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Relations in the Canonical Algebras on Surfaces.

KazuHIiro KonNo (%)

ABSTRACT - The degree bound for primitive generators and relations of the canonical
ring of a minimal surface of general type are studied via Green’s Koszul coho-
mology, assuming that the fixed part of the canonical linear system does not
contain any Francia cycles. Slight refinements of the results due to Ciliberto and
Reid are given.

Introduction.

Let S be a non-singular, projective, minimal surface of general type
defined over the complex number field C. The canonical ring of S is the
graded C-algebra

+00
R(S,Kg) = @ H'(S, mKy).

m=0

This naive object has been studied by many authors in order to see what can
be expected on the analogy of Max Noether’s and Enriques-Petri’s theorems
for curves. We recall here some important results obtained so far. Cili-
berto [4] showed, among other things, that R(S, Ks) is generated in degrees
< 5 under some reasonable conditions. Green [8] considered the case that
the canonical linear system is free from base points in any dimension by
applying his theory of Koszul cohomology groups (see also [9]). Reid [19]
showed that it has the 1-2-3 property, that is, it is generated in degrees < 3
and related in degrees < 6, when S is a regular surface with K§ >3,
py(S) > 2 which has an irreducible canonical curve on the canonical model.
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Mendes Lopes [17] considered surfaces with vanishing geometric genera and
showed that R(S, Ky) is generated in degrees < 4 provided that 2K is free.

In this article, we study the degree bound for primitive homogeneous
generators and relations of R(S, Kg). The key point is the well-known re-
sult essentially due to Francia [7] and Reider [22] that 2K is free except
possibly when py(S) = 0 and K% < 4. We apply the machinery of Green’s
Koszul cohomology groups ([8], [9]) and show the following:

THEOREM A. Let S be a minimal algebraic surface of general type
such that 2Kg is free. Then R(S, Kg) is generated in degrees < 5 and re-
lated in degrees < 10. If furthermore q(S) = 0, then R(S, Kg) is generated
m degrees < 4 and velated in degrees < 8 except when (py(S), Kg) =(2,1)
and possibly (py(S), KZ) = (0,3).

This is nothing more than what one naturally expects after Ciliberto’s
results on generators [4]. Recall that R(S, Kg) needs a generator in degree
4 if the fixed part of |Kg| contains a special configuration of curves called a
Francia cycle, that is, an effective divisor E with p,(E) = —E?> =1 or
pa(E) = 2,E? = 0, and many such surfaces are constructed in [4]. Hence
the bound in Theorem A is sharp for regular surfaces in this sense.

On the other hand, it is an interesting problem [19] to study whether
the canonical ring has the 1-2-3 property if the fixed part of |Kg| does not
contain any Francia cycles. We consider the problem for a regular surface
whose canonical map is not composed of a pencil. However, partly because
we do not know much about the fixed loci, we have to impose some extra
restrictions modeled on fibred surfaces.

THEOREM B. Let S be a minimal algebraic surface of general type
with py(S) > 2, q(S) =0 and K§ >3. Let |Ks| = M|+ Z be the decom-
position nto its variable and fixed parts. Suppose that |M| has an irre-
ducible member. If one of the following conditions (1) and (2) is satisfied,
then R(S, Kg) is generated in degrees < 3 and related in < 6.

(1) HYZ,0z) = 0 (possibly Z = 0).
(2) Z does mot contain a Francia cycle and decomposes as
Z=A4+T1+---+ T, where
(a) 4 is an effective divisor with KgA =0 (possibly A= 0),
Supp (4) N Supp (Z — A) =0, and
) foreach i€ {1,...,n}, I';is a chain connected curve such
that KsI'; > 0, Or,( — I';) is nef, and Or,(I';) 1s numerically
trivial when j # 1.
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If the fixed part supports at most exceptional sets of rational singular
points, then we have h'(Z, 0z;) = 0. Hence (1) can be regarded as a slight
generalization of Reid’s theorem [19] referred above. A curve D is chain
connected (cfr. [21]), if either it is irreducible, or for any proper subcurve
A =< D there exists an irreducible component A < 4 such that (D — A)A > 0.
The restrictions in (2) are for technical reasons and should be replaced by a
simpler assumption, e.g., the intersection form is negative semi-definite on
Supp (Z). Note that, if a curve I'; as in (2) exists, then the intersection form is
negative semi-definite on Supp (I';) and I'; is nothing more than the nu-
merical cycle on it in the terminology in [20]. The proof of Theorem B is
based on the hyperplane section principle as in [19] and a result for chain
connected curves similar to those in [15] and [13].

The organization of the paper is as follows. The first two sections are of
preparatory nature. In §1, we recall and restate the fundamental tools,
such as the duality theorem, the vanishing theorem and the K, ; theorem,
for Green’s Koszul cohomology groups [9] in the form suitable for our
purpose. We recall in § 2 some important notions treating the connected-
ness of effective divisors and show Theorem 2.6 which is crucial for the
proof of Theorem B, (2). In §3, we show Theorem A by studying the bi-
canonical maps. We need several existing results to manage some special
cases. Especially when p, = ¢ =0, our proof heavily depends on [17].
Theorem B will be shown in §§4, 5. At the end of § 4, we state a result for
irregular surfaces similar to Theorem B, (1). In Appendix (§6), we give a
few remarks on the relative canonical algebras for fibrations and singu-
larities, in order to supplement the results in [15] and [13] about Reid’s 1-
2-3 conjecture.

The author would like to thank the referee for his interest and stimu-
lating suggestions.

1. Koszul cohomology.

In [8] and [9], Green developed the theory of Koszul cohomology groups
which gives us a powerful tool for studying graded rings associated to line
bundles. Although the results in [9] are stated for compact complex
manifolds, it is not so hard to see that most of them hold also for singular
objects if one makes suitable modifications. In this section, we restate
three main results in [9] (the duality theorem [9, Theorem (2.c.6)], the
vanishing theorem [9, Theorem (3.a.1)] and the K,; theorem [9, Theo-
rem (3.c.1)]) in the forms suitable for our purpose.
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Let X be a projective scheme (over C) of pure dimension %. Let £ is an
invertible sheaf on X and take a subspace W C H°(X, £) giving us a linear
system which is free from base points. Then W defines a morphism
@y : X — P(W). By pulling back the exact sequence 0 — Q})(W)( -1 —
W ¢ Opavy — Opany(1) — 0, one obtains 0 — & - W ®c Ox — L — 0,
which gives us

1
OH/Z)\gH/Z)\W@OXHp/\g@LHO

for any positive integer p. In particular, A"~ L" if r =dimW —1 =
=1k (). Let M be an invertible sheaf on X. Then tensoring M ® L7
(g € 7) to the above, one gets

P
(Seq),., : 0= EpgM) = AWM LM — £, 1 4:1(M) — 0,

where &, (M) = \P £ @ M ® L%, Let

P p—1
dpg : /\W QH' X, M@ L) — /\ W e H'X, M @ £2@D)

be the composite of A’ W @ H'X, M ® L%?) — H*(X, E,_1 4+1(M)) and the
natural injection H(X, &, 1,411(M)) — AP W @ HO(X, M © LZ4*D) ob-
tained from (Seq), , and (Seq),_1 4.1, respectively. Then d, 4 0 dpy 141 = 0.
The Koszul ecohomology group is nothing but

K, X, M, L,W)=Ker(d,q,)/Im(d,i14-1)

p+1

~ Coker{ \ W& H'(X, M L501) — H'X, £,,(M))}.

THEOREM 1.1 (Duality Theorem [9, Theorem (2.c.6)]). Let X be a
Gorenstein projective scheme of pure dimension n and L, M invertible
sheaves on X. If W C HY(X, £) denotes a subspace of dimension r + 1 in-
ducing a lLinear system which 1is free from base points, then
Ky, (X, M, L,W)is dual to Ky—y—pni1-¢X, 0x @ MY, L, W) provided that
HX M@ L2 = HX, M@ L)) =0 for 1 <i<n—1 where
wy denotes the dualizing sheaf.

Proor. We have a natural injection K, X, M,LW)—
— H'(X, Epr1g-1(M)). Consider the coboundary map

Ot H'(X, Eprig—ilM) — HU X, Epsia g—ica(MD))
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obtained from (Seq), 141 for 1 <i<n—1.If H{(X, M LY D)=0
for 1<i<n-—1, then J; is injective for 1 <1 <mn — 1. Therefore,
Ky X, M, LW) —>H"YX,Epin-1,4-nr1(M)) and

0— H" (X, Epin-t1g-nt1M)) = H'" X, Ep i g—n(M))

p+n

- AWeH'X Mo L50)

is exact. By the Serre duality theorem, the dual sequence of the latter is

pt+n

AW @ HX, ox @ M © L5?) — H'X, 0x @ Epyng-a(M)Y)
- Hl(Xa wx @ ngr%*l,qur‘rl(M)v) — 0.
Since we have AP WY ~ A" P W and

p+n r—n—p

6p+ﬂ,q7n(M)v ~ /\ gv ® MV ® £®(%7q) ~ /\ E®M\/ ® £®(727q+1)

by /\’”+1 W~ Cand \" € ~ LY, respectively, the above exact sequence is
nothing more than

r+l1-p—n

A W e HYX ox © MY @ LD)  HX, &,y goalox © M)
- Hl(Xv grfnfpjtl,nfq(wX & Mv)) — 0.

This shows that the kernel of H"(X,Epingn(M)— A" We
@ H'"(X, M @ £L7)is the dual space of K,_,_p11-¢X, 0x @ M", L, W).
Hence K, ,(X, M, L, W) is mapped injectively to K,_,_pui1-¢X,0x ®
@MY, £, W)". Similarly, if H/(X, M @ LZ9?)=0for 1 <i<mn— 1, then
Krnpni1-¢X,0x @ MY, L,W) — K, (X, M, L,W)" is injective, since
HX, oy @ MY @ £271)isdualto H" (X, M @ £24~"D) by the Serre
duality theorem. O

We remark that the duality theorem holds for Gorenstein curves without
additional cohomological conditions. See also[13, Lemma 1.2.1] for curves on
a smooth surface. The following two theorems can be shown as in [9] without
major changes. Hence we only give the statements without proofs.

