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Finitely Presented Modules over Right
Non-Singular Rings.

ULRICH ALBRECHT (*)

ABSTRACT - This paper characterizes the right non-singular rings R for which
M /Z(M) is projective whenever M is a cyclically (finitely) presented module.
Several related results investigate right semi-hereditary rings.

1. Introduction.

The straightforward attempt to extend the notion of torsion-freeness
from integral domains to non-commutative rings encounters immediate
difficulties. To overcome these, one can concentrate on either the compu-
tational or the homological properties of torsion-free modules. Goodearl and
others took the first approach when they introduced the notion of a non-
singular module [8]. A right R-module M is non-singularif Z(M) = 0 where
Z(M) = {x € M | «I = 0 for some essential right ideal I of B} denotes the
singular submodule of M. On the other hand, M is singular if Z(M) = M.
Moreover, a submodule U of an R-module M is S-closed if M /U is non-
singular. Finally, R is a right non-singular ring if Rg is non-singular.

The right non-singular rings are precisely the rings which have a
regular, right self-injective maximal right ring of quotients, which will be
denoted by Q" (see [8] and [11] for details). Following [11, Chapter XI], @"
is a perfect left localization of R if Q" is flat as a right R-module and the
multiplication map Q" ®g Q" — Q" is an isomorphism. In particular, @" is a
perfect left localization of R if and only if every finitely generated non-
singular right R-module can be embedded into a projective module ([8] and
[11]). We call a right non-singular ring with this property right strongly
non-singular.
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Hattori took the second approach by defining M to be torsion-free if
Tor'llLE (M,R/Rr) =0 for all » € R [9]. The classes of torsion-free and non-
singular right R-modules coincide if and only if R is a right Utumi p.p.-ring
without an infinite set of orthogonal idempotents [3, Theorem 3.7]. Here, R
is aright p.p.-ring if all principal right ideals of R are projective. Moreover,
a right non-singular ring R is a right Utumi-ring if every S-closed right
ideal of R is a right annihilator.

Closely related to the notion of torsion-freeness are those of purity and
relative divisibility. A sequence of right R-modules is pure-exact (RD-exact)
if every finitely presented (cyclically presented) module is projective with
respect to it. Investigating RD- and pure-projective modules leads to the
investigation of the condition that M /Z(M) is projective. The dual question
when Z(M) is injective has been addressed in [8, Page 48, Example 24].
Section 2 discusses the question for which rings M /Z (M) is projective for all
RD-projective modules M. Theorem 2.1 shows that, provided R has no in-
finite set of orthogonal idempotents, these are precisely the right Utumi p.p.-
rings discussed in [3]. The structure of pure-projective right R-modules was
described in [4] in case that R is a right strongly non-singular, right semi-
hereditary ring R without an infinite set of orthogonal idempotents. Theo-
rem 2.3 shows that these conditions on R are not only sufficient, but also
necessary for the structure-theorem (part b) of Theorem 2.3 to hold.

Priifer domains can be characterized as the domains with the property
that, whenever a torsion-free module M contains a projective submodule U
with M /U finitely generated, then M is projective and M /U is finitely
presented [7, Chapter VI]. We show that the right non-singular rings
having the corresponding property for non-singular modules are precisely
the right strongly non-singular, right semi-hereditary rings of finite right
Goldie dimension (Theorem 3.1).

Section 4 investigates pure-projective modules over right hereditary
rings. As part of our discussion, we obtain a characterization of the right
Noetherian right hereditary rings with the restricted right minimum
condition which are right strongly non-singular. The last results of this
paper demonstrate that right invertible submodules of @ which were
introduced in [11, Chapters I1.4 and IX.5] may fail to share many of the
important properties of invertible modules over integral domains. For
instance, the lattice of finitely generated right ideals over a Priifer domain
is distributive, i.e. I N (J + K) = (I NnJ) + (I N K) for all finitely generated
ideals I, J, and K of R [7, Theorem II1.1.1]. Example 4.7 shows that there
exists a right strongly non-singular, hereditary, right and left Noetherian
ring whose finitely generated right ideals do not have this property.
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2. RD-Projective Modules.

