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On the Torsion of Brieskorn Modules
of Homogeneous Polynomials.

KHURRAM SHABBIR (*)

ABSTRACT - Let f € C[Xy,...,X,] be a homogeneous polynomial and B(f) be the
corresponding Brieskorn module. We describe the torsion of the Brieskorn
module B(f) for n = 2 and show that any torsion element has order 1. For n > 2,
we find some examples in which the torsion order is strictly greater than 1.

1. The Milnor algebra and the Brieskorn module.
Letf € R = Clay, ..., ,] be a homogeneous polynomial of degree d > 1.

Then the Koszul complex of the partial derivatives f; = . j=1..,nink

can be identified to the complex 0xj
1.1) 0—Q? DN Qu N YN gt YN gn L,

where @' denotes the regular differential forms of degree j on C".

Let Jr be the Jacobian ideal spanned by the partial derivatives f},
Jj=1,..,n,in R and M(f) = R/J; be the Milnor algebra of f. One has the
following obvious isomorphism of graded vector spaces

Qn
1.2 M -N) = ———.
(1.2) (HN(—mn) N
Here, for any graded C[{]-module M, the shifted module M(m) is defined
by setting M(m);, = M, for all s € 7.

We define the (algebraic) Brieskorn module as the quotient
Qn
1.3 B(f)y—_ =
( ) (f) df A d(‘anZ)
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in analogy with the (analytic) local situation considered in [3], see also [11],
as well as the submodule

df A anl

(1~4) C(f) == W .

These modules are modules over the ring C[¢] and the multiplication by # is
given by multiplying by the polynomial f. Sometimes B(f) is denoted by G(O)
and C(f) by Gy, see [2], [6].

One has the followmg basic relation between the Milnor algebra and the
Brieskorn module, see [7], Prop. 1.6.

ProposITION 1.1.
df NQ" P =df Ad(Q7H + f- Q"
In particular
B(N)/ f.B(f) = M(f)(—n).

Let B(f)iors be the submodule of §[t]—torsion elements in B(f) and
define the reduced Brieskorn module B(f) = B(f)/B(f)tors-

REMARK 1.2. The reduced Brieskorn module B(f) is known to be a
free C[t]-module of rank b, 1(F), where F = {x € C"| f(x) =1} is the
affine Milnor fiber of f. Indeed, it follows from the section (1.8) in [7] that
one has a canonical isomorphism $j:07d_1§( Pydri = H"Y(F,C) for any
q > n. If we assume the C[t]-basis of B(f) to be formed by homogeneous
elements (which is always possible), each basis element will contribute by 1
to the dimension of @j:()‘d—lg( fqayj for g large enough.

Moreover, it exists an integer N > 0 such that tNB( Fiors = 0, see [7],
Remark 1.7. The least N satisfying this condition is called the torsion order
of f and is denoted by N(f).

REMARK 1.3. As noted in [7], Remark 1.7, there is a slight difference
between the Brieskorn module defined above and the Brieskorn module
considered by Barlet and Saito in [1]. In fact, the latter one is defined to be
the n-th cohomology group H"(A;), where A =Xker (dfA: Q@ — @ 1yand
the differential dy : A] - A] "1 is induced by the exterior differential
d:Q — Qi1 Since df A d(Q" ¢ dy (.A" 1), one has an epimorphism

B(f) — H"(Ap),
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(note that the direction of this arrow is misstated in [7], Remark 1.7).
Moreover, when n = 2, it follows from Proposition 3.7 in [1] that HZ(A;)
is torsion-free. Our results in section 2 show that the torsion module
B(f)tors can even be not of finite type in this setting, and hence the above
epimorphism is far away from an isomorphism in general.

DEFINITION 1.4. For b € B(f), we say that bis t-torsion of order k;, > 1if
th.b=0andth-1.b#£0.

It is clear that such a torsion order k; divides the torsion order N(f) of
f,since tN) . p = 0 and that N(f) is the G.C.D. of all the t-torsion orders k;
for b € B(f) a torsion element.

1.5. The case of an isolated singularity.

Assume that f € Clay, ...,x,] is a homogeneous polynomial having an
isolated singularity at the origin of C”. Then the dimension of the Milnor
algebra M(f) (as a C-vector space) is the Milnor number of f at the origin,
denoted by u(f). One has in this case u(f) = b,_1(F), see for instance [5]. In
this case, the structure of the module B(f) is as simple as possible.