THEOREM 1.2 (Vanishing Theorem [9, Theorem (3.a.1)]). Let X be an
wrreducible projective variety. If L, M are invertible sheaves on X and
W C H'X, L) is a subspace, then Ky, X,M,L,W)=0 provided that
X, Mo L) < p.
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For simplicity, we write K, ,(X, £) instead of K, ((X, £, £, H'(X, L)).

THEOREM 1.3 (The K, ; Theorem [9, Theorem (3.c.1)]). Let X be an
irreducible projective variety, £ an invertible sheaf on X with h°(X, £) =
=71+ 1 and put m = dim @,(X). Then the following hold.

1) Kp1X,L)=0forp>r—m.

@) Ki_m1X, L) = 0 unless @.(X) s an m-fold of minimal degree.

@) Kr_p 11X, L) =0 wunless either deg®,(X)<r+2—-m or
&p(X) lies on an (m + 1)-fold of minimal degree.

The irreducibility of X is not essential in the vanishing theorem, while it
is an important assumption in the K,; theorem, since we require the
uniform position property for the zero cycle obtained as a general linear
section of @,(X). See [8] and [9] for the detail.

We recall one more lemma from [8] which will be used frequently.

LeEmMA 1.4 ([8]). Let L be an invertible sheaf on a projective scheme X
and let k be the smallest positive integer such that £L2* is generated by
global sections. Assume that the graded ring R(X, L) = @,,~c H 0X, £
1s generated in degrees < d. Put -

do = min,c;_, {H*(X,L%%) @ HO(X, L™ ®)) — HO(X,L®™) is surjec-
tive for any m > n}

2
i min { \ H'(X, L) @ HO(X, L°0"29) — HO(X, L) @ O (X, L)

NeEL>o

— HO(X,L"™) is exact at the middle term for any m < n}

Then R(X, L) is related in degrees < max{d + do,d1}. If dy is not a
multiple of d, then R(X, L) is related in degrees < max{d + dy —1,d;}.

ProoF. Though this is contained in the proof of [8, Theorem 3.11], we
recall the argument for the later use.

Choosing a minimal set of homogeneous generators of R(X, £), we have
a surjective homomorphism @ : Q — R(X, £), where Q is a polynomial ring
over C. Welet Q = P,,., 2, be the decomposition into the graded pieces
such that @ becomes a homomorphism of graded algebras. The kernel I of
@ is a homogeneous ideal and we denote it as I =P, ln. We let
{&1,...,¢n} be a basis for Q. -
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Assume that » > max{d + dy,d;} and let F' € I,, be a relation in degree
n. We shall show that ' = 0 modulo relations in lower degrees. Let G be
any monomial appearing in F'. Since n > d + d, we see that G can be di-
vided by a monomial G; satisfying dy < degG; < d + dy. Then, since
deg G1 > dy, @(G1) can be expressed as a sum of products of degree k and
degree n — k elements in R(X, £). Therefore, we can write F' = Zﬁi 16
modulo relations in degrees < max{n —k,d + dy}, where the F;’s are
homogeneous polynomials of degree n — k. Then, since n > d;, we can find
polynomials F;; of degree n — 2k satisfying F; = > &Fy; and Fyj = — Fj;,
modulo relations in degrees <m. Then we obtain F =3 ,&F; =
= Zigj &i&(Fy; + Fj;) = 0 modulo relations in lower degrees.

If dy is not a multiple of d, then the above argument works also when
n = dy+d. O

2. Chain connected curves.

A non-zero effective divisor on a non-singular surface will be simply
called a curve. In this section, we recall basic notions about the con-
nectedness of curves from [5, Appendix] and [21] and collect some results
for the later use. See also [20]. In some sense, this section is a re-
consideration of [21].

Let D be a curve. For an integer k, D is numerically k-connected if
D1Dy > k holds for any decomposition D = D; + De where D;, Dy are
curves. Note that a nef and big curve is necessarily 1-connected. In par-
ticular, so is a canonical curve of a minimal surface of general type.

DEFINITION 2.1. A numerically 2-connected curve % is called a Francia
cycle, if either (i) p,(E) = 1 and E? = —1, or (ii) p,(E) = 2 and E? = 0.

A curve as in (i) will be sometimes called a ( — 1) elliptic cycle.

If Supp (D) is connected and the intersection form is negative semi-
definite on it, then D is called the numerical cycle if D is the smallest curve
such that — D is nef on its support. When the intersection form is negative
definite, that is, Supp (D) is the exceptional set of a normal surface sin-
gularity, the numerical cycle is usually called the fundamental cycle. A
curve D is chain connected ([21]), if either it is irreducible, or for any
proper subcurve 4 < D there exists an irreducible component A < 4 such
that (D — A)A > 0. It is easy to see that numerical cycles and 1-connected
curves are chain connected.
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LEmMA 2.2.  For a chain connected curve D, the following hold.

(1) %D, 0p) =1 and a non-zero element of H(D,Op) does not
vanish identically on any component.

(2) If L is a nef line bundle on D, then H (D, — L) # 0 if and only if
OD(L) ~ OD.

Proor. We first show (2) by using an argument in [5, Appendix]. Let
s € H'(D, —L) be a non-zero element. If s vanishes identically on some
components of D, we let 4 be the biggest subcurve of D on which s vanishes
identically. Then s induces a non-zero element of H(D — A, —L — A) which
does not vanish identically on any component of D — A. This implies that
—L — Aisnefon D — 4. On the other hand, by the chain connectedness of D,
there is an irreducible component A < D — A such that 44 > 0. Then
deg(— L — M)y < —4A <0, which contradicts what we have just seen
above. Hence s does not vanish identically on any component of D. Then — L
is numerically trivial, since L is nef, and the nowhere vanishing section s
induces an isomorphism Op ~ Op( — L).

To show (1), we assume that 2°(D, @Op) > 1. Then we can find a non-zero
element s € H(D, Op) which vanishes identically on some components of
D. Take the biggest subcurve 4 on which s vanishes identically and copy
the first half of the proof of (2) with —L being replaced by Op. Then it will
immediately lead us to a contradiction. Hence 2°(D, Op) = 1. The last as-
sertion in (1) is clear from the above proof of (2). O

Here we recall the following easy lemma whose proof can be found in
[13, Lemma 2.2.1].

LEMMA 2.3.  Let D be a curve and L a line bundle on D. Take an irre-
ducible component A < D and let A be a minimal curve containing A such
that the restriction map H(D, L) — H(4, L) is surjective. Then one of the
following holds.

(1) K, — L is nef on A

(2) A is of multiplicity one in A and Ky — L is nef on 4 — A. Fur-
thermore, deg (L — (4 — A))|, > deg K4 and the image of the restriction
map H°(D,L) — H°A,L) contains that of the natural inclusion
HYA,L — (14— A)) — H'(A,L).

If |L| has no base points on ANUA—A) in (2), then YA, L) >
> WAL - (4-A)+1
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PROPOSITION 2.4. Let D be chain connected and L a line bundle on D
such that L — Kp is nef and deg (L — Kp) > 0. If = € Bs|L|, then there
exists a subcurve A of D satisfying the following properties.

1) « s a non-singular point of A.

(2) The restriction map H'(D,L) — H%(4, L) is surjective.

3) O4(L) ~ wy @ Oplx), where A denotes the unique irreducible
component of A through .

4) Ky—Lisnefon 4— A.

Proor. We may assume that D is reducible. Take an irreducible
component A through x and let 4 = 44 be aminimal subcurve of D such that
A < dand H'(D, L) — H%(4, L) is surjective.

We first assume that 4=A. We have degL|, =deg(L — Kp)|,+
+deg K4 + (D — A)A. Since L — Kp is nef and D is chain connected, we get
deg L|, > deg K4. Since x € Bs|O4(L)|, « is a non-singular point of A and
O4(L) ~ wy(x).

We next assume that 4 = D. Since L — Kp is nef and deg (L. — Kp) > 0,
it follows from Lemma 2.3 that A is of multiplicity one in D, Kp — L is nef
on D—A and deg(L —(D—A))|, >degKs. Note that H(D,L)—
— HY%D — A, L) is surjective, because H'(A,L — (D — A)) = 0. Hence, we
can assume that x ¢ A N (D — A), because, otherwise, there exists another
irreducible component B through x and then Az < D — A by what we
have just seen which enables us to argue with (B, 4p) instead of (A4, 4y).
Then x € Bs|O4(L — (D — A))|. Since deg (L — (D — A))|4 > deg K4, x has
to be a non-singular point of A and we see that O4(L — (D — A)) ~ w4 (x)
which is equivalent to Oa(L) ~ wp ® O4(x). Note that x is also a non-
singular point of D by x ¢ AN (D — A).

We finally assume that 4#A and A4#D. We have K,— L =
=Kp—L — (D — 4) on 4. Since D is chain connected, we can find an ir-
reducible component B < 4 such that (D — A)B > 0. For such B, we get
deg (K, — L)|p < 0. Hence K, — L is not nef on 4 and we are in the si-
tuation of Lemma 2.3, (2). Since H%(4, L) — H%(4 — A, L) is surjective, we
may assume that x ¢ AN(4— A) as in the previous case. Then we can
conclude that x is a non-singular point of A and O4(L — (4 — A)) ~ w4 (x).
This shows O4 (L) ~ w s @ O4(x). O

COROLLARY 2.5. Let D be a chain connected curve on a smooth surface
S such that Kg and —D are both nef on D and D? < 0. If L is a line bundle
on D such that L — rKg is a nef Q-bundle for some rational number r > 1,
then HY(D, L) = 0 and |L| has no base points.
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Proor. We may assume that D is reducible. We have L — Kp =
=L —rKg+ (r —1)Kg — D on D. Hence L — K is nef of positive degree.
By the Serre duality theorem, H'(D,L)" ~ H*(D,Kp — L). So we get
HY(D,L) = 0, because D is chain connected.

