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Sheaves on Subanalytic Sites

Luca PrReLLI (*)

ABSTRACT - In [7] the authors introduced the notion of ind-sheaves and defined the

six Grothendieck operations in this framework. As a byproduct, they obtained
subanalytic sheaves and the six Grothendieck operations on them.
The aim of this paper is to give a direct construction of the six Grothendieck
operations in the framework of subanalytic sites avoiding the heavy machinery
of ind-sheaves. As an application, we show how to recover the subanalytic
sheaves O and O" of temperate and Whitney holomorphic functions respec-
tively.

Introduction.

Let X be a real analytic manifold and k a field. The spaces of functions
which are not defined by local properties, such as tempered distributions,
tempered and Whitney C* functions, ete., are very useful in the study of
systems of linear partial differential equations (Laplace transform, tem-
pered holomorphic solutions of D-modules ete.). Although these spaces do
not define sheaves on X, they define sheaves on a site associated to X, the
subanalytic site X;,, where one just considers open subanalytic sets and
locally finite coverings.

In [7], Kashiwara and Schapira, motivated by the construction of the
microlocalization functor, treated a more general theory, namely that of
ind-sheaves. They defined the category I(kx) of ind-sheaves on X as the
category of ind-objects of the category Mod‘(ky) of sheaves with compact
support and they developped the six Grothendieck operations in this fra-
mework. When restricting to R-constructible sheaves, they showed the
equivalence between the category Iz_.(kx) = Ind(Modj,_.(kx)) of ind-R-
constructible sheaves on X and the category Mod(kx,,) of sheaves on the
subanalytic site associated to X.

(*) Indirizzo dell’A.: Dipartimento di Matematica Pura ed Applicata, Via
Trieste, 63, 35121 Padova.
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In this way, tempered distributions, tempered and Whitney C*> func-
tions, ete., are obtained as a byproduct of the whole theory of ind-sheaves.
It turns out to be useful to have a more straightforward introduction of
these sheaves.

Our aim in this paper is to give a direct, self-contained and elementary
construction of the six Grothendieck operations on Mod(ky,,), without
using the more sophisticated and much more difficult theory of ind-
sheaves. Indeed, contrary to the category I(kx), the category Mod(kyx,,)is a
Grothendieck category.

We will start by recalling some results of [7], the definition of a sub-
analytic site, the natural functor of sites p : X — Xj,, and the functors p,,
p~1 and p, relating the categories of “classical” and subanalytic sheaves.
We also recall a very useful description of subanalytic sheaves as inductive
limits of R-constructible sheaves.

Then we go into the study of subanalytic sheaves, without using the
notion of ind-sheaf. Let f : X — Y be a morphism of real analytic mani-
folds. The functors Hom, ®, f. and f ~1 are well defined since X, is a site.
We introduce the proper direct image functor f; and we study the relations
between the above operations and the functors p,, p~! and p,. In the de-
rived category we obtain an exceptional inverse image, denoted by f*, right
adjoint to Rfy. This is obtained via Brown representability thanks to the
existence of quasi-injective objects. We study quasi-injective objects
without references to ind-sheaves, we show that they are acyclic with re-
spect to the above functors and we prove that the quasi-injective dimension
of Mod(ky,,) is finite. We end this work giving some examples of sub-
analytic sheaves.

In more details, the contents of this paper are as follows.

In Section 1 we construct the operations in Mod(kyx,,). In § 1.1, we start
by recalling the definitions of the functors p,, p~! and p, of [7] and their
properties (a more detailed study of the functor p, is done in § 1.6). In § 1.2,
we recall the internal operations and the functors of direct and inverse
image (which are well defined on any site) and their relations with p,, p~!
and p,. We also define (in § 1.4) the proper direct image functor fi, where
the notation f follows from the fact that fi o p, % p, ofi in general. We
study its properties and the relations with the other operations. While the
functors f ~1 and ® are exact, the functors Hom, f. and fi are left exact, and
we introduce the subcategory of quasi-injective objects which is injective
with respect to these functors. This is done in § 1.5.
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In Section 2 we consider the derived category of Mod(kx,,). In § 2.1, we
consider the subcategory D% _(kx,,) consisting of bounded complexes with
R-constructible cohomology and we prove the equivalence of derived ca-
tegories D%_ (kx) ~ D% _.(kx,,). Then, in § 2.2, we study the derived func-
tors of Hom, f. and fiy and we obtain the usual formulas (projection formula,
base change formula, Kiinneth formula, etc.) in the framework of sub-
analytic sites. We also prove (in § 2.3) some vanishing theorems for sub-
analytic sheaves, in particular we prove that the quasi-injective dimension
of Mod(ky,,) is finite. Using the Brown representability theorem we prove
the existence of a right adjoint to the functor Rf;, denoted by f'. This is
done in § 2.4. We calculate the functor f* by decomposing f as the com-
posite of a closed embedding and a submersion.

In Section 3 we give some examples of subanalytic sheaves. We start by
recalling the definition of sheaves of p,Dx-modules, where Dy denotes the
sheaf of finite order differential operators on a complex analytic manifold
X. Then in § 3.3 we show how to recover the sheaves of p Dx-modules O%
and OY of temperate and Whitney holomorphic functions of [7] respec-
tively. We prove the relations between the above sheaves and the functors
of moderate and formal cohomology of [4] and [6].

Acknowledgments. We would like to thank Prof. Pierre Schapira who
encouraged us to develop a theory of subanalytic sheaves independent of
that of ind-sheaves, and for his many useful remarks.

1. Sheaves on subanalytic sites.

In the following X will be a real analytic manifold and k a field. Re-
ferences are made to [8] and [14] for an introduction to sheaves on Gro-
thendieck topologies, to [5] for a complete exposition on classical sheaves
and R-constructible sheaves and to [1] and [10] for the theory of sub-
analytic sets (see also the Appendix for a short overview on some prop-
erties of subanalytic subsets).

1.1 — The subanalytic site. Notations and review.

We introduce the subanalytic site. The results of § 1.1 have already
been proved in [7], for sake of completeness we reproduce here the proofs.

Denote by Op(X;,) the category of subanalytic subsets of X. One en-
dows Op(X,) with the following topology: S C Op(X,) is a covering of
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U € Op(Xy,) if for any compact subset K of X there exists a finite subset Sy
of S such that K N UVeS0 V =KnU. We will call Xy, the subanalytic site,
and for U € Op(X,,) we denote by Ux,, the category Op(X,) N U with the
topology induced by X,. There is a natural morphism of sites Uy, — Ux,,.

REMARK 1.1.1.  We use the notation Ux,, to stress the difference from
Usq, the subanalytic site associated to U. For example, let X = R? and
U=R*\{0}. Let V,, = {x € R®, |a| > 1}. Then {V,,},cn € Cov(Uy,) but
{Vilnen ¢ CovUsx,,)

Let Mod(ky,,) denote the category of sheaves on X,,. Then Mod(ky,,) is
a Grothendieck category, i.e. it admits a generator and small inductive
limits, and small filtrant inductive limits are exact. In particular as a
Grothendieck category, Mod(kx,,) has enough injective objects.

REMARK 1.1.2. Denote by Op°(Xy,) the category of velatively compact
subanalytic open subsets of X. One denotes by X¢, the category Op‘(Xs,)
with the topology induced by Xs,. The forgetful functor gives an equiva-
lence of categories Mod(ky,, ) — Mod(kxce, ).

ProposITION 1.1.3. Let {F;},.; be a filtrant inductive system in
Mod(ky,, ) and let U € Op“(X,,). Then

lim I'(U; F;) = I'(U; lim F)).
2 -

Proor. By Remark 1.1.2 it is enough to prove the assertion in the
category Mod(kx: ). Denote by “li_r.n:’Fi the presheaf Vi— hin) I'(V;F;) on
X¢,. Let U € Op“(Xy,) and let S be a finite covering of U. Since hin> com-
mutes with finite projective limits we obtain the isomorphism
(“1i_m>” F)(S) = @)Fi(S) and F;(U) = F;(S) since F; € Mod(kx:,) for each
1. Moreover the family of finite coverings of U is cofinal in Cov(U). Hence
“H_fn}”Fi = (“li_m}” F))*. Applying once again the functor (-)* we get

“hln)” Fi ~ (“li_l’n)” F/L)+ ~ (“li_Hl)” Fi)++ ~ th>F'1
Hence applying the functor I'(U;-) we obtain the isomorphism
@)F(U;Fi) =, liin)Fi) for each U € Op°(Xsq). O

i i
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There is an easy way to construct sheaves on a subanalytic site

ProposITION 1.1.4.  Let F be a presheaf on X¢, and assume that
@ F(@) =0,
() For any U,V € Op‘Xy) the sequence 0— F(UUV)—
—FU)oF(V)— F(UNYV) s exact.
Then F € Mod(kx.,) ~ Mod(kx,,).

Proor. Let U € Op°(Xy,) and let {Uj}f:1 be a finite covering of U. Set
for short U;; = U; N U;. We have to show the exactness of the sequence

0 — F(U) = ®1<i<nl ' (Ur) = P1<icj<nl (U,

where the second morphism sends (sp)i<k<y t0 (ji<icj<n by i =
= sily, — sjly,- We shall argue by induction on . For » =1 the result is
trivial, and » = 2 is the hypothesis. Suppose that the assertion is true for
J<n—1andset U =J,;, Uk By the induction hypothesis the follow-
ing commutative diagram is exact

0 1)
0 FU) F(U"Y & F(Uy,) FU' NnU,)

|

@i<n F(UL) @ F(Uﬂ) - @i<n F(Uin)

@i<j<n F(Uij)'

Then the result follows. O

Let Modg-.(kx) be the abelian category of R-constructible sheaves on
X, and consider its subcategory Mod},_.(kx) consisting of sheaves whose
support is compact.

We denote by
p:X — X
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the natural morphism of sites. We have functors

1.1 Mod’,_,(kx) € Modg-o(ky) C Mod(ky) ”<:> Mod(ky.,).

P
We will still denote by p, the restriction of p, to Modg-.(kx) and
Mod{,_.(kx).

REMARK 1.1.5. By Proposition 1.1.3 for each F € Mod(ky) and
V € 0p°(Xsq) one has

1.2) I'(V;pF) ~lim I'(V; p.Fy) ~ I'(V; lim p Fy),
U U

where U ranges through the family of relatively compact open subanalytic
subsets of X. The first isomorphism follows since V is relatively compact
and I'(V,pFy)~TV,p.F) if VCU. The isomorphism (1.2) implies
imp.Fy = p.F.
u

REMARK 1.1.6. The functor p, does not commute with filtrant in-

ductive limits. For example consider the family {V,}, o~ of Remark 1.1.1.
We have p, h_m)lcV ~ p*k]Rz\ (op while for each U € Opc(Ria) with 0 € OU

we have I'(U; im p.ky,) ~ Tim I'(U; p.ky,) = 0.

ProposITION 1.1.7. Let U be an open subanalytic subset of X and
consider the constant sheaf ky, € Mod(kx,,). We have ky, , ~ p ky.

