Hölder Type Estimates for the $\overline{\partial}$ -Equation in Strongly Pseudoconvex Domains.

HEUNGJU AHN (*) - HONG RAE CHO (**) - JONG-DO PARK (***)

ABSTRACT - In this paper we generalize the Hölder space with a majorant function, define its order, and prove the existence and regularity for the solutions of the Cauchy-Riemann equation in the generalized Hölder space over a bounded strongly pseudoconvex domain.

1. Introduction and regular majorant.

If D is a bounded domain in \mathbb{C}^n , the Hölder space of order α , $\Lambda_{\alpha}(D)$ $(0 < \alpha < 1)$, is defined as the set of all functions g on D which satisfy for a constant $C = C_g > 0$ the condition

$$|g(z)-g(\zeta)|\leq C|z-\zeta|^\alpha,\quad z,\zeta\in D.$$

We first generalize this Hölder space following Dyakonov [Dya97] (also see Pavlović's book [Pav04]). For this purpose we introduce the notion of a *regular majorant*. Let ω be a continuous increasing function on $[0, \infty)$. We assume $\omega(0) = 0$, and suppose that $\omega(t)/t$ is non-increasing

(*) Indirizzo dell'A.: Nims 3F Tower Koreana, 628 Daeduk-Boulevard, Yuseonggu, Daejeon 305-340, South Korea.

E-mail: heungju@nims.re.kr

(**) Indirizzo dell'A.: Department of Mathematics, Pusan National University, Geumjeong-gu, Busan 609-735 Korea.

E-mail: chohr@pusan.ac.kr

(***) Indirizzo dell'A.: Department of Mathematics, Pohang University of Science and Technology San 31, Hyoja-dong, Namgu, Pohang, Kyungbuk 790-784, Korea.

E-mail: jongdopark@gmail.com

Partially supported by Korea Research Foundation Grant 2005-070-C00007. 2000 Mathematics Subject Classification: Primary 32A26, 32W05.

and satisfies the inequality

$$(1.1) \qquad \int\limits_0^\delta \frac{\omega(t)}{t} \, dt + \delta \int\limits_\delta^\infty \frac{\omega(t)}{t^2} \, dt \leq C \omega(\delta), \quad \text{for any} \quad 0 < \delta < 1,$$

for a suitable constant $C=C(\omega)$. Such a function ω is called a regular majorant. Given a regular majorant ω , the Hölder type space, $\Lambda(\omega,D)$ is defined as the family of all functions g on D such that

$$(1.2) |g(z) - g(\zeta)| \le C\omega(|z - \zeta|), \quad z, \zeta \in D.$$

The norm $\|g\|_{\omega}$ of $g \in \Lambda(\omega,D)$ is given by $C_g + \|g\|_{\infty}$, where $C_g \geq 0$ is the smallest constant satisfying (1.2) and $\|g\|_{\infty}$ is the L^{∞} norm in D. Note that with this norm $\Lambda(\omega,D)$ is a Banach space and $\Lambda(\omega,D) \subset L^{\infty}(D)$ (see the chapter 10 of Pavlović's book [Pav04]). We denote by $\Lambda_q(\omega,D)$ the set of the differential forms of type (0,q) whose coefficients are in $\Lambda(\omega,D)$. We define the order of a regular majorant as follows:

DEFINITION 1.1. We say that a regular majorant ω has order α (0 < α < 1) if there exist an α and a positive real number t_0 such that

$$egin{aligned} & lpha = \sup igg\{ \gamma : rac{\omega(t)}{t^{\gamma}} \ ext{is increasing} \ orall t, \ 0 < t < t_0 igg\} \ & = \inf igg\{ \gamma : rac{\omega(t)}{t^{\gamma}} \ ext{is decreasing} \ orall t, \ 0 < t < t_0 igg\}. \end{aligned}$$

If a regular majorant ω has $order\ \alpha$, then we let $\omega = \omega_{\alpha}$ and call $\Lambda(\omega_{\alpha}, D)$ the Hölder type space of order α . By definition of the order of a regular majorant, it is uniquely determined, if it exists. Now we state our main result of this paper.