We show that |L| is free from base points. We first remark that
the intersection form is negative definite on Supp (D) and D is the nu-
merical cycle, since Supp (D) is connected, Op( — D) is nef and D? < 0.
Suppose now that « is a base point of |L|. Then there exists a subcurve 4
and an irreducible component A as in Proposition 2.4. We have
OfKy—L)=04rKsg— L — (r—1)Kg+ A). Since Ox(L — K ) ~ Oa(x),
we have 44 = (r — 1)KgA + (I — rKg)A — 1. Since K, — Lisnefon 4 — A,
we have A(4—A) > (L — rKg)(4 — A) + (r — 1)Kg(4 — A). In sum, we get
A=A+ AA4—A)> L —rK)A+ (@ —1)Kgd—1. If A=D or A=A,
then, since 4% < 0, we must have £ = —1 and Kg4 = 0, which is im-
possible for the reason of parity. Assume that 4 # D and 4 # A. Since D
is chain connected, we can find an irreducible component B of A sa-
tisfying (D — A)B > 0. Then 0 > DB > 4B, which shows that K, — L is of
negative degree on B. Hence we get B =A. Now, it follows from
0>44= =L —rKg)A+ (r —1)KgA —1 that degL|, = KsA =0 and

—1=4A= =U—-AA+ A% The last shows that A%2= -1 and
(4— A)A = 0, because A% < 0 and A is of multiplicity one in 4. It is again
impossible for the reason of parity. O

Let D be a chain connected curve on a non-singular surface S. Take an
arbitrary subcurve A; of D and put D; = A;. If D; # D, then there is an
irreducible component As of D — D; such that D;A; > 0. We put
Dy = Dy + Ap. If D; is defined and D; # D, then we take an irreducible
component 4;,; of D — D; such that D;A;,; > 0,and put D; ;1 = D; + A; 1.
In this way, we get a composition series {4;}Y , such that D = Ef\i 1A Tt
is said to be irreducible, if the first curve A; is also irreducible. We put
X;=D—Dy_;for 0 <1 <N.

THEOREM 2.6. Let D be a chain connected curve on a non-singular
surface S with K% > 0 such that Ks and —D are both nef on D. Foro = 1,2,
let L, be a line bundle on D such that L, — 2Kg is nef. Then the multi-
plication map

H(D, L)) ® H'(D, Ly) — H*(D, Ly + Ls)

1s surjective, unless there exists a Francia cycle E < D on which Ly and Ly
are both numerically equivalent to 2Kg.
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Proor. Since D is chain connected and Op( — D) is nef, the intersec-
tion form is negative semi-definite on Supp (D) and D is nothing more than
the numerical cycle on its support. Furthermore, for a subcurve 4 < D with
KA =0, we have 42 < 0 by Hodge’s index theorem, since K§ > 0.

If D is irreducible, it is easy to check that the multiplication map is
surjective unless D itself is a Francia cycle and L; = Ly = 2Kg on D, where
the symbol = means the numerical equivalence. So we may assume that D
is reducible.

We first consider the extremal case that D? = 0. Then Op(D) is nu-
merically trivial and D is 1-connected. We have Kp = (Kg + D)|;, which is
nef in the present case. Hence p,(D) > 1. If p,(D) = 1, then KsD = D? = 0,
which is impossible by Hodge’s index theorem because K% > 0. Hence we
have pq(D) > 2. Since L, — 2Kp = (L, — 2Kg) — 2D|}, is nef, the assertion
follows from [13, Theorem I].

We assume that D? < 0. Then the intersection form is negative definite
on Supp (D). We follow Laufer’s argument [15]. We take an irreducible
composition series {Ai}?; 1 for D satisfying DA; < 0. Since L, — 2Kg and
—D are nef on D, we can show that H'(D, L,) = 0 and the restriction map
HXy_ii1,Ly) — H'Xn_;, L,) is surjective. This in particular implies that
H'(D,L,) — H°X,, L,) is surjective for 0 < k < N, « = 1, 2. Furthermore,
|L,| is free from base points by Corollary 2.5. We have the exact sequence

0— HA;,L — Xy ;) » H'Xy_i11,L) - HXy_;,L) — 0

for L =Ly, Ls, Li+Ls. Then we see that H'Xy_i1,L1)®
Q@HXy_ii1,L2) — H'Xyn_i11, L1 + L) is surjective provided that so are
H'Xy_i,L1) ® H'Xy_;,Ls) — H*Xy_;, L1 + L3) and

HYA; Ly — Xy-)) @ Wa, @W1; ® H'(A;, Ly — Xy—;)

2.1)
— H%A;, Ly + Ly — Xn_y),

where W, ; = Im {H°(D, L,) — H%(A;, L,)}. By induction, in order to show
that H(D, L) @ H*(D, Ly) — H%(D, L; + L) is surjective, it suffices to
show that (2.1) is surjective for any 7, 1 <1 < N. Since L, — 2Kg is nef, we
have deg (L, — KS)|A7_ > degKS|A7_ > 0. If L, — Ky is of degree zero on A;,
then A4; is a ( — 2)-curve and (2.1) is clearly surjective, because L,| A is trivial
and Bs|L,| = (). This enables us to assume that deg (L, — Ks)|,, > 0 for
o = 1,2 in what follows. We denote by 4,; a minimal subcurve of D con-
taining A; such that H(D, L,) — H(4,;, L,) is surjective.

We assume that deg L1|,, > deg Lz|,, and consider the multiplication
map g, : H'A;, Ly — Xy_) ® Wa; — H*(A;, Ly + Ly — Xy_;). We shall
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show that either u,; is surjective or there is a Francia cycle 4 containing
A; and Ly = 2Kg on A. By Theorems 1.1 and 1.2, u; is surjective if
hOA,;, Ky, + Lo — Ly + Xy_;) < dim Wsy; — 2. Hence we only have to check
that
pa(Ai) +2, if KAi + Lo — L1 +Xy_; is special,
(22) dim W2,i > { pa(Az) +1+ deg (Lz — Ll)‘Ai + (D — Difl)Ai — A%,
otherwise.

Assume that Wy; = H%A;,Ls). Then dim W, = deg Ls| 4, 1= palA).
The inequality dim Ws; > p.(4;) + 2 is equivalent to deg (Ly — Ky)| A~
— A? > 3, which fails only when KgA; = 1, A¥ = —1 and deg Lz, = 2, that
is, A; is a Francia cycle of arithmetic genus one on which Lo = 2Kg. The
second inequality in (2.2) is equivalent to deg(Li — Ks)|y, — DA;+
+ D;_1A; > 2, which always holds under our assumptions.

Assume that Wy; # H(4;,Ls) and put 4; := 4y;. Since H(D,Ly) —
— H°(Xy_is1,L2) is surjective, we have 4; < Xy_;.1. In particular, we
have 4; = D only when ¢ = 1. It follows from Lemma 2.3 that we have ei-
ther (i) 4; — (I.y — Kg) is nef on 4;, or (ii) A; is of multiplicity one in 4;,
A; — (Ly — Ky) is nef on 4; —A; and O4,(Le — (4; — 4A;)) is non-special;
furthermore,

23) dimWy; > 1+ k%A, Le — (4; — Ay))
= pa(A4;) + deg (Lz — Kg)| 4, + (D — 4)A; — DA;,

since |Lz| has no base points.

We exclude the possibility (i). Assume that 4; — (L.s — Kg) is nef on 4;.
Then we have £;A > deg (L2 — Kg)|4, > KsA > 0 and, hence, (D — 4,)A <0
holds for any irreducible component A of 4;. Since D is chain connected, this
is possible only if 4; = D. If 4; = D, then we have (D — (L — Kg))D > 0 and
it would follow D? > 0, which is absurd. Hence (i) is impossible, and we are in
the case (ii). In particular, we must have (D — 4;)A; > 0 except when i = 1,
A1 = D.

We use (2.3) to examine (2.2). If K4, + Lo — L1 + Xy _; is special on 4;, it
suffices to check that deg (L — Ks)|y, + (D — 4)A; — DA; > 2, which is
direct. If it is non-special on A4;, then a sufficient condition for (2.2) is that
2pa(A;) + (D — 4)A; — 2DA; + D; 1 A; + deg (L1 — ZKS)‘AI > 3. This does
not hold in the following cases:

(@) t=1, 4y = D, DA; = —1, po(Ay) = deg (L; — 2Kg)|,, = 0.

(0) 122, pa(Ai)) =DA; =deg (L1 —2Kg)|4, =0, (D —4)A; =D; 14, =1.

In either case, L, Ly and 2Ky are of the same degree on A;.
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Consider the case (a). Recall that D — (I, — Kg) is nef on D — A;.
Since Lg — 2Kg and — D are both nef, we see that every component of
D —Ayis a(—2)-curve, D(D —A;) =0 and Ly = 2Kg on D. Consider the
cohomology long exact sequence for

0— Op_a,(—A1) — Op — Oy — 0.

We have h%(D,Op) =1 and H(D, Op) — H°(A1, O4,) is non-trivial. This
shows that H%(D — A;, O( —A;)) = 0. Recall that we have Op_a,Le) ~
=~ Op_a,. It follows from the exact sequence

0 — H"D — Ay,Ly — Ay) — H(D, Ly) — H(A;, Ly)

and H'(D — Ay, Lz — A1) ~ H'(D — A1,0p_4,(— Ay)) = 0 that dim Wy =
= hO(D, L3) = 2KgD — D(Kg + D)/2 = (3/2)KsA; — D?/2. Hence the in-
equality in (2.2) becomes (1/2)(KsA; — D?) — DA; > 3. This does not hold
only when KgA; = —D? = —DA; = 1, that is, D is a (— 1) elliptic cycle on
which Ly = 2Kg. We show that such a ( — 1) elliptic cycle D is 2-connected.
Let D = A + B be any effective decomposition of D. We can assume that 44
is contained in A. Then B consists of ( — 2)-curves and it follows that BZ is a
negative even integer. Recall that Op_4, (D) is numerically trivial. In par-
ticular, we have 0 = DB = AB + B2. Hence we get AB > 2 and see that D is
2-connected.