ProoF. Let F' be the presheaf on X, defined by F(V) =k if V C U,
F(V) = 0 otherwise. This is a separated presheaf and kg, = F**. More-
over there is an injective arrow F(V)<— p ky(V) for each V € Op(Xy,).
Hence F**+<sp_ky since the functor (- )™ is exact. Let 7 be the family of
W € Op(Xs,) connected and such that W does not contain any connected
component of U. Then 7 forms a basis for the topology of X, since the
connected components of U are locally finite. For each W € 7 we have
FW)~pkyW)~k if WcU and FW)=0 otherwise. Then
Ftt~ p*kU. O

PROPOSITION 1.1.8.  The restriction of p, to Modg-c(kx) is exact.

Proor. (i) Let us consider an epimorphism G — F in Modﬁi_c(kx),
we have to prove that y:p.G— p F is an epimorphism. Let
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UeOpXs) and let 0#sel'(U;pF)~Homy (ky,F). Set
G’ = G xpky. Then G’ € Mod§,_.(kx) and moreover G’ — ky. There
exists a finite {U;};.; C Op°(Xy,) with U; connected for each ¢ such that
®iky, — G'. The composition ky, — G' — ky is given by the multi-
plication by a; € k. Set Iy = {ky,; a; # 0}, we may assume a; = 1. We
get a diagram

Gict kv, — G —— G

N

k‘U4§>F

The composition ky, — G’ — G defines ¢; € Homy, (ky,, G) = I'(Uy; p,G).
Hence for each s € I'(U; p, F') there exists a finite covering {U;} of U and
t; € I'(U;; p.G) such that w(t;) = s|U1_. This means that y is surjective.

(ii) Let F € Modg-c(kx). By Remark 1.1.5 p F ~ li_m>p*FU, where U
o
ranges through the family Op°(X,,). The result follows since p, is exact on

Mod§,_.(kx) and filtrant hin> are exact. O
PROPOSITION 1.1.9.  The restriction of p, to Modg-c(kx) is fully faithful.

ProoF. It is enough to prove that plp,F~F for each
F € Modg-.(kx). Since both functors are exact on Modg-.(kx) we may
reduce to the case F = ky with U € Op(X,,) and the result follows from
Proposition 1.1.7. |

NoTATIONS 1.1.10.  Since the functor p, is fully faithful and exact on
the category Modg-.(kx), we can identify Modg-.(kx) with its image in
Mod(kx,, ). When there is no risk of confusion we will write F instead of
p.F, for F € Modg-.(kx).

The following theorem gives a fundamental characterization of sub-
analytic sheaves and it will be used systematically in the following
Sections.

THEOREM 1.1.11. (i) Let G € Mod$,_.(kx) and let {F;} be a filtrant

R-c

nductive system in Mod(kx,, ). Then we have an isomorphism

lim Homy,,, (p,G. F) = Homy, (p,G, lim F))

i i
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(11) Let F € Mod(ky,,). There exists a small filtrant inductive system
{Fi}tic; in Mod§_.(kx) such that F ~ lim p F;.

Proor. (i) There exists an exact sequence G; — Gy — G — 0 with
G1, Gy finite direct sums of constant sheaves ki with U € Op°(X,,). Since p,
is exact on Modg-.(kx) and commutes with finite sums, by Proposition 1.1.7
we are reduced to prove the isomorphism li_m}F (U F;) = r(U; h_m)FZ)

i i

Then the result follows from Proposition 1.1.3.
(i) Let F' € Mod(kyx,,), and define

Iy :={(U,s); U € Op°(Xs,), s € I'(U; F)}

Go = Sw ser, Pku

The morphism p,ky — F, where the section 1€ I'(U;ky) is sent to
s € I'(U; F) defines un epimorphism ¢ : Gy — F. Replacing F' by ker ¢ we
construct a sheaf G; = Qyper,p.ky and an epimorphism G; — ker¢.
Hence we get an exact sequence G; — Gy — F' — 0. For J, C I set for
short Gj, = ®w scs,p. kv and define similarly G;,. Set

J = {01, J0); Ji C I, Ji is finite and im plg, C Gy,}.

The category J is filtrant and F ~ hin> coker(G;, — Gy,). O

Uy Jored
ProposITION 1.1.12. Let F € Mod(ky,,), and let U € Op(X). Then
rU; p'F) ~ im  I'(V;F)

VCcU,VeOp©(Xsa)

Proor. By Theorem 1.1.11 we may assume lei_m) p.F;, with

F; € Mod§_.(kx). Then p~1F ~ lim p~'p, F; ~ lim F;. We have the chain of
isomorphisms i i

[U:p'H) = I IVipF) = lim (7 lim )

VecUu VecU i
~ limlim I'(V:F;) =~ lm lim I'(V:F;)
~ limlim I"(V;p.F;) ~ lim I'(V;F),

where V € Op°(X,,). The third isomorphism follows since V is compact and
the last isomorphism follows from Proposition 1.1.3. O
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PROPOSITION 1.1.13.  One has p~' o p, = id, in particular the functor
p. 18 fully faithful.

Proor. Let F € Mod(ky). Every x € X has a fundamental neighbor-
hood system consisting of open subanalytic subsets. Hence we have the
chain of isomorphisms

(p7p. ), =~ lim p~p, F(U) ~ lim p,F(U) ~ lim F(U) =~ .

xel xel xel

where U ranges through the family of open subanalytic neighborhoods of x.
The second isomorphism follows since, by Proposition 1.1.12

lim p~'p F(U) ~ lim lim p,F(V) = lim p, F(U).

xel xelU VccU xel

Now we will describe a left adjoint to the functor p~'.

PRrOPOSITION 1.1.14.  The functor p~' admits a left adjoint, denoted by
. It satisfies
@) for F' € Mod(kx) and U € Op(Xsq), piF s the sheaf associated to
the presheaf U—I'(U;F),
(i) for U € Op(X) one has pky ~ hin> ky.

VccU,VeOp Xsa)

Proor. Let FePsh(ka) be the presheaf U—I'(U;F), and let
G € Mod(ky,,). We will construct morphisms

~ ¢
Hompgyy, \(F, G) = Homy, (F, p'G).

To define &, let ¢:I7'—>G and U € Op(X). Then the morphism
E@)U) : F(U) — p'G(U) is defined as follows

FWU)~  lim FV) L lim G(V) ~ pGW).

VccU,VeOp® (Xsa) VccU.VeOp® Xsa)

On the other hand, let y: F — p~'G and U € Op°(Xy,). Then the
morphism d(y)(U) : F(U) — G(U) is defined as follows

F(U) ~ lim FV) L lim  p 'G(V) = G).

UccVe0pt(Xsa) UccVe0p®(Xsa)
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By construction one can check that the morphisms ¢ and 4 are inverse
to each others. Then (i) follows from the chain of isomorphisms

Homy, (F**,G) ~ Hompg, (F, G) ~ Homy, (F, p'G).
To show (ii), consider the following sequence of isomorphisms
Homy, (piky, F) ~ Homy, (ky, p—'F)
~ lim  Homy, (ky,F)

VccU,VeOpt Xsa)

~ Homy, ( lLm  ky F),

VccU,VeOpt(Xsa)

where the second isomorphism follows from Proposition 1.1.12. O

ProposITION 1.1.15.  The functor p, is exact and commutes with h_m)
and Q.

Proor. It follows by adjunction that p, is right exact and commutes
with En}, so let us show that it is also left _exact. With the notations of
Proposition 1.1.14, let F' € Mod(ky), and let /' € Psh(kx,,) be the presheaf

U+ I'(U;F). Then pF ~ F**, and the functors F+— F and G+ G+* are
left exact.

Let us show that p, commutes with ®. Let F,G € Mod(kyx), the
morphism

FU)® GU) — (F @ G)(U)
defines a morphism in Mod(ky,,)
pF @ pG— p(F®G)
by Proposition 1.1.14 (i). Since p, commutes with lim we may suppose that

F =ky and G = ky and the result follows from W))position 1.1.14 ii). O

PROPOSITION 1.1.16.  The functor p, is fully faithful. In particular one
has p~t o p, ~id. Moreover, for F € Mod(ky) and G € Mod(kx.,) one has

sa

p L Hom(p F,G) ~ Hom(F, p~'G).

Proor. For F',G € Mod(kx) we have by adjunction
Homy, (p 'pF,G) ~ Homy, (F, p1p,G) ~ Homy, (F, Q).
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This also implies that p, is fully faithful, in fact
Homy, (pF,pG) ~ Homy (F, p~'p/G) ~ Homy, (F, ).
Now let K, F' € Mod(kx) and G € Mod(ky,,), we have
Homy, (K, p"Hom(p,F, @) ~Homy,  (p.K, Hom(p,F, )

~Homy, (pK @ pF,G)
~Homy, (n(K®F),G)
~Hom; (K@ F, p~'@)
~ Homy, (K, Hom(F, p'G))

and the result follows.

1.2 — Operations on the subanalytic site.

177

Let X,Y be two real analytic manifolds, and let f : X — Y be a real
analytic map. This defines a morphism of sites f : X;, — Ys.. We have a

diagram

P,k
X~ Vea.
The following functors are always well defined on a site
Hom : Mod(ky,, )" x Mod(ky,,) — Mod(ky,,),
® : Mod(ky ) x Mod(kx,,) — Mod(kx,,),
[ : Mod(ky,,) — Mod(ky,,),
' Mod(ky,) — Mod(kyx,,).

Let us summarize their properties:
e the functor Hom is left exact and commutes with p,,
o the functor ® is exact and commutes with lim, p~!and p,

e the functor f, is left exact and commutes with p, and (liﬂ,

e the functor ! is exact and commutes with liin>, ® and p~t,

e (f1.£.) s a pair of adjoint functors.
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Let Z be a subanalytic locally closed subset of X. As in classical sheaf
theory we define
I'y: MOd(ka) — MOd(sza)

F — Hom(p,kz,F)

(+)z: Mod(ky,,) — Mod(kx,,)

s

F—FQpky.
We have

e the functor 7' is left exact and commutes with p, and (H-m,
e the functor (- ), is exact and commutes with M, ® and p71,

o ((*)z,Iz) is a pair of adjoint functors.

1.3 — R-constructible sheaves on subanalytic sites.

Let us consider the category Modg-.(kx). We prove that the sub-
category of Mod(ky,,) consisting of R-constructible sheaves is stable under
inverse image and tensor product.

ProposITION 1.3.1. Let F,G € Modg-c(kx). Then p (F® G) ~ p,F®
@p,G.

ProoF. We may reduce to the case F =ky, G=Fky with U,V €
Op(Xse). In this case p . kyny =~ p.ky ® p.ky by Proposition 1.1.7. O

COROLLARY 1.3.2. Let F € Modg-c(kx), and let Z be a subanalytic
locally closed subset of X. Then p,Fy ~ (p.F).

Let X,Y be two real analytic manifolds, and let f : X — Y be a real
analytic map.

ProposITION 1.33. Let f: X — Y be a real analytic map. Let G €
Modg-c(ky). Then p, fﬁlG ~ fﬁlp*G.

PrOOF. Since the functor f' is exact, we may reduce to the case
G = ky, with V € Op(Yy,). In this case we have p, f ‘ky f_vp*qu(v) ~
~ f~1p ky, where the last isomorphism follows from Proposition 1.1.7. [

We apply the above results to calculate the functor Hom in the category
Mod(ky,, ).
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ProrosiTiON 1.3.4. Let F:h_m>FZ with F; € Mod(kx.) and let

sa

G = lim p.G; with G, € Modg-o(kx). One has

Hom(G, F) ~ (h_m hin) Hom(p, G, Fy).

