From the general formula (13) we obtain the local expression of a first-
order Ehresmann connection y' on C(P) in the coordinates (xi,Ag‘) in-
troduced in the formula (22); precisely,

(25) = (dAT + 95 da’)® Vi € CX(C(P)).

0
0A? ’
If p: M — N is an affine bundle modelled over a vector bundle ¢: W — N,
then we have an isomorphism p*W — V(p) of vector bundles over M, that
maps the pair (, w) € M x ¢ 1(p(y)) onto the tangent vector y(y,w) € V()
given by y(y, w)(f) = }ig&%(f (y + tw) — fF(y), Yf € C=M).
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As p: C(P) — N is an affine bundle modelled over T*N ® ad P, a first-
order Ehresmann connection y' on C(P) can be viewed as a 1-form on C(P)
with values in the vector bundle p*(T*N ® ad P). By taking its horizontal
part, we conclude that hory' defines a section of the vector bundle
(PH*(T*N ® T*N ® ad P), or even a morphism of fibred manifolds over N,

hory: J'C(P) — T*"N @ T*N ® ad P.

LEMMA 5.1. Witl} the same motations as above, the section corre-
sponding to dx’ ® B, in the isomorphism p*(T*N @ adP) — V(p), is
-9/ 8A]°.‘.

PrOOF. According to the formula (22), for every I',, € C(P), we have
AN(I, + de’ © B,),) = AUT,) — 1330,
Hence X(F%‘a (dﬁ(/'] ® Ba)x) - - (8/614‘7)1_9. O

THEOREM 5.2. Let n: P — N be a principal G-bundle. If y! is a first-
order Ehresmann connection on the bundle of connections p: C(P) — N of
P satisfying the following equation:

(26) alt (hory!) = Q,

Q being the curvature mapping and alt: *T*N @ ad P — A2T*N @ ad P
the antisymmetrization operator, then the covariant Hamiltonian L'v of
every gauge invariant Lagrangian L on J*C(P) is gauge invariant.

For every principal bundle P, first-order Ehresmann connections
globally defined on C(P) satisfying the equation (26), always exist.

PROOF. According to [6, Theorem 1-(2)], if y! satisfies the following
equation:

(27) M =y — oy = - ALAL j <k,

then L is gauge invariant for every gauge invariant Lagrangian L on
J1C(P). Moreover, by applying Lemma 5.1 to the formula (25) we obtain

' = —(dA? + 9 da’) @ da’ ® B,

and by taking the horizontal part, hory' = —(A7), + y]f’-‘k)dack ® da! ® B,.
Hence alt (hory!) = S A% — A+ A;{k)dxj Adak @ B,, and the for-
mula (26) in the statement follows from the equations of the curvature

mapping in the formula (24) whenever y' satisfies the equation (27) above.
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Finally, as remarked in Section 3, there is a one-to-one correspondence
between first-order Ehresmann connections and first-order jet fields given
by L = o', The sections ¢ for which the corresponding Ehresmann
connection y}, satisfies the equation (26), are the smooth sections of an
affine sub-bundle of the bundle p'°: J'C(P) — C(P), which is modelled over
the vector sub-bundle p*(S?T*N @ adP) C p*(®? T*N @ ad P), thus
proving the last part of the statement. O

If the centre of g is trivial, then the equation (26) in Theorem 5.2 is also
necessary for the covariant Hamiltonian of every gauge invariant La-
grangian on J'C(P) to be gauge invariant; see [6, Theorem 1-(2)]. More-
over, since X is p-vertical, LXC;)1 defines a section of the vector bundle
p*(®% T*N ® ad P), as remarked in the proof of Proposition 1.1, and the
antisymmetric part of this section vanishes for all gauge field X, if and only
if ! solves the question (Q); see [6, Proposition 6] for the details of the
proof.