THEOREM 1.2. Let $D \subset\subset \mathbb{C}^n$ $(n \geq 2)$ be a strongly pseudoconvex domain with C^4 -boundary and $0 < \alpha < 1/2$. If a regular majorant ω_{α} has order α and $f \in \Lambda_q(\omega_{\alpha}, D)$ with $\overline{\partial} f = 0$ $(1 \leq q \leq n)$, then there is a solution $u \in \Lambda_{(q-1)}(t^{1/2}\omega_{\alpha}, D)$ of $\overline{\partial} u = f$ such that for some constant $C = C(\omega_{\alpha})$

$$||u||_{t^{1/2}\omega_{\tau}} \le C||f||_{\omega_{\tau}}.$$

The above inequality (1.3) generalizes the estimate by Henkin-Romanov [RH71] and Lieb-Range [LR80]

$$||u||_{t^{\alpha+1/2}} \le C||f||_{t^{\alpha}}.$$

For the proof of the Hölder type estimate (1.3), we need a variant of the Hardy-Littlewood Lemma [HL84].

LEMMA 1.3. Let $D \subset\subset \mathbb{R}^n$ be a bounded domain with C^1 -boundary. If g is a $C^1(D)$ -function and ω_{γ} is a regular majorant of order γ , $0 < \gamma < 1$ such that for some constant c_g depending on g,

$$|dg(x)| \le c_g \frac{\omega_{\gamma}(|\rho(x)|)}{|\rho(x)|}, \quad x \in D,$$

then we have

$$|g(x) - g(y)| \le c_g \omega_{\gamma}(|x - y|).$$

As convention we use the notation $A \lesssim B$ or $A \gtrsim B$ if there are constants c_1, c_2 , independent of the quantities under consideration, satisfying $A \leq c_1 B$ and $A \geq c_2 B$, respectively.

Before proving our theorem, we discuss some properties of a regular majorant and some examples.

EXAMPLE 1.4. (i) The most typical example is a function $\omega(t) = t^{\alpha}$ (0 < α < 1). Clearly, ω is a regular majorant and has order α .

- (ii) A non-trivial example is the function, $\omega(t) = t^{\alpha} |\log t|^{\beta}$ on $[0,t_0]$ extended continuously for $t > t_0$ to be a regular majorant. Here $0 < \alpha < 1$, $-\infty < \beta < \infty$ and t_0 must be chosen sufficiently small so that the function ω should be a regular majorant (t_0 depends on α, β). Since $\lim_{t \searrow 0} t^{\epsilon} |\log t|^{\beta} = 0$ for any $\epsilon > 0$, it follows that $\omega(t) = t^{\alpha} |\log t|^{\beta}$ has order α for any choice of β .
- (iii) Define the function $m(t) = 1/|\log t|^{\beta}$, $\beta > 0$ for $0 < t < t_0$ and m(0) = 0. Then m(t) is continuous and increasing near 0, but it is not a regular majorant.

We end this section by describing useful properties of a regular majorant.

REMARK 1.5. (i) If ω , m are two regular majorants and have orders α , β respectively with $(0 < \alpha < \beta < 1)$, then letting ω_{α} , m_{β} , there exist $t_0 > 0$ and c such that $m_{\beta}(t) \leq c\omega_{\alpha}(t)$, $0 \leq t \leq t_0$. Hence we have the inclusion $\Lambda(m_{\beta}, D) \subset \Lambda(\omega_{\alpha}, D)$. Note that if two regular majorants, ω , m have the same order α , then generally there is no inclusion relation between $\Lambda(\omega, D)$ and $\Lambda(m, D)$.

(ii) In our Theorem 1.2, for a general regular majorant of order 1/2, the

estimate $\|u\|_{\omega_{1/2}} \lesssim \|f\|_{\infty}$ does not hold. In fact, the celebrated Henkin's theorem [RH71] holds only for the special regular majorant $\omega_{1/2}(t) = |t|^{1/2}$ and this number 1/2 is the sharp bound [Ran86]. But there is a regular majorant $m_{1/2}(t) = |t|^{1/2} |\log t|$ near the origin of order 1/2, which is strictly bigger than $|t|^{1/2}$.