ProposITION 1.6.  The Clt]-module B( f) is free of rank u( f).

Proor. Indeed, a homogeneous polynomial f having an isolated sin-
gularity at the origin induces a tame mapping f : C"* — C, to which the
results in [6], [12] and [13] apply. Indeed, the Gauss-Manin system Gy of f,
which is an A; = C[t](d)-module, contains a C[t]-submodule Gj@, which is
known to be free of finite type for a tame polynomial, see for instance Re-
mark 3.3 in [6]. As we have already mentionned above, G}m = B(f). O

COROLLARY 1.7. There is an isomorphism
B(f)(n) = M(f) @c C[t]

of graded modules over the graded ring C[t]. In particular, one has, at the
level of the associated Poincaré series, the following equality.

tn . (1 _ tdfl)’ﬂ
Ppn@t)=P t) - =
B(f)( ) M(f)( ) 1—¢ 1-— t)n+1

ExaMPLE 1.8. Forn = 3, take f(x,y,2) = * + y° + 2°. Then a C-basis
of M(f) is given by 1,x,¥,z, xy, yz,xz, xyz. The same 8 monomials form a
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basis of B(f) as a free C[t]-module. In this case
1 -2

iy =+ 4" + 70 + 86 + 8T+ 8° 4 - - .

Ppp(t) =

CoROLLARY 1.9. The C[t]-module B(f) is torsion free if and only if 0
1s an isolated singularity of the homogeneous polynomial f.

Proor. If 0 is not an isolated singularity, then the Milnor algebra
M(f) is an infinite dimensional C-vector space. The isomorphism in
Proposition 1.1 implies that in this case B(f) is not finitely generated
over C[t]. By Remark 1.2, it follows that the canonical projection

B(f) — B(f)

is not an isomorphism, hence B(f);ys # 0. O

Proposition 1.1 implies that f - B(f) = C(f), which in turn yields the
following.

COROLLARY 1.10. Assume that 0 is not an isolated singularity of the
homogeneous polynomial f. Then N(f) = 1if and only if the C[t]-module
C(f) is torsion free.

ProoF. Let b € B(f)ios be a non-zero element, which exists by our
assumption. By Remark 1.2, it follows that b is ¢-torsion, say of order k. If
k > 1, then

0=t"b=1"1.@b).

By Proposition 1.1, we know that t - b € C(f). If C(f) is torsion free, we get
thatt-b =01in C(f),i.e. t- b = 0in B(f), a contradiction. Hence k = 1 for
any b € B(f)rs, in other words N(f) = 1. O

2. The case n = 2.

In this section we suppose that f € C[x, y]is a homogeneous polynomial
of degree d > 1, which is not the power ¢g" of some other polynomial
g € Cla,y] for some r > 1. This condition is equivalent to asking the Mil-
nor fiber F of f to be connected and such polynomials are sometimes called
primitive. For more on this, see [8], final Remark, part (I).
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ProrosiTiON 2.1.  The submodule C( f) is a free C[t]-module of rank
bi(F).

Proor. The fact the C(f)is torsion free follows from Proposition 7. (42)
in [2]. Indeed, it is shown there that the localization morphism

0:C(f) — C(f) @c Clt, 7]

is injective, which is clearly equivalent to the fact that there are no t-torsion
elements.

For the second claim, note that the composition of the inclusion
C(f) — B(f) and the canonical projection B(f) — B(f) gives rise to an
embedding of C(f) into B(f) whose image is exactly ¢ - B(f) (use again
Proposition 1.1 and the fact that C(f) is torsion free). Since C[t] is a
principal ideal domain, the claim follows from the structure theorem of
submodules of free modules of finite rank over such rings. O

Corollary 1.10 implies the following:

COROLLARY 2.2. If f € Clx,y] is a homogeneous polynomial with a
non-isolated singularity at the origin, then N(f) = 1.

The above Corollary can be restated by saying that
0= B(iars = B(f) = C(f) = 0

is an exact sequence of graded C[{]-modules. We get thus an isomorphism
of graded C[t]-modules

B(f)(—d) =~ C(f).

ExampLE 2.3. Let f = aPy? with (p,q) = 1. In order to compute the
torsion of the Brieskorn module B(f), we start by finding C-vector space

monomial bases for % ~ M(f) (up-to a shift in gradings) and C(f). Note

that the Jacobian ideal is given by
Jp = (P~ lyt Pyt = a7ty wy).
B() S

~ — is an infinite dimensional C-vector space with a
on= T b
monomial basis given by %’ with a <p—2 or b<q—2 or (a,b) =

=@p@-1q9-D.