Consider the case (b). (2.2) is now dim Wy; > —A? = KgA; + 2. We have
11114Z = —1 and (Az — 141)112 > deg (Lz — KS)|Ai—Az > KS(Ai —Ai) > 0. Since
0> M = (4 — ApDdi + Aid; > Kg(4; — A)) —1> —1, we get £ =-—1.
Then the equalities hold everywhere. Since Kg(4; — A;) =0, 4; — A; con-
sists of ( — 2)-curves. Furthermore, we see that Ly = 2Kg on 4;. We can
show that 4; is 2-connected as in (a). Then hO(AZ-,(’)AL.) =1 and we get
dim Wsy; = hO(4;, Lg) = (3/2)KsA; +1/2 similarly as in (a). The desired
inequality dim Wy ; > KgA; + 2 holds except when KgA; = 1, that is, 4; is a
Francia cycle of arithmetic genus one on which Ly = 2K.

Now we exchange the role of Ly, Lo, and consider the multiplication
map 1 ; : Wi; ® H'(A;, Ly — Xy_;) — H(A;, Ly + Ly — Xy_;) for each in-
dex ¢ for which we failed to show the surjectivity of 1 ;. Since we can as-
sume 4; ; = 4o; by the following lemma, the assertion follows. O

LEMMA 2.7. Let S and D be as in the previous theorem. If E is a sub-
curve with E? = —1, then the vestriction map H°(D,L) — H°(E,L) is
surjective for any line bundle L on D such that L — 2Kg is nef.

Proor. We assume that the restriction map is not surjective and show
that this leads us to a contradiction. Consider the cohomology long exact
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sequence for
0— Op_g(L — E)— Op(L) — Og(L) — 0.

Since H'(D, L) =0, we must have H'(D — E, L — E) #0. By the duality, we
get H(D — E,L — E)) =H°(D —E,D — (L. — Ky)). Let s € H'(D — E,D—
—(L — Kg)) be a non-zero element. If Z is the biggest subcurve on
which s vanishes identically (possibly Z = 0), then D — (I — Kg) — Z is
nef on D—FE —Z. In particular, we have (D—-2)D—-E—7)>
> deg(L — K9)|p_g_» > 0. We have

0<(D-2)D-E-2Z)=D—-2Z"-ED—-2)=(D—-E—Z\+ED—Z)—E*.

Since (D — Z)* < 0and (D — E — Z)* < 0, we get B2 < E(D — Z) < 0. Then
we get D—E—-2°=-1, ED—-2)=0 and D-2)D—-E—-Z)=0,
because E? = — 1. This implies that L — K is of degree zeroon D — E — Z
and it follows that Kq(D — E — Z) = 0, because L — 2Ky is nef. This is
impossible for the reason of parity. O

3. General degree bounds.

From now on, S denotes a non-singular projective minimal surface of
general type. It is known that 2Ky is free when p,(S) > 0 or p, = 0, K§ >5
(see [T], [22], [2], [3]). In what follows, we always assume that 2Ky is free.
Put r = P2(S) — 1 = K% + x(Os) — 1. Note that we have r = 1 if and only if
pg =¢q =0, K% =1, that is, S is a numerical Godeaux surface. Since we
have assumed that 2Kg is free, we have r» > 2 and therefore exclude
Godeaux surfaces from our considerations. We also remark that the image
of the bi-canonical map is necessarily a surface when 2Kg is free.

Our main strategy in studying R(S, Kg) is the use of the Koszul coho-
mology. The following two lemmas are easy applications of Theorems 1.1,
1.2 and 1.3, which combined with Lemma 1.4 can cover a major part of
Theorem A.

LEmma 3.1.  Suppose that 2K 1s free. Then the multiplication map
H'(S,2Kg) ® H(S, (m — 2)Kg) — H*(S, mKy)

1s surjective in the following cases:

1) m>"1.
©2) m="Tand Kg + py(S) — q(S) > 3.
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() m =6 and K2 > q(S) + 2.
4) m =5, q(S) = 0 and the bi-canonical image of S is not a surface
of minimal degree.

Proor. Since S is a minimal surface of general type, we have
H'(S,iKg) =0 when i #0,1. Of course H'(S,iKg) =0 holds also for
1=0,1 when S is regular. Put ¢ = 0,1 according to m is even or odd.
The multiplication map in question is surjective if and only if
Koy(m,e)/z(S,eKS,ZKS,HO(S,2KS)) = 0. By the proof of Theorem 1.1, the
natural map

Ko (n-0/2(S, eKs, 2K, H'(S, 2Ky))
- 'r—23—(m—z:)/2<S7 (1 - 8)K31 2KS7 HO(Sv 2KS))V

is injective (resp. surjective) when H'(S,(m —4)Kg)=0 (resp.
HY(S, (m — 2)Kg) = 0). Therefore, when m > 6 or m =5, ¢(S) =0, the
problem is reduced to showing that the Koszul sequence

r—1 r—2
J\ H'(S,2Ks) ® H(S, (5 — m)Ks) — [\ H'(S,2Ks) ® H(S, (T — m)Ks)

r—3
— /\HO(S,ZKS) ® H(S,(9 — m)Ky)

is exact at the middle term. If e > 8, then H(S, (7 — m)Kg) = 0 and we have
Q). If m =17, then we have H(S, (5 — m)Kg) = 0, H'(S, (7T — m)Kg) ~ C,
and the Koszul map A" 2 H(S,2Ks) — \"° H'(S,2Ks) @ H(S,2Ky) is
injective when » — 8 > 0, which gives (2). If m = 6 and p,(S) = RS, Kg) <
< r — 2, then the exactness follows from Theorem 1.2, which gives (3). As-
sume that m = 5 and ¢(S) = 0. Recall that the bi-canonical image is a surface,
since 2K is free. Then Theorem 1.3 shows that the above sequence is exact at
the middle term, unless the bi-canonical image is a surface of minimal degree.
Hence (4). O

Quite similarly, we can show the following:

LeEmma 3.2.  Assume that 2Kg s free. Then the Koszul sequence
2
/\ H'2Kg) ® H'((m — 9)Ks) — H 2Ks) ® H((m — 2)Kg) — H'(mKs)
18 exact at the middle term in the following cases:
1) m>9,
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2) m =9 and Kz + py(S) — q(S) > 4,
(3) m =8 and Kz > q(S) + 3.

Another strategy is the hyperplane section principle. Assume that
py(S) > 0 and let D € |K| be a general member. Put L = Kg|p. Consider
the cohomology long exact sequence for

0 — Os(mKs — D) — Og(mKs) — Op(mL) — 0

for any non-negative integer m. Since S is a minimal surface of general
type, we have H'(S,mKg— D)= HYS,(m —1)Kg) =0 except when
qiS) >0 and m =1,2. Hence the restriction map HS,mKg) —
— HY%D,mKjy) is surjective for m > 0 when ¢(S) = 0 and for m # 1,2 when
q(S) > 0. Consider the homomorphism of graded C-algebras

(84 R(S,Kg) = @HO(S, mKs) — R(D,L) = @HO(D,mL).

m>0 m=>0

induced by the restriction maps. The kernel is the homogeneous ideal of
R(S, Ks) generated by a single element in degree one, that is, a section
defining D. Therefore, for example, in order to show that R(S,Ky) is
generated in degrees < 3 and related in degrees < 6, it is sufficient to show
the same things for the image R'(D, L) of R(S, Ks) — R(D, L). Since D is
Gorenstein, Theorem 1.1 works well, when we study R'(D,L) via the
Koszul cohomology groups.

Now, we are going to show Theorem A. Our basic assumption is that
2Ky is free. Though a considerable part inevitably overlaps with [4] and
[24], we do not exclude it for the convenience of readers, unless it involves
too much. Among other things, we shall freely use basic inequalities in the
surface geography: K2 > 0, 7(Os) > 0, K% > 2p,(S) — 4, and KZ > 2p,(S),
when q(S) > 0 (see [6]).

We study the exceptional cases in (2), (3), (4) of Lemma 3.1.

(a) Suppose that Kg +py —q=2. Then we have K§ =2, py=q
KZ=1, py=q+1 If ¢(S) =0, then (p,, K2) = (0,2), (1,1). If ¢(S) > 0,
then KZ = 2 and p, = ¢ = 1, because K32 > 2p,(S) holds for irregular sur-
faces of general type.

LemMMA 3.3, Assume that (pg, g, K2) = (0,0,2), (1,0,1), (1,1,2). Then the
following hold:
(1) corank{H"(S,2Ks) ® H'(S, 5Ks) — H(S,TKg)} — 1.
(2) corank{H’(S,2Kg) ® H(S,4Ks) — H(S,6Kg)} = Py(S).
(3) corank{H"(S,2Kg) ® H(S,3Kgs) — H'(S,5Kgs)} = 3¢(S).
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Furthermore, the Koszul sequence

2
J\H"(S,2K5) @ H'(S, (m — 9)K)
— H'(S,2Ks) @ H'(S, (m — 2)Kg) — H"(S, mKs)

1s exact at the middle term for m > 8 when q(S) = 1; for arbitrary m when
q(S) = 0.