REMARK 1.6. Let ω be a regular majorant of order α ($0 < \alpha < 1/2$), say $\omega = \omega_{\alpha}$. Then $t^{1/2}\omega_{\alpha}$ is also a regular majorant of order ($\alpha + 1/2$). In fact, $t^{1/2}\omega_{\alpha}$ is increasing and $(t^{1/2}\omega_{\alpha})/t$ is non-increasing, since ω_{α}/t , $\gamma > \alpha$ is decreasing. Here we use the fact that ω_{α} has order α . It remains to show that $t^{1/2}\omega_{\alpha}$ also satisfies (1.1). Since $(t^{1/2}\omega_{\alpha})/t$ is non-increasing, we have for any δ , ($0 < \delta < 1$),

(1.4)
$$\int_{0}^{\delta} \frac{s^{1/2}\omega_{\alpha}(s)}{s} ds \lesssim \delta^{1/2} \int_{0}^{\delta} \frac{\omega_{\alpha}(s)}{s} ds \lesssim \delta^{1/2}\omega_{\alpha}(\delta).$$

On the other hand, for a given $0 < \alpha < 1/2$, we can choose a sufficiently small ε such that $\alpha < 1/2 - \varepsilon$. It follows from the order of ω_{α} that $\omega_{\alpha}/t^{(1/2-\varepsilon)}$ is decreasing. Hence we obtain

$$\delta \int_{\delta}^{\infty} \frac{s^{1/2}\omega_{\alpha}(s)}{s^{2}} ds = \delta \int_{\delta}^{\infty} \frac{\omega_{\alpha}(s)}{s^{1/2-\varepsilon}} \frac{1}{s^{1+\varepsilon}} ds$$

$$\lesssim \delta \cdot \frac{\omega_{\alpha}(\delta)}{\delta^{1/2-\varepsilon}} \int_{s}^{\infty} \frac{1}{s^{1+\varepsilon}} ds \lesssim \delta^{1/2}\omega_{\alpha}(\delta).$$

By (1.4) and (1.5), $t^{1/2}\omega_{\alpha}$ is a regular majorant of order ($\alpha+1/2$).

Acknowledgments. The authors are grateful to the referee for several valuable suggestions.

2. Henkin's solution operator of the $\bar{\partial}\text{-equation.}$

In this section, we introduce the Henkin's solution operator [HL84] of the $\bar{\partial}$ -equation and prove the integral estimates for the solution operator in a strongly pseudoconvex domain in \mathbb{C}^n . Let D be defined by a function ρ , i.e., $D=\{z\in\mathbb{C}^n: \rho(z)<0\}$, where $\rho\in C^4$ and $\nabla\rho\neq 0$ on bD.

To construct the integral formula for solutions of the $\overline{\partial}$ -equation in a strongly pseudoconvex domain, we need a support function (see [HL84]). For

the global support function, we follow Fornaess construction [For76]. He showed that there exist a neighborhood U of \overline{D} and a function $\phi(\cdot,\cdot)\in C^3(U\times U)$ such that for all $\zeta\in U,\,\phi(\zeta,\cdot)$ is holomorphic in U and $\phi(\zeta,z)=\langle \Phi,\zeta-z\rangle,\,$ where we define $\Phi=\Phi(\zeta,z)=(\phi_1(\zeta,z),\ldots,\phi_n(\zeta,z))$ and $\langle \Phi,\zeta-z\rangle=\sum\limits_{j=1}^n\phi_j(\zeta,z)(\zeta_j-z_j).$ In [For76], Fornaess also showed that $\phi_j\in C^3(U\times U)$ is holomorphic in z and there is a constant c such that for all $z\in\overline{D}$ and $\zeta\in D$ we have

