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Holder Type Estimates for the 0-Equation in Strongly
Pseudoconvex Domains.

HEUNGJU AHN (¥) - HONG RAE CHO (¥%) - JONG-D0 PARK (¥*%%)

ABSTRACT - In this paper we generalize the Holder space with a majorant function,
define its order, and prove the existence and regularity for the solutions of the
Cauchy-Riemann equation in the generalized Hdlder space over a bounded
strongly pseudoconvex domain.

1. Introduction and regular majorant.

If D is a bounded domain in C", the Holder space of order «, A,(D)
(0 < o < 1), is defined as the set of all functions g on D which satisfy for a
constant C = C; > 0 the condition

lgGz) — 90| < Clz — ¢, 2,(€D.

We first generalize this Holder space following Dyakonov [Dya97] (also
see Pavlovié’s book [Pav04]). For this purpose we introduce the notion
of a regular majorant. Let w be a continuous increasing function on
[0,00). We assume w(0) = 0, and suppose that w(t)/t is non-increasing
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and satisfies the inequality

J 00

(1.1) /@du&/%dtgcw(a), forany 0<o5<1,
0 )

for a suitable constant C = C(w). Such a function w is called a regular
majorant. Given a regular majorant w, the Holder type space, A(w, D) is
defined as the family of all functions g on D such that

1.2 l9(2) — 90| < Cal]z — (), 2,{eD.

The norm ||g||,, of g € A(w, D) is given by C,; + ||g|| .., where C, > 0 is the
smallest constant satisfying (1.2) and ||g|| ., is the L> norm in D. Note that
with this norm A(w, D) is a Banach space and A(w, D) C L>*(D) (see the
chapter 10 of Pavlovié¢’s book [Pav04]). We denote by A4,(w, D) the set of the
differential forms of type (0, ¢) whose coefficients are in A(w, D). We define
the order of a regular majorant as follows:

DerFINITION 1.1. We say that a regular majorant « has order o
(0 < o < 1) if there exist an o and a positive real number ¢, such that

t) . . .
oc:sup{y:w is increasing Vi, O<t<t0}

124
t
= inf{y : a;() is decreasing Vt, 0 <t < to}.
If a regular majorant « has order o, then we let = w, and call A(w,, D)
the Holder type space of order o. By definition of the order of a regular
majorant, it is uniquely determined, if it exists. Now we state our main
result of this paper.

THEOREM 1.2. Let D cC C" (n > 2) be a strongly pseudoconvex do-
main with C*-boundary and 0 < o < 1/2. If a regular majorant w, has
ovder o and f € Ay(wy, D) with Of =0 (1 < q < n), then there is a solution
u € A1t 2w,, D) of du = f such that for some constant C = C(w,)

1.3) [@llgze, < CIILF

Wy "

The above inequality (1.3) generalizes the estimate by Henkin-Roma-
nov [RH71] and Lieb-Range [LR&0]

[llpene < CIIf

te
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For the proof of the Holder type estimate (1.3), we need a variant of the
Hardy-Littlewood Lemma [HLS84].

LemMA 1.3, Let D cc R” be a bounded domain with C* -boundary. If g
is a CY(D)-function and w, is a regular majorant of ordery, 0 < y < 1 such
that for some constant c, depending on g,

,(|p()])

|dg(@)| < ¢ @]

xeD,

then we have

lg(x) — 9| < ¢ w, (& —yl).

As convention we use the notation A <B or A > B if there are constants
¢1,¢2, independent of the quantities under consideration, satisfying
A < 1B and A > coB, respectively.

Before proving our theorem, we discuss some properties of a regular
majorant and some examples.

ExampLE 1.4. (i) The most typical example is a function w(t) =t*
(0 < a < 1). Clearly, w is a regular majorant and has order .

(i) A non-trivial example is the function, w(t) = t*| 10gt|’8 on [0,%] ex-
tended continuously for ¢ >ty to be a regular majorant. Here 0 < o < 1,
— 00 < fi < oo and ty must be chosen sufficiently small so that the function
o should be a regular majorant (£, depends on «, 8). Since Png t¢| 10gt|ﬁ =0

for any ¢ > 0, it follows that w(t) = t*|log t|’ has order « for any choice of .

(ili) Define the function m(t) = 1/| 10gt|ﬁ , p>0 for 0 <t<t; and
m(0) = 0. Then m(t) is continuous and increasing near 0, but it is not a
regular majorant.

We end this section by describing useful properties of a regular ma-
jorant.