Let U be a submodule of a non-singular module M. The S-closure of U
in M is the submodule V of M which contains U such that V/U = Z(M/U).

THEOREM 2.1. The following are equivalent for a right non-singular
ring R without an infinite set of orthogonal idempotents:

a) R is a right Utumi p.p.-ring.
b) M /Z(M) is projective for every RD-projective module M.

PrOOF. a) = b): Since every RD-projective module is a direct sum-
mand of a direct sum of cyclically presented modules, it suffices to verify b)
in case that M =~ R /aR for some a € R. Let J be the right ideal of R which
contains aR such that J/aR = Z(R/aR). Then, R/J = M /Z(M) is a non-
singular cyclic module which is projective by [3, Corollary 3.4].

b) = a): Let I be the S-closure of #R for some r € R. Since B /rR is RD-
projective, and R/l = (R/rR)/Z(R/rR), we obtain that R/I is projective.
Thus, I is generated by an idempotent.

By [3, Lemma 3.5], it suffices to show that every S-closed right
ideal J of R is generated by an idempotent. For this, select 0 # 7y € J.
Since J is S-closed in R, it contains the S-closure I, of » R. By what
has been shown so far, Iy = ¢gR for some idempotent ¢y of R. Hence,
J=eRB[JNA—e)R]. If JN(A—ey)R #0, select a non-zero
=0 —eyr; €J; and observe that JN (1 —e¢y)R is S-closed in R.
Hence, it contains the S-closure I; of R in R. By the previous
paragraph, I; = fR for some idempotent f of E. Write f = (1 —eg)s
for some se R, and set e; =f(1 —ep). Since eof =0, we have
ereo = eoey = 0 and e? = f2 — f2eq — feo f + (feo)” = f — feo = e1. Thus, e
and e; are non-zero orthogonal idempotents with e;R CfR. On the
other hand, f=f(1—-eps=es yields fR =e;R. Consequently,
R=¢R @& etR®[J N1 —ey—e)R]. Continuing inductively, we can
construct non-zero orthogonal idempotents e,...,e,11 €J as long
as JN(1—e —...—e,)R #0. Since R does not contain an infinite
family of orthogonal idempotent, this process has to stop, say
JN(1—e —...—e,)R=0. Then, ey + ...+ ey is an idempotent with
J=(g+ ... +enR. O

We now investigate which conditions R has to satisfy to ensure the
validity of the structure theorem for pure-projectives in [4]. We want
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to remind the reader that a right R-module is essentially finitely
generated if contains an essential, finitely generated submodule.

LemMa 2.2.  The following are equivalent for a right non-singular
ring R:
a) R is right semi-hereditary and has finite right Goldie-di-
MENSION.

b) A finitely generated right R-module M is finitely presented if
and only if p.d.M < 1.

PrOOF. @) = b): Since R is right semi-hereditary, every finitely pre-
sented module has projective dimension at most 1. Conversely, whenever
M =~ R"/U for some projective module U, then U is essentially finitely
generated since R has finite right Goldie dimension. By Sandomierski’s
Theorem [5, Proposition 8.24], essentially finitely generated projective
modules are finitely generated.

b) = a): Clearly, R has to be right semi-hereditary. If R has infinite
right Goldie-dimension, then it contains a family {/,},_,, of non-zero, fi-
nitely generated right ideals whose sum is direct. Since R is right semi-
hereditary, each I, is projective, and the same holds for &, I,,. By b),
R/ &, I, is finitely presented, a contradiction. O

THEOREM 2.3. The following conditions are equivalent for a right non-
singular ring R without an infinite set of orthogonal idempotents:

a) R isa (right Utumi), right semi-hereditary ring such that Q" is
a perfect left localization of R.
b) A right R-module M is pure-projective if and only if
i) Z(M) is a dirvect summand of a direct sum of finitely gen-
erated modules of projective dimension at most 1.
il) M/Z(M) is projective.