(2.6)
$$2\operatorname{Re}\phi(\zeta,z) \ge \rho(\zeta) - \rho(z) + c|\zeta - z|^2$$

and $d_{\zeta}\phi(\zeta,z)|_{z=\zeta}=\partial\rho(\zeta)$. Suppose that $f\in \varLambda_q(\omega_\alpha,D)$ $(1\leq q\leq n)$ and $\overline{\partial}f=0$. Then f is uniformly continuous in D. Using the above global support function ϕ , we define Henkin kernel $H(\zeta,z)$ as follows:

$$H(\zeta,z) = \frac{1}{(2\pi i)^n} \frac{\langle \bar{\zeta} - \bar{z}, d\zeta \rangle}{|\zeta - z|^2} \wedge \frac{\langle \Phi, d\zeta \rangle}{\langle \Phi, \zeta - z \rangle} \wedge \sum_{k+\ell=n-2} \left(\frac{\langle \bar{\zeta} - \bar{z}, d\zeta \rangle}{|\zeta - z|^2} \right)^k \wedge \left(\frac{\langle \bar{\partial}_{\zeta,z} \Phi, d\zeta \rangle}{|\zeta - z|^2} \right)^\ell,$$

where $\bar{\partial}_{\zeta,z}\Phi=\bar{\partial}_{\zeta}\Phi$ and $d\zeta=(d\zeta_1,\ldots,d\zeta_n)$. Note that Φ is holomorphic in z. We also define the Bochner-Martinelli kernel:

$$K(\zeta,z) = \frac{1}{\left(2\pi i\right)^{n}} \frac{\langle \overline{\zeta} - \overline{z}, d\zeta \rangle}{\left|\zeta - z\right|^{2}} \wedge \left(\frac{\langle d\overline{\zeta} - d\overline{z}, d\zeta \rangle}{\left|\zeta - z\right|^{2}}\right)^{n-1}.$$

For the construction of the above kernels, see [Ran86] or [CS01]. We have the Henkin's solution operator $\mathbb{S}f = \mathbb{K}f - \mathbb{H}f$ of the $\overline{\partial}$ -equation, where

$$\mathbb{H}f(z) = \int\limits_{\zeta \in bD} f(\zeta) \wedge H(\zeta, z), \quad \mathbb{K}f(z) = \int\limits_{\zeta \in D} f(\zeta) \wedge K(\zeta, z).$$

We remark that the fact that the support function $\phi(\zeta, z)$ is holomorphic in z is very crucial in the construction of the solution operator $\mathbb{S}f$ of the $\overline{\partial}$ -equation.

To prove the Hölder type estimate (1.3) of the main Theorem 1.2, we use Lemma 1.3. Hence, we have to estimate the differential of the Henkin solution operator, $d_z \, \mathbb{S} f$. Using the fact that $|\zeta - z|^2 \lesssim |\phi(\zeta, z)|$ for $(\zeta, z) \in bD \times \overline{D}$, straightforward computations give the kernel estimate (for the details, see [Ran86])

$$|d_z H(\zeta,z)| \lesssim rac{1}{|\phi(\zeta,z)|^2 |\zeta-z|^{2n-3}}, \quad (\zeta,z) \in bD imes \overline{D}.$$

REMARK 2.1. Without loss of generality, we assume that the differential of Henkin kernel, $d_z H(\zeta, z)$ has the following form:

(2.7)
$$d_z H(\zeta, z) = \frac{A(\zeta, z)}{(\phi(\zeta, z))^2 |\zeta - z|^{2n-2}},$$

where $A(\cdot,z)$ belongs to $C^1(\overline{D})$ and satisfies $|A(\zeta,z)| \leq |\zeta-z|$. Actually, $d_zH(\zeta,z)$ contains more terms whose singularity order is lower than that of (2.7) and so we can ignore other terms (refer to § 3. of chapter 4 in [Ran86]).

Generally, the Bochner-Martinelli integral, $\mathbb{K}f$, has a good regularity, so \mathbb{K} is a bounded operator from L^{∞} -forms to Λ_{α} -forms for any $0 < \alpha < 1$. This kind of regularity still holds for a regular majorant of order α ($0 < \alpha < 1$). Hence, we only prove the estimate for the differential of Henkin kernel, $d_z \ \mathbb{H}f$, which is the main part of this paper.