Although Theorem 5.2 guarantees the existence of Ehresmann con-
nections solving the question (Q) for the bundle of connections of a
principal bundle, we remark on the fact that there is no gauge invariant
Ehresmann connection on C(P). In fact, once a point ', € C(P) and a
coordinate system (2') centred at x have been fixed, from the formulas
(21), (23) we conclude that the vector field X, for g¢*(x) =0,
(8g* /91 (x) = 0, Var, i, but (8%g" /0(x")?)(x) # 0, satisfies the conditions of
Proposition 1.2.

5.2 — Covariant Hamiltonians on linear frame bundles.

Let (U; 2%) be a coordinate domain in N. According to (13), on the induced
coordinate system (aci,ac;:) for 7: FN — N (see (16) above), an Ehresmann
connection y* on FN can be written as y! = (dx} + y}kdxk) ® 8/890;:, with
Vi € C(FN).

Let A7 be the covariant Hamiltonian associated to a Lagrangian density
A on JY(FN) with respect to y!. As the covariant Hamiltonian A" is a La-
grangian density, it also admits a canonical Lagrangian £ e C*JYFN))
defined, according to the formula (15), by A =L A A 0", where

(28) o= (y;k + x}’k) — L, 4 € CX(FN).

7
dx} .
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LEMMA 5.3. The covariant Hamiltonian A of every X(N )—invom'a@t
Lagrangion L is X(N)-itnvariant if and only if all the functions (L),
a < b, are X(N)-invariant.

PROOF. If the covariant Hamiltonian A7 of every %(N )-invariant La-
grangian £ is X(N)-invariant, then all the functions (ch)} a < b, are, in
particular, X(V)-invariant. Next, we prove the converse. If X = uz(?/ oxt,
u' € C*(N), then .

- 0 lau 0

2 T=u .
(29) “aac?Jrfaxlal’

and from the formulas (11), (12) above for » = 1, we obtain

5 0 0 ;0
TO — i Y
g 8xl+v]8xj+ fk@acl ’
ou'
(30) ?)]2 = Wx]l,
Loout . ou Pul
Uik = g ik T gk i kg 0

From the formulas (28), (30), we obtain, after some computations,

< (1)7 oy oL
(31) X0 = G =
]k
where )
N
(32) CipX) = Xy + v — (0 +25) 50
ms.t

As mentioned above, every invariant Lagrangian can be written as a
smooth function of the Lagrangians £, defined in the formula (18).
Accordingly, we can write £ =®oll', for a certain function
®c C“(R%”;(”*D) where IT': JYFN) — R%ﬂz("*l) is the map whose com-
ponents are the functions Eab, ie., t¢, o IT' = LC,, where (£,), a < b, are
the standard coordinates on R¥" 1] . Hence, substituting

o _ (00 ot
Oxjye \Oay 0y

into the equation (31), we obtain
= 1 oD s, ¢ !
X0y = (ﬁo H1>X(D (L)),
ab

and the result follows. O
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The notion of torsion of an Ehresmann connection y' on FN, can be
introduced by imitating that of a linear connection; e.g., see [11, III, §2].
Let B(v) be the standard horizontal vector field associated tov € R” (see[11,
I11, § 2]) with respect to y'; precisely, B(v) is the only y!-horizontal vector
field on F'N such that 7. (B(v),) = u(v) for every u € F,N, where, here, the
linear frame u is considered to be a linear isomorphism u: R" — T,N. Then,
we define the torsion of 7! as being the map 77" : FN — A2(R™)* @ R" given
by 77 (w) (v, w) = dO(B(w), Bw))(w), Vu € FN, Yo,w € R", and 6 is the ca-
nonical 1-form on F'N introduced in Section 4 above. Let (v;) be the standard
ba51s of R” with dual basis ('), and let (TV )Zk(u) J < k,be the components of
T (u) in such basis, i.e.,

T ) = > (17! AF @ 0.

j<k

From the local expression B(v,) = x%(9/0x" — y}ka/ax;) of the standard
horizontal vector field associated to v, and that of 8 in the formula (17), we
obtain

(33) T ab = ( ]ciﬁak - x’,ﬁy@k)yf

THEOREM 5.4. Let y* be an Ehresmann connection on n: J'(FN) — N.
The covariant Hamiltonian A" associated with every X(N)-invariant
Lagrangian density A on JYFN) is X(N)-invariant, if and only if the
torsion of y' is constant.