REMARK 1.5. (i) If w, m are two regular majorants and have orders o, f§
respectively with (0 < o < f < 1), then letting w,,mg, there exist {, > 0
and ¢ such that mg(t) < cw,(®), 0 <t <. Hence we have the inclusion
A(mgp, D) C Alw,, D). Note that if two regular majorants, w,m have the
same order o, then generally there is no inclusion relation between A(w, D)
and A(m, D).

(ii) In our Theorem 1.2, for a general regular majorant of order 1/2, the
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estimate ||“||w1/2 <||flls does not hold. In fact, the celebrated Henkin’s
theorem [RH71] holds only for the special regular majorant w j2(t) = |t\l/ z
and this number 1/2 is the sharp bound [Ran86]. But there is a regular
majorant nu; /g(t) = |t|"%|log t| near the origin of order 1/2, which is strictly
bigger than |t| 2,

REMARK 1.6. Let @ be a regular majorant of order o (0 < o < 1/2), say
® = w,. Then t'/2w, is also a regular majorant of order (« + 1/2). In fact,
12w, is increasing and (t'/%w,)/t is non-increasing, since w,/t’, y > o is
decreasing. Here we use the fact that w, has order «. It remains to show
that t1/2w, also satisfies (1.1). Since (¢'/2w,)/t is non-increasing, we have for
any J, 0 <d < 1),

J J
1/2
1.4) / ST“)(S) ds <oV2 / D5) 15 < 61200,(5).

0 0

On the other hand, for a given 0 < o < 1/2, we can choose a sufficiently
small & such that o < 1/2 — &. It follows from the order of w, that w, /t1/2-9
is decreasing. Hence we obtain

1 2601(3) COy(S) 1
5/ d_é/ 1/2— ssl+f

0,0 [
51/278 sl+e
0

(1.5)

<J- ds<51/2w ().

By (1.4) and (1.5), 2w, is a regular majorant of order (z + 1/2).

Acknowledgments. The authors are grateful to the referee for several
valuable suggestions.

2. Henkin’s solution operator of the J-equation.

In this section, we introduce the Henkin’s solution operator [HL84] of
the 0-equation and prove the integral estimates for the solution operator in
a strongly pseudoconvex domain in C" . Let D be defined by a function p,
ie,D={zec C":p) <0}, where p € C* and Vp # 0 on bD.

To construct the integral formula for solutions of the d-equation in a
strongly pseudoconvex domain, we need a support function (see [HL84]). For
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the global support function, we follow Fornaess construction [For76]. He
showed that there exist a neighborhood U of D and a function
é(,) € C3(U x U) such that for all { € U, #(, ) is holomorphic in U and
#(,2) = (D,{ —2), where we define @ = &((,2) =($,((,2),...,¢,(,?2)

n
and (®,{ —z) = Ze{oj(é, 2)({j — #j). In [For76], Fornaess also showed that
i—1

@ cC3(U X U) is holomorphic in z and there is a constant ¢ such that
for all z € D and { € D we have

2.6) 2Re ¢((,2) > p(0) — p(2) + c|¢ — 2

and d:¢(C, z)|z:C = 0p(0). Suppose thatf € A,(w,,D)(1 < q < n)and of =0.
Then f is uniformly continuous in D. Using the above global support
function ¢, we define Henkin kernel H({, z) as follows:

_ _ k _ J4
1 ((—z,d0) (@,dl) ({—2,d0) (0r @, dC)
Hi =
€2 @m))" (¢ — 2 /\<<15,C—z> Ak}_;2< I —2? >A< I — 22 > ’

where 0;,® = 0;® and d{ = (d{y, . . .,d{,). Note that @ is holomorphic in z.
We also define the Bochner-Martinelli kernel:

7 - n—1
1 (-zdl)  ((dl - dzdQ)
HO Gy —ap A( ¢ — 2P ) |

For the construction of the above kernels, see [Ran86lor [CS01]. We have
the Henkin’s solution operator Sf = K f — Hf of the 9-equation, where

Ff () = / FONHC?, KfG) = /f(é)/\K(C,z).

{ebD leD

We remark that the fact that the support function ¢((, z) is holomorphic in z
is very crucial in the construction of the solution operator Sf of the o-
equation.