PROPOSITION 2.2. For any α with $0 < \alpha < 1/2$, there exists a constant $C_{\alpha} > 0$ such that

$$(2.8) |d_z \mathbb{H} f(z)| \le C_\alpha ||f||_{\omega_\alpha} \frac{\omega_\alpha(|\rho(z)|)}{|\rho(z)|^{1/2}} \text{for } z \in D.$$

PROOF. Since the singularities of the Henkin kernel are located in the diagonal $bD \times bD$, to show the inequality (2.8), it suffices to estimate the integral of (2.8) near boundary points. Fix a point $z \in D$ which is sufficiently close to the boundary of D and choose a ball B(z,r) with $B(z,r) \cap bD \neq \emptyset$, in which we have a C^1 coordinates system $(t_1,\ldots,t_{2n})=t=t(\zeta,z)$ such that $t_1=-\rho(\zeta),t_2=\mathrm{Im}\,\phi(\zeta,z),t(z,z)=(-\rho(z),\ldots,0),$ and $|t(\zeta,z)|<1$ for $\zeta\in B(z,r)$. (For the detail, see [HL84].) Moreover, this coordinate system t satisfies

$$|t| \lesssim |\zeta - z| \lesssim |t|, \quad \zeta \in B(z,r) \cap bD.$$

Also, note that the new coordinate system satisfies $t(\zeta, z) = (0, t')$ for $\zeta \in B(z, r) \cap bD$, where $t' = (t_2, \dots, t_{2n})$. By Remark 2.1, we have to show that

$$I(z) = \left| \int_{bD \cap R(z,r)} \frac{f(\zeta)\chi(\zeta)A(\zeta,z)}{(\phi(\zeta,z))^2 |\zeta-z|^{2n-2}} \, dV(\zeta) \right| \lesssim \|f\|_{\omega_{\alpha}} \frac{\omega_{\alpha}(\delta(z))}{\delta(z)^{1/2}},$$

where χ is a compactly supported cut-off function in B(z,r). For this kind of estimate of Hölder type, we choose $\zeta' \in B(z,r) \cap bD$ satisfying $t(\zeta',z)=(0,0,t_3,\ldots,t_{2n})$. This gives the obvious estimate, $I(z) \leq I_1(z)+$

 $+I_2(z)$, where

$$I_1(z) = \bigg| \int\limits_{bD \cap B(z,r)} \frac{(f(\zeta) - f(\zeta'))\chi(\zeta)A(\zeta,z)}{(\phi(\zeta,z))^2 |\zeta - z|^{2n-2}} \, dV(\zeta) \bigg|,$$

$$I_2(z) = \left| \int_{D \cap R(z,z)} \frac{f(\zeta')\chi(\zeta)A(\zeta,z)}{(\phi(\zeta,z))^2 |\zeta-z|^{2n-2}} dV(\zeta) \right|.$$

It follows from the definition of $\|\cdot\|_{\omega_x}$ and the inequality $|A(\zeta,z)|\lesssim |\zeta-z|$, that

(2.9)
$$I_1(z) \le \|f\|_{\omega_x} \int_{bD \cap R(z,r)} \frac{\omega_x(|\zeta - \zeta'|)}{|\phi(\zeta,z)|^2 |\zeta - z|^{2n-3}} \, dV(\zeta).$$

To estimate the integral of the right hand side of (2.9), we use the coordinate system t, the inequality (2.6), and introduce polar coordinates in $t'' = (t_3, \ldots, t_{2n}) \in \mathbb{R}^{2n-2}$, and also set r = |t''|. Then we have

$$\begin{split} I_{1}(z) &\lesssim \|f\|_{\omega_{x}} \int\limits_{|t'|<1} \frac{\omega_{x}(|t_{2}|)}{(|t_{2}|+|t'|^{2}+|\rho(z)|)^{2}|t'|^{2n-3}} \, dV(t') \\ &\lesssim \|f\|_{\omega_{x}} \int\limits_{|t_{2}|<1} \omega_{x}(|t_{2}|) \left[\int\limits_{0}^{1} \frac{r^{2n-3}dr}{(|t_{2}|+r^{2}+|\rho(z)|)^{2}r^{2n-3}} \right] \, dt_{2} \\ &\lesssim \|f\|_{\omega_{x}} \int\limits_{0}^{1} \frac{\omega_{x}(t_{2})}{(t_{2}+|\rho(z)|)^{3/2}} \, dt_{2}. \end{split}$$