Proor. A right strongly non-sigular, right semi-hereditary ring
without an infinite set of orthogonal idempotents is a right Utumi ring [3,
Theorems 3.7 and 4.2].

a) = b): By [3], R has finite right Goldie-dimension. Because of Lemma
2.2, Z(M) is pure-projective if and only if condition i) in b) holds. It remains
to show that M/Z(M) is projective whenever M is finitely presented.
However, this follows from [11] since M /Z(M) is a finitely generated non-
singular module, and Q" is a perfect left localization of E.
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b) = a): To see that R is right semi-hereditary, consider a finitely
generated right ideal I if R. The S-closure J of I satisfies J/I = Z(R/I).
Hence, R/J is projective by b), and J /I has projective dimension at most 1.
Since J is projective, this is only possible if I is projective.

To show that R has finite right Goldie-dimension, consider a right ideal of
RoftheformagR & ... ® a,R & ...whereeacha, # 0.Form < w,letl,, be
the S-closure of ayR @ ... ayR. Since R/I,, is projective by b), I,,, is gen-
erated by an idempotent e, of B. Write 1,11 = I, ® L1 N (A — ep)R].
Observe that [1,,.1 N (1 — e,,)R] is generated by an idempotent f of R as a
direct summand of R. Setting d,, = f(1 — e,,) yields an idempotent d,, of R
such that e, d,, = de, =0, and I,,,1 = I,, ® d,,,R as in the proof of The-
orem 2.1. Inductively, one obtains an infinite family of orthogonal idempo-
tents {dx,|m < w} of R, whichis not possible. Thus, R has finite right Goldie-
dimension; and every S-closed right ideal J of R is the S-closure of a finitely
generated right ideal. By b), B/J is projective; and R is a right Utumi-ring
since J = eR for some idempotent e of K.

To establish that Q" is a perfect left localization of R, it suffices to show
that every finitely generated non-singular right R-module M is projective.
Write M = R"/U and observe that U is essentially finitely generated.
Select a finitely generated essential submodule V of U. Then,
U/V =Z(R"/U), and M is projective by b). O

In the following, the injective hull of a module M is denoted by E(M).

COROLLARY 2.4. Let R be a right semi-hereditary ring of finite right
Goldie-dimension such that Q" is a perfect left localization of R. A right R-
module M is pure-projective if and only if M/Z(M) is projective and
Z(M) 1is isomorphic to a direct summand of a direct sum of finitely
generated submodules of (Q"/R)".

Proor. We first show that a finitely generated singular module M has
projective dimension at most 1 if and only if it can be embedded into a finite
direct sum of copies of Q"/R. If p.d.M <1, then there exist a finitely
generated free module ' and an essential projective submodule P of F' with
M = F/P. Since R has finite right Goldie-dimension, P is essentially fi-
nitely generated, and hence itself finitely generated by Sandomierski’s
Theorem [5, Proposition 8.24]. We can find a finitely generated projective
module U such that P@ U is a finitely generated free module, say
Pao U = R" Since M is singular, P® U is an essential submodule of
F @ U. Therefore, Fo UCEP ® U) = (Q")",and M C(Q"/R)".
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On the other hand, if M is a finitely generated submodule of (Q"/R)",
then there is a finitely generated submodule U of (Q")" containing R" such
that M = U/R". Since R is right semi-hereditary, and since Q" is a perfect
left localization of R, U is projective and p.d.M < 1. The corollary now
follows directly from Theorem 2.3. O

3. Essential Extensions of Projective Modules.

In the commutative setting, Priifer domains are characterized by con-
ditions b) and c.ii) [7].

THEOREM 3.1. The following are equivalent for a right non-singular
ring R:

a) R is a right semi-hereditary ring of finite right Goldie-dimen-
ston for which Q" is a perfect left localization of R.

b) Whenever a non-singular module M contains a projective
submodule U such that M /U 1is finitely generated, then M is projective
and M /U 1s finitely presented.

c) i) R s a right p.p.-ring.

i) If a finitely generated non-singular right R-module M con-
tains an essential projective submodule U, then M s projective, and M /U
1s finitely presented.

PRrROOF. a) = b): Let W be the S-closure of U in M. Since M /W is fi-
nitely generated as an image of M /U and non-singular, it is projective by a).
Hence, M = W @ P for some finitely generated projective module P. We
may thus assume that M /U is singular.