Proor. Let
0 — & — HS,2Ks) @ Og — Og(2Kg) — 0

be the exact sequence obtained by the evaluation map. If m >4,
then we have H(S,(m —2)Kg) =0 and we see that the cokernel
of H'S,2Ks) ® H(S,(m —2)Kg) — H(S,mKg) is isomorphic to
H'(S, & ® Og((m — 2)Kg)) which is dual to H'(S,&Y ® Os((8 — m)Ky)).
Since A€ ~ Og( —2Kg), we have £ ® Og(B—m)Kg) ~ &' @ N2E®
® O0s((6 —m)Kg) ~ £ ® Os((6 —m)Kg). So, we have only to calculate
XS, E ® Os((5b — m)Kg)). It follows from the exact sequence

H'(S,2K5) @ H(S, (5-m)Kg) — H*(S, (T—m)Ks) — H'(S, £ @ Os((5 —m)K5))
— H(S,2Ks) @ H'(S, (5 — m)Kg) — H (S, (T—m)Ks)
that we have

HOS, (T — m)Ky) when m = 6,7,

H'(S, € ® Os(5 — m)Kg) ~
( s = ms) {HO(S,zKS)®H1(S,oS) when m = 5.

Hence we get (1)-(3). As to the last assertion, note the kernel of
HY(S,2Ks) @ H'(S, (m — 2)Kg) — H*(S,mKg)is H'(S, £ @ Os((m — 2)Ky)).
Since /\2 & ~ Og( — 2Kj) and we have the exact sequence

2 2
0— /\ E® Os((m — 4)Kg) — /\HO(S, 2Ks) @ Og((m — 4)Kg)
— £® Og((m — 2)Kg) — 0,

we have only to check whether H'(S, (m — 6)Kg) vanishes or not. O

When Kg = py = 1 and g = 0, it is known [1] that the canonical model of
S is isomorphic to a complete intersection of type (6,6) in the weighted
projective space (1,2, 2, 3, 3). Therefore, R(S, Kg) is generated in degrees
< 3 and related in degrees < 6. We study the other two cases.
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LEMMA 3.4. Assume that K =2 and py = q = 0. If 2K is free, then
R(S, Ky) is generated in degrees < 4 and related in degrees < 8.

Proor. We shall show that H%(S,3Ks) ® H(S,4Ks) — H(S,TKj) is
surjective. Note that 3K is free (see, e.g., [22]). By Theorem 1.1, it suffices
to show that

5 4 3
N\ HS,3Ks) — \ H'(S,3Ks) ® H'(S,3Ks) — [\ H(S,3Ks) @ H'(S,6Ky)

is exact at the middle term. By Theorem 1.3, we have the claim unless the
tri-canonical image of S is a surface of degree 5 in . Since we have
(BKS)2 = 18 which is not a multiple of 5, we are done. This and Lemma 3.3
show that R(S, Kg) is generated in degrees < 4. Then puttingd = 4,dy =17,
di =0 and k=2, Lemma 14 shows that it is related in degrees
<10 =4+ 7 — 1. Since p, = 0, we have no generators in degree 1. If there
is arelation of degree 9 or 10, then any monomial appearing the relation can
be divided by a monomial of degree 5 or 6. Then, using Lemma 3.3, the proof
of Lemma 1.4 shows that such a relation can be reduced to relations in
degrees < 8. O

LEMMA 3.5. Assume that Kg =2 p,=q=1 Then R(S, Ky) is gener-
ated 1 degrees < 5 and related in degrees < 10.

Proor. Surfaces with such numerical invariants are extensively
studied in [12]. We freely use the results there. The Albanese map
f:S— B=AIb(S) is a fibration of genus 2. Then f.ws is an in-
decomposable, nef locally free sheaf of rank two and of degree one. Since it
has no locally free quotient of degree zero, we have an exact sequence

0 — Op — fiws — Op(P) — 0,

for a point P € B. By [12], S is obtained as the minimal resolution of a finite
double covering surface of P = Pg(f.wg) which has at most rational double
points and with branch locusin |64 — 21|, where 4is a tautological divisor and
I is the fibre of I’ — B over P. Hence Ky is induced by 4. Furthermore, we
have the decomposition H(S,mKg) ~ H'(P, mA) ® H'(P,(m —3)4+ I
into the (£ 1)-eigen spaces under the action of the covering transformation
group.

We first claim that the invariant part @,,., H*(P, m4) is generated in
degrees < 4. We show that H(P,24) @ H(P, (m — 2)4) — H'(P, mA) is
surjective for m > 5. By the duality theorem, it suffices to show that
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HY(P,(6 — m)4+ Kp) = 0. Since the canonical bundle of P is given by
— 24+ I', we are done. As to the anti-invariant part, we consider

m—3

P H®,id) @ H'P,(m — 3 — )4+ I') — H'(P,(m — 3)4+ ).

i=1
Note that the image of H*(4) ® H((m — 4)4 + I') consists of those sections
vanishing on A, whilst that of H((m — 3)4) ® H(I') consists of sections
vanishing on I". In particular, when m = 5, this implies that we need a new
generator in degree 5 which does not vanish at 4N I'. If m > 6, then the
image of H°(24) ® H(m — 5)4+ I') contains a section not vanishing at
AN I'. This and Lemma 3.3 imply that R(S, Ky) is generated in degrees < 5.

It remains to show that R(S, Kg) is related in degrees < 10. By Lem-

ma 1.4 with d =5, dy = d; = 7 and k = 2, we see that it is related in de-
grees < 11 = 5+ 7 — 1. Assume that we have a relation in degree 11. Let G
be a monomial of degree 11 appearing in the relation. Then it is easy to see
that G can be divided by a monomial G; of degree 8 or 9. Hence, as in the
proof of Lemma 1.4, we can show that any relations in degree 11 are in-
duced by relations in lower degrees. |

(b) Suppose that K% < ¢(S) + 1 but K% + p, — ¢ > 3. By Noether’s in-
equality and the fact that K2 > 2p, holds for irregular surfaces, we get
Py =2,q = 0,K% = 1. It is known [11] that the canonical model of a surface
with p, =2,q =0, Kg = 1 is isomorphic to a hypersurface of degree 10 in
P,1,2,5). In particular, R(S, Ks) is generated in degrees < 5 and related
in degrees < 10.

(¢) Suppose that ¢(S) = 0, KZ + p, > 3, K% > 2 and that the bi-canonical
image of S is a surface of minimal degree » — 1 in P". By the classification
[18], a surface of minimal degree is either (a) P2 (r = 2), or (b) a quadric
surface in P (r = 3), or (c) the Veronese surface in P> (r = 5), or (d) a
rational normal surface scroll. In particular, it is ruled by straight lines
except when it is the Veronese surface. If & denotes the degree of the bi-
canonical map (onto the image), then

4KZ = k(K3 +py — 1).
We divide the case into sub-cases according to k.

(c1) If k =2, then K2 = p, — 1. It follows (K%, p,) = (2,3). Then it is
shown in [10] that the canonical model of S is isomorphie to a hypersurface
of degree 8 in I°(1,1,1,4). In particular, R(S, Kg) is generated in degrees
< 4 and related in degrees < 8.
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(c2) If k = 3, then we have K% = 3py — 3. Assume that the bi-canonical
image is ruled by straight lines and let D be the pull-back to S of a line.
Then, since the bi-canonical map is of degree 3, we must have 2Kg¢D = 3,
which is absurd. Assume that the bi-canonical image is the Veronese
surface in IP°. Then we have y(S) =2, ¢(S) = 0and K% = 3. Furthermore,
we have a divisor H with 2Ky = 2H coming from a line on I’%. Note that we
have H +# Kg, because h°(S, Kg) = 2 but 2°(S, H) > k°(P?, Op(1)) = 3. In
particular, S is not simply connected and the unramified double covering S
of S associated to the 2-torsion divisor Ky — H is a surface with p, = 5 and
K2 = 6. Now, S is on the Noether line and, therefore, has a unique pencil of
curves of genus 2 (see, [10]). By the uniqueness, the pencil is preserved by
the action of the covering transformation group of S — S. This implies that
S also has a pencil of curves of genus 2. Then the bi-canonical map of S
cannot be of odd degree, since it factors through the relative bi-canonical
map which is of degree 2. Hence such a surface does not exist.

(¢3) If k = 4, then we have p, = 1. We assume that K% > 5 and show
that this leads us to a contradiction. We have » > 6 and it follows that the
bicanonical image is ruled by lines. Then we have a pencil |D| of curves with
2KsD =4, that is, KgD =2. Hodge’s index theorem shows that
4 = (KgD)* > KZD?. Since K2 > 5, we get D? = 0. Then |D| is a pencil of
curves of genus 2. This is impossible by Xiao’s theorem [23, Théoréme 5.6]
which in particular implies that S does not have a pencil of curves of genus
2 when K2 > 5 and the degree of the bi-canonical map is 4. Hence K2 < 4.

LEmMMA 3.6. Let S be a minimal reqular surface of general type with
py(S)=12< Kg < 4. Then R(S, Kg) is generated in degrees < 4 and re-
lated in degrees < 8.

Proor. Since p, = 1, we have a unique canonical curve D € |Kg|. We
show that the multiplication map H°(S,2Ks) ® H'(S,3Ks) @ H'(S, Kg) ®
® HY(S,4Kg) — H'(S,5Kj) is surjective. For this purpose, it is sufficient to
show that H(D, 2L) ® H(D,8L) — H°(D, 5L)is surjective, where L = K|,
(see the argument around (3.4)). By Theorem 1.1, it is surjective when

2 2
Ki-1 K2

N\ H'(D,2L) © H'D,L) — )\ H'(D,2L)® H(D,3L)

isinjective. Since p, = 1and ¢ = 0,wehave 1D, L) = 0. Therefore, R(S, Kg)
is generated in degrees < 4.
In order to see that R(D, L) (hence also R(S, Ky)) is related in degrees
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< 8, by Lemma 1.4, it is sufficient to show that the Koszul sequence

2
/\HO(D, 2L) @ H'(D,(m —4)L) — H*(D,2L) © H*(D,(m — 2)L) — H*(D,mL)

is exact at the middle term for m > 9. By Theorem 1.1, we only have to show
that

K2 K%-3
A\ H'(D,2L)® H(D,8 - m)L) — /\ HD,2L) @ H(D,(6 — m)L)

is injective for m > 9. Since H(D, (8 —m)L) = 0 unless m = 8, we are
done. O

(¢4) If k > 5, then p, = 0 and (k, K%) = (5,5) or (6,3). As Mendes Lopes
showed in [17], both cases are impossible.