We may assume that $0 < |\rho(z)| < 1$, since $z \in D$ is close to the boundary. We decompose the integral as follows:

$$\int\limits_0^1 \frac{\omega_\alpha(t_2)}{(t_2+|\rho(z)|)^{3/2}} \ dt_2 = \int\limits_0^{|\rho(z)|} \frac{\omega_\alpha(t_2)}{(t_2+|\rho(z)|)^{3/2}} \ dt_2 + \int\limits_{|\rho(z)|}^1 \frac{\omega_\alpha(t_2)}{(t_2+|\rho(z)|)^{3/2}} \ dt_2.$$

Since ω_{α} is a regular majorant, by the first term of the left hand side of (1.1), we have

$$\int\limits_{0}^{|\rho(z)|} \frac{\omega_{\alpha}(t_{2})}{\left(t_{2}+|\rho(z)|\right)^{3/2}} \ dt_{2} \lesssim \frac{1}{\left|\rho(z)\right|^{1/2}} \int\limits_{0}^{|\rho(z)|} \frac{\omega_{\alpha}(t_{2})}{t_{2}} \ dt_{2} \lesssim \frac{\omega_{\alpha}(|\rho(z)|)}{\left|\rho(z)\right|^{1/2}}.$$

Similarly, since $s^{1/2}\omega_{\alpha}(s)$ is also a regular majorant, by the second term of

the left hand side of (1.1), it follows that

$$\int_{|\rho(z)|}^{1} \frac{\omega_{\alpha}(t_{2})}{(t_{2} + |\rho(z)|)^{3/2}} dt_{2} = \int_{|\rho(z)|}^{1} \frac{t_{2}^{1/2}\omega_{\alpha}(t_{2})}{t_{2}^{2}} \frac{t_{2}^{3/2}}{(t_{2} + |\rho(z)|)^{3/2}} dt_{2}$$

$$\lesssim \int_{|\rho(z)|}^{1} \frac{t_{2}^{1/2}\omega_{\alpha}(t_{2})}{t_{2}^{2}} dt_{2}$$

$$\lesssim \frac{|\rho(z)|^{1/2}\omega_{\alpha}(|\rho(z)|)}{|\rho(z)|} = \frac{\omega_{\alpha}(|\rho(z)|)}{|\rho(z)|^{1/2}}.$$

These inequalities imply $I_1(z) \lesssim ||f||_{\omega_z} \omega_\alpha(|\rho(z)|)/|\rho(z)|^{1/2}$.

For $I_2(z)$, we need a somewhat different method. The integration by parts allows one to lower the singularity order of the Henkin kernel. This kind of method was used in [Ran92].

We see that

$$\frac{1}{\phi^2} = -\left(\frac{\partial \phi}{\partial t_2}\right)^{-1} \frac{\partial}{\partial t_2} \left(\frac{1}{\phi}\right).$$

Therefore, by integration by parts, we have

$$(2.10) I_{2}(z) \leq \left| \int\limits_{|t'| \leq 1} -\left(\frac{\partial \phi}{\partial t_{2}}\right)^{-1} \frac{\partial}{\partial t_{2}} \left(\frac{1}{\phi}\right) \frac{f(0,0,t'')\chi(t')A(t',z)}{|t'|^{2n-2}} dt' \right|$$

$$= \left| \int\limits_{|t'| \leq 1} f(0,0,t'') \frac{1}{\phi} \frac{\partial}{\partial t_{2}} \left[\left(\frac{\partial \phi}{\partial t_{2}}\right)^{-1} \frac{\chi(t')A(t',z)}{|t'|^{2n-2}} \right] dt' \right|$$

$$= \left| \int\limits_{|t'| \leq 1} f(0,0,t'') \frac{1}{\phi} \left(\frac{\partial \phi}{\partial t_{2}}\right)^{-2} B(t',z) dt' \right|,$$

where

$$B(t',z) = -\frac{\partial^2 \phi}{\partial t_2^2} \frac{\chi(t') A(t',z)}{\left|t'\right|^{2n-2}} + \frac{\partial \phi}{\partial t_2} \frac{\partial}{\partial t_2} \left(\frac{\chi(t') A(t',z)}{\left|t'\right|^{2n-2}} \right).$$