Proor. Letl’ € C® (JX(FN)) be the canonical Lagrangian associated
to the covariant Hamiltonian 4”'. We must prove that X(£") = 0, for
every X € X(N) and every X(N)-invariant Lagrangian L, if and only if the
torsion of y! is constant. As follows from Lemma 5.3, we only need to impose
X(D((ﬁgb)VI) =0, VX € X(N), and all indices a < b, c. Taking the following
identity:

0L

8.%,: = (ko] — akol)ys

into account, from the formula (33) we obtain

orLe, oL
ab _ £c — ab __
ducfy, " = Ox

(34) Ly = (o +ty) =17,

Hence X(LE, Y = X(T"Y ¢»» which allows us to conclude the proof. O
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COROLLARY 5.5. Let I' be a linear connection on FN. The covariant
Hamiltonian A associated with every X(N)-invariant Lagrangion den-
sity A on JY(FN) is X(N)-tnvariant, if and only if T is torsion free.

ProoF. The torsion of alinear connection is equivariant with respect to
the natural actions of GL(n; R) on FN and on A2(R")* @ R”", respectively;
that is, 77 (w-A) = A~ - T'(w), Yu € FN, YA € GL(n; R). Hence, if T is
constant, then T/ (w) = T"'(w - A) = A1 - TT(w), Vu € FN,VA € GL(n; R).
Accordingly, T' (u) is GL(n; R)-invariant, so that 7' (x) must vanish. [

Let I1: FN x gl(n,R) — V(x) be the vector-bundle isomorphism de-
fined by I;(u,A) = A}, where A* stands for the fundamental vector field
attached to A € gl(n,R), i.e., the infinitesimal generator of the flow
Rexpta). If (E ') denotes the standard basis of gl(%, R), then in the induced
coordinate system introduced in the formula (16), we have Iy(u, E”) =
= 2l (u)(9/ 890”)1” for all w € FN.

We also have an isomorphism Io: 7*(T*N @ TN) — FN x gl(n, R) given
by Iy(u, F) = (u, (al)) where F(X;) = aXl, and 4 = (X1,...,X,). In local
coordinates, we obtam L(u,dx’ @ 8/8900) = (u, (al)), with a = yc(u)xb(u)

Below, we need to consider the isomorphism

I=I;'oI;1: V() — ("N @ TN),

(35) B - B
I i = k = = .
(890]‘) %dx © oxt

For every X € X(NV), we know that Lj(y1 defines a section of the vector
bundle 7*T*N ® V(n), which can be identified to 7*( ®? T*N ® TN), taking
the isomorphism (35) into account.

PROPOSITION 5.6.  The covariant Hamiltonian A associated to every
X(N)-invariant Lagrangian density A on JYFN) is X(N)-invariant if
and only if alt(Lgy') =0, for all X € X(N), where alt: @*T*N @ TN —
— A2T*N ® TN is the antisymmetrization operator.

PRrOOF. From the equation (29) and the expression of y, taking
the isomorphism (35) into account, we obtain LXy = (X)y da* ®
®dac ® /9", where Cj(X) is given by the formula (32) By setting

= acha/@xh the previous equation can be rewritten as Lg)' =
= ockak(X)yc(Ja ® 0" ® X,. From the formula (33), taking the equation
oy /Ol = —yjy; and the formula (34) into account, the equation above
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yields
AT T, ou”
1 ab ,,r l ab @ b
. — ab X
alt(Lzy™) ( e u + o ol " NO R X,
=X (1)) 0" N 0" @ X,.
Hence, from the formula above and Theorem 5.4, the result follows. O

Theorem 5.4 guarantees the existence of Ehresmann connections sol-
ving the question (Q) for the bundle of first-order linear frames, but there
is no ¥(N)-invariant Ehresmann connection on JX(#N). In fact, once a
coordinate system (x') centred at & = n(u) adapted to a given point u € FN
(i.e., x]’:(u) = 6;:) has been fixed, from the formula (29), we conclude that the
vector field X for u(x) = 0, (Qu’/dx’)(x) = 0, Vi,j, but (Pu! /o)) (x) # 0,
satisfies the conditions of Proposition 1.2.

