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A Threefold with p, = 0 and P, = 2

EZz10 STAGNARO (¥)

ABSTRACT - We construct a nonsingular threefold X with ¢; = g2 = p, = 0 and
P, = 2 whose m-canonical transformation ¢y, | has the following properties

) @puky has the generic fiber of dimension > 1, for 2 < m < 5;
ii) it is generically a tranformation 2 : 1, for 6 < m < 8 and m = 10;
iii) it is birational for m = 9 and m > 11.

So, we have a gap for m = 10 in the birationality of ¢,z

Introduction.

In the classification of nonsingular varieties X of general type, the m-
canonical tranformation ¢, , where Ky is a canonical divisor on X, plays
an important part. The main problem concerning ¢,k | regards its bi-
rationality. The property of ¢k, to have the generic fiber given by a
finite set of points is important too.

In the case where X is a threefold, Meng Chen has given several lim-
itations for the birationality of ¢,k . In the particular case where X has
the geometric genus p, > 2, Chen ([Chez], [Ches] ) proved that:

if py > 4, then ¢}, x| is birational for m > 5;
if py = 3, then ¢}, x| is birational for m > 6;
if py = 2, then ¢y, x| is birational for m > 8.

Such limitations are optimal, as demonstrated by examples costructed
by Chen himself [Ches] if p;, > 4, by S. Chiaruttini - R. Gattazzo ([CG]) if
py = 3, by S. Chiaruttini ([Cht]) and by C. Hacon, considering an example
of M. Reid [Re], if p;, = 2 (see [Ches)).

In the case of p, =1 and p, = 0, we have only partial results and the
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problem of finding an optimal limitation for the birationality of ¢, x| remains
([Che1]). If p, =1 and the bigenus of X is Py = 2, then a Chen-Zuo’s lim-
itation ([CZ]) states that Pmky| 18 birational for m > 11. We costructed (IS4D
a threefold X with ¢; = g2 = 0 (where ¢; and g5 are the first and second ir-
regularities of X) p, = 1and P = 2such that ¢, ¢, | is birational if and only if
m > 11, (cf. also Xz in [Re], p. 359, and [ F']); so the above limitation is optimal.

As for threefolds with p, =0, we tried to find examples of X with
¢1 = q2 = 0, P, = 2 and with the birationality of ¢, for m large. The
results obtained were worse than expected as regards the birationality of
Pmky|» While an interesting result emerged for the gaps in the birationality
of ¢k, |- Having obtained the birationality of ¢, x| if and only if 7 > 111in
the case of p; = 1 and Ps = 2, the expected result in the new case of p, = 0
and Py = 2 is birationality if and only if m > 11. Instead, all our con-
structions of threefolds X with ¢; = g2 =p, =0 and P» = 2 have the 9-
canonical transformation gy, |, which is birational, but some of them also
have ¢)ox,|, which is not birational, and ¢k, |, which is birational if and
only if m =9 and m > 11.

So, the threefolds with this property have a gap in the birationality of
Pmky| for m = 10. This came as a surprise because the only cases of gaps in
the birationality of ¢k, that we found were in threefolds with
q1=¢q2 =py =Py =Py =00rq =q2 = p, = P> = 0. Such examples with
gaps are in [S3], where an example is constructed with the same properties
as the example Xy in Reid’s list ([Re]), and in [Roz].

In the present paper, we construct a threefold X with the properties
described - ie. ¢k, is birational if and only if m =9 and m > 11,
g1 =¢q2=0 and p;, =0, P2 =2 — and with further plurigenera Ps = 2,
Py=Ps=4,Ps=P; =8, Pg =13, Py =15, Py =19, Py; = 22.

We note that X is birationally distinct from the threefolds appearing in
the lists of [Re], pp. 3568-359 and [F'], pp. 151-154, 169-170, because X has
different plurigenera from those of the threefolds in said lists.

The example X is constructed as a desingularization of a degree six
hypersurface V c P* endowed with a singularity at each of the five ver-
tices Ay, A1,A2,A3 and A4 of the fundamental pentahedron. The con-
struction is similar to those in [S4]. Precisely, we put a triple point with an
infinitely-near double surface at Ayp on V, we put a triple point with an
infinitely-near triple curve at Ay, A, As, and an ordinary 4-ple point at Ay.
Other unimposed singularities appear on V, but they do not affect the
birational invariants of X.

The ground field k is an algebraically closed field of characteristic zero,
which we can assume to be the field of complex numbers.
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1. Imposing singularities on a degree six hypersurface V in P*.

Let (xg,x1, 22,3, 24) be homogeneous coordinates in P* and let us in-
dicate as f5(Xo, X1, X2, X3, X4) a form (homogeneous polynomial) of degree
6, in the variables Xy, X7, X2, X3, X4, defining a hypersurface V c P* of
degree six. We impose a triple point on V at each of the four vertices
Ay =(1,0,0,0,0), A; =(0,1,0,0,0), A2 =1(0,1,0,0,0), A3 =(0,0,0,1,0)
and an ordinary 4-ple (quadruple) point at A4 = (0,0,0,0,1) of the funda-
mental pentahedron XoX; X X3X, = 0.

The equation for V, with the imposed singularities, is of the following

type
Vv :jé(X07X17X27X37X4)

= X3 (ass000 X3 + )+ X3 (23100 Xg Xo + ) + X (- )+ X5(- - )+ XE(-- )

+ (lzzz()ngXlng + a922110 X§X12X2X3 + - 4 Qoo222 X%X??Xf =0,

where a;; € k denotes the coefficient of the monomial X X/ X5 X! X!.

Moreover, we impose a double surface Sy infinitely near A in the first
neighbourhood. We impose the same double surface Sy, which is locally
isomorphic to a plane as in [Sz]. In addition, we impose a triple curve C;
infinitely near A;, ¢ = 1,2,3 in the first neighbourhood. C; is locally iso-
morphic to a straight line as in [Sy].

As an example, we provide a few details on the realization of the sin-
gularity at Ay on V. This will also enable a better understanding in the
sequel of the computation of the m-canonical adjoints to V and of the m-
genus P,, of a desingularization X of V, g : X — V (cf. section 5). Let us
consider the affine open set Uy 3 Ay in I’* given by X, # 0 of affine coordi-

X X X3, Xy . .
=X, Y =X, 2 =X, Jt _X0>' The affine equation of V N Uj is
given by fs(1, %, y,2,t) = 0.

The affine coordinates of A are (0,0,0,0), so the blow-up of P* at the

point Ay is locally given by the formulas:

nates <ac

x = €r = X2Y> XX = X373 X = Lyly

) y=xy1, ) y=vy2 . ) Y =1yszs. ) Y =Yats

By, : 2 =112 By, : 2= 1Ys2s B, : =23 By, : 2= 24ty
t= .901151 t= yztz t= thg t= t4

and we consider B;,. The strict (or proper) transform V’ of V with respect to
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the local blow-up B;, has an affine equation given by

1

V.=
[ ] ti

fo(1, @ata, Yata, 2ats, ta) = Az1200%4Y5 + - - + Qoo Y325t = 0.

On this threefold V' we impose the plane Sy N U, given affinely by

{ ZM - (? as a singular plane of multiplicity two (i.e. as a double plane). The
4 =

conditions on the coefficients ., such that V has the double plane
So N Uy infinitely near Ay, are given by

as1200 = 0 aso210 = 0 a30012 = 0 (20220 = 0
as1110 = 0 as0201 = 0 a30003 = 0 az0211 = 0
as1101 = 0 ag0120 = 0 20310 = 0 (20202 = 0
as1020 = 0 aso111 = 0 20301 = 0 (20121 = 0
asio11 =0 as30102 = 0 (20130 = 0 azo112 = 0

asiooz = 0 as0030 = 0 20031 = 0 20022 = 0.
as0300 =0 aggo2r =0

In much the same way as above and precisely as in [S1], we impose a
triple curve C; infinitely near A; and in the first neighbourhood, which is
locally isomorphic to a straight line, for ¢+ = 1,2, 3. Further information on
the above singularities can be found in [S4].

We give the final equation for our hypersurface V after imposing all the
above-mentioned singularities. We have chosen several coefficients as
equal to zero because they are inessential for the computation of the
birational invariants of a desingularization o : X — V of V. The shortest
equation with the essential coefficients is

V: f6(Xo, X1, Xe, X3, X4)

_ 313 312 3172 2173 3172

= 33000 XX + 2100 X X7 X2 + ase001 Xo X7 X4 + a23010 X5 X7 X5 + 13020 X0 X7 X5
312 313 213 3172 212772

+ 10302 X0 X5 X5 + 003030 X7 X5 + o031 X7 X5 X4 + 1032 X1 X5 X5 + aa200 X X7 X5

2212 21212 2y 2 2y 2

+ 22020 Xe X7 X5 + ag2002 X X7 X5 + 1210 Xo X1 X5 X3 + 1201 Xg X1 X5 X+

+ a21102 XgXleXE + 21021 X§X1X§X4 =+ Qz1012 X§X2X3X§ + 12012 XOX%X3X4%

+ Q2022 X%X:%Xf “+ Qpo222 XngXi =0.

From here on, V denotes this last hypersurface defined by the above
form f5(Xo, X1, X2, X3, Xy) for a generic choice of the parameters a;j.,;. As
a reminder of this generic choice, we sometimes call V: the generic V.
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2. Imposed and unimposed singularities of V : the actual singularities.

We consider the hypersurface V given at the end of section 1.

New unimposed singularities appear on the (generic) V close to the
singularities imposed on V; they are actual or infinitely-near singularities.
We call a singularity on V actual to distinguish it from those which are
infinitely near. We call a singularity of V unimposed if it does not appear in
the list of singulatities in section 1.

There are six unimposed actual double (straight) lines on V given by
ApAg, ApAs, AgAy, A1As, A1A4, A2As and the unimposed double plane

X;=0
cubic ¢ X =0
01032 X5X4 + 1021 X5 X5 + 1012 X5 X4 = 0.

The generic V has no other actual singularities. It follows that the
generic V is reduced, irreducible and normal.

The cubic lies on the plane {§; i 8 , which is simple on V. The picture
of the six double lines is as follows, where the double lines are drawn in
bold type.

As
Ay

D

Ao

3. The infinitely-near singularities of V.

In section 2, we described the actual singularities on V; in the present
section, we briefly describe the infinitely-near singularities. Here again,
new infinitely-near singularities appear on the generic V alongside the
infinitely-near singularities imposed on V. They are only double singular
curves and isolated double points, so none of the unimposed singularities
(be they actual or otherwise) affect the birational invariants of a desin-
gularization ¢ : X — V of V, such as the irregularities and the plurigenera
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of X. This means that, in calculating these invariants, we can assume that
there are only the imposed singularities on V.

We compute said birational invariants of X using the theory of adjoints
and pluricanonical adjoints developed in [S1]. We can apply this theory
because the singularities on the hypersurface V satisfy the hypotheses of
[S1], i.e. it must be possible to resolve the singularities on V with local blow-
ups along linear affine subspaces; moreover, the degree six hypersurfaces
in P* must have singularities of codimension > 2 (i.e. the hypersurfaces
must be normal).

Such hypotheses on the singularities are satisfied by either actual or
infinitely-near singularities of V. In particular, V' is normal (section 2). To
be precise, all the singularities of V are resolved with local blow-ups either
along straight lines, that are double on V and on strict transforms of V, or
along planes containing double curves and points. These planes are simple

on V and on strict transforms of V, e.g. the simple plane {§1 - 0, con-
. . . : 5 =0
taining the cubic curve on V in section 2.

Having said as much, we only give details on the imposed infinitely-near
singularities of V that are needed in the sequel.

From section 1, we already have the information that we need about the
triple point A and the double surface Sy infinitely near A,.

Next, we consider the triple point A; on V and the blow-up at A;. Let us
consider the affine open set U; 3 A; in IP* given by X; # 0 of affine co-
ordinates <x :)& Y :& 2 :)é t:&) The affine equations of

X7’ X’ X1’ X1/
V NnU; are given by fg(x,1,y,2,t) = 0. The affine coordinates of A; are
(0,0,0,0).

We can assume that the blow-up at A, is the first to be performed, so we
can use the local blows-up B,,, B, , B, B, in section 1.

The strict transform of V N Uj, with respect to 5y, is given by

1
° ‘/t; : t_3 fé(x4t4; ]-a Z/4t4; z4t47 t4)
4
= a33000 %5 + - - - + W0303025 + - - - + Qr012Va2ats + - = 0.

We are interested in the triple curve infinitely near A;. So, we focus
locally on the triple line on V;, belonging to the exceptional divisor ¢4 = 0 of

X4 = 0
the local blow-up B;,. This triple line is given by ¢ 24 =0.
t4=0

Let us go on to consider the triple point Az on V, the blow-up at A, and
the affine open set Us > A, in P* given by X, # 0 of affine coordinates
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(oc _ Xo y - X1 )& [ X,
X, Xz X' X

given by fs(x,y,1,2,t) = 0. The affine coordinates of Az are (0,0,0,0).
Here again, we can assume that the blow-up at Ay is the first to be

performed, so we can use the local blow-ups By, , By, , B.,, B, in section 1.
The strict transform of V' N Us, with respect to 5,,, is given by

) The affine equations of V N U, are

Vi, 7 fG(xZZ/Zv?/Z; 1, Y222, Yat2)
= (10302 902t2 =+ - 4 Q22200 90%?/2 + -+ -+ Qoo ygzgt% =0.

We are interested in the triple curve infinitely near Ay, so we focus
locally on the triple line on Véz belonging to the exceptional divisor y, = 0

LYo = 0
of the local blow-up B,,. This triple line is given by { Y2 =0.
to=0

Finally, let us consider the triple point A3 on V, the blow-up at A3 and

the affine open set Us 5 A3 in P* given by X3 # 0 of affine coordinates
Xo X1 X, Xy . .

(90 -, LY = X3 =X, t= Xs) The affine equations of V N U; are

given by fs(x,y,2,1,t) = 0. The affine coordinates of Ag are (0,0,0,0).

We can again assume that the blow-up at As is the first to be performed,
so we can use the local blow-ups B, By,, B, B;, in section 1.
The strict transform of V' N Us, with respect to B,,, is given by

1
oV : 3 fo(wr, ery1, w121, 1, 211)
= a030302/1 + 4 azzozo%?ﬁ + - F a1 X1yits + - =0.

We are interested in the triple curve infinitely near Ag, so we focus
locally on the triple line on V; belonging to the exceptional divisor x; = 0

xry = 0
of the local blow-up B,,. This triple line is given by { y1=0.
t1=0

To end this section, we add one more item of information, drawing the
picture of the tree of local blow-ups resolving the singularity at A, and
those infinitely near.



20 Ezio Stagnaro

VU

NN

/\ /\ /\

le y22 ISI 41 ‘442

i /i“ /\

VvV,

NS NS ns ns /5\ ns /\
ns /\ s ms

VoolViodVs

5217 5227 523

IV

vg2i»22£v223
ns ns ns
where “ns” means “nonsingular”.
4. The m-canonical adjoints to V c P*.
Let
o T T 5
P By Bpp B =1t

be a sequence of blow-ups solving the singularities of V.
If we call V; C P; the strict transform of V;_; with respect to x;, then
the above sequence gives us

/ / /

. 3 ) o
X=V, — ... =5V, >V — V=V,

where 7 =myy,:Vi—Virand o : X —V,0=mo---0om, is a de-
smgulamzatlon of V. P4
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Let us assume that =; is a blow-up along a subvariety Y; ; of P;_;, of
dimension j;_1, which can be either a singular or a nonsingular subvariety
of V;,_1 € P;,_1 (i.e. Y;_1 is a locus of singular or simple points of V;_;). Let
m;_1 be the multiplicity of the variety Y;_; on V;_;.

Letus set n;_1 = =3 +j;_1 + m;_1, for t = 1, ...,7 and deg(V) = d.

A hypersurface @45 of degree m(d —5), m > 1, in P* is an m-ca-
nonical adjoint to V (with respect to the sequence of blow-ups 7, ..., 7,) if
the restriction to X of the divisor

Dy, =m{m_ [ 1] (Puya—s) — mnoEy - - -1 — mn,_oE,._1} —mn, 1 E,

is effective, i.e. Dy, > 0, where E; = n1(Y;_1) is the exceptional divisor of
n; and 77 : Diw(P;_1) — Div(P;) is the homomorphism of the Cartier (or
locally principal) divisor groups (cf. [S1], sections 1,2).

An m-canonical adjoint @,,_5) is an global m-canonical adjoint to V/
(with respect to 7y, ..., w,) if the divisor D,, is effective on P,, i.e. D,, > 0
(loe. cit.).

Note that, if @,,4-5) is an m-canonical adjoint to V, then D,,| = mK,
where ‘=’ denotes linear equivalence and K denotes a canonical divisor
on X.

In our above example, an order can be established in the sequence of
blow-ups, e.g. let us assume that x; is the blow-up at the triple point Ay, 7z
is the blow-up along the double surface S infinitely near Ay, 73 is the blow-
up at the triple point A;, 74 is the blow-up along the triple curve C; in-
finitely near Ay, 75 is the blow-up at the triple point Ay, 7s is the blow-up
along the triple curve Cy infinitely near Ay, 77 is the blow-up at the triple
point As, ng is the blow-up along the triple curve Cs infinitely near A3 and
the blow-up 79 is the one at the 4-ple point Ay.

The example V has degree d = 6 and D,,, relative to our X, is given by:

(*) Dm = n;i cee ﬂ;){n;[ﬂi(ém)] — mEz} — mE’4 — mE'G — WLEg — mEg,

where E; is the exceptional divisor of the blow-up #; and, to be more
specific, £ is the exceptional divisor of the blow-up 7; at the triple point