Proor. For each U € Op‘(X,,) one has the isomorphisms
(U, Hom(G,F)) ~ Homy, (Gy.F)
= M h_m) Homy, (p.Gju, F)
J i
~ I'(U; lim lim Hom(p.G;, Fy)).
i
In the second isomorphism we used Corollary 1.3.2, and the last iso-
morphism follows from Proposition 1.1.3 and because I'(U;-) commutes
with lim. O
-
COROLLARY 1.3.5. Let F = Hﬂp*ﬂ, G = hﬂp*Gj with  F;,Gj €
€ Modg-.(kx). One has i j
Hom(G, F) ~ @ @)p*Hom(Gj, E).

J

Proor. It follows from the fact that Hom commutes with p, and from
Proposition 1.3.4. |

COROLLARY 1.3.6. Let F' = @p*ﬂ, with F; € Mod}_.(X) be a sheaf

on X Let Z be a sub(maly;fic locally closed subset of X. Then
FzF ~ hin)p*FZE

1.4 — Proper direct image on Mod(kx,,).

In [7] the authors defined the functor fi of proper direct image using
ind-sheaves. Here we give a direct construction:

fi - Mod(ky,) — Mod(ky,,)

U K

where U ranges through the family of relatively compact open subanalytic
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subsets of X and K ranges through the family of subanalytic compact
subsets of X. One shall be aware that hin) is taken in the category
Mod(ky, ). Let V € Op°(Ys). Then I'(V;fiF)= liLn>F(f’l(V);FU) ~

li_m)l“ (f Y(V); I'kF), where U ranges through the fgmily of relatively

cgmpact open subanalytic subsets of X and K ranges through the family of
subanalytic compact subsets of X. If f is proper on supp(¥’) then f, ~ fi; and
in this case fiy o p, ~ p, o fi.

REMARK 1.4.1. Remark that fiop, # p,ofi in general. Indeed let
V € 0p°(Yyo), then

IV fup, B =lim I'(f 7 (V); TP,

L(Vip fiF) =lim I'(f 7 (V); T2,

where Z ranges through the family of closed subsets of f~X(V) such that
flz : Z — V is proper. Then

I'(Vifup,F) ={s € I'(f 1(V); F); supp (s) is compact in X},
[(Vip, fiF) ={s € [(f \(V);F); f : supp(s) — V is proper}.

For example, let f : R* — R be the projection on the first coordinate, and
let 'V =(a,b) € Op°(Rs). Suppose that supp(s) = {(x,y) € (a,b) x R,
Y= m} Then f : supp (s) — V is proper but supp (s) is not compact.

PROPOSITION 1.4.2.  The functor fi commutes with filtrant hin> More-
over ,[)71 o fg[ ~ f[ o /)71.

Proor. Let us show that fi commutes with filtrant h_m> Let
V € 0p“(Yy,) and let {F;}; be a filtrant inductive system in Mod(ky,, ). Then

@) Homkxsa (kfil(V)’ FK @) FZ) = li_nl> Hokasa, (kfil(V)ﬂK’ @) Fl)

= lim Homy,, (6 -1y, £4)
K

~ lim Homy, (k1 I'kF)
iK

~ th) Homy, (kv,fuF)

~ H;mkysa (ky, lim fuF";),

i



Sheaves on Subanalytic Sites 181

where the second isomorphism follows from the fact that k., x €
€ Modj,_.(kx).
Let us show plofy~fio p L. Let F = liin>p*Fi. Since fi commutes

with filtrant hin> and F; has compact support for each ¢ we have
HF = lim p.fill;. We have the chain of isomorphisms

i,

fplhmp* -~f11mp 1y F; f11mF~11mfF

i i i i

~lim p~'p, fiF; ~ p~' lim p, fiF;.

i i

PROPOSITION 1.4.8. The functor f. commutes with p—!

Proor. Let F € Mod(ky,, ). Then f.F ~ (h_m fiF'k, where K ranges
K

through the family of subanalytic compact subsets of X. We have the chain
of isomorphisms

fop'F ~ lim £.( p )k ~ lim fi P ) =~ lim £ p ' Fg

~hmp fFK:plhmfFKf_vplhmfFK pF,

where the second and the sixth isomorphism follow from the fact that f is
proper on a compact subset of X. O

COROLLARY 1.4.4. The functor f~' commutes with p,.

Proor. It follows immediately by adjunction. O

ProposITION 1.4.5. Let F' € Mod(kx,,) and G € Mod(ky, ). Then
HF®G~ f(Fe fG).

Proor. Let F = lim p*FZ, G = hm p.G;. The functors ®, fi and f

commute with hm Moreover supp(F ® f G) is compact for each 1,7,

i
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hence f is proper on it. Then

fulim p F; @ lim p,Gj ~ lim p_ (fF; © Gj)

i Jj i

~1im p,(i(F; @ f'G))

i.j

. 1.
=~ fu( h_f_r}ﬂ*Fi ® f h_f_r}ﬂ*G.;'l

i i

In the first isomorphism we used Proposition 1.3.1 and in the last one we
used Propositions 1.3.1 and 1.3.3. O

Now let us consider a cartesian square

/
! /
XSCL }/SCL

PROPOSITION 1.4.6. Let F' € Mod(ky, ). Then g~'fuF ~ f,g~'F.

ProOF. Let F = hin> p.F;. All the functors in the above formula com-

mute with h_)m Moreover since supp(#;) is compact, f' is proper on
supp(g’ 1 F;) for each i. Then

g~ Yo lim p,F; = lim p, g7 fiF; = lim p, f/g' "' Fi = fig/ ™" lim p.F,

i i i i

where the first and the last isomorphisms follow from Proposition 1.3.3. [
The following isomorphism is the analogue for subanalytic sheaves of
Corollary 4.3.15 of [7].

PRroPOSITION 1.4.7. Let G € Modg-.(ky) and let F € Mod(kx,, ). Then
the natural morphism

fuHom( G, F) — Hom(G, fuF)
18 an isomorphism.
ProOF. Let us construct the morphism. By adjunction we have

f1G @ Hom( f'G,F) — F,
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hence, using the projection formula we get
G ® fiHom( f'G,F) = f( f'G @ Hom( f'G,F)) — /iF,

then by adjunction we obtain the desired morphism. Let us show that it is an
isomorphism. We have the chain of isomorphisms

futom( f7'G,F) = lim f.I'gHom(f ™G, F)

~ lim f. Hom(f G, I'gF)

K

~ hin) Hom (G, f. I kF)
K

~ Hom(G, liin>f*FKF)

~ Hom(G,f F),

where the fourth isomorphism follows from Proposition 1.3.4. O

1.5 — Quasi-injective objects.

Let us introduce a category which is useful in order to find acyclic
objects with respect to the functors defined in the previous Sections. Al-
though the definition is inspired to the definition of quasi-injective objects
of [7] (or, more generally, to the definition of quasi-injective objects of a
ind-category, see [8] for more details), the proofs of Theorems 1.5.4 and
1.5.16 are independent of the theory of ind-objects.

DEFINITION 1.5.1. An object F' € Mod(kx,,) is quasi-injective if the
Junctor Homy, (-, F) is exact in Mod{,_.(kx) or, equivalently (see Theo-
rem 8.7.2 of [8]) if for each U,V € Op°(Xy,) with V C U the restriction
morphism I'(U; F) — I'(V; F) is surjective.

It follows from the definition that injective sheaves belong to Jx,, . This
implies that Jx,, is cogenerating. Moreover the category Jx,, is stable by
filtrant lim and 11

ProposITION 1.5.2. Let 0 — F' — F — F" — 0 be an exact sequence
in Mod(kx,) and assume that F' is quast-injective. Let U € Op“(Xs,).
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Then the sequence
0TI (U;F)-TUF) —TUF')=0

s exact.

ProoF. Let s” € I'(U;F"), and let {V;};_, be a finite covering of U
such that there exists s; € I'(V;; F) whose image is s” |Vi' For n>2 on
VinNnVy s1 — sy defines a section of I'(ViNVe; F’') which extends to
s’ € I'(U; F'). Replace s; with s; —s’. We may suppose that s; = sz on
V1 N Vs. Then there exists t € I'(V7 U Vs) such that t|Vl_ =s;,1=1,2. Thus
the induction proceeds. O

PRrOPOSITION 1.5.3. Let F', F, F" € Mod(kx,, ), and consider the exact
sequence

0—-F —-F—F'—0.

Suppose that F',F € Jx_. Then F" € Jx

sa® sa®

ProorF. Let U,V € Op°(Xy,) with V C U and let us consider the dia-
gram below

U;F) ——=TWU;F")

| P
TV F) — s T, F").

The morphism « is surjective since F is quasi-injective and f is surjective by
Proposition 1.5.2. Then y is surjective. O

THEOREM 1.5.4. The family of quasi-injective sheaves is injective with
respect to the functor Homy, (@, ") for each G € Modg-.(kx).

Proor. (i) Let 0 = F' — F — F” — 0 be an exact sequence in
Mod(kx,,) and assume that F” € Jx,. Let G € Modﬁ%_c(lﬁx). We have to
show that the sequence

0 — Homy, (G,F') — Homy, (G,F)— Homy, (G,F")—0

is exact. There is an epimorphism ¢ : ®;c;ky, — G where [ is finite and
U; € Op°(Xy,) for each i € I.

The sequence 0 — ker ¢ — ®;crky, — G — 0 is exact. We set for short
G1 = ker g and Gz = Pjerky,. We get the following diagram where the first
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column is exact

0 0 0

0 ——Homy, (G, F') ——Homy, (G, F)——Homy, (G,F")——0

0 ——Homy, (Go, F') ——Homy, (Ga, ) —— Homy,_ (G2, F") ——0

00— Homkxm(Gl, F/) — HOIIlkXM (G1, F) —— Homk‘xs,,,(Gl’ F”) —0

0 0 0

The second row is exact by Proposition 1.5.2, hence the top row is exact
by the snake lemma.

(ii)) Let G € Modg-.(kx), let 0 — F' — F — F" — 0 be an exact se-
quence in Mod(ky,) with F' € Jx,. Let {V,},cn € Cov(Xyq) such that

V. cC V1. By (i), all the sequences
0— HOkaSH’ (GVN,F/) d HOkasa (GVH,F) — HOkasa (GVMF”) -0

are exact. Moreover since F’ € Jy,, the morphism Homy, (Gv,. ,F’) —
— Homy, (Gy,,F’) is surjective for all n. Then by the Mittag-Leffler

property (see Proposition 1.12.3 of [5]) the sequence

0— (h_m Homy, (Gy,,F")— m Homy, (Gvy,,F)— (h_m Homy, (Gvy,,F")—0

n n n

is exact. Since lim Homy, (Gv,, ) ~ Homy, (G, -) the result follows. [
ProPOSITION 1.5.5. Let G € Modg-.(kx). Then quasi-injective sheaves
are mjective with respect to the functor Hom(G, -).