6. Covariant Hamiltonians for second-order Lagrangians.
6.1 — Legendre and Poincaré-Cartan forms.
The Legendre form of a second-order Lagrangian density 4 = Lv defined

on p: M — N is the V*(p')-valued p3-horizontal (n — 1)-form e, on J3M lo-
cally given by w, = Yo (— D' Liv; @ dy} (e.g., see [17, 22]), where

o 1 OL
(36) Lo=_1_ %
2 -9 Iy,
. oL 1 OL
(37) LY =—— —5——Dj(5.)
6@/@ 2— 51']' / (8?/(1]))

The Poincaré-Cartan form attached to A is then defined to be the ordinary n-
form on J3M given by,

(38) 04 =p®)F Ny + 4,

where & is the second-order structure form and the exterior product of
(p32)*792 and the Legendre form, is taken with respect to the pairing induced
by duality, V(p') x 15, V*(p') — R. The most outstanding difference with
the first-order case is that the Legendre and Poincaré-Cartan forms asso-
ciated with a second-order Lagrangian density are generally defined on J3M,
thus increasing by one the order of the density.



20 J. Mufnoz Masqué - M. Eugenia Rosado Maria

6.2 — Hamiltonian attached to a connection.

Similarly to the first-order case (see [6, 14]), given a second-order La-
grangian density 4 on p:M — N and a second-order connection y* on
p:M — N, by subtracting (p32)*$* from (p®1)*)2 we obtain a p3-horizontal
form, and we can define the corresponding covariant Hamiltonian to be the
Lagrangian density of third order A" = (@2 — (' F) Aoy — A Ex-
panding on the right-hand side above and taking the formula (38) into account,
we obtain the decomposition of the Poincaré-Cartan form that generalizes the
formula (5) to second-order Lagrangian densities; precisely, @, = (p®1)*)* A
ANwg— A7 . With the same notations as in the formulas (13), (36), (37) we have

(39) L7 = (7 +yHLY + Gy + )L — L.

Because of the formula (37) the covariant Hamiltonian L7 is generally
defined on J2M. Nevertheless, in view of the applications, we confine
ourselves to consider second-order covariant Hamiltonians only. We
therefore characterize those second-order Lagrangians whose covariant
Hamiltonians are also of second-order, whichever it is the second-order
connection 7 under consideration.

Looking at the equations (36), (37), we conclude that L7 is defined on
J2M if and only if, for every multi-index I, |I| = 3, and every pair of indices
o, f we have 8L§0/6y§ = 0. Letting I = (abc), a < b < ¢, we see that the
previous condition is equivalent to the following:

1L 1 #L 1 #L
2 — oy Byfac)ayéb) 2 —biq 8@/@0)8%&) 2 — 0 Gyfab)(’)yéc)

(40)

We remark on the fact that if the equation (40) holds, then the Poincaré-
Cartan form (38)—initially defined on J3M—also projects onto JZM.

7. Second-order Lagrangians on linear frames.

In the case of the bundle of linear frames n: FN — N the equation (40)
becomes

1 OPL
(41) — !
2 = dip 0y (0L, iy
ST P LT T D A
—0ig O q,(bc)axm,(ia) — Oi¢ O q,(ab)axm,(ic)

for all systems of indices 7,1, m,p,q,a < b < c.
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Let €y denote the class of Lagrangians L € C*(J?(FN)) that satisfy
the equations (41).

Let 2 be a second-order Ehresmann connection on 7: FN — N. Ac-
cording to (13), locally we have

o 9
P = (dact + y}kdxk) P (dm Tt yjhkdx )& ——
o j
P Vi € C(TUEN)).