Since R is right semi-hereditary, U = @;U; where each Uj; is finitely
generated [1]. Because M /U is singular and M is non-singular, U is
essential in M. Thus, E(M) = E(U) = ©&;E(U;) in view of the fact that
direct sums of non-singular injectives are injective if R has finite right
Goldie-dimension [11, Proposition XII1.3.3]. Choose a finitely generated
submodule V of M such that M = U + V. There is a finite subset J of 1
such that V C @; E(U;). Then, Wy =V 4+ @;U; is a finitely generated
submodule of ©;E(U;) such that VN(opy U;) =0. Consequently,
M = W1 © @&pyU;. But Wy is projective by a) showing that M is pro-
jective and that M /U = W1 /U is finitely presented.

b) = c¢): Observe that every finitely generated non-singular module is
projective by choosing U = 0 in b).
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¢) = a): Assume that R contains a right ideal U of the form
U = ®y<wa, R where each a,, # 0. By part i) of ¢), U is projective. Choose a
right ideal V of R which is maximal with respect to the property
U NV = 0. Since R is right non-singular, V is an S-closed submodule of R
and [R/V]/[U® V/V]=R/(U @ V) is singular. Therefore, the projective
module U @ V/V is essential in the non-singular module R/V. By ¢), R/V
is projective; and R/(U @ V) is finitely presented. Hence, U is finitely
generated which is not possible.

To see that R is a right strongly non-singular, right semi-hereditary
ring, it suffices to show that a finitely generated non-singular right R-
module M is projective. By [11, Proposition XI1.7.2], M C (Q")" for some
n < w. Since R has finite right Goldie dimension and R" is essential in
@"", M has finite Goldie-dimension. Therefore, M contains uniform
submodules Uy,...,U,, such that U; & ... ® U, is essential in M. Fur-
thermore, we may assume that each U; is cyclic, say U; = b;R. Since M is
non-singular, ann,(b;) = {r € R | b;r = 0} is not essential in R. Select
¢; € R with ¢;R N ann,(b;) = 0. Then, U; contains a submodule V; = ¢;R.
Since R is a right p.p.-ring, V; is projective. Hence, M contains the es-
sential projective submodule V; & ... ® V,,. By ¢), M is projective. O

A submodule U of a module M is tight if both U and M /U have pro-
jective dimension at most 1. A module is cokerent if all its finitely gener-
ated submodules are finitely presented.

COROLLARY 3.2. Let R be a right semi-hereditary ring of finite right
Goldie-dimension such that Q" is a perfect localization of R.

a) A right R-module M of projective dimension at most 1 is co-
herent. Moreover, all its finitely generated submodules are tight.

b) If M s singular and a direct sum of countably generated
modules, then p.d.M < 1if and only if M C(Q"/R)" for some indeax-set I.

Proor. a) Write M = F'/P where F and its submodule P are projec-
tive. If U is a finitely generated submodule of M/, then there is a submodule
W of F' containing P with W /P =~ U. By Theorem 3.1, W is projective and
W /P is finitely presented. Clearly, U and M /U have projective dimension
at most 1.

b) Without loss of generality, we may assume that M is countably
generated. If p.d.M < 1,then M = F /P where F is projective and P =~ R
for some index-set I. Since P is essential in F', we have F C E(P) = (Q’”)(I)
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by [11, Proposition XIII1.3.3] because R has finite right Goldie-dimension.
Hence, M C (Q"/R)P.

Conversely, suppose that M C (Q’"/R)(w), and select a submodule U of
Q" containing R such that M = U/R“. Choose {u, |n <w}CU
such that U = %, ,u,,R + R and ug = 0. Set V, = R® + 3 _u,R. By
Theorem 3.1, each V, is projective. Let W, = V,/R C M. Then, Wy =0
and M =U?_W,. Observe that W,,1/W, = V,,1/V, has projective di-

mension at most 1. By Auslander’s Theorem, p.d.M < 1. O

4. Hereditary Rings.

The first result describes the right strongly non-singular, right Noe-
therian, right hereditary rings.