Proor. Let G € Modg-c(kx). It is enough to check that for each
U € Op(Xs,) and each exact sequence 0 — F' — F — F” — 0 with
F' € Jx,,, the sequence

0 — I'(U; Hom(G, F")) — I'(U; Hom(G, F)) — I'(U; Hom(G, F")) — 0

is exact. We have I'(U, Hom(G, -)) ~ Homy, (Gy,-), and quasi-injective
objects are injective with respect to the functor Homy, (Gy,-) for each
G € Modg-¢(kx), and for each U € Op(Xy,). O
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COROLLARY 1.5.6. Quasi-injective sheaves are injective with respect to
the functor I z for each locally closed subanalytic subset Z of X.

COrROLLARY 1.5.7. Let F € Mod(kx,,) be quasi-injective. Then the
functor Hom(-, F) is exact on Modg-c(kx).

Proor. LetF € Mod(ky,,)be quasi-injective. There is an isomorphism
of functors I'(U; Hom(-, F)) ~ Homy, (g, F) for each U € Op(Xg,). The
functor Homy, ((-)y, F) is exact on Modg-.(kx) and the result follows. [

ProprosiTION 1.5.8. Let F' € Mod(kx,,). Then F is quasi-injective if
and only if Hom(G, F) is quasi-injective for each G € Modg-¢(kx).

Proor. (i) Let F be quasi-injective, and let G € Modg-.(kx). We have
Homy, (-, Hom(G,F)) ~ Homy, (- ® G, F), and Homy, (-®G,F) is exact
on Mod$,_.(kx).

(ii) Suppose that Hom/(G, F) is quasi-injective for each G € Modg-.(kx).
The result follows by setting G = kx. O

COROLLARY 1.5.9. The functor I'; sends quasi-injective objects to
quasi-injective objects for each locally closed subanalytic subset Z of X.

Let f : X — Y be a morphism of real analytic manifolds.

ProOPOSITION 1.5.10. Quast-injective sheaves are injective with respect
to the functor f.. The functor f. sends quasi-injective objects to quasi-
myjective objects.

Proor. (i) Let us consider V € Op(Yy,). There is an isomorphism
of functors I'(V;f.(-)) ~ I'( f’l(V); -). It follows from Proposition 1.5.4
that Jx, is injective with respect to the functor I'(f _1(V); D)~
~ Homy, k 1y -) for any V € Op(Ys,).

(ii) Let F' € Jx,,. For each G € Modj,_ . (ky) we have Homy, (G,f.F) ~
Homy, (f _lG, F). Since f ~1is exact and sends Mod{,_.(ky) to Modg-(kx),
Proposition 1.5.4 implies that the functor Homy, (f “1(. ), F) is exact on
Modf_ (ky). O

ProPOSITION 1.5.11. The family of quasi-injective sheaves is fu-in-
jective. The functor fy sends quasi-injective objects to quasi-injective
objects.
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Proor. (i) Let 0 - F' - F — F’" — 0 be an exact sequence in
Mod(kx,,) and assume that I’ € Jx,,. We have to check that the sequence
0—fF —fill - fiF" —0 is exact. Since F' € Jx,, we have
I'kF' € Jx,. Moreover Jy, is injective with respect to I'x and f.. This

implies that the sequence
0— fil xF' — f,Il'xkF — f.I'kF" — 0

is exact. Applying the exact functor h_)m we find that the sequence
K

. , . . "
O—>h%n>f*FKF —>h%n}f*FKF—>h_zn)f*FKF —0
is exact.
(ii) Let K be a compact subanalytic subset of X. The functors I'x and f.
send quasi-injective objects to quasi-injective objects, then f.I'xF' € Jy,,.
Since Jy,, is stable by filtrant lim, the result follows. O

Let S be a closed subanalytic subset of X and let ig : S<— X be the
closed embedding. Let F' = hm p*F € Mod(kyx,,) with F; € ModR kx).

We have Fg ~ hin)p*Flg ~ hrn p*zs* is 'F; ~ g, ig 'F.

LEmmA 1.5.12. Let S be a closed subanalytic subset of X and let
U e 0p°(Xy,). Let F € Mod(ky,,). Then I'(U;Fs)~ hm r'(V;F), with
Ve Op (Xsa) v;smu

Proor. Let F € Mod(ky,,). Then F' ~ lim p*F with F; € Mod§,_.(kx).
We have the chain of isomorphisms i
I'(U;Fs) ~ lim I'(U; F5)
-
& lim I'(V; F;)
L;;;ZU
~ lim I'(V; F),
—

VosSnUu

where V ranges through the family of relatively compact open subanalytic
subsets of X containing S N U. The second isomorphism follows since F; is
R-constructible for each 1. O

REMARK 1.5.13. The fact that F'; € Modg-.(kx) is locally constant on a
subanalytic stratification of X plays an essential role. In fact the iso-
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morphism is not true i general in Mod(kyx), since the family of relatively
compact open subanalytic subsets of X containing S N U is not cofinal to
the family of open subsets of X containing S N U.

PrOPOSITION 1.5.14. Let S be a closed subanalytic subset of X and let
F € Mod(kx,,) be quasi-injective. Then Fg is quasi-injective.

Proor. Let U,V € Op°(Xy,) with V c U. Since F is quasi-injective
and inductive limits are right exact, the morphism h_m) r&u;r)—
U'>8SnU
li_m> r'(V'; F)with V', U’ € Op°(Xy,), is surjective. Hence by Lemma 1.5.12
V58NV

the morphism I"(U; F's) — I'(V; F) is surjective and the result follows. [

Recall that F' € Mod(ky) is e-soft if the natural morphism I'(X; F) —
I'(K,F) is surjective for each compact K C X. If F' is c-soft and Z is a lo-
cally closed subset of X, then Fz is c-soft. Moreover c-soft sheaves are
I'(U; -)-injective for each U € Op(X).

PROPOSITION 1.5.15. Let F' € Mod(kx,,) be quasi-injective. Then p~'F
18 c-soft.

ProoF. Let K be a compact subset of X. Recall that if U € Op(X) then
r'\U; p'F) ~ <h_m I'(V;F), where V € Op(X;,). We have the chain of iso-

. VecUu
morphisms

I(K; p7'F) = im I'(U; p'F)
~ lim lim 7'(V; F)

U VccU

~lim I'(U; F)
o

where U ranges through the family of subanalytic relatively compact open
subsets of X containing K and V € Op(Xj,).
Since F' is quasi-injective and filtrant inductive limits are exact, the
morphism I'(X; p'F) ~ I'X; F) — hln}F(U; F)~TI'(K; p7'F), where U
U
ranges through the family of subanalytic open subsets of X containing K, is

surjective. O
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Let us consider the following subcategory of Mod(kx,,):
Px,, :=1{G € Mod(ky,,); G is Hom j, (-, F)-acyclic for each F € Jy,,}.

This category is generating, in fact if {G;}; are R-constructible sheaves
®;p,Gj € Px,, by Theorem 1.5.4. Moreover Py,, is stable by - ® K, where
K € Modg-c(kx). In fact if G € Px,, and F € Jx,, we have

Homy, (G ® K, F)~ Homy, (G, Hom(K,F))
and Hom(K,F) € Jx,, by Proposition 1.5.8.

THEOREM 1.5.16. The category (Pg}‘;, Jx.,) s injective with respect to
the functor Homyg, (-, -).

Proor. (i) Let G € Py, and consider an exact sequence 0 — F” —
—F — F" — 0with F' € Jx,,. We have to prove that the sequence

0 — Homy, (G,F') — Homy, (G,F) — Homy, (G,F"y =0

is exact. Since the functor Homy, (G, -)is acyclic on quasi-injective sheaves
we obtain the result.

(i) Let F € Jx,,,and let 0 — G' — G — G” — 0 be an exact sequence

on Py,,. Since the objects of Px,, are Homy, (-, F)-acyclic the sequence
0 — Homy, (G",F) — Homy, (G,F) — Homy, (G, F)—0

is exact. O

COROLLARY 1.5.17. The category (POX”M, Jx.,) s tnjective with respect
to the functor Hom(-, ).

Proor. Let G € Py, and let 0 — F' — F — F” — 0 be an exact se-

quence with F” € Jx,. We shall show that for each U € Op(Xy,) the se-
quence

0 — I'(U; Hom(G, F")) — I'(U; Hom(G, F)) — I'(U; Hom(G, F")) — 0

is exact. This is equivalent to show that for each U € Op(X,,) the sequence
0— HOkasn’ (GU,F/) — HOkasn (GU,F) — HOkasn’ (GU,F//) -0

is exact. This follows since Gy € Px,,. The proof of the exactness in P?}Zu is
similar.
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1.6 — The functor p,.

We have seen in § 1.1 that the functor p—! : Mod(kx, ) — Mod(kx) has a
left adjoint p, : Mod(kx) — Mod(kx,,). The functor p, is fully faithful and
exact. In particular, for U € Op(X) one has pky ~ h_m) p.ky, where

V € OpXa).

VecUu

ProposITION 1.6.1. Let S be a closed subset of X. Then
piks = im p, ki, where W € Op(X,,).

WoS

Proor. (i) Let U = X \ S. Since p, is exact we have an exact sequence
0 — pky — pkx — pks — 0.

On the other hand, let V € Op°(Xy,) and V cc U. We have an exact se-
quence 0 — ky — kx — kx\v — 0. Since p, is exact on Modg-.(kx) the se-
quence 0 — p.ky — p.kx — p.kx\v — 0 is exact. Applying the exact hin)
we obtain an exact sequence vecu

0— 31_n}p*kv — pkx — vﬂ;m’ﬂxw — 0.

We have li_m)p*kv ~ pky and p,kx ~ pkx. Hence pkg ~ li_m)p*kX\V.

VccU VccU
(ii) We shall show that for each U’ € Op‘(Xy,) the natural morphism
(13) lim (U exv) — lim T )
VccU WoS

is an isomorphism. We shall see that for each W € Op(X;,) with W > S
there exists W' € Op(X;,) such that X \ WccUandWnU =W NU.
Set W =W U (X \ U'). Since U’ is relatively compact, X \ W cc U, and
WnNU =W nU' by construction. Then

@)F(U’;kx\v) ~ hin> F(U’;kw) ~ li_m)F(U’;kW).
VccU (X\W)CCU WwoS

O

NoOTATIONS 1.6.2. Let Z =UNS, where U € Op(X) and let S be a
closed subset of X. Let F' € Mod(kx,, ). We set for short ;F' = F @ pky

LEmMA 1.6.3. Let F' € Mod(kyx,, ). Let U € Op(X) and let S be a closed
subset of X.
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(i) One has pF ~ @FV ~ lin> I'yF, Ve Op°(X0).

VccU VccU
(ii) One has gF' ~ liin)FW ~ hin> I'wF, W € Op(Xg,).
WoS WoS

Proor. (i) The first isomorphism is obvious. Let us show the second
isomorphism. We have the chain of isomorphisms

lim Fy & lim (Iy-F)y = lim I'F,

VecU V.V'ccU Viccu
where V, V' range through the family of subanalytic open subsets of X.