We must take into account one more case in which Lemma 3.2, (2) does
not hold: p, =¢=0 and K% =3. In this case, we already know that
R(S, Kg) is generated in degrees < 4. By Lemmas 3.2 and 1.4, it is related
in degrees < 9.

Now, Theorem A in Introduction follows from Lemmas 3.1, 3.2, 1.4 and
what we showed above.

REMARK 38.7. In Theorem A, the assertion for generators were
already shown by Ciliberto [4]. See also [17] for surfaces with
py =q=0. As to surfaces with p, =¢ =0 and K% =3, one can show
that R(S,Kg) is related in degrees <8 if a general C € |2Kg| is non-
trigonal. In fact, it is known that the tri-canonical map of S is a
birational morphism. Since K¢ = 3Kg|., it follows that C is non-hy-
perelliptic. So, if C is non-trigonal, then the canonical ring of C is
related in degree 2 and, hence,

2
/\H(C,K¢) ® H'(C, K¢) — H'(C, K¢) @ H'(C,2K¢) — H'(C,3K)

is exact at the middle term. Noting that K, = 3Kg|,, one sees that
R(C,Kg|;) is related in degrees < 8. Then R(S,Kjy) is also related in
degrees < 8§, since the kernel of the surjection R(S, Ks) — R(C, Ks|.)
is a principle ideal generated by an element in degree 2. We do not
know, however, whether a general bi-canonical curve is trigonal or
not.
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4. The case of rational fixed part.

In this section and the next one, we shall show Theorem B. We consider
in this section (1) of Theorem B.

We let S be a minimal surface of general type with p,(S) > 2 and
q(S) = 0. Let |Ks| = |M| + Z be the decomposition of |Kg| into the variable
part |[M| and the fixed part Z. We denote by C € |M| a general member.
Then C is a reduced Gorenstein curve of arithmetic genus M? + 1 + MZ /2.
We put D =C+ Z. Then D € |Kg|. Since Kg is nef and big, and since
KgA + A? is an even integer for any curve A on S, we see that D is a nu-
merically 2-connected curve.

LEMMA 4.1. Let I' < Z be a subcurve with (Z — I')I' = 0. Then M I isa
non-negative even integer. Furthermore, MI" = 0 if and only if I" = 0.

PrOOF. Since KsI'+1? is even and K¢l +1?=MI+2I%+
+(Z - =MI+2I? we see that MI is a non-negative even
integer. Assume that MI"=0. Then we have 0 < KgI'=MI + T LER
+(Z - =TI? If M?>0, then it follows from Hodge’s index theo-
rem that /2 < 0. Hence /2 =0 and we get I" = 0. If M? =0, then the
canonical map of S is composed of a pencil and it follows from MI =0
that every component of I' is vertical. Since the intersection form is
negative semi-definite on fibres by Zariski’s lemma, we have I'? <0
implying 7% = 0. Since KsI" =0 and K% > 0, we get I =0 by Hodge’s
index theorem. O

We put L = K p. Then L is nef and we have 2L = Kp by the adjunction
formula. The restriction map H°(S,mKg) — H(D,mlL) is surjective for
any non-negative integer m, since ¢(S) = 0.

LemMa 4.2, If K2 > 2, then |2L| and |3L| are free from base points.

Proor. Since p,(S) > 0, the bi-canonical system |2K| is free from base
points by Francia’s theorem. Hence |Kp| = |2L| is also free from base
points. We have p,(D) = K% + 1 and deg L = KZ. It follows that 3L may
have base points only when Kg =1 (see, e.g., [13]). O

Note that the restriction map H%(D,L) — H%(Z,L) is the zero map,
because Z is the fixed part of |Kgs|. Consider the cohomology long exact
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sequence for
0— Og — Os(Z) — Oz(Z) — 0.

Since we have h%(S, Os(2)) =1 and k1 (S, Og) = 0, we obtain °(Z, ©4(Z)) = 0.
A numerically 1-connected curve with self-intersection number —2 is
called a ( — 2)-cycle, if it consists of ( — 2)-curves.

LEmMa4.3. Let |Ks| = |M| + Z be the decomposition as above. If ' < Z
1s a subcurve satisfying MI' = 2,(Z — I')I" = 0and I 2 < 0, then either I is
a (— 2)-cycle or it contains a Francia cycle.

Proor. Since D is numerically 2-connected and (D —I)I =
=(C+ (Z — D)l =2, we see that I" is numerically 1-connected. We have
0< KgI' =MI' + I'? =2+ I'?. Assume that I'? = —2. Then p,(I") = 0 and
I’ consists of (— 2)-curves because KgI”" = 0. Hence I is a ( — 2)-cycle.
Assume that 12 = — 1. Then p,(I") = 1. If I is numerically 2-connected,
then I" is a Francia cycle. If I" is not 2-connected, we get an effective de-
composition I" = A + B with AB = 1. Then A, B are both 1-connected and
we have 1 = p,(I") = pa(A) + po(B) — 1 + AB = p,(A) + p(B). Hence ei-
ther p,(A) = 1 or py(B) = 1. Assume that p,(A) = 1. If A is not 2-connected,
we argue as above with A instead of I" to find a 1-connected subcurve A’ with
pa(A’) = 1. Therefore, without loosing generality, we may assume that A is
2-connected. We have KgA +A%2 =0 and 1= KqI > KA. It follows
KsA =1 and A is a Francia cycle. Assume finally that 7> = 0. Then
po(I") =2 and I' is a Francia cycle of arithmetic genus two if it is nume-
rically 2-connected. If I" is not 2-connected, letting I" = A + B be an ef-
fective decomposition such that AB =1 and p,(4) > p.(B), we get
Pa(A) +p,(B) =2 and A,B are 1l-connected. Then (p,(A),p.(B)) =
=(1,1),(2,0). We also have 2 = KgI" = KgA + KgB and A? + B> = — 2.
When p,(A) = 1, we may assume that A is 2-connected as in the previous
case to conclude that A is a Francia cycle of arithmetic genus one. Assume
that pe(A) = 2. If KgA = 1, then A2 =1 and 1 = (KsA)? > KZA% = K2 by
Hodge’s index theorem. So, KZ = 1 and A is numerically equivalent to Ks. In
particular, A is nef. It would follow 1 = KA = MA+ (Z —1NA + A" >
> A% + AB =2, which is absurd. Hence, KsA =2 and A% =0 when
pa(A) = 2. If A is 2-connected, then it is a Francia cycle. If A is not 2-con-
nected, then we can repeat the above argument for A instead of I". O

The following is a direct consequence of [16, Theorem 4.2].
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LEMMA 4.4. With the above notation, assume that C is an 1rreducible
curve and that Z does not contain a Francia cycle. If the bi-canonical map
of S does not map C birationally onto the image, then C is a hyperelliptic
curve, that is, C has a gi. If furthermore either M? > 5 or h°(Z,Kz) < 2 or
Oz(— Z) is nef, then Z consists of at most ( — 2)-cycles.

Proor. We have p,(C) > 2 because S is of general type and C moves in
|M|. Recall that D is 2-connected.

Suppose that there are points «,y € C which are non-singular points of
D (possibly « = %) and such that x,y are not separated by |Kp|. Then, by
[16, Theorem 4.2], we have the following possibilities:

(@) D is an irreducible hyperelliptic curve and |Op(x + y)| is the unique
g on D.

(b) D is reducible, C is a hyperelliptic curve, and D decomposes as a
sum C + F; + - - - + F, satisfying:

@ F4,...,F, arecurvessuchthat CF; = 2foreveryi € {1,...,m}.
(i) Oc(F;) ~ O¢(x +y) for every 2 € {1,...,m}.
(iil) |Oc(x +y)|is a g} on C.
(iv) FiF; =0 for i #j.
) Op,(Fi) ~ Op, for all k < i.

If we are in case (a), then we have nothing to prove. Suppose that we are
in case (b). We have F; < Z and (Z — F;)F; = 0 for each 7. Since Z does not
contains a Francia cycle, it suffices to show that 2 < 0 by the previous
lemma. If M? > 5, then we get F? <0, because we have 4 = (MF;)* >
> M?F? by Hodge’s index theorem. If 7°(Z,K;) <2, then we have
pa(F;) <2 and it follows that F? < 0. If Oz(— Z) is nef, then we auto-
matically have F? < 0. O

Note that the condition that C is irreducible is equivalent to that the
canonical map of S is generically finite onto the image, when p,(S) > 3.
From now on, we assume that C is an irreducible curve.

LemMA 4.5.  Assume that C is an trreducible curve. For a positive in-
teger p, the Koszul map

p p-1
NH(D.2L) ® H'(D,L) — /\ H'(D,2L) ® H(D,3L)
1s ingective if h°(D, L) < p — h°(Z, Ky).
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ProoF. Recall that we have h%(Z, ©4(Z)) = 0. Then, it follows from the
exact sequence

0 — H'Z,042)) — HD,L) — H(C,L)
that the restriction map H(D, L) — H(C, L) is injective.

Put » = h%(D,2L) — 1 = Kg and let W be the image of the restriction
map H°(D,L) — H°(C,L). From the exact sequence

0— HZ K;) — H(D,2L) — H°(C,2L) — H'(Z,K;) — H'(D,2L) — 0,

we get dimW =r+1—h%Z,K;). We choose a basis {sg,s1,...,8.} of
H'D,2L) such that s; vanishes identically on C for » +1 — h%(Z,Kz) <
<1 <7 and the rest induce a basis for W. We take sufficiently general
points Py, ..., P, jzk, on C so that s;(P;) = J;;. We consider when the
Koszul map

P p-1
/\ H'(D,2L) 2 H'(D,L) — /\ H°(D,2L) ® H'(D,3L)

is injective. The map can be identified with

r+1-p r+2—p
/\ H(D,2L)" ® H(D,L) — /\ H(D,2L)" @ H'(D,3L).