PrOPOSITION 4.1.  The following conditions are equivalent for a right
non-singular ring R of finite right Goldie dimension:

a) R is a right strongly non-singulay, right herveditary ring with-
out an infinite set of orthogonal idempotents.
b) R is a right strongly non-singular, right Noetherian and right
hereditary.
¢) i) R has finite right Goldie dimension.
ii) M is pure projective if and only if M /Z(M) is projective, and
Z(M) is a direct summand of a divect sum of finitely generated modules.

PrOOF. @) = b): By [3, Theorems 3.7 and 4.2], R has finite right Goldie
dimension. However, essentially finitely generated projective modules are
finitely generated [5, Proposition 8.24]. b) = c¢) is obvious in view of Theo-
rem 2.3.

¢) = a): Let I be a right ideal of R, and J its S-closure in R. Since R has
finite right Goldie dimension, / contains a finitely generated right ideal K
as an essential submodule. Thus, J is the S-closure of K, and J/K is the
singular submodule of the finitely presented module R/K. By ¢), R/J is
projective, and R = J & J;. Then, R/I = J/I & J;. In particular, J/I is a
finitely generated singular module, which is pure-projective by c). Hence,
J/I is a direct summand of a direct sum of finitely presented modules.
Clearly, this sum can be chosen to be finite. Therefore, J/I is finitely
presented, and [ is finitely generated since J is a direct summand of R.
Once we have shown that every finitely generated non-singular right R-
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module M is projective, we will have established that R is a right heredi-
tary ring with the property that Q" is a perfect left localization of R.
There exists a finitely generated free module F" and a submodule U of F'
such that M = F'/U. Since R has finite right Goldie-dimension, U contains
a finitely generated essential submodule V. Because, F'/U is non-singular,
U/V is the singular submodule of the finitely presented module ¥'/V. By
¢), F/U = (F/V)/(U/V) is projective. O

COROLLARY 4.2. The following are equivalent for a right non-singular
ring R with finite right Goldie-dimension:

a) R is a right Noetherian, right hereditary ring which satisfies
the restricted right minimum condition such that Q" is a perfect left lo-
calization of R.

b) M is pure projective if and only if M /Z(M) is projective and
Z(M) 1s a direct summand of a direct sum of finitely generated Artinian
modules.

PRrOOF. a) = b): Since R has the restricted minimum condition, every
finitely generated singular right module is Artinian.

b) = a): Let I be an essential right ideal of . Since R has finite right
Goldie-dimension, I contains a finitely generated essential right ideal J.
By c), the finitely presented module R /J is a direct summand of a (finite)
direct sum of finitely generated Artinian modules. But this is only pos-
sible if B/J is Artinian. But then, R/ is Artinian too. Arguing as in the
proof of Proposition 4.1, we obtain that R is a right strongly non-singular,
right hereditary. O

By [8, Proposition 5.27], a right hereditary, right Noetherian ring which
is the product of prime rings and rings Morita equivalent to lower trian-
gular matrix rings over a division algebra is right strongly non-singular
and has the restricted right minimum condition, i.e. B/I is Artinian for
every essential right ideal I of R.

Let U be a subset of @, and set (R: U), ={q€ Q" | UgCR} and
R:U)y={q€Q |qUCR}.

THEOREM 4.3. The following are equivalent for a ring R:
a) R is a right Noetherian right hereditary ring satisfying the
restricted right minimum condition such that Q" is a perfect left locali-
zation of R.
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b) R is a left Noetherian left heveditary ring satisfying the re-
stricted left minimum condition such that Q' is a perfect right localization
of R.

c) R is a right and left Noetherian, hereditary, vight and left
Utumi-ring.

d) R=R; x...x R, whereeach R; is either a prime right and left
Noetherian hereditary ring or Morita equivalent to a lower triangular
matric ring over a division algebra.

PROOF. a) = ¢): By[3, Theorem 4.2], Q" = Q' is a semi-simple Artinian
ring, and R is right and left Utumi. Furthermore, R is left semi-hereditary
by [3, Theorem 5.2]. It remains to show that R is left Noetherian.