The proof of (ii) is similar. O

PropPosITION 1.6.4. Let Z be a locally closed subset of X. Let
Ge MOd]R_c(kX) and F € I\AOd(ka1 ) Then ZHOTI’L(G, F) ~ Hom(G, ZF)-
Proor. (i) Let U € Op(X). We have the chain of isomorphisms
vHom(G, F) ~ hin) I'yHom(G, F)

VecU

~ hin) Hom(G, I'yF)

VecU

~Hom(@G, hin> I'yF)

VecU

~Hom(G, yF),

where V € Op(Xs,). The third isomorphism follows from Proposition 1.3.4.
(ii) If S is a closed subset of X the proof is similar. O

ProposiTION 1.6.5.  Let F' € Mod(kx,,) be quast-injective. Then p K @ F
1s quasi-injective for each K € Mod(kx).

Proor. (i) Let us show the result when K = ky, for a locally closed
subset Z of X. Let G € Modj,_.(kx). We have

Homy, (G, zF) ~I'(X; Hom(G, zF))
~ I'(X; 7Hom(G, F))
~I'X; p~lzHom(G, F))
~ I (X;(p~ Hom(G, F))z).

Since F' is quasi-injective, Hom(G, F) is quasi-injective. Then by Pro-
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position 1.5.15 the sheaf (p~'Hom(G, F))y is c-soft and it is injective with
respect to the functor I'(X,-). Hence the functor I'(X; p~"Hom(-, F)y) is
exact on Modj,_.(kx).

(ii) Let K € Mod(kx). There exists an epimorphism @®;c/ky, — K with
U; € Op(Xy,) for each 7. Let K; be the image of ®;csky,, with J C [ finite.

We have K ~ lim K, hence p/K ~ lim p,K; since p, commutes with lim. It
o N -
is enough to prove the result for K;. We argue by induction on the cardinal

of J. Set K = K;. If |J| =1 then K ~ ky with Z locally closed subset of X
and the result follows from (@).

Let us show # — 1 = n. There is an epimorphism @} ,ky, — K. Let K;
be the image of ky, — K and let Ks = K/K;. We have a commutative
diagram

0 — ky, — O ky, —— @} ok, —0

L

0 K K Ky 0,

where the vertical arrows are surjective, and the rows are exact. By the
exactness of p, and ® we obtain the exact sequence 0 — pK; @ F —
—pKQF — pKy ® F — 0. By the inductive hypothesis pK; ® F and
p Ko ® F are quasi-injective, then p K ® F' is quasi-injective. O

PRrOPOSITION 1.6.6. Let F' € Mod(kyx, ), G € Modg-.(kx) and let K €
Mod(kx). One has the isomorphism Hom(G, F)® p K ~ Hom(G, F ® pK).

Proor. Both sides are left exact with respect to F. Hence we may
assume that F is quasi-injective. Since quasi-injective sheaves are
Hom(G, -)-injective, both sides are exact with respect to K. Moreover as a
consequence of Proposition 1.3.4 both sides commute with filtrant hin) with
respect to K. We may reduce to the case K = ky, with U € Op(X,,). Then
the result follows from Proposition 1.6.4. O

2. Derived category.

As usual, we denote D(ky,,) the derived category of Mod(ky,, ) and its
full subcategory consisting of bounded (resp. bounded below, resp. boun-
ded above) complexes is denoted by Db(szu) (resp. D*(kx,), resp.
D~ (kx,,)).
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2.1 - The category D%_.(kx,,).

As usual we denote by D%_ (kx) (resp. D%_.(kx,,)) the full subcategory of
Db(kyx) (resp. D’(kyx,)) consisting of objects with R-constructible coho-
mology.

Recall that p : X — X, is the natural morphism of sites. It induces the
functor p, : Mod(kx) — Mod(ky,, ).

LeEmMA 2.1.1.  Let F € Modg-c(kx). Then Rip,F = 0 for each j # 0.

ProoF. The sheaf R/p,F is the sheaf associated to the presheaf
V — RIT(V;F).We have to show that RN I"(V; F) = 0 forj # 0 on a family of
generators of the topology of X,. This means that for each V € Op°(X,q)
and for each j # 0, there exists I finite and {V;},.; € Cov(Vy,) such that
RI(Vy;Rp,F)~RT(V;F)=0.

We use the notation of [5]. There exists a locally finite stratification
{Xi};c; of X consisting of subanalytic subsets such that for all j € Z and
all i € I the sheaf F|y, is locally constant. By the triangulation theorem
there exist a simplicial complex (S,4) and a subanalytic home-
omorphism y :|S| = X compatible with the stratification and such
that V is a finite union of the images by w of open subsets V(o) of |S],
where V(o) = U,ey.5, 7| By Proposition 8.1.4 of [5] we have
R TI'(w(V(6);F) =0 for each ¢ and for each j # 0. The result follows
because V = ny(\a\)cv w(V(0)). O

Since R-constructible sheaves are injective with respect to the functor p,,
the following diagram of derived categories is quasi-commutative.

DY (kx) — D} (kx,,)
@.1) ZT /
D" (Modg_(kx))

THEOREM 2.1.2. One has the equivalence of categories

D}_(kx) = D'(Mod—o(kx) = D (kx,,)-

R-¢
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Proor. By dévissage, to prove the equivalence between D*(Modg-.(kx))
and D% _ (kx,,) it is enough to check that the functor p, in (2.1) is fully faithful.
We have p~! o p, ~ id and the result follows.

The equivalence between D*(Modg-c(kx)) and D%_.(kx) was shown by
Kashiwara in [4]. O

2.2 — Operations in the derived category.

Let us study the operations in the derived category of Mod(ky, ). Let

sa

f: X — Y be an analytic map. We will use quasi-injective objects and the
results of § 1.5 to derive the formulas of Section 1.

Since Mod(ky,,) has enough injectives, then the derived functors
RHom : D™ (kx, )" x D*(kx,) — D" (kx,,),
Rf. : D*(kx,) — D" (ky,,),
Rfy : D*(kx,,) — D" (ky,,),

are well defined.

ProposITION 2.2.1. Let f: X — Y be an analytic map. Then
@) The functors Rf. and RHom commute with Rp,.
(i) The functors Rf, and Rfy commute with p~L.
(iii) We have R(g of), ~ Rg. o Rf. and R(g o f)y ~ Rgy o Rf.

(iv) The functor R*fy : Mod(ky,, ) — Mod(ky,,) commutes with fil-
trant inductive limits for each k € 7.

) If F € Dt (kx,,) and f ts proper on supp(F), then Rfy ~ Rf..

Proor. (i) The functor p, sends injective sheaves to injective sheaves,
then Rf, and RHom commute with Rp,.

(ii) Since p~! has an exact left adjoint it sends injective sheaves to in-
jective sheaves. Then Rf, and Rf; commute with p~!.

(@iii) The functor f. (resp. fi) sends injective sheaves to injective
(resp. quasi-injective) sheaves. Then R(g o f), ~ Rg. o Rf, and R(g o f)y ~
~ Rgy o Rfy.

(iv) Quasi-injective objects of Mod(ky,,) are stable by filtrant lim, and
the functor fi commutes with such limits. Then R*f, commutes with filtrant
@) for each k € 7.
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(v) We can find a representative F” of ¥ in K*(Jx,,) with f proper on
supp(F”). Then the result follows from the non derived case. O

ProposiTioN 2.2.2. Let lei_m>Fi with F; € Mod(kx,) and let

G € D% _.(kx). One has R*Hom(G, F) ~ lim R¥Hom(G, F,) for each k € 7.
-

Proor. There exists (see [8], Corollary 9.6.7) an inductive system of

injective resolutions I? of F;. Then liin)l ¢ is a complex of quasi-injective

objects quasi-isomorphic to F. Each object of Modg-.(kx)”,Tx,,) is
Hom(-, -)-acyclic. Proposition 1.3.4 implies the isomorphism

Honu(G, lim I7) ~ lim Hom(G, I})

and the result follows. O

PROPOSITION 2.2.3. Let F € D" (kx,), G€ Dj_ (kx) and let K € D" (kx).
One has the isomorphism RHom(G, F) @ p K ~ RHom(G, F ® p,K).

Proor. LetI® be a quasi-injective resolution of F'. By Proposition 1.6.5
we have that I* ® p,K is a complex of quasi-injective objects. Each object of
(Modg-.(kx), Tx,,)is Hom(-, -)-acyclic. Hence we are reduced to prove the
isomorphism Hon(G,I*) ® pK ~ Hom(G,I* ® pK). The result follows
from Proposition 1.6.6. O

ProposITION 2.24. Let U € Op“(Xy,). Let F € Mod(ky,) be quasi-
myjective. Then Fy is I'(V,-)-acyclic for each V € Op(Xs,).

Proor. Since Fyy has compact support, we may suppose that V is re-
latively compact. Let S = X \ U. Since F' is quasi-injective and filtrant hin>
are exact, the morphism I"(V; F') — hin> I'(W;F) = I'(V; Fg) is surjective.

WoSnv

Consider the exact sequence 0 — Fy — F — Fg — 0. We get the exact
sequence

0—I(V;Fy) - I'(V;F)—TI'(V;Fg)— 0.

By Proposition 1.5.14 F and F'g are quasi-injective, hence I'(V; -)-acyclic.
This implies that Fyy is I'(V; -)-acyclic. O

COROLLARY 2.25. Let f: X —Y be a real analytic map and
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let U € Op°(X,,) Let F e Mod(ky,) be quasi-injective. Then Fy is
fu-acyclic.

ProOF. Since F;y has compact support, RfiFy ~ Rf, Fy. The result
follows because Fyis I'( f *I(V); -)-acyclic for each V € Op(Y). O

LEmMMA 2.2.6. Let F' be quasi-injective object of Mod(kx,) and let
G € Mod,_.(kx). Then F ® p,G is fi-acyclic.

Proor. LetG e Mod%_c(kx). Then G has a resolution

0= ®iyenky, — ... = Bierku, %G -0,
where I; is finite and U;, € Op°(Xy,) for each i; € I;, j € {1,...,n}. Let us
argue by induction on the length % of the resolution.

If n = 1, then G is isomorphic to a finite sum @;ky,, with U; € Op°(Xy,),
and the result follows from Corollary 2.2.5.

Let us show 7 — 1 = n. The sequence 0 — ker ¢ — @;,¢1,ky, — G — 0
is exact. The sheaf ker ¢ belongs to Mod%_c(kx) and it has a resolution of

length n — 1. Applying F ® p.(-) we get the exact sequence

0—Fep.kerp — e, Fuy, —F®p,G—0.

By the induction hypothesis F' ® p, ker ¢ is fu-acyclic. Moreover &;, <1, F'y

in

is fu-acyclic, then F' ® p,G is fy-acyclie. O

ProPoSITION 2.2.7.  Let F be quasi-injective object of Mod(ky,,) and let
G € Mod(kx,,). Then F ® G 1is fu-acyclic.

Proor. Let G ~ lim p,G; with G; € Modj,_.(kx) for each 4. Since the

functors ® and R¥f; commute with filtrant lin) we have

R*fy(F @ lim p.G)) = lim Ry (F © p.G)) = 0

i i

if k # 0 by Lemma 2.2.6. O

PROPOSITION 2.2.8. Let F € D" (kx,) and G € D" (ky, ). Then

RAF @G ~ Rfiy(F ® f'G).
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Proor. First assume that F' € Mod(ky,,) is injective. By Proposi-
tion 2.2.7 F ® f'G is fy-acyclic.