Putt =7 +1—p and let {eg,ey,...,e.} be the dual basis for H'(D,2L)".
Then the last map is given by

Therefore, an element in the kernel can be identified with a collection
{o;,i,} € H*(D,L) such that

Rig,orsipar Siy 0+ gy Sy = 0.

Evaluating at P;, we see that «; ..;(P;) =0 for any je {0,---,r—
— K Z, KD} \ {i1,...,4}. Hence, if dimIm{HD,L)— H(C,L)} <

AAAAA

.....

jective when h%(D, L) < p — h%(Z, Ky). O

LEMMA 4.6.  Assume that py(S) > 2 and C ts an irreducible curve. If
K2 > py(S) + 1+ h%Z,Ky), then

H'(D,2L)  H'(D, (m — 2)L) — H*(D, mL)
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18 surjective for m > 5, and

2
/\HO(D, 2LY® H'(D,(m —4)L) — H(D,2L) ® H*(D,(m — 2)L) — H(D, mL)

1s exact at the maiddle term for m > 1.

Proor. By Theorem 1.1, we only have to check that

r—1 r—2

A\ H(D,2L) ® H'(D, (6 — m)L) — /\ H'(D,2L) ® H'(D, (8 — m)L)

and

r—2 r—3
/\ HD,2L) 2 H'(D, (8 — m)L) — /\ H(D,2L) © H'(D, (10 — m)L)

are injective for m > 5and m > 7, respectively, where » = Kg Since r > 3,
this is clear except in the cases m = 5 and m = 7, respectively. The rest
follows from the previous lemma. O

Lemma 4.7. If HY(Z,K;) = 0 and the bi-canonical map of S maps C
birationally onto the image, then H'(D,2L) ® H'(D,2L) — H%(D,4L) is
surjective.

Proor. By Theorem 1.1, we only have to check that

r r—1 r—2
/\ H'(D,2L) — /\ H(D,2L)  H'(D,2L) — /\ H(D,2L)  H'(D,4L)

is exact at the middle term, where r = K% = h%(D,2L) — 1. Recall that
Kp = 2L. Consider the exact sequence

0 — HZ,Kz) — H'(D,Kp) — H(C,Kp) — H'(Z,Ky).

If H'(Z,K;) = 0, then the restriction map H°(D, Kp) — H°(C,Kp) is in-
jective. This implies that the image C’ of C under the canonical map of D (or,
the bi-canonical map of S) is an irreducible non-degenerate curve in
PH(D,2L). Therefore, if the above Koszul complex is not exact at the
middle term, we can apply [8, Theorem 1.13] (or the K, ; theorem) to con-
clude that (' is a rational normal curve. This is absurd, because C is not a
rational curve. O

Assume that Z supports at most rational double points (possibly Z = 0).
Then, by contracting Z, we have an irreducible canonical curve on the
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canonical model of S. In this case, it has already been shown by Reid [19]
that R(S, Kg) is generated in degrees < 3 and related in degrees < 6
provided that p, > 2 and K% > 3. The main ingredient of his proof is to
apply the following fact to that curve:

LEmMMA 4.8 ([19, p. 246, Theorem]). Let X be an irreducible Gorenstein
curve of genus g > 2, and E a Cartier divisor on X such that 2E is linearly
equivalent to Kx. If g > 4, then the ring @,,-o H'(X, mE) is generated in
degrees < 3 and related in degrees < 6. -

We now state our main result in this section, which is (1) of Theorem B:

THEOREM 4.9. Let S be a minimal surface of general type with
q(S) =0, py(S) > 2 and K§ > 3. Assume that the variable part of |Ks|
contains an irreducible curve and the fixed part Z of |Ks| satisfies
W(Z,Kz) = 0. Then the canonical ring is generated in degrees < 3 and
related in degrees < 6.

Proor. We can assume that the bi-canonical map of S maps C bir-
ationally onto the image. In fact, if it is not the case, then D induces on the
canonical model of S an irreducible, hyperelliptic canonical curve by Lem-
ma 4.4 and we can apply the above result of Reid.

We may also assume that Z # 0. Then MZ is a positive even integer. We
are going to show that Kg > pg(S) + 1, which is clear when p,(S) = 2 since
K2 > 3. If py(S) > 8, then M? > 2p, — 4 and

K% = KsM + KsZ = M* + MZ + KsZ > 2p,(S) — 4 + MZ + KsZ.

Hence we get Ké > pg(S) + 1. Then it follows from Lemmas 1.4, 4.6 and 4.7
that R(D, L) is generated in degrees < 3 and related in degrees < 6. By the
hyperplane section principle, R(S, Kg) has the same properties. O

We close the section with stating a similar result for irregular surfaces
which is obtained analogously as above if we replace R(D, L) by the image
R'(D,L) of R(S,Kg) — R(D, L). Note that the difference between R'(D, L)
and R(D,L) is only in degrees 1 and 2. Put V =1Im {HO(S, 2Kg) —
— H%D, 2L)}. Since 2Ky is free, V induces a free linear system on D.

THEOREM 4.10. Let S be a minimal irregular surface of general type.
Assume that the variable part of | Ks| contains an irreducible curve and the
fixed part Z supports at most exceptional sets of rational singular points.
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If Ké > min{py(S) + 2q(S), 2¢(S) + 4 — KsZ}, then R(S, Ky) is generated in
degrees < 4 and related in degrees < 8.

Proor. Let D =C+ Z € |Kg| be a general member as above. The
exact sequence

0 — H(S,Kg) — H(S,2Ks) — H'(D,2L) — H'S,Kg) — 0

givesus dimV = K§ + 1 — q(S). Since Z supports at most exceptional sets
of rational singular points, we have H(Z, 0(%)) = H*(Z,Kz) = 0. Hence,
as in the proof of Lemma 4.5, we can show that H(D,L) — H°(C,L) is
injective and that the Koszul map

p p-1
AVeHD,L)—~ \VeHD,S3L)

is injective when h%(D, L) < p. Then the Koszul map

dim V-2 dim V-3
/\ VeH'D,6-mL)— /\ Ve&HD,E8-mdL),

which is clearly injective for m > 6, is also injective for m =5
provided that 2°D,L) < dimV —2. Then, by Theorem 1.1, we see
that the multiplication map V ® HY(D,(m —2)L) — H°(D,mL) is
surjective for m >5 if A%D,L) <dimV —2 = K% — ¢(S) — 1. We have
K(D,L) < Pg(S) +¢q(S)—1 and R(D,L) < h%C,L) < KsC/2+1 by
Clifford’s theorem. Hence we get h°(D,L) < dimV — 2 provided that
Kg > min{p,(S) + 2¢(S),2q(S) + 4 — KsZ}. Since we always have
K% >2p,(S) for irregular surfaces, we get K% >2¢(S)+4 when
2(Og) > 3.
For m > 9, the Koszul map

dim V-3 dim V-4

N\ VeHD,G-mL)— [\ VeHD,A10-mL)

is injective, since 2°(D, (8 — m)L) = 0. By Theorem 1.1, this shows that

2
/\V®@HD,(m - HL) - V @ H'(D,(m — 2)L) — H'(D,mL)

is exact at the middle term for m > 9. In sum, we have shown that the image
R'(D, L) of the restriction map R(S, Kg) — R(D, L) is generated in degrees
<4 and related in degrees < 8. Hence we can say the same things for
R(S, Ky). O
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5. The case of semi-negative fixed part.

In this section, we complete the proof of Theorem B by studying the
case W' (Z,0z) > 0 when Z is a numerically disjoint sum of chain connected
curves which are semi-negative:

THEOREM 5.1. Let S be a minimal algebraic surface of general type
with py(S) > 2, q(S) =0 and K§ > 3. Let |Ks| = |M|+ Z be the decom-
position into its variable and fixed parts. Suppose that |M| contains an
rreducible member and Z does not contain a Francia cycle. If there is a
decomposition Z = A+ I'1 + - - - + Iy, satisfying the following conditions,
then R(S, Kg) is generated in degrees < 3 and related in degrees < 6:

1) 4 is a curve consisting of (— 2)-curves (possibly 4= 0),
Supp (@) NSupp(Z —A) =0 and Z — 4 # 0.

(2) Foreacht € {1,2,...,n}, I';is a chain connected curve such that
KsI'; > 0, Or,( = I'y) is mef, and Or,(I';) ts numerically trivial when j # 1.

The key point is as usual to show the following:

PRrOPOSITION 5.2.  With the same notation and assumptions in Theo-
rem 5.1, H'(S,4Ky) is generated by products of elements of lower degrees.

We first give the proof of Theorem 5.1 assuming Proposition 5.2.