In the second equality of (2.10), we use the fact that f(0,0,t'') does not depend on t_2 . Since $t_2 = \text{Im } \phi$, we have $|\partial \phi/\partial t_2| \ge 1$. Therefore, we have

$$I_2(z) \lesssim ||f||_{\infty} \int_{|t'| \leq 1} \frac{dt'}{|\phi||t'|^{2n-2}}.$$

П

For the moment, we assume that for any $\varepsilon > 0$,

(2.11)
$$J(z) = \int_{|t'| < 1} \frac{dt'}{|\phi| |t'|^{2n-2}} \lesssim |\rho(z)|^{-\varepsilon},$$

which will be proved later as an independent lemma. Since (2.11) holds for arbitrary $\varepsilon > 0$, one can choose $\varepsilon > 0$ so that $0 < 1/2 - \varepsilon < \alpha$. Moreover, ω_{α} , $0 < \alpha < 1/2$, is a regular majorant and so $\omega_{\alpha}(t)/t^{1/2-\varepsilon}$ is increasing, or equivalently, $|\rho(z)|^{-\varepsilon} \lesssim \omega_{\alpha}(|\rho(z)|)/|\rho(z)|^{1/2}$. It follows that

$$I_2(z) \lesssim ||f||_{\infty} J(z) \lesssim ||f||_{\omega_{\alpha}} \frac{\omega_{\alpha}(|\rho(z)|)}{|\rho(z)|^{1/2}}.$$

These two estimates for $I_1(z)$ and $I_2(z)$ complete the proof.

We end this section with the proof of (2.11).

Lemma 2.3. For any $\varepsilon > 0$, there exists $C_{\varepsilon} > 0$ such that

$$J(z) \leq C_{\varepsilon} |\rho(z)|^{-\varepsilon}$$
.

PROOF. We have

$$\begin{split} J(z) &\lesssim \int\limits_{|t'| < 1} \frac{dt'}{(|t_2| + |\rho(z)| + |t'|^2)|t'|^{2n - 2}} \\ &\lesssim \int\limits_{|(t_2, t_3, t_4)| < 1} \frac{dt_2 dt_3 dt_4}{(|t_2| + |\rho(z)|)(t_2^2 + t_3^2 + t_4^2)}. \end{split}$$

Again, using polar coordinates in (t_3, t_4) , say $x = |(t_3, t_4)|$, one obtains

$$egin{align} J(z) &\lesssim \int\limits_{|t_2| < 1} rac{1}{|t_2| + |
ho(z)|} \left(\int\limits_0^1 rac{x\,dx}{t_2^2 + x^2}
ight) dt_2 \ &\lesssim \int\limits_0^1 rac{|\log t_2|}{(t_2 + |
ho(z)|)} \,dt_2 \ &\leq C_{arepsilon} \int\limits_0^1 rac{t_2^{-arepsilon}}{(t_2 + |
ho(z)|)} \,dt_2. \end{align}$$

By the change of variable $s = t_2/|\rho(z)|$, we have

$$egin{aligned} J(z) &\lesssim \int\limits_0^1 rac{|t_2|^{-arepsilon}}{(|t_2|+|
ho(z)|)} \, dt_2 \ &\lesssim |
ho(z)|^{-arepsilon} \int\limits_0^\infty rac{ds}{(1+s)s^arepsilon} \leq C_arepsilon |
ho(z)|^{-arepsilon}. \end{aligned}$$

3. Proof of Theorem 1.2.

In this section, we complete the proof of our main Theorem 1.2 using Proposition 2.2 and Lemma 1.3.

The inequality (2.8) in Proposition 2.2 implies that

$$|d\mathbb{H}f(z)| \leq c_{\alpha} ||f||_{\infty} \frac{|\rho(z)|^{1/2} \omega_{\alpha}(|\rho(z)|)}{|\rho(z)|}.$$

Therefore by Lemma 1.3 and regularities of the operator $\mathbb{H}f$ in the Hölder type spaces we can prove the inequality (1.3) of Theorem 1.2.

Finally, we include a brief sketch of the proof of Lemma 1.3.