It follows that
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We have to compute df A dQ° = {df Adg}, where g is a polynomial
function on C2. Since we are working with homogeneous polynomials, it is
enough to work with one monomial, say (x%°), at a time. We have

df A d@y®) = (pb — qa)e® P 1y dx A dy.
Since
Jr- @ aPlyt N, y)
df Ad@° df Ad@°

C(f) = )
a system of generators of the C-vector space C(f) is given by the classes of
the elements w € 219971 (x, )%, which do not belong to df A d2°. To find
them, it is enough to look at monomial differential forms i.e. %y dx A dy
witha >p—1,>q—1landoa+f>p+q—1.
So,ifa+p—-1=0a,b+q—1=pfand pb— qa # 0, then
%.ayb

= a*yf
ded(pb—aq) x*y’de A dy.

Hence, the only elements a*y’dx A dy which are not in df AdQ° are
x®P-lyb+a=1de A dy, where pb = qa, i.e. a = kp, b = kq for some k > 0. It
follows that C(f), as a C-vector space, has a basis given by a*+Dp—1yk+Dg-1
where k > 0, which can be written as

C(f) = C[t] - «® Ly da A dy

i.e. C(f)is a free C[t]-module of rank 1.

Moreover, the corresponding monomial basis as a C-vector space for
the Brieskorn module B(f) is given by x%y’dx A dy with a < p —2 or
b<qg—2ora=(+1p—1,b=(k+1)q—1 for some k > 0.

With respect to this basis, B(f)irs is the linear span of x%y’dax A dy with
a<p-—2orb<q-—2 Indeed our computation above shows that

df Ad@* Yy = (b +1) —qa+1D)f-w

i.e. tw = 0 if the coefficient p(b + 1) — g(a + 1) is non-zero.
It follows that

B(f) = C[t] - [aP Yy dac A dy],

a free C[t]-module of rank 1.
It remains to explain why b; (#') = 1, where F' = {(x,y) € CZ: byt = 1}.
Consider the covering
N R

where ¢ maps (x,y) to .
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Now a covering yields an exact sequence (see for instance [10], page 376),
4 « , ,
0= m(F, (0, y0)) = m (T, @0) — mo(Zg, (0, Y0)) = Zg — 0.
Hence 7;(F) ~ 7., which shows that the first Betti number b;(F") is 1.

3. Eigenvalues of the monodromy and torsion of Brieskorn modules.

Any homogeneous polynomial f € Clxy, ..., 2,] induces a locally trivial
fibration f : C" \ f ~1(0) — C*, with fiber F' and semisimple monodromy

operators
Tf : H*(F,C) — H'(F,C)

fork =0,...,n — 1. The eigenvalues of 7' are d-roots of unity, where d is the
degree of f, and for each such eigenvalue 4 we denote by H*(F',C); the
corresponding eigenspace.

According to [7], see the discussion just before Remark 1.9, one has for
q < m an inclusion

"9 B(f)ga—j — B(fua—j
and, for ¢ > n, an identification

B(f)ga-j =H"'(F,0),

2mjv/ —1
d

and note that [w,] € B(f )qa—; for some q if and only if n — j is divisible by d.
This yields the following, see [7], Corollary 1.10.

2mny/—1

d
lue of the monodromy operator Ty acting on HY(F,C). Then [w,] is a
non-zero torsion element in B(f).

where 1 = exp ,withj=0,1,....d — 1. Let w, = da; A ... ANdx,

COROLLARY 3.1. Assume that 1 = exp 18 mot an eigenva-

Here are some examples of torsion elements in B(f) obtained using this
approach, and having torsion order N(f) > 1.

ExAMPLE 3.2. Let f =a® + %2, n=3, d=3, j=0 (this defines a
cuspidal cubic curve C in P?). In this case 4 =1 is not an eigenvalue of
the monodromy acting on HZ2(F,C). Indeed, one has H2(F,C), =
=H*(U,C)=0. Here U = PZ\C and the last vanishing comes from
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the following obvious equalities: bo(U) =1, b(U)=0 and y(U)=
= 7(P*) — () =3 -2 =1 as C is homeomorphic to a sphere SZ2.