Suppose that R contains a left ideal I which is not finitely gen-
erated. Without loss of generality, we may assume that [ is essential
in R. Since Q" = Q' is semi-simple Artinian, R has finite left Goldie-
dimension [11, Theorem XII.2.5], and I contains a finitely generated
essential left ideal Jy. Since I is not finitely generated, we can find an
ascending chain J,C ... C J, C ... of finitely generated essential left
ideals inside I with J,, # J,.1 for all =n.

Since Q" is an injective left R-module being the maximal left ring of
quotients of R, every map ¢:J; — Q" is right multiplication by some
q € Q", which is uniquely determined by ¢ since J; is essential.
Therefore, we can identify Homg(J;, R) and J; = (R : J;),. Moreover,
Ji is a finitely generated projective right R-module because J; is
projective since R is left semi-hereditary. Furthermore, J;* = (R : J}),
satisfies J;* =J;. To see this, observe that J; C J;* by definition.
Conversely, J; has a finite projective basis since it is finitely generated
and projective. There are ay,...,a; € J; and q1,...,q; € J; such that
Y =¥Yq101 + ... +yqra; for all y € J;. Since Q" also is the maximal left
ring of quotients of R, it is non-singular as a left R-module. Because J;
is an essential left ideal, 1 = q1a1 + ... + qrap. If 2 € J*, then 2q; € R,
and z = (qu)a1 —+ ... (zqk)ak S J7

We obtain a descending chain J; O ... 2 J; O ... O B* = R of finitely
generated submodules of Q. Since Q"/R is singular, J;/R is a finitely
generated singular right R-module. By the restricted right minimum
condition for R, J;/R is Artinian. Consequently, there is m with
J;, =, .1, from which one obtains J;, = Jy41.

¢) = d): By [3, Theorem 5.2], the classes of torsion-free, non-singular
and flat right R-modules coincide. Because of [3, Theorem 5.5], R has the
desired form.
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d) = a): By [3, Theorem 5.5], R is a right and left Noetherian heredi-
tary ring for which the classes of torsion-free, flat and non-singular mod-
ules coincide. Thus, Q" is a perfect left localization of R by [3, Theorem 5.2].
Finally, R satisfies the restricted right minimum condition by [5].

Since condition c¢) is right-left symmetric, the equivalence of a) and b)
follows immediately. O

A submodule U of the right R-module Q" is right invertible if there
exist uy,...,u, € U and qq,...,q, € R :U), with uiq1 +...%,q, =1
[11, Chapters ii.4 and IX.5]. Over an integral domain R, a right in-
vertible module U has the additional property that U(R : U), = R which
may fail in the non-commutative setting:

ExAMPLE 4.4. There exists a right and left Artinian, hereditary ring R
such that Q" is a perfect right and left localization of R, which contains an
essential right ideal I with (R : I), = Q" and (R : I),I = I. Moreover, there
exist ry,79,81,82 € I and q1, g2, p1,p2 € (R : I), satisfying 1 = r1p; + repe =
=51q1 +S2q2 such that »ip;,repe € B, but s1q1,s2q2 ¢ R. Thus,
IR:I), ZR.

PrRoOOF. Let F be afield of characteristic different from 2, and R be the
lower triangular matrix ring over F'. Clearly, R is a right and left Artinian
ring. According to [8, Theorem 4.7], R is a right hereditary ring, which is
also left hereditary by [5, Corollary 8.18]. Finally, by [8, Proposition 2.28
and Theorem 2.30], the maximal right and left ring of quotients of R is
(1 0 and
00 F 0 R _ 00 .

e = <0 1>.Letl =7 o , atwo-sided ideal of R which is essential as

a right ideal because (a 0) <0 0) = (2 0) for all @, b, ¢ € F. Since

Q = Maty(F). Inside R, we consider the idempotents e; =

b ¢ 10 0
I=Qe,wehave (R:I),=Q" and (R :I),l = 1.