Nowlet F € D*(kx,,) and G € D*(ky,,). Let F’ be a complex of injective
sheaves quasi-isomorphic to F'. Then

RAF G ~fiF @G ~fi(F @ f16G)~RHF @ f16),

where the second isomorphism follows from Proposition 1.4.5. O
Now let us consider a cartesian square

f/
X;a - Y;'/a

.

Xsa —> Y5

PROPOSITION 2.2.9. Let F € D™ (kx,). Then g-'RfyF ~ Rfg'F.

Proor. We have an isomorphism f)¢g'~! ~ g7, and R(g~fi) ~
~ g7 'Rfy since ¢! is exact. Then we obtain a morphism
g~ 'Rfi — Rf}jg'~1. It is enough to prove that for any k € 7 and for any
F € Mod(ky,,) we have g 'REf\F = R¥f;¢’~1F . Since both sides commute
with filtrant lim, we may assume F' = p.G with G € Mods,_.(kx). More-
over since supp(G) is compact, f’ is proper on supp(¢’ 'G). Then both
sides commute with p, and the result follows from the corresponding one
for classical sheaves. |

As in classical sheaf theory, the Kiinneth formula follows from the
projection formula and the base change formula.

ProrostTioN 2.2.10.  Consider a cartesian square

/
/ !/
Xsa Y;a

N
N
f \
Xsa —> Y5
where 0 = f¢ = gf'. There is a natural isomorphism
Roy(g'F® f'G) ~ RfuF ® RguG
fO’V‘ F e D+(sza) and G € D+(k}y;/a).
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Proor. Using the projection formula and the base change formula we
deduce

R 'Fof'G) ~Rflg " 'F® G~ g 'RfiF ® G.
Using the projection formula once again we find
RguRfy(¢ 'F @ f'G) ~ Rgu(g 'RAF ® G) ~ RfuF ® RguG
and the result follows since Ron ~ Rgu o Rf. O

The following isomorphism is the analogue for subanalytic sheaves of
Lemma 5.2.8 of [7]

PROPOSITION 2.2.11.  Let G € Db_.(ky) and let F € D" (kx,,). Then the
natural morphism

RfyRHom( f'G, F) — RHom(G, RfyF)

1S an 1s0morphism.

Proor. The morphism is obtained as in the non derived case. Let us
show that it is an isomorphism. Let F’ be a complex of injective sheaves
quasi-isomorphic to F'. Then

RfyHom(f 'G, F) ~ fyHom(f 'G, F")
~ Hom(G,fuF")
~ RHom(G, RfyF),

where the second isomorphism follows from Proposition 1.4.7. O

2.3 — Vanishing theorems on Mod(ky,, ).

In § 2.3 we prove some results on the vanishing of the cohomology of
sheaves on a subanalytic site.

DEFINITION 2.3.1. The quasi-injective dimension of the category
Mod(ky,,) is the smallest n € N U {oo} such that for any F € Mod(kx,,)
there exists an exact sequence

0-F I ... 51"—=0

with I quasi-injective for 0 < j < n.
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ProposiTioN 2.3.2.  The category Mod(kx,,) has finite quasi-injective
dimension.

Proor. Let F' € Mod(ky,, ). Then F' = h_)m p.Fi, with F; € Mod§,_(kx).

There exists (see [8], Corollary 9.6.7) an inductive system of injective
resolutions I? of F;. By Proposition 3.3.11 of [5], the category Mod(ky)
has finite homological dimension. Then we may assume that I7 has
length Ny < oo for each i. Since F; is p,-injective for each i, p.I7 is an
injective resolution of p,F; of length Ny. Taking the inductive limit we
find that li_m)p,j; is a resolution of F' of length Ny, and li_m}p*lf € Jx,

i i

for each j. ' O

COROLLARY 2.3.3. Let f: X —Y be a real analytic map, and let
F € Modg-c(kx). The functors f., fi and Hom(F,-) have finite cohomolo-
gical dimension.

ProposiTiON 2.3.4. Let F € Mod(ky) and let G € Mod(kx,, ). There
exists a finite jo € N such that

R'Hom(p\F,G) =0 for j > jo.

Proor. Let U € Op(Xs,). We have the chain of isomorphisms

RI'(U; RHom(pF,G)) ~RHomy, (pF,RI'yG)
~ RHomy, (F, p‘lRFUG).

The functor /'y has finite cohomological dimension, and the homological
dimension of the category Mod(ky) is finite. Hence we can find a finite
Jo € N such that R/I'(U; RHom(p,F',?)) vanishes for j > jo and for each
U € Op(X,). This shows the result. O

REMARK 2.3.5. We have seen that the functor Hom(F,-) has finite
cohomological dimension when F is R-constructible and when F = p\G
with G € Mod(ky). We do not know if the cohomological dimension is
finite for any F' € Mod(kx,, ). Indeed we do not know if the homological
dimension of Mod(kx,,) is finite or not.
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2.4 — Duality.

In the following we find a right adjoint to the functor Rfy, denoted by f*.
The construction is not inspired to the classical one as in [7], but it is done
via Brown representability (we refer to [8] for an exposition on this sub-
ject). We calculate f' by decomposing f as the composite of a closed em-
bedding and a submersion.

The subcategory Jx,, of quasi-injective objects and the functor f, have
the following properties:

(i) Jx,, is cogenerating,

(ii) Mod(kyx,,) has finite quasi-injective dimension,
2.2) (iii) Jx,, is fu-injective,

(iv) Jx,, is closed by small &,

(v) fii commutes with small &.

As a consequence of the Brown representability theorem (see [8], Corol-
lary 14.3.7 for details) we find a right adjoint to the functor Rfy. Remark
that the functor Rf, extends to a functor Rfy : D(kx,,) — D(ky,,).

THEOREM 2.4.1. The functor Rfy : D(kx,) — D(ky,) admits a right
adjoint. We denote by f* : D(ky, ) — D(kx,,) the adjoint functor.

COROLLARY 2.4.2. Let G € D*(ky,). Then f'G € D*(kx,).

Proor. We may reduce to the case that G € DZO(sta). Let Ny be the
quasi-injective dimension of Mod(ky,,) and let F € D="No~1(ky ). Then
RfyF € D="'(ky,) and

Hompg, \(RfiF,G) ~ Hompg, (F,f'G) = 0.

Hence for each F' € D=~ ~!(ky ) we have Hompg, (F,f'G) = 0. Set for
short a = —Ny — 1, if F = t=%f'G we have

HomD(ka>(r§“f!G,f!G) ~ Hompga(kxm)(‘fgaf!G, Tgaf!G) =0.
This implies t=°f'G = 0, hence /'G € D*(kx,,). O

REMARK 2.4.3. Asin classical sheaf theory one can prove that for F €
€ Db(ka) and G € D*(ky) one has Rf.RHom(F.f'G) ~ RHom(RAF,G).

sa
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REMARK 2.4.4. As i classical sheaf theory, one can prove by ad-
Junction the dual projection formula and the dual base change formula.

PROPOSITION 2.4.5.  The functor f' commutes with Rp,, and the functor
HEf Mod(ky,,) — Mod(kx,,) commutes with filtrant lim>

Proor. Since Rfy commutes with p~!, then f' commutes with Rp, by
adjunction.
Let us show that H*f' commutes with lim. Let {F;}; be a filtrant in-

ductive system in Mod(ky,,). Remark that hin> Hf'F; (resp. H*f' hin> F;)is

the sheaf associated to the presheaf Ui @)Rkl" (U.f'F;) (resp.

U—RFI(U;f* @)F’i)), for U € Op“(Xs0).
We will show the isomorphism R*I"(U;f' hmF) = lim REC(U;f'F;)

for each U € Op°(X,,). By adjunction it is enough to prove the isomorphism
RFHomy,,  (Rfiky, lim F;) ~ hin)RkHomkyW (Rfky,F;) (remark that we

have Rfiky ~ Rfiky ~ Rf.ky since U € 0p°(Xy,)).

Let Jy, be the family of quasi-injective objects of Mod(ky,,). Each
object of (Mody_.(ky)”, Jy,) is Homy, (.,-)-acyclic. Moreover Jy,, is
stable by filtrant inductive limits. There exists (see [8], Corollary 9.6.7) an
inductive system of injective resolutions /7 of F;. Then hm I} is a quasi-
injective resolution of hm F;. We have i

i

HomK+(kYm)(ngkU, @)1;) ~ 1&11} HOmK+(1€Ym)(RﬁkU,I;)

and the result follows. O
COROLLARY 2.4.6. Let F € D'(ky.). Then f'F € D'(kx.).

PROOF.  We may reduce to the case /' € Mod(ky,,). Then F' ~ lim p_F;

with F; € Modg-.(ky) for each i. By Proposition 2.4.5 we have

ka'F ~ ka! hin)p*Fl ~ li_nl)/)*ka!Fi,

i i

and H'f'F; = 0 if k > j, for a fixed j, € N and for each 1. O
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The following result is the analogue for subanalytic sheaves of Propo-
sition 5.3.9 of [7].

PROPOSITION 2.4.7. Let F € D" (ky,) and let G € D (ky). Then one
has the isomorphism f(F @ pG) ~ f'F @ p fG.
Proor. We have the chain of morphisms
Rf(f'Fp '@ ~Rfuf'F @ pG— F@pG,

by adjunction we obtain the desired morphism. To prove that it is an iso-
morphism it is enough to show R¥I'(U; f'(F @ p\G)) ~R*I"(U:f'F @ p,f ' G)
for each U € Op°(Xy,) and each k € Z. We have the chain of isomorphisms

RFI(U; f'(F ® p\@)) ~ R*Homy, (Rfuky, F @ pG)
~ R*Homy, (ky, RHom(Rfuky,F  p@))
~ R"Homy, (ky, RHom(Rfiky,F)® pG)
~ R"Homy, (ky, RfiRHom(ksy,f'F) ® pG)
~ RFHomy,  (ky, Rfy(RHom(ky .f'F) @ ' p@)
~ R*Homy, (ky, Rfi(RHom(key f'F @ p.f ' G)

~ RFHomy, (ky,/'F @ p.f '@,

Here the fourth and the last isomorphism follow from the fact that since k¢
has compact support, then RHom(ky, K) has compact support for any
K € D*(kx,,) and RfuRHom(ky, K) ~ Rf . RHom(ky, K). O

ProposSITION 2.4.8. Let F'€ D" (ky,), and let f: X — Y be a closed
embedding. Then f'F ~ f~'RHom(kx, F) and id = f'Rf.

PrOOF. Since f is proper, then Rf, ~ Rf). We have the isomorphisms
Rf.f'F ~ Rf.RHom(kx,f'F) ~ RHom(kx,F). Since f'Rf.f'F ~f'F,
then f'F ~ f~'RHom(ky, F).

Let F" € D*(kx,,). We have the isomorphisms

F'RfF' ~ f'RHom(kx, Rf.F') ~ f 'Rf.RHom(kx,F') ~ f 'Rf.F',
and f'Rf,F" ~ F' since f is a closed embedding. O
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Recall that f is a topological submersion (of fiber dimension 7) if locally
on X, f is isomorphic to the projection ¥ x R" — Y.