Forw = dx A dy A dz, to find the value of k such that t* - [w] = 0in B(f)
is equivalent to saying that f* - w € df A dQ'. We have to check for which
value of k, we have solutions of the equation:

P P
frw= [390%%—%) +2yz<a——@) +y2<@—8—)}d9¢/\dy/\dz,

oz Ox ox Oy
where P, Q, R € Clx,y, 2] are homogeneous polynomials of degree 3k — 1.

For k =1, we get a system of non-homogeneous linear equations in
which we have 15 unknowns and 9 equations. Then using the software
Mat Lab we compute the rank of the matrix corresponding to the
homogeneous system (containing 9 rows and 15 columns) and get 8. On
other hand, the rank of the matrix associated to the non-homogeneous
system (containing 9 rows and 16 columns) is 9, which show that this
system has no solution.

For k = 2, we get another system of non-homogeneous linear equations
containing 60 unknowns and 26 equations. Then using Mat Lab we com-
pute the rank of the matrix corresponding to the homogeneous system
(containing 26 rows and 60 columns) and get 26. This time the corre-
sponding non-homogeneous system matrix (containing 26 rows and 61
columns) has also rank 26, which shows that this system of equations has a

2
solution. An explicit solution for k =2, is P = 3g(acgyz), Q = xy?2% and
1

R = g(ac“y). Hence [w] has t-torsion order 2 in B(f).

The next example shows somehow what happens when H" " 1(F, ), # 0.

ExampPLE 3.3. Let f =ua%® +ax2° + 2%, where n =3, d =4 and
j = 3. The corresponding curve C: f = 0 in P has two cusps as singula-
rities. It follows from the study of the plane quartic curves, see [5], p. 130,
that 7;(U) = 74 and hence H'(F,C) = 0.

Next y(U) = ){(Pz) —x(C)=3—-2—2-3+2-2) = 3. The zeta-function
of the monodromy operator 7 looks like

det(t-Id — T9) - det (¢ - Id — Tf) = (t* — 1)°

see for instance [5], p. 108. Hence we can not apply Corollary 3.1 to this
polynomial to infer that [w] = [ws] is a torsion element in B(f).
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However, we can try to find values of &, for which we have solutions of
the equation:

o= | o 1 (OB _0Q
f.w_l(ny +z)<ay 8z>

OP OR 0Q oP
2 3\ (0L Okv 2 2\ (O0& O
+ (2 y—i—z)(az a%>—|—(3acz +3yz)<8x 8y> w

where P,Q,R € Clx,y,z] are homogeneous polynomials of degree
4k — 2.

For k=1 and k = 2 a similar computation of matrix ranks as above
shows that the corresponding systems have no solution. Hence [w] is
either a non-torsion element, or it has ¢-torsion order greater or equal
to 3 in B(f).

REMARK 3.4. Note that in both examples above the element ¢ - [w] is a
non-zero torsion element in C(f). Hence Proposition 2.1 fails for n > 2. It
also shows that in these cases the module C(f) is not torsion free, compare
to Corollary 1.10.

The last example shows that even for rather complicated examples
(here the zero set of f is a surface S with non-isolated singularities) one
may still have 1 as the t-torsion order of [w,,].

REMARK 35. Let f=a’2+9y>+ayt, n=4,d=3,j=1 be the
equation of a cubic surface S in P®. It follows from [4], Example 4.3, that
H3(F,C) = 0. Hence we can apply Corollary 3.1 to this polynomial to infer
that [w] = [w4] is a torsion element in B(f).

We have to check for which values of k, we have solutions of the
equation:

oS oT oU 0Q OR 0oU
k _ oS ol 9 B -
o (zmwt)(at 32+8y>+(3y ”t)( ot "o ax)
oP OR oT oP 9Q oS
2 _on b or 0Q 0I5
+x <_6t 8y+8x)+xy<az dy ax)]dx/\dy/\dz/\dt,

where P,Q,R,S,T,U € Clx,y,z,t] are homogeneous polynomials of de-
gree 3k — 1.

For k=1, we get a system of non-homogeneous linear equations in
which we have 42 unknowns and 15 equations. Using MatLab we compute
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the rank of the corresponding homogeneous system (containing 15 rows
and 42 columns) and get 14. And the rank of non-homogeneous system
(containing 15 rows and 43 columns) has the same rank 14, which show that
this system has a solution.

Hence ¢ - [w] = 0 in B(f).
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