Finally, consider the elements s; = (_11 8) and s = (} 8)

1 _1 1 1
of I and ¢; = <2 2) and ¢z = (2 2) of Q. It is easy to see
c 0 c 0
that s1q1,82q2 ¢ R although s1q1 + 522 =1. On the other hand,
. 0 0 01 .
setting m=p1=e €1, 1= (1 0) el, and py = <0 0> yields

r1p1,72p2 € B and ripr +repe = 1. O
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In view of the previous example, we define a submodule U of @} to
be strongly invertible if there is a submodule M of Q" such that
MU =UM =R.

LEmMa 4.5. Let R be a right and left non-singular, right and left
Utumi-ring with maximal right and left ring of quotients Q. A submodule
U of Q" is strongly invertible if and only if it satisfies the following con-
ditions:

i) U is also a submodule of pQ.
il) Ug s a finitely generated projective generator of Mg.
iii) rU 1s a finitely generated projective generator of g M.

ProoF. Suppose that U is strongly invertible, and choose a
submodule X of Q" with XU = UX = R. Then, XCR : U),N(R : U),
and (R:U),U=R=UR:U),. Moreover, RU =(UX)U = UXU) =
= UR = U yields that U is a submodule of zQ" too. By symmetry, X
is also a submodule of Q. Because of this, (R:U), and (% :U),
are submodules of both Q% and Q" too. Therefore, UR:U), =
=UR:-UR=UR:U)UR:U),=UR:U).=R. By symmetry,
R:U),U=R.

By what has been shown in the last paragraph, we can write
1=wqi+...+upq, with 2uy,...,u, € U and q1,...,q, € (R: U),. Let
¢; : U — R be left multiplication by g;. As in [11, Proposition I1X.5.2], the
set {(u1,¢y), ..., (un, ¢,)} is a projective basis for U. Select vy,..., v, € U
and py,...,pm € R : U), with 1 = pyv; + ... + ppVp. Define y : U™ — R
by y(x1, ..., xn) = 2% pix;. Then, y is onto, and U™ =R d W,ie. Uis a
generator of Mp. By symmetry, pU is a finitely generated projective
generator of p M.

Conversely, assume that U satisfies the three conditions. Observe
that (R : U), and (R : U), are submodules of both Q} and rQ". Since it
is a projective generator of Mg, there is £ < w such that U = R W.
Let n: U’ — R be a projection with kernel W, and 6; : U — U* be the
embedding into the j%-coordinate. The map nd; : U — R is left multi-
plication by some ¢; € Q" since Q" is a right self-injective ring. Clearly,
since 7 is onto, there are wui,...,u, € U with qrus + ...+ quup, = 1.
Since ¢1,...,q. € R:U),, we have (R:U),U =R. By symmetry,
UU:R),=R. Now, UR:U),=UR:U)U®R:U),=R yields
R:U)yC@R:U),. In the same way, (R:U),={R:U),, and U is
strongly invertible. O
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ProposiTION 4.6.  Let R be a right and left non-singular, right and left
Utumi-ring. If I is a two-sided ideal of R such that rI and I are finitely
generated projective generators of pM and Mp respectively, then R/I is
projective with respect to all RD-exact sequences.

Proor. The proof of [7, Lemmas 1.7.2 and 1.7.4] can be adapted to
show that R/I is projective with respect to all RD-exact sequences of
R-modules provided there are 7,...,7, € R and ¢q1,...,q, € (R: 1),
such that r1q1 + ...+ 79, =1 and ™q1,...,7q, € R. However, this is
guaranteed by Lemma 4.5. O

Finally, the lattice of finitely generated right ideals over right strongly
nonsingular, hereditary right and left Noetherian rings may not be dis-
tributive:

ExXAMPLE 4.7. There exists a right strongly non-singular, hereditary,
right and left Noetherian ring R for which the lattice of right ideals is not
distributive.

Proor. Let R be the ring considered in Example 4.4, whose notation
will be used in the following. Consider the right ideals J = ;R = < (g 8 )

0 0 10 0 0
andKzegR:(Q Q).If[:<1 0)(8 Q):{(Z O)aeF},
then/NJ =INK=0,whileINn(/ +K)=1. O
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