Let A” = L”v be the covariant Hamiltonian density induced by a La-
gTanglan density 4 = Lv, L € C*(J?(FN)), belonging to Cy, and let £
(resp. s ) be the canonical Lagrangian associated with A (resp. A" ). We
also assume that £ is X(V)-invariant. According to (36), (37), (39), and
taking (41) into account, we have

“2) L7 = G + € DL + Ol + e} qu) L7 — L,
A 8L ! FL ! L ! OPL
L 8 2 — 5 8 ha ) +x mh a 1 a + xlm’(hm)W ,
ac ik hk i Wj,(hk) Lo ac i () xmm xj,(hk)

1 OL
2 Ok 390 (hk)

where, in the present case, the Greek index « is a pair (7, ) of Latin indices.
Accordingly, if we set

b OC
t 8%}#
_L<xl g O L)
2= o\ O Dl ! el 4 s (fr) duct, 0 4 )
1 oc
(43) L = o

then the equation (42) can equivalently be written as
(44) L= O + W},k)ﬁjz:k + O + %l:.(hk))ﬁéhk - L.

From now on, we confine ourselves to consider second-order Ehres-
mann connections induced from a 2-jet field, i.e., yﬁ = a*vﬂz, where
a:JYFN) — JXFN) is a section of 72, and & is the structure form on
JE(FN). From the formula (14), we deduce yj, = —%, 7, = — @ 4y © 7,
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and hence

) ) o ) )
_ k k
(5) = (d - aude) @ 5ok (dfy 4 ude”) @ 5

As y}hk = y}kh, from the formulas (43), (44) we finally obtain

; oL
(46) i = %(Vﬂzk +w 7(hk)) o l )_

PROPOSITION 7.1. The covariant Hamiltonian A% of every X(N)-
mvariant Lagrangian £ m the class Cy, is X(N)-itnvariant if and only
if all the functions (L, d) o a<b a<d are X(N)-invariant.

Proor. If the covariant Hamiltonian A% of every 3€(N )-invariant La-
grangian £ is X(V)-invariant, then all the functions (Egbﬁd)’z“, a<b,a<d,
are, in particular, X(V)-invariant. Next, we prove the ‘converse. If X =
= u'0/0x',u’ € C*(N), then from the formulas (11), (12) for» = 2, we obtain

0 .0 - 0

- ) .
(47) X® = vl v —— + Uy ——,
e Yia 0%} (41

where v  and v]k are given in (30) and v b € C>(JA(FN)) is given by

;o oul ou' oul Pul
Yjab = 5l Vitab) ~ gpa Yioh T gpb Vit T Hragab Vil

Pul d o4 Pul o Pul 4
DDl I Gub Pl I e Dacd el

+

Therefore, for every Lagrangian £ € €y, from the formulas (46), (47) we
obtain, after some computations,

2 oL
(48) X<2)(£} ) = Z hk(X)@ i )
h<k Yj (hk
where
i (% (L. i r avyhk
(49) Cone @D = XV + Vi — (b + %5 ) 5 K,y
s,(tu

As mentioned in Section 4, every invariant Lagrangian on J2(FN) can be
written as a smooth function of the Lagrangians £;,;, £, ; defined in the
formulas (18), (19). Accordingly, we can write £L =% o H2 for a certain
function ¥ € C(R&"™ D@5y whare [72. JU(FN) — R%”‘z("*l)@"*{’) is the
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map whose components are the functions L7, Ly, 4, ie., £, o I* = L5,

e dOH =L bd where (&,,t, d) a<b, a<d, are the standard co-
ordinates on Rb" 0-DE1D)  Henee, substituting

oL ( L. ) 0L 4
0% gy \PVava 0% 11

into the equation (48), we obtain

~ 2 35[’ v 7
X(z)(ﬁlﬂ) — <at2b ; o H2>X(2) ((L"Zb,d))”)’

and the result follows. O

We remark that L% = —L for every first-order Lagrangian £ on F'N;,
hence, X(£77) = 0 if £ € C*(J'(FN)) is X(N)-invariant.