To prove the Holder type estimate (1.3) of the main Theorem 1.2, we use
Lemma 1.3. Hence, we have to estimate the differential of the Henkin
solution operator, d,Sf. Using the fact that | —z[*<|#((, 2)| for
(¢,2) € bD x D, straightforward computations give the kernel estimate
(for the details, see [Ran86])

1

d.H(,2)| < ,
AR o aF P

(,2) € bD x D.
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REMARK 2.1. Without loss of generality, we assume that the differ-
ential of Henkin kernel, d,H((,z) has the following form:

A, 2)
(@ 2P| — 22
where A(-,z) belongs to C'(D) and satisfies |A((,z)|<|{ — 2|. Actually,

d.H({,z) contains more terms whose singularity order is lower than that of
(2.7) and so we can ignore other terms (refer to § 3. of chapter 4 in [Ran&86]).

2.7 d.H( 2) =

Generally, the Bochner-Martinelli integral, Kf, has a good regularity,
so K is a bounded operator from L*>°-forms to A,-forms for any 0 < o < 1.
This kind of regularity still holds for a regular majorant of order o
(0 <o < 1). Hence, we only prove the estimate for the differential of
Henkin kernel, d, Hf, which is the main part of this paper.

PROPOSITION 2.2.  For any o with 0 < o < 1/2, there exists a constant
C, > 0 such that

w.(|p(2)])

W for z e D.

(2.8) |d.Hf )| < Col| £,

ProoOF. Since the singularities of the Henkin kernel are located in the
diagonal bD x bD, to show the inequality (2.8), it suffices to estimate the
integral of (2.8) near boundary points. Fix a point z € D which is sufficiently
close to the boundary of D and choose a ball B(z,r) with B(z,r) N bD # (),
in which we have a C' coordinates system (t1,...,t2,) =t = t({,2) such
that t; = —p(0),te = Im @, 2),t(2,2) = (— p(z),...,0), and |t({,2)| <1 for
{ € Bz, 7). (For the detail, see [HL84].) Moreover, this coordinate system
t satisfies

[tI<IC—2<)t, (€ Bk,r)nbD.

Also, note that the new coordinate system satisfies #({,z) = (0,t') for
{ € B(z,7)NbD, where t' = (3, ...,ts,). By Remark 2.1, we have to show
that

0,(6(2))
S 2

I(z) = / FOROAL, 2)

G P op2 VOl

bDNB(z,r)

where y is a compactly supported cut-off function in B(z,7). For this
kind of estimate of Holder type, we choose (' € B(z,7) NbD satisfying
t(',z) = (0,0,t3,...,ts,). This gives the obvious estimate, 1(z) < I(2) +
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+ I5(z), where

(FO — FCNHOAC, 2)
L) - OACD) i)
b0 B (A, 2)°|C — 7]
FOUOAC, )
In( ):’ v )‘.
2 / G- P2 C

bDNB(z,r)
It follows from the definition of |- ||, and the inequality |A({,2)|<
< |é, - Z|, that
w, (|0 =)

2.9) L@ < |fll,
1) < [l |¢(C,z)\2|C— z|2/ 3

bDNB(z,r)

av.

To estimate the integral of the right hand side of (2.9), we use the co-
ordinate system ¢, the inequality (2.6), and introduce polar coordinates in
" = (ts,... tsn) € R¥ 2 and also set » = |t|. Then we have

el I+ @D

L@Ef ], av(t)

It']<

1
2n—3
Wl [ oied| [ |
’ S (o] + 72 4 [p@))r# 3

lt2]<1

Wy (tZ)

Sl | ———————=5 dta.
b | G e 2

We may assume that 0 < |p(z)| < 1, since z € D is close to the boundary.
We decompose the integral as follows:

1 ()| 1
wa(tZ) / wx(tZ) / wm(tZ)
———dly = ————— dls + ——————7 dip.
0/ Gt p@)™ ) @ ) G @)

Since w, is a regular majorant, by the first term of the left hand side of
(1.1), we have

T oty 1 ) (p@))
_ WOull2) < / Doll2 dt Swo‘ Pz .
/ Gt @D el T e

0 0

Similarly, since s'/2w,(s) is also a regular majorant, by the second term of
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the left hand side of (1.1), it follows that

/1 wa(tz) o /1 t;/zwa(tz) tg/z
(2 + @D £t p@)"?
|p()| [p()]
I
o
_ @M o0,(p@) _ o.(p@)
= Ip(@)] @M

These inequalities imply 1(z) < |||, @x(Ip(2)])/|p(2)] />

For I»(z), we need a somewhat different method. The integration by
parts allows one to lower the singularity order of the Henkin kernel. This
kind of method was used in [Ran92].