PRrROPOSITION 2.4.9. Assume that f is a topological submersion. Then
for F € D*(ky,) one has the isomorphism f'F® f'ky = f'F.

Proor. We have the chain of morphisms
Rf( f'Fof'ky) ~F @ Rfy f'ky — F@ky ~F,

by adjunction we obtain the desired morphism.
Let us show that it is an isomorphism. We may reduce to the case
F ~ lln, p.F; € Mod(ky, ). We have the chain of isomorphisms

sa

H*(f ! lim p, Fy @ f'p.Jey) = lim p H*(f 7' F; @ f'key)

i

~ lim p, H'f'F,

i

~ H*f' lim p,F;.

O

Using these results we can calculate explicitly the functor f*. Let
f: X — Y be an analytic map. We decompose it as the composite of a closed
embedding and a submersion. In fact

fixlxxyly

where p is the projection and j is the graph embedding j(x) = (x,f(x)). Let
F € D" (ky,,). Applying Propositions 2.4.8 and 2.4.9 we get

f'F ~ j'RHom(kjx), p~'F @ p'ky).
COROLLARY 2.4.10. Assume that f is a topological submersion. Then:

() the functor f* commutes with p~ 1,
(ii) the functor Rfy commutes with p,.

Proor. (i) One has the chain of isomorphisms
p IR pky) = p  fTIF @ p i ky
~ T pF® p i ky
~f ' F @ p7lp. fhy
~f 1 IF @ fky.
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The result follows from Proposition 2.4.9.
(ii) The result follows by adjunction. O

ProPOSITION 2.4.11. Assume that fis a topological submersion and
moreover that Rfif'ky ~ky. Then for F & D* (ky,) the morphism
Rf. f'F — F is an isomorphism.

Proor. First let us show that Rfy f'ky ~ ky. We have the chain of
isomorphisms

Rfvf'p.key ~ Rfap. fky
= Rf!!/’!f!ky
= /’!Rf!f!kY
~ pky
~ p.ky,

where the second isomorphism follows because f'ky is locally constant
and the third from Corollary 2.4.10 (ii). It follows from Proposition 2.4.9
that f'F ~ RHom(f'ky,f'F). Then we have the chain of isomorphisms

Rf.f'F ~ Rf.RHom(f'ky. .f'F)
~ RHom(Rfy f'ky, F)

~F.

3. Examples of applications.

In this Section we give some example of subanalytic sheaves. Let X
be a real analytic manifold, and let X, be the associated subanalytic
site. We first introduce sheaves of R-modules, where R is a sheaf of k-
algebras on Xg,. Let Dx be the sheaf of finite order differential op-
erators on X. We define the pDx-modules O% and O% of tempered and
Whitney holomorphic functions respectively. References are made to
[8] for an exposition on sheaves of rings on a Grothendieck topology.
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3.1 — Modules over a kx,,-algebra.

A sheaf of kx, -algebras (or a kyx,-algebra, for short) is an object
R € Mod(kx,,) such that I'(U; R) is a k-algebra for each U € Op(Xy,) and
the restriction maps are morphisms of algebras. Let us denote by R the
opposite kx,, -algebra.

Let R be a kx, -algebra and denote by Mod(R) the category of sheaves
of (left) R-modules. The category Mod(R) is a Grothendieck category and
the family {Ru}ycopx,,) 18 @ small system of generators. Moreover the
forgetful functor for : Mod(R) — Mod(ky,,) is exact.

In this Section we shall extend some results on kx -modules, by re-
placing ky,, with R. Since the formalism is similar to that we developed
previously we shall not give proofs. The functors

Homz : Mod(R)” x Mod(R) — Mod(ky,,),
®r : Mod(R?) x Mod(R) — Mod(kx. )

are well defined. Let us summarize their properties:
e the functor Homy is left exact,
e the functor ®z is right exact and commutes with hin)
Let X,Y be two real analytic manifolds, and let f: X — Y be a

morphism of real analytic manifolds. Let R be a ky, -algebra. The functors
71, f. and fi induce functors

f71: Mod(R) — Mod(f'R),
£, : Mod(f'R) — Mod(R),
fir : Mod(f 'R) — Mod(R).

Let us summarize their properties:
e the functor f! is exact and commutes with hin> and ®g,
e the functor f, is left exact and commutes with <li_m,
e (fl.f.) is a pair of adjoint functors,

e the functor fj is left exact and commutes with filtrant hin)

Now we consider the derived category of sheaves of R-modules.

DEFINITION 3.1.1. An object F € Mod(R) is flat if the functor
Mod(R°?) > G — G ®% F s exact.
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Small direct sums and filtrant inductive limits of flat R-modules are
flat. Since the generators of Mod(R) are flat, then the subcategory of
Mod(R) consisting of flat modules is generating. Thanks to flat objects we
can find a left derived functor ®% of the tensor product ®x.

DEFINITION 38.1.2.  An object F' € Mod(R) is quasi-injective if its image
via the forgetful functor for : Mod(R) — Mod(kyx,,) ts quasi-injective.

Let X,Y be two real analytic manifolds, and let f : X — Y be a real
analytic map. Let R be a ky,,-algebra. As in § 1.5 one can prove that quasi-
injective objects are injective with respect to the functors f. and f. The
functors Rf. and Rfy are well defined and projection formula, base change
formula and Kiinneth formula remain valid for R-modules. Moreover hy-
pothesis (2.2) are satisfied and we have

THEOREM 3.1.3. The functor Rfy : D*(f_lR) — DY (R) admits a right
adjoint. We denote by f' : D™(R) — D*(f 'R) the adjoint functor.

3.2 — Sheaves of pyR-modules.

We will consider the case where the ring is pR, where R is a sheaf of
kx-algebras. We will also assume the following hypothesis:

R has finite flat dimension.

The functor p, induces an exact functor Mod(R) — Mod(p,R) which is
left adjoint to p~! : Mod(p,R) — Mod(R). We will still denote by p, that
functor. The functor p, : Mod(R) — Mod(p/R) is well defined too, in
fact the morphism &p € Homy, (R,End(F)) defines a morphism in
Homy, (p/R, End(p,F)). That follows from the chain of isomorphism

Homkxm (PR, End(p, F)) ~ Homkxm (PR, p.End(F))
~ Hoka(p’lp!R, End(F"))
~ Homy, (R, End(F)).

We briefly summarize the properties of these functors:
e p ! commutes with @%, £~ and Rfi,
e Rp, commutes with RHomg and Rf.,

e p, commutes with @% and .

Finally we recall the following result (which has been proved in [7])
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ProrosiTiON 3.2.1. Denote by R the pres@eaf U — I'(U;R), where
U € Op°(X,,). Suppose that F is a presheaf of R-modules and denote by
F*+ the sheaf associated to F. Then F* € Mod(p,R).

Proor. Let U € Op(Xy), and let » € I'(U;R). Then r defines a
morphism I'(V:R)® I'(V;F) — I'(V;F) for each subanalytic V c U,
hence an endomorphism of (F++)|U ~ (F| Us, )**. This morphism defines
a morphism of presheaves R — End(F++) and R ~ »R by Proposition
1.1.14. Then F'** € Mod(p/R). O

3.3 — Some examples of subanalytic sheaves.

From now on, the base field is C. Let M be a real analytic manifold. One
denotes by Cj; and Dby the sheaves of C* functions and Schwartz’s
distributions respectively, and by Dy, the sheaf of finite order differential
operators with analytic coefficients. As usual, given a sheaf ' on M, we set
D'F = RHom(F, Cyy).

In [4] the author defined the functor

T’HO’WL('7 DbM) : MOdR-C(\CM)Op — MOd(DM)

in the following way: let U be a subanalytic open subset of M and
Z =M\ U. Then the sheaf THom(Cy,Dbyy) is defined by the exact se-
quence

0— FZ'DbM — DbM — THOWL("CU, DbM) — 0.

This functor is exact and extends as a functor in the derived category, from
D%_.(Cyp) to DP(Dyy). Moreover the sheaf THom(F, Dby) is soft for any R-
constructible sheaf F'.

DEFINITION 8.3.1.  One denotes by Db’y the presheaf of tempered dis-

tributions on M, defined as follows:

U—I(M; DbM)/I"M\U(M; Dbyy).

As a consequence of the Lojasievicz’'s inequalities [11], for U,V €
€ Op(M,,) the sequence

0 — Db, (U UV) — Dby (1) & Dby (V) — Dbly(U N V) — 0

is exact. Then Dbfu is a sheaf on M,,. Moreover it follows by definition that
Db, is quasi-injective.
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DEFINITION 3.3.2.  Let Z be a closed subset of M. We denote by Ly , the
sheaf of C* functions on M vanishing up to infinite order on Z.

DEFINITION 3.3.3. A Whitney function on a closed subset Z of M is an
indexed family F = (F*),cx» consisting of continuous functions on Z such
that vm € N, Vk € N", |k| < m, Ve € Z, Ve > 0 there exists a neighborhood
U of x such that Vy,z e UNZ

) .
Fo— Y EW pikg)| < g0,

1l
|+k|<m )

We denote by Wy; , the space of Whitney C* functions on Z. We denote by
Wit 4 the sheaf U—Wir ;0.

In [6] the authors defined the functor
- ® €% - Modgoo(Car) — Mod(Dyy)

in the following way: let U be a subanalytic open subset of M and Z = M \ U.
Then Cy & Cy =TIz and Cy ® Cy = Wit z- This functor is exact and
extends as a functor in the derived category, from D%_C(C ) to DP(Dyy).

Moreover the sheaf F' Cyy is soft for any R-constructible sheaf F'.

DEFINITION 3.3.4. One denotes by Cy™ the presheaf of Whitney C*
Sfunctions on M, defined as follows:

U T(M; Homl(Cyy, Cag)  C39).

As a consequence of a result of [12], for U,V € Op(Ms,) the sequence
0—Cy"(UUV)— C™ () & Cy™ (V) — C"(UnV)

is exact. Then C;f[’w is a sheaf on M,.

REMARK 3.3.5. Let us consider a locally cohomologically trivial (l.c.t.)
subanalytic open subset, i.e. U € Op(My,) satisfying D'Cy ~ Cy and
D'Cy ~ Cy. Thanks to the triangulation theorem one can prove that l.c.t.
open subanalytic subsets form a basis for the topology of My,, and given a
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l.ct. U € Op(My,) we have
[U;CY) = FM; Hom(Cyyr, Ca) & €35
~T(M; Cy & C3))
= W;;U.
Remark that I'(U; Dbfw) and I'(U, Cj'vcl“w) are I'(U; Dy)-modules for each

U € Op(My,), hence applying Proposition 3.2.1 the sheaves Db}, and C;;™
belong to Mod(p,Dy).

We have the following result

PROPOSITION 3.3.6. Foreach I € D%\_C(C ) one has the isomorphisms
p~ Y Hom(F, Db,;) ~ THom(F, Dbyy),

-1 00,W f W a0
p RHom(F,Cy;") ~ D'F ® C3.

Proor. We may reduce to the case F' = Cy with U € Op°(M,,). Let
V € Op°(My,).