PROOF. Because \overline{D} is compact, by the local coordinate change argument, it suffices to show the following in the special domain $D(k) = \{(x_1, x') \in \mathbb{R}^n : 0 < x_1 < k, |x'| < k\}$: if

$$|dg(x)| \le c_g \frac{\omega_y(x_1)}{x_1}$$

for $x, y \in D(k/2)$ with $|x - y| \le k/2$, then we have

$$(3.13) |g(x) - g(y)| \le c \cdot c_q \, \omega_{\gamma}(|x - y|).$$

To show this, fix two points $x, y \in D(k/2)$ with $|x - y| \le k/2$ and let d = |x - y|. Here we may assume that $k \le 1/2$ and by symmetry we may also suppose $x_1 \le y_1$.

First it follows from (3.12) that

$$(3.14) |g(x_1, x') - g(x_1 + d, x')| \le \int_{x_1}^{x_1 + d} \left| \frac{\partial g}{\partial x_1}(t, x') dt \right|$$

$$\le c_g \int_{x_1}^{x_1 + d} \frac{\omega_{\gamma}(t)}{t} dt \le c \cdot c_g \ \omega_{\gamma}(d)$$

In fact, if $0 < d \le x_1$, then

$$\int\limits_{x_1}^{x_1+d}\frac{\omega_\gamma(t)}{t}\,dt \leq d\;\frac{\omega_\gamma(x_1)}{x_1} \leq \omega_\gamma(d),$$

since $\omega_{\nu}(t)/t$ is decreasing. If $0 < x_1 \le d$, then

(3.15)
$$\int_{x_1}^{x_1+d} \frac{\omega_{\gamma}(t)}{t} dt \lesssim \int_{0}^{d} \frac{\omega_{\gamma}(t)}{t} dt \lesssim \omega_{\gamma}(d).$$

Since $\omega_{\gamma}(t)/t$ is decreasing, the first inequality of (3.15) holds and by (1.1) the second inequality of (3.15) is also true.

Next, by the Mean Value Theorem and (3.12), since $\omega_{\gamma}(t)/t$ is decreasing, we have

$$(3.16) |g(x_1+d,x')-g(y_1+d,y')| \le c_g d \frac{\omega_{\gamma}(a_1)}{a_1} \le c_g \omega_{\gamma}(d)$$

for some a_1 in the line segment between $x_1 + d$ and $y_1 + d$. Since

$$|g(x) - g(y)| \le |g(x_1, x') - g(x_1 + d, x')| + |g(x_1 + d, x') - g(y_1 + d, y')| + |g(y_1 + d, y') - g(y_1, y')|,$$

(3.13) follows from the estimates (3.14) and (3.16).

REFERENCES

- [CS01] SO-CHIN CHEN MEI-CHI SHAW, Partial differential equations in several complex variables, AMS/IP Studies in Advanced Mathematics, vol. 19, American Mathematical Society, Providence, RI, 2001.
- [Dya97] K.M. DYAKONOV, Equivalent norms on Lipschitz-type spaces of holomorphic functions, Acta Math. 178, no. 2 (1997), pp. 143–167.
- [For76] J.E. Fornaess, Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math. 98, no. 2 (1976), pp. 529–569.
- [HL84] G. Henkin J. Leiterer, Theory of functions on complex manifolds, Monographs in Mathematics, vol. 79, Birkhäuser Verlag, Basel, 1984.
- [LR80] I. Lieb R.M. Range, Lösungsoperatoren für den Cauchy-Riemann-Komplex mit C^k-A bschätzungen, Math. Ann. **253**, no. 2 (1980), pp. 145–164
- [Pav04] M. PAVLOVIĆ, Introduction to function spaces on the disk, Posebna Izdanja [Special Editions], vol. 20, Matematički Institut SANU, Belgrade, 2004.

- [Ran86] M. Range, Holomorphic functions and integral representations in several complex variables, Springer Verlag, Berlin, 1986.
- [Ran92] R.M. RANGE, On Hölder and BMO estimates for $\overline{\partial}$ on convex domains in \mathbb{C}^2 , Jour. Geom. Anal. 2 (1992), pp. 575–584.
- [RH71] A.V. Romanov G.M. Henkin, Exact H ölder estimates of the solutions of the $\bar{\partial}$ -equation, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), pp. 1171–1183.

Manoscritto pervenuto in redazione il 10 aprile 2007.