We see that
1_ (@) o <l>
¢2 - Ot Otz \ @ ’

Therefore, by integration by parts, we have

a6\ 8 (1 £0,0,t"y AT, 2) .,
e ro<| [ —(8—@) a—tz@ D
i<
_ w10 [ (08\ AW, 2)| .,
[t']<1
-2
= / f(o,ovt”)%(%) B, z)dt'|,
i<t ?

where

2 / / / /
Btz — - TexOAC) 9% O ()((t JA(t ,z)>.

3,% it ‘21172 B_tz Ots it |217,72

In the second equality of (2.10), we use the fact that £(0,0,t”) does not de-
pend on ty. Since t2 = Im ¢, we have |0¢/0ts| > 1. Therefore, we have
dat

L@ < f el

lt']<1



Hélder Type Estimates for the d-Equation ete. 135

For the moment, we assume that for any ¢ > 0,

d/
(2.11) J(z) = / — <)
ellt "2

t'1<1

which will be proved later as an independent lemma. Since (2.11) holds for
arbitrary ¢ > 0, one can choose ¢ > 0sothat 0 < 1/2 — ¢ < a. Moreover, w,,
0 < o < 1/2, is a regular majorant and so w,(t)/t"/>7¢ is increasing, or
equivalently, |[p(z)|° <w,(p(2)))/|p@)[2. Tt follows that

o,(|p)])
L)< J@)< RV

These two estimates for /;(z) and I2(z) complete the proof. O

We end this section with the proof of (2.11).

LeEmMA 2.3.  For any ¢ > 0, there exists C; > 0 such that
J(2) < Celp(2)| "

Proor. We have

J() < at’
- (It2] + |p@)| + |t’|2)\t’|2"*2
[t'|<1
< / dt2dt3dt4 .
< (2] + [p@DE + £ + 12)

|(z,t3,ta)| <1
Again, using polar coordinates in (Z3,14), say « = |(t3,t4)|, one obtains

1
1 xdx
J() < dt.
@ /Itz|+|p(2)| (O/t§+x2) ?

‘t2‘<1
/ |log t5]
(b2 + |P(Z)|)
1

/ 2+ Ip(Z)I)

0
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By the change of variable s = t2/|p(z)|, we have

[tal
J@= / GO

Slp@)| /m < Celp(2)|”
0

3. Proof of Theorem 1.2.

In this section, we complete the proof of our main Theorem 1.2 using
Proposition 2.2 and Lemma 1.3.
The inequality (2.8) in Proposition 2.2 implies that

1/2

|p(R)|" " w,(|p(2)])
lp(2))| '

Therefore by Lemma 1.3 and regularities of the operator Hf in the Holder
type spaces we can prove the inequality (1.3) of Theorem 1.2.
Finally, we include a brief sketch of the proof of Lemma 1.3.

[dHf @) < cal o

PrROOF. Because D is compact, by the local coordinate change
argument, it suffices to show the following in the special domain
D) ={(e1,2) e R": 0 <y <k, || <k }:if

3.12) dg@)| < ¢ “”’;xl)

for x,y € D(k/2) with |x — y| < k/2, then we have
(3.13) l9@) — 9| < ¢ - ¢4 oyl — ).

To show this, fix two points x,y € D(k/2) with |x —y| <k/2 and let
d = | — y|. Here we may assume that k£ < 1/2 and by symmetry we may
also suppose x; < yi.
First it follows from (3.12) that
x1+d

/ / 0 /
61 @) —ge+da) < [ [
L1
&£

x1+d t
< / w%()dtgcocg w,(d)

&Ly
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In fact, if 0 < d < x4, then

x1+d
/ 2O gy < g 2 <, @)
£1

¥y

since w,(?)/t is decreasing. If 0 < x; < d, then

x1+d d
(3.15) / wVT(t)dts / 2O 4t < oo ().
il 0

Since w,(t)/t is decreasing, the first inequality of (3.15) holds and by (1.1)
the second inequality of ( 3.15) is also true.

Next, by the Mean Value Theorem and (3.12), since w,(¢)/? is decreas-
ing, we have

(1)

(3.16) lgGer + d, ) — gys + dy)] < ¢y d © g @,(d)

for some a; in the line segment between x; + d and y; + d. Since

lg(x) — g(y)| < lg(x1,2") — g(x1 +d, )|
+lg(er +d, @) —g(yr +d,9) | + gy +d,y) — 9(y1,9)],
(3.13) follows from the estimates (3.14) and (3.16). O
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