By definition of THom we have [I'(V;THom(Cy,Dbyy)) ~
~ I'(UNYV;Dbl,). Let us consider a subanalytic W cC V. The natural
morphism I'(U N V;Db,,) — I'(U N W;DbY,) defines the morphism

g : (U NV;Dby,) — lim (U NW;Dbjy) = I'(V; p~' ['yDbjy).

Wccv

Since the family {W € Op°(My,); W cC V} is a covering of V and
THom(Cy, Dbyy) is a sheaf ¢ is an isomorphism.
To prove the second isomorphism we shall first prove the isomorphism

3.1 P Hom(F, C5™) ~ Hom(F, Cap) & €55

for F € Modg-.(Cj). We may reduce to the case F' = Cy with U Le.t. and
subanalytic. Let V € Op°(M,) such that V and U NV are le.t. and let us
consider the family 7 ={W ¢ Op”(Msa)v;.c.t.; WccV, WnU let.}.
The natural morphism y:I'(V;Cqy @ Cyp) =~ W2

al vy = Wizmw =
I'(M; Co=5 ® Cyy) defines the morphism

w: TV Cgp @ C39) — lim T Cmy © C39) = TV p 7 TyCi™),

WeT
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where the second isomorphism follows since the family 7 is cofinal in
{W € 0p°(My,); W cC V}. Moreover we have the isomorphism

. ~ wo . ~ w
WeT WeT
Since the family 7 is a covering of V and C; & Cyy is a sheaf y is an iso-
morphism. Hence we get the desired isomorphism.
Now let F' € D]’@_C(‘CM). We have the chain of morphisms

/ w 00~ 134 ! w 00
D'F @ Cy ~ hin) Hom(F", Cpp) @ Cyy
F'—F
€3 ? —1 1 H00,W
im” p™"Hom(F",Cy;™)
PP

p RHom(F, Cy'™),

12

1

where F’ — F ranges to the family of qis. By Theorem 2.1.2 we may
suppose F' € K*(Modg-.(ky)), then we can restrict to F'=Cyp,
U € Op°(My,) l.c.t. and the second isomorphism follows from (3.1). The
third isomorphism follows since p~! is exact. O
REMARK 3.3.7. As a consequence of Proposition 3.3.6, given U €
Op(M,) we have RI'(U; CJOVC[’W) ~RI(M;D'Cy % Cyp)- In particularwhen U
isl.et. RI'(U, ij}’w) 1s concentrated in degree zero since Cgy é Cyy s soft.
Now let X be a complex manifold, X the underlying real analytic
manifold and X the complex conjugate manifold. One denotes by O% and

O the sheaves of tempered and Whitney holomorphic functions respec-
tively which are defined as follows:

O}t( = RHom/)[’DX(p!OX’ Dbgfli)
Oy := RHom,p,(pO%, C?&W)'

By definition, 0% and O} belong to D’(pDx). The relation with the
functors of temperate and formal cohomology is given by the following
result

PROPOSITION 3.3.8. Foreach F € D%_C(C x) one has the isomorphisms
p~  RHom(F, 0%) ~ THom(F, Ox),
p ' RHom(F,0%) ~ D'F & Ox.
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Proor. We have the chain of isomorphisms

p'RHom(F,0%) ~ p~' RHom(F, RHom,,p, (p O, Db, )
~ p ' RHom,p, (pOg, RHom(F, Db ))
~ RHomp, (O, p'RHom(F, Db ))
~ RHom(Og, THom(F, Db&{{))
~ THom{F, Ox).

The proof of p'RHom(F, Oy) ~D'F % Oy is similar. O

A. Appendix.

A.1 - Review on subanalytic sets.

We recall briefly some properties of subanalytic subsets. References
are made to [1] and [10]. Let X be a real analytic manifold.

DEFINITION A.1.1. Let A be a subset of X.

(i) A is said to be semi-analytic if it is locally analytic, 1.e. each
x € A has a neighborhood U, such that X N U, = Uier Njeg Xy, where 1,J
are finite sets and either X;; = {y € Uy,; fij > 0} or Xj; = {y € Uy fi; = 0}
for some analytic function f;.

(ii) A s said to be subanalytic if it is locally a projection of a re-
latively compact semi-analytic subset, i.e. each x € A has a neighborhood
U such that there exists a real analytic manifold Y and a relatively
compact semi-analytic subset A’ C X x Y satisfying X N U = n(A"), where
n:X x Y — X denotes the projection.

(i) LetY be a real analytic manifold. A continuous mapf : X — Y
1s subanalytic if its graph is subanalytic in X x Y.

Let us recall some result on subanalytic subsets.

PROPOSITION A.1.2.  Let A, B be subanalytic subsets of X. Then A U B,
ANB, A 0A and A\ B are subanalytic.

ProposiTION A.1.3. Let A be a subanalytic subsets of X. Then the
connected components of A are locally finite.



212 Luca Prelli

ProposITION A.1.4. Let f : X — Y be a subanalytic map. Let A be a
relatively compact subanalytic subset of X. Then f(A) is subanalytic.

DEFINITION A.1.5. A simplicial complex (K, A) is the data consisting
of a set K and a set A of subsets of K satisfying the following axioms:

S1 any o € 41s a finite and non-empty subset of K,

S2 if T is a non-empty subset of an element o of 4, then t belongs to 4,
S3 for any p € K, {p} belongs to 4,

S4 for any p € K, the set {o € 4;p € g} is finite.

If (K, 4) is a simplicial complex, an element of K is called a vertex. Let
R be the set of maps from K to R equipped with the product topology. To
o € A one associate |o| ¢ R as follows:

lo| = {xeRK; x(p) =0 for p ¢ o, x(p) > 0 for p € ¢ and Zx(p):l}.
P

As usual we set:

K| = o],

aged
Ueoy= | Il
T€4,1D0

and for x € |K]|:
Ux) = U(a(v)),

where og(x) is the unique simplex such that x € |g|.

THEOREM A.1.6. Let X =||;.;X; be a locally finite partition of X
consisting of subanalytic subsets. Then there exists a simplicial complex
(K, A) and a subanalytic homeomorphism v : |K| = X such that

@) for any o € 4, y(|g]) is a subanalytic submanifold of X,
(ii) for any o € Athere exists i € I such that y(|o]) C X;.

A.2 — Sheaves on Grothendieck topologies.

We recall the definition of a Grothendieck topology. We will not treat
the most general case, for which we refer to [8]. We will follow the pre-
sentation of [14] and [7].
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Let C be a category admitting finite products and fiber products, and
given U € C, denote by Cy the category of arrows V — U. Given a
morphism V — U and S C Ob(Cy), one denotes by V xS C Ob(Cy) the
subset defined by {V xy W — V; W € S}.

DEeFINITION A.2.1. If, S1,S2 C Ob(Cy), one says that S1 is a refine-
ment of Sy (S1 <82 for short) if any Vi — U i S factorizes as
Vi— Ve — Uwith Vo — U € So.

DEFINITION A.2.2. A Grothendieck topology on C associates to each
U € C a family Cov(U) C Ob(Cy) satisfying the following axioms:

GT1 {U 2 U} e Cov(D),
GT2 if Cov(U) > S1 < Sz C Ob(Cy), then Sz € Cov(U),
GT3 if S € Cov(U), then for each V. — U, V xy S € Cov(V),
GT} if S1,S2 C Ob(Cy), S1 € Cov(U) and V xy Sg € Cov(V), then Sy €
Cov(U).
An object S € Cov(U) s called a covering of U.

DEFINITION A.2.3. A site X is a category Cx endowed with a Gro-
thendieck topology.

Let Cx and Cy be two categories admitting finite products and fiber
products. A functor of sites f: X — Y is a functor f: Cy — Cx which
commutes with fiber products and such that if U € Cy and S € Cov(U),
then f1(S) € Cov(fi(U)).

Now let k be a field.

DEFINITION A.24. Let X be a site. A presheaf of k-modules on X is a
functor C§¥ — Mod(k).

One denotes by Psh(ky) the abelian category of presheaves of k-mod-
ules on X. Let F € Psh(ky), let U € Cx and consider V' — U € Cy. The
restriction morphism F(U) — F(V) is denoted by s+ s|;.

Let F' be a presheaf of k-modules on X and let S € Ob(Cy). One defines

FS =ker ([[F = [[ FO xu V")

VeS VivreS
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DEFINITION A.2.5. A presheaf F' of k-modules on X is a separated
presheaf (resp. a sheaf) if for each U € Cx and each S € Cov(U) the
morphism F(U) — F(S) is a monomorphism (resp. an isomorphism,).

One denotes by Mod(ky) the category of sheaves of k-modules on X. We
set for short Homy, instead of Homppoqqey)-

We recall the construction of a sheaf associated to a presheaf. The re-
lation “<” defines a preorder on Cov(U), U € Cx. Let F € Psh(ky), one
defines the functor (-)* : Psh(ky) — Psh(ky) in the following way. For each
UeCyx

FT(U)= lim F(S)
—_
SeCov(U)
THEOREM A.2.6. (i) The functor (-)" : Psh(kx) — Psh(ky) is left exact,
(i) of F € Psh(ky), then F is separated,
(iii) if F' € Psh(ky) is separated, then F* € Mod(ky),
(iv) the functor (-)™" : Psh(kyx) — Mod(ky) is exact,

(v) let F € Psh(kyx) and G € Mod(ky), one has the adjunction for-
mula:

Hompsh(kx)(F, ZG) ~ Hoka(F++, G),

where 1 denotes the embedding functor.
Let F' € Psh(ky), the sheaf F* is called the sheaf associated to F'.

PrOPOSITION A2.7. Let F',G € Mod(ky). A morphism ¢ € Homy, (F, G)
is an epimorphism 1if and only if for each U € Cxy there exists
{Ui}icr € Cov(U) such that for each s € G(U) there exists t; € F(U;) such
that ¢(t;) = s|y, for each i.

Let f: X — Y be a morphism of sites. Let F € Psh(kx) and G €
€ Psh(ky). One defines the functors

(A1) S« : Psh(kx) —Psh(ky)

(A.2) f : Psh(ky) —Psh(ky)
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in the following way: let U € Cx and V € Cy, then

LFV) =F(f'(V))
JTFU) = lim GW),
U—ftw)

where W € Cy.

DEFINITION A.2.8. Letf : X — Y be a functor of sites

(i) the functor of direct image f,. : Mod(ky) — Mod(ky) is the
Sfunctor induced by (A.1),

(ii) the functor of inverse image f~1 : Mod(ky) — Mod(kyx) is de-
fined by f~1 = (f—(- ).

ProrosiTioN A.2.9. (1) The functor f. is left exact and commutes
with lim,
Pl
(ii) the functor f~! is exact and commutes with hln),

(i) (f'.f.) is a pair of adjoint functors.

DEFINITION A.2.10. Let X be a site and let F',G € Mod(kx).
(i) One denotes by Hom(I', G) the sheaf U — Homy,,(F'|;;, G|p),

(ii) one denotes by F @ G the sheaf associated to the presheaf
U—FU)® GW).

ProposiTiON A.2.11. Let F € Mod(ky), G,G' € Mod(ky).
(i) Homy, (G, f.F) ~ f.Homy, (f1G, F),
() FFAGEeG) ~f1Gaf1aG.
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