Proor oF THEOREM 5.1. By Lemma 1.4 and Proposition 5.2, it suffices
to check that KZ > p,(S)+1+1°Z,K;) in view of Lemma 4.6. Let
Z =A+T1+---+ I, be the decomposition as in the statement. We have

102, Kyz) = %Z(Ks YD)+, v=hZ 00

Then the condition K2% > py(S)+1+r°Z,K;) is equivalent to
2M? +3MZ > 2p,(S) +2v+2. We have v="hr"Z 0z =h"4,0,)+
+h%Z — 4,05_4) by (1). By an inductive argument using the coho-
mology long exact sequence for

(55) 0— Ofi( - (Fi+1 + -+ Fn)) — O]"7.+u.+1"n — O[“H1+...+[‘n — 0
one gets h(Z — 4,07_4) < KT, Op,) + S 4 WOy, —(Tjay + -+ Ty)).
Hence h’(Z — 4,0,_,) < n by (2). We have h’(4,0,) = —4*/2, because

WM A4,04) =0 and y(4,0,) = — AKg + A)/2. Tt follows from Kgd=
=(Z — M)A =0that MA = — A.
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By (2), we have F? <O0and I'";I"; = 0 for ¢ # j. Then, Lemma 4.1 shows
that MI'; is a positive even integer. Furthermore, we get MI"; > 4 by
Lemma 4.3, since there are no Francia cycles in Z and KgI7; > 0. It follows
M(Z — A) > 4n and we get MZ > 4n — A Then, since n > v — h%(4, O,) =
=v+A4/2, we get MZ>2v+2n. Since M2 >2p,(S)—4, we get
2M? +3MZ > 4p, — 8 + 6v + 6n. Hence 2M? + 3MZ > 2p,(S) + 2v + 2 as
wished. O

In order to show Proposition 5.2, we slightly change the situation as
follows. Let o:S — X be the contraction of 4. Then X is a normal
Gorenstein surface with (at most) rational double points and we have
o'y = 05(Kg), R(X,wyx) ~ R(S,Ks). By (1) of Theorem 5.1, we can
harmlessly push everything on S down to X, which enables us to assume
that 4 = 0 with the cost that we cannot stay on a non-singular surface.
We shall indeed work on such X. However, we use the same symbols as
before for simplicity: S is now a normal Gorenstein surface with at most
rational double points, Z =11 +---+ I, and |wg| = |[M| + Z is the de-
composition into the variable and fixed parts. C € [M| is irreducible,
D =C+Z and L = ws ® Op. Note that Supp (7) is entirely contained in
the regular locus of S. Similarly as in the previous section, it suffices for
our purpose to show that H°(D,4L) is generated by products of lower
degree elements.

We put W,, = Im {HD, mL) — H(C,mL)} for a non-negative in-
teger m.

LEmma 5.3. W,, = HY(C,mL) when m > 3, and dim Wo = h%(C,2L) —
—h%Z, 0, + 1.

ProOF. For integers m > 2, consider the exact sequence
H(D,mL) — H(C,mL) — H\Z,mL — C) — H\D, mL).

We have Oz(mL — C) = Oz(Kz + (m — 2)Kg). Since Z is a numerically
disjoint sum of chain-connected curves I'; with KgI'; >0, we have
HY(Z,mL — C) =0 for m > 3 by Lemma 2.2. In fact, by virtue of (2) in
Theorem 5.1, one may argue by induction using (5.5) tensored with
O(— (m — 2)Ky), in order to get H*(Z, —(m — 2)Kg) = 0. When m = 2, we
have hM(Z,2L — C) = h%(Z, Oz) by duality, h'(D,2L) = 1 and 2}(C,2L) = 0.
Hence the assertion follows. O
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Similarly as above, using the exact sequence
0 — OctmL — Z) — Op(mL) — Oz(mL) — 0,

we can show that the restriction map H%(D, mL) — H%(Z, mL) is surjective
for m > 2. Then, by a diagram chasing, we see that the multiplication map
H(D,L) ® H"(D,3L)
(5.6) [a5) — H%D,4L)
H%D,2L) @ H*(D,2L)

is surjective provided that
5.7 H(Z,2L) @ H'(Z,2L) — H*(Z.4L)
and

HC,L - 7)® H°(C,3L)
(5.8) D — HY%C,4L - 2)
HY(C,2L - 7Z) @ Wy
are both surjective. Recall that O¢(L — Z) = Oc(M) and O¢ 2L — Z) = w¢.

LEMMA 5.4.  The multiplication map (5.7) is surjective.

ProoF. Recall that I7; is chain connected. Since 2Ky, — Kr, =
= (Ks — I'}),r, which is nef and non-trivial by the assumption, we have
HNI;, £) = 0 for any invertible sheaf £ on I'; numerically equivalent to
Or,(2Ks), by Lemma 2.2. By the assumption, Or,(I";) is numerically trivial
when 7 # j. From the inductive argument using the exact sequences

0— H'(I'j,2Kg — 'y — -+ — Tj1)
— HYI'y + -+ I, 2Kg) — HY(I'y + - 4+ T'y_1,2Kg) — 0,

it follows that the restriction map H°(Z,2Kg) — H(I';, 2Ky) is surjective.
At the same time, we see that, in order to show that (5.7) is surjective, it
suffices to show that H°(I';,L;) ® H'(I';,2Kg) — H(I';, L1 + 2Ky) is
surjective for each I'; < Z and for any line bundle I.; on I'; which is
numerically equivalent to 2K on I";. But it is nothing but a special case of
Theorem 2.6. O

We next consider the map (5.8). We let { denote the fixed part of |M|c|,
that is, the smallest effective Cartier divisor { on C such that |Oc(M — 0| is
free from base points. We put N = M — (.
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LemMa 5.5.  The image of the multiplication map
HC,M)® H(C,3L) — H(C,AL — 7)

18 the subspace spanned by elements vanishing on (.

Proor. The kernel of the restriction mapH*C,4L —27) —
— HO(, 4L — Z) is isomorphic to H(C,4L — Z — (), and we have an injec-
tion H°(C,N)~ H%C,M — ) — H*(C,M) by multiplying the section
defining {. Hence it suffices to show that the multiplication map

H%C,N)® H(C,3L) — HC,AL — Z — {)

is surjective. We have Bs|N| = . By Castelnuovo’s lemma, it suffices to
show that H'(C,3L — N) = 0. Since O¢(BL — N) ~ O¢(K¢ + 2Z + ), we in
fact have h'(C,3L — N) = 0. O

The following completes the proof of Proposition 5.2.
LEMMA 5.6.  The multiplication map (5.8) s surjective.

Proor. By the previous lemma, it is sufficient to show that the com-
posite of the multiplication map H%(C, K¢) ® We — H(C,4L — Z) and the
restriction map H(C, 4L — Z) — H°({,4L — Z) is surjective. We claim that
the restriction map H(C, K¢) — H((, K¢) is surjective. This can be seen as
follows. Note that we have 2°(C, O¢(0)) = 1, because { cannot move. Then it
follows from the Riemann-Roch theorem that 2'(C,() = h%C, Ko — §) =
= po(C) — deg (. By the dimension count, this implies that H(C,K¢) —
— H'(, K¢) is surjective. Then, since |2Ks| is free from base points, the
multiplication map H°({, K¢) ® Woi; — H((, 4L — Z) is clearly surjective.
This show the claim and we see that (5.8) is surjective. O

6. Appendix.

In this appendix, we state some results about canonical algebras of
curves on a smooth surface in order to supplement [13].

Let D be a numerically 1-connected curve on a smooth surface such that
pa(D) > 2 and Kp is nef. In [13], we studied the canonical ring R(D, Kp) =
= @D,,-0 H'(D,mKp) and showed that it is generated in degrees < 3.

THEOREM 6.1. Let D be a numerically 1-connected curve on a smooth
surface such that p,(D) > 2 and Kp is nef. Then the canonical ring of D is
generated in degrees < 3 and related in degrees < 6.



Relations in the Canonical Algebras on Surfaces 259

Proor. Let the notation be as in Lemma 1.4. As we remarked above,
we have d < 3 by [13, Theorem II]. By [13, Corollary 1.2.3], we have dy = 4
and d; = 6. Now, apply Lemma 1.4. O

Via Nakayama’s lemma, this also applies to the relative canonical al-
gebra of a relatively minimal fibration f : S — B over a non-singular curve
B whose general fibre is of genus > 2. Recall that we have [13, Theore-
m III] for generators.

THEOREM 6.2. The relative canonical algebra for a relatively minimal
fibration of curves of genus > 2 1s generated in degrees < 4 and related in
degrees < 8. If furthermore there are no multiple fibres whose canonical
system has a ( — 1)-elliptic cycle as a fixed component, then the relative
canonical algebra is generated in degrees < 3 and related in degrees < 6.

A further application goes over the relative canonical algebra for a
normal surface singularity. Let (V,p) be a normal surface singularity and
7 :S — V the minimal resolution. We regard S as a sufficiently small,
strongly pseudo-convex neighbourhood of A =7z !(p). Let D be the
fundamental cycle on A. We are interested in the canonical ring
R(S,Ks) = D,,_, H'(S,mKy). Laufer [15] showed that it is generated in
degrees < 3. The following can be found in [14] and [15]:

THEOREM 6.3. Let D be the fundamental cycle on A and n a positive
integer. Then H'(nD, L) = 0 for any line bundle L on S such that L — Kg is
nef on D. Furthermore, the ring R(nD, Kg) = @,,_, H(nD,mKg) is gen-
erated in degrees < 3.

Let n be a positive integer. We claim that the Koszul sequence

2
/\H'0D,2Ks) ® H'nD, (m — 4)K)

— H'mD,2Ks) @ H'nD, (m — 2)Kg) — H'(nD, mKs)
is exact at the middle term for m > 7. By Theorem 1.1, it suffices to show
that

Tp—2
/\ H'®D,2Ks) © H'(nD, K,p — (m — 6)Ky)

Tn—

3
— N\ H'nD,2Ks) ® H' D, K,p — (m — 8)Kyg)
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is injective for m > 7, where 7, = h’(nD,2Kg) — 1. By Serre duality, we
have H'nD, K,,p — (m — 6)Kg)" ~ H'(nD, (m — 6)Kg), which vanishes for
any integer m with m > 7 by the above theorem. Hence we conclude that
R(nD, Ky) is related in degrees < 6.

Note that, for any positive cycle 4 supported on A, we can find a positive
integer n such that 4 < nD. We have n,F" = (H-md H(n Y(p), F ® O) for

a coherent sheaf 7 on S. Therefore, we get the following as conjectured by
Reid:

THEOREM 6.4. The relative canonical algebra for a normal surface
singularity is generated in degrees < 3 and related in degrees < 6.
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