PROPOSITION 7.2. If 2 is a second-order Ehresmann connection
mduced from a 2-jet ﬂeld o, satisfying LX(l)y2 =0, VX € X(N), then the
covariant Hamiltonian A7 of every X(N)-invariant Lagrangion L in the
class Cy, is X(N)-invariant.

ProoF. From the expression of yi in the formula (45) and the formula
(30), we obtain

P 0
(50) LX(UV(Z; = ;kl(X)dacl & a—i,
ik

where Cj?'kl()}' ) is given in the formula (49). Hence, from (48) and (50) the
result follows. O

Unfortunately, there is no second-order Ehresmann connection 2 sa-
tisfying L)% = 0, VX € X(N). In fact, if a point jis € JI(FN) and a co-
ordinate system a' centred at  and adapted to s(x) are given, from the for-
mula (30) we conclude that the vector field XV for u'(x) = 0, (9u’/0x/)(x) =
(OPu' ) 0xT 92F) (o) = 0 for all 4,7, k, but (9Pu’/dw!dxkdx")(x) # 0 for some
particular indices 7, J, k, h, satisfies the following equation, for such indices:

3
0xI Oxk O

From the formula (50), we deduce that LX(l)y?, is a section of the vector
bundle (z1)*T*N @ V(719). As 7% JY(FN) — FN is an affine bundle mod-
elled over 7*T*N ® V() we have a natural isomorphism of vector bundles,

Cl X)) = (@) #0.
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@) (*T*N @ V(n)) — V(r'®). Moreover, from the isomorphism defined
in (35), we deduce an isomorphism (71°)'V(n) — (z1)*(T*N ® TN), which
allows us to consider LX(I);% as being the section of (71)*( ®* T*N ® TN),
given by Ly = }kl(ff yylde! @ dak @ da® © /0!, and we obtain

PROPOSITION 7.3. The covariant Hamiltonian A% of every X(N)-
moariont Lagmngian LeCy is XWN)-invariant if and only if;
altgg(LXa)yz) =0, VX € X(N), where alty; denotes the antisymmetrization
operator in the i-th and j-th covariant arguments.

PRrOOF. By setting X. = «,0/0x', the previous formula for Ly )2 can
be rewritten as follows: L2 = alabCl (X )nyd ® 0" ® 0" @ X,. More-
over, as it is easily checked, we have alt12(Lgq72) = 0, and

(51)  altes(Lgw)?) = ays (2ECh, (XD — 2k CLy (X)) 0" @ 0° A 0" @ X,

Taking the expression of the Lagrangians L7, ; given in (19) and the
formula

oL;

2" (a? ) 7\ shk),) ¢
890 o (xaé - xb5 )5(7'7)) Yi
Js

into account, from the formula (48) we have

S 2 b i}
X(Z)(ﬁgb,d)} _ Z kh(X) - Za
h<k ] (hk)

= 9051 (“lécékz(X ) — %b akz(j())?/f-
Hence, the equation (51) can be written as follows:
altos (Lza72) = XP(LE, )7 07 © 0° N O © X,..

This equation and Lemma 7.1 allow us to conclude the proof. O

THEOREM 7.4. Let 1%, 7% be the mappings given by,
t: JYFN) — N*T*N @ TN,
th(jis) = (Torg:),,
5 JAFN) — T*N @ A*T*N ®@ TN,
5 (J2s) = (V*Torgs),,

where V* isthe linear connection parallelizing the linear frame defined by the
section s. Let )2 = " be the second-order Ehresmann connection induced
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by a 2-jet field o: J\(FN) — J*(FN). The covariant Hamiltonian A% asso-
ciated with every X(N)-invariant Lagrangian density A on JXFN) in the
class Cy is X(N)-invariant, if and only if y? satisfies the following equation:

(53) altos (hory?) = —7% + @ o (7™, 1} o 1),

where @: 1" (N2T*N ® TN) — 7*(T*N @ A2°T*N @ TN) is the map induced
by a system of functions @,; € C*( A2 (R")* @ R"), a < b; i.e,

(54) <D(u, T) = <u, Z ¢(Czbd ((/\zu* ® u*l)(‘[)) a)d QR o A a)b X Xc> s

a<b

and here u = (X1, ...,X,) € F;N is considered to be a linear isomorphism
w:R" — TN, with dual coframe (o', ..., "), and t € N2T:N @ T.N. For
every manifold N, 2-jet fields o:J'(FN) — JXFN) globally defined on
JYFN) whose induced second-order Ehresmann connection yi satisfies the
equation (53), always exist.

Proor. Letting 4%, = why¢(xhyt,, — afyi,) € C(JYFN)), from the
formula (52) we obtain

Z y]hk ) zczbd'
h<k x]( hk)

From the formula (46), we then deduce

0Ll
(Lap, d) Aopa + in i L Ly, 4 € CJ'(FN)).
i<k 9%

Hence, X®(L, )/2 X(l)(/f )} , and Xﬂ)(ng,d)ﬁ =0 for every vector
field X € X(N) if and only if,

1
(55) Apa + % (hlc) o = Lopq = DPopg o I,
h<k ] (k)

where IT':JYFN) — R%f‘z(”’l) is the map introduced in the proof of
Lemma 5.3. By setting 4y, = 5y, — ¥},7}y, We obtain

(56) wpswys Ay = Aipg-
Hence, by multiplying the equation (55) by x!y%y’y4, and taking the
formula (56) and

! k k
E ; k) i = XqY; (%%,(kl) - xbxé,(ko)
<k L (hk)
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into account, we obtain
abd
(57) Aoy =2 ?/kf?/y?/p( Z (hk)a ; +¢deoﬂ>
<k Cj (hk)
! b d 1 " N
=2 ylys s (Lopa + Popa 0 1) = (Y, gy — Yot o)

As 7% JYFN) — FN is an affine bundle modelled over 7*T*N ® V(r)
there is an isomorphism of vector bundles, (7'*)"(z*T*N @ V(n)) — V(z'"),
given by da* ® 0/ 890 0/ O '+ k- Moreover, from the isomorphism defined
in (35), we deduce an 1s0morph1sm @ V(r) — &) (T*N @ TN). Hence,
by composing both isomorphisms, we obtain an isomorphism

V(nlo) — (@) (T*N @ T*"N @ TN),

yﬁdm ® da! ®i

890 oxt

Hence, the horizontalization of yi in the formula (45), yields

0
hOI’(VZ): :l/( ]<hk)+V]hk)d95 ®d9€ ®d.%' ®8 )

and by taking the antisymmetric part of hor)? on its 2nd and 3rd covariant
arguments, we obtain a fibred morphism over N,

altos (horyi):Jz(FN) — NT*N® TN,

locally given by

altas (horyi):%(x}xhk) + V}hk)dx ® da A da ® o

= Ajydat @ do A da! ®882.,
h<l
where A}, = yéx}mm — yzm}(kb + A, From the equation (57) we deduce
(58) Ay = mgy%’yg’y(li’ﬁgb,d + Yy (P o 1Y),
and from the formula (20) we obtain

(59) (29 =— L3290 @ o' Ao’ ® Xc)x

) (739)-

Hence, from the equations (58), (569), and the definition of the map & given
in (54), the equations (53) follow.

(yl,yk,yyx c;
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Finally, for &,, =0, for all the indices a < b, ¢,d, the equation (53)
becomes altps (horyZ) = — 7%, and the space of 2-jet fields o whose induced
second-order Ehresmann connection 32 satisfies such equation is readily
seen to be the sections of an affine bundle modelled over the vector sub-
bundle (#9)*(S*T*N @ TN) C (#1%)*(S2T*N ® T*N ® TN), which is natu-
rally isomorphic to (71)*(n*S?T*N ® V(n)). This concludes the proof. [
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