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Bar Billiards and Poncelet’s Porism

WiToLD M0ZGAWA (*)

ABSTRACT - We prove that for a given oval C there exist ovals C;;, and C,,;, inside and
outside of C, such that the pairs (C, Cy,) and (C,,,, C) satisfy the Poncelet’s
porism for almost any number of reflections in their bar billiards.

1. Introduction.

Let us consider two ovals C; and Cs, i.e., two smooth strictly convex
closed plane curves. Let the oval Cs lie inside the second oval C;. From any
point on Cy, draw a tangent to Cy and extend it to C; in the opposite di-
rection. From this point we draw another tangent, ete. For all tangents, the
resulting Poncelet’s transverse will be called a bar billiard since it is similar
to a traditional game played years ago. In general in this game players
scored points by knocking balls into the holes while avoiding toppling a
skittle in the middle of the table. Here the role of the skittle is played by
the oval Cy and it must be “toppled” by the tangent line. The general be-
havior of such billiards is worth investigating but in this paper we will
concentrate on the Poncelet’s porism for this specific setting. Namely, we
say that a bar billiard has a Poncelet’s porism property if the following is
true: if, on the oval Cj, there is one point of origin for which a Poncelet
transverse is closed, then the transverse will also close for any other point
of origin on the oval. One can find an extensive bibliography on Poncelet’s
porism in [4]; a nice introduction to theory of billiards is provided in [3].

In this paper we prove that for a given oval C, in a suitably small C2-
neighborhood there exist ovals C;, and C,,; inside and outside of C, such
that for a suitable large number of segments the pairs (C, C;,) and (Cy,, C)
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satisfy Poncelet’s porism in the above sense. In the course of the proof we
bring into play the isoptics introduced and developed in [1] and [2].

2. Outer oval.
Let us begin with a simple algebraic lemma

LeEmMA 2.1.  Let v,w € R* and (v,w) and [v,w] denote the dot product
and the determinant of these vectors. Then

1) v{v,w) — w(w,v) = [v,w]d (w)
@) (v,w) =[J w),v],

where J s the positive rotation of angle /2.

D
Next we consider an operator Dy of the form

Dp(t)  p(t+ ) — p(t)cos

Dao sina

acting on real functions defined on all R. From the elementary calculus it is
clear that, for any C'-function p,
lim Dp(®) =
o o

1 p'@)

for any t € R.
In what follows we give a preview of certain facts concerning isoptics as
the fundamental tool in our constructions.

DEFINITION 2.1. A plane, closed, simple, positively oriented, curve of
positive curvature is called an oval.

We take a coordinate system with origin O in the interior of C. Let p(t),
t € [0, 27], be the distance from O to the support line I(¢) of C perpendicular
to the vector e = cost + isint. It is well-known that p(t) is of class C* and
that the parametrization of C in terms of p(¢) is given by the formula

2.1) 2(t) = pt)e’ + p'(t)ie,

where ie" = —sint + icost. Note that the support function p can be ex-
tended to a periodic function on R with the period 27.
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DEFINITION 2.2. Let C, be a locus of vertices of a fixed angle n — o
Sformed by two support lines of the oval C. The curve C, will be called an -
isoptic of C.

It is convenient to parametrize the o-isoptic C, by the same angle ¢ so
that the equation of C, takes the form

_ i  Dp@) . 4
2.2) 2,(t) = pe" + Taw .

Since the functions involved are at least of class C' we observe that the
given parametrization of an isoptic is of class C. It can be shown that it is a
regular curve. Note that

2.3) 2,() = 2(t) + A, 0)ie = 2(t + o) + u(t, o)ie’
(2.4) 2L(t) = —Alt, e + p(t, a)ie”
for suitable functions 4, u and p. Moreover, we have

Dp(#)

@5) R s 0}
2.6) plt, o) = plt) + Dg ®
o

COROLLARY 2.1.  With the notations above we have
D 113(1) 2,(t) = 2(1),
2) 1111(1) Mt ) =0,
3) }gr{l) p(t, o) = R(t), where R(t) = p(t) + p"(t) is the curvature ra-
dius of the oval C at t.
LeEmmA 2.2.  The function

K@), 0<a<m

@7 Iet) = {K(t) e

1s continuous from the right on o, where ic,(t) s the curvature of the isoptic
2, at t.

Proor. It follows immediately from the equation of an isoptic that
2.8) 2L() = —At, we® + p(t, w)ie”
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and
2.9) [ (O = 22(t, o) + pA(t, ).

The latter formula ensures that the isoptics of ovals are always regular
curves. By the above considerations we get

(2.10) limz;(t)zlim[( ’(t)—@) ( (t)+D ) Zt]
o—0 o—0 Do Do

= (p@®) + p"(t))ie" = 2'(t)

and

: / . Dt D
e PR )

= (p®) +p"®)*= [Z @)%

The formula for curvature x,(t) ([2]) of an isoptic curve can be transformed
to the following

2.12)  r(t) = ;} (2/12 +2p* — R(t)p + AR(t) cot o — /IQ(T i a))
(,12 +2) sino
-— (2/12 +2p" — Ry — zD—R(t))
()
Hence,
(2.13) }(111(1) Ky (t) = R(t) = k(?).

O

COROLLARY 2.2. There exists ¢ >0 such that if 0 <o <e then
ky(t) > 0 for any t € R.

THEOREM 2.1. For any oval C there exists an oval O containing oval C
mside such that the corresponding bar billiard has the Poncelet’s porism
propevty.

2
Proor. Leto = Zn be an angle with 0 < o < & for the above ¢. Then we

can consider a bar billiard such that the starting oval is C; and its o-isoptic
is C1. In this case, for any ¢ Poncelet’s transverses close after » reflections
and form an n-gon with or without self intersections. O
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3. Inner oval.

In this section we consider the reverse problem: for a given oval C, does
there exist an oval O inside C such that for a corresponding bar billiard
Poncelet’s porism holds?

First, we assume that the oval C is parametrized as in formula (2.1) and
that the origin of coordinates is placed at the Steiner point of C. Fur-
thermore, the coordinate system is chosen in such a way that the tangent
line at 2(0) is perpendicular to the x-axis. Then, in particular, we have
2(0) = (a,0) for some a > 0 and p'(0) = 0. If we introduce the following
notation

3.1) q@®) = (1), g2(@) = 2(t) — 2(t + o)
then the line [(t) through the points z(f) and z(f + «) is given by
3.2) I©®): —yq @) + vge(t) — [2(8),q)] = 0.

Hence, we easily calculate A(t), its distance from the origin O = (0, 0)

_[2@®), @]
lg@®

Let ¢(f) be the angle contained between the positive direction of the axis Ox
and the vector ¢(t), and x(t) be the angle between the positive direction of Ox
and OO/, the shortest segment joining O with the line (3.2). Evidently, we
have the relation

3.3) h(t) =

3.4) mw=g+wn

Note that the following formulas are true for ¢(t)

(2(0),q®))

(35) COS gﬁ(t) = M
o a0), ()]
@0 RANTOTEOTE

Differentiating both sides of formula (3.5) we obtain

p [g®), ¢ @®)]
X)) (t) = L2108
Y g

and, after some further manipulations we get

At )Rt + o) — u(t, 0)R(t)

3.8 '(t) =
38 7o sin o (A*(t, @) + p2(t, o)
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where A(t, o) and u(t, o) are the same as in formulas (2.3) and (2.4). Moreover
from the geometric interpretation of these functions, we see that they are
nonzero and that ¢ < 0. Thus, it follows from elementary calculus that there

exists an inverse function y(x) = (fl (x — g) = ¢. This function allows us to
define a new support function

3.9) P(x) = h(y(x)).

Note that |00'| = P(x) aﬂ recall that x is the angle between the positive
direction of axis Ox and OO'. This construction will be used to find an en-
velope z;,, of the family of lines (3.2) in the form

(3.10) 0@ = Py + L i
d
After some computations we have
g1y E@ @( @) dl//(x) [Z,q)g,9) + (g2 >[q,q]( @).
dw lqllg. ¢']

In this framework t is a generic parameter and we may consider an equation
of the envelope in the form

zizo(t)
(n dP
(3.12) = P(5+ o) E 0 + T (24 pit)iel54)
= P(OE™ + P, (tyiE",
where
G139 B {q(t>|z<o>| " |g®)]|2(0)]
14 it _ [ (20.q0) [0, q(t)]}_
@19 ’ { FOEONGIEC]

Ultimately, the above considerations lead to

[2(8), g®)] ¢
)
_ @), q®)g@), ¢®)) + (¢@®), 2®)lq®). ¢ D],
lg®llg®), ¢'®)]

B.15)  zi(t) = —

dq

where 2/(t) = — (t) and ¢'(t) = (t) Let us make the convention that in the

reminder of thlS paper prime Wﬂl denote differentiation with respect to ¢.
By taking the derivative, we obtain
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LEMMA 3.1.
[q@®.¢'®]
(3.16) E! Et ,
(5= @
it/ +[q@), q' (D]
(8.17) Et) = gttt 0
(iE") | q(t)|2

THEOREM 3.1. The curve z;,,(t) is the closed envelope of the family of
lines {I(t) : t € R}.

Proor. By lemma (3.1) it follows that

(3.18) 2 = (P(t)M (—( )) )iEit
| (t)l
and from (3.14) we obtain that
- it q(®)
(3.19) B a| o

This means that the tangent vector to 2/, () is linearly dependent on q(?).
Note, that we don’t claim that it is a nonzero vector. O

We do not yet know whether z;,,() — z(t) when « — 0. To this end we
prove

LEMMA 3.2.

(3.20) liH(l) 2izo(t) = 2(1).

Proor. Write

[2(0),q(®)] (psina — Acosa)sint — (Asino + pceosa)cost

3.21) = )
OIEQ)] [P+ 2
(3.22) (2(0),q(®))  (psina — Acosa)cost + (Asina + pceosa)cost

FOIEC 2P ’

where A = A(t, o) and p = p(t, ). By passing to the limit, we obtain
(3.23) lirré Et =",
(3.24) lim iE% = de™.

o—>!
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Similarly, since

qt)  (psina — Acoswe — (Zsino + pcosa)ie

3.25 :
RG] I

we get

(3.26) lim P(t) = m 29Oy

o el

When we analyze formula (3.25) we easily see that

(3.27) im 1Y _ R,
o—0 Sln

(3.28) lim LD — e — R pyiet
o—0 SIN o

The above formulas and the formula (3.15) give
dP
2 lim = () = p’
(3.29) lim— ) =p'®,
which implies that
(3.30) HH(I] Rizo(t) = 2(2).

Our next task is to prove

3.31) hm zm(t) =2/(0).
Recall that
dP o la®F
32 O =Wt —
(3:32) iz ® =" Ond o
so that
o (i gO0O) g®F \"\ i
3.33) i@ = < ) ———— gt | ( ()[q(t) q(t)]) )zE )

In order to determine hm zlzo(t) we need only two facts:

[q(t), q @] _
=0 |q(t)f

(3.35) lim LY (t)
a—0 Sl

(3.34)

)

= 2R (t)e" + (R(t) — R"(t))ie™.
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Hence, after some tedious computations we get
g®F \’

3.36 Iim| 2 t)————= ] =p"®,

339 wo< . qf(t)]) 7o

that implies
LEmMA 3.3. We have
3.37) lirr(l) 2., (@) =2/ ().

In particular, the envelope which can be called an inner isoptic is a reqular
curve if o is sufficiently small.

Note that for some values of « the inner isoptic can develop cusps.
Our last problem before formulating the final theorem is to find
lir% 20 ().

LEmMA 3.4.  Under the above notations

" (t) = R'(t)ie" — R(t)e" = 2"(t).

20

(3.38) lirr(l) 2

In particular, the function
Ko@), 0<a<m,

(339) kizo(t) = { K(t), o= 0’

where K;,,(t) denotes the curvature of the inner isoptic z;,,(t), is continuous
from the right.

Proor. Write

) INCOXL0) [q®, ¢\
3.40) 2 () = LW OLLL VL ppy (LT
? { lg®)? < lq@®)? )

I |q(t)|2 ’ - it
! (h DL, q/(t)]) }“E

/ 2 ! ,
- {h<t>Mq§m+ (h/(t) )| ) }[q(t>,q<t>] ot
q

4| [q®), ¢ ®)] @)

Note that in the above representation the second term tends to —R(t)e" and

| (t)|2 — p'(t). It remains to find two other limits in the first term.
q
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This is a very long and cumbersome job, and after computations similar to
those we have done earlier, we obtain

(3.41) lim (Lt)’ qf”) —0,
=0\ Jg@)
G
342 bt (h ® [q(t>,q'(t>]> =70
Hence, the lemma holds. O

COROLLARY 3.1. There exists ¢ >0 such that if 0<a<e then
ki) > 0 forany t € R.

THEOREM 3.2. For any oval C there exists an oval O, contained in C
such that corresponding bar billiard has Poncelet’s porism property.

2
PrOOF. Let o = % be an angle such that 0 < « < ¢ for the above e.

Then we can consider a bar billiard with the starting oval C; and its inner
isoptic z;,,(t) taken for Cs. In this case, for any ¢, the Poncelet’s trans-
verses close after n reflections and form an n-gon with or without self
intersections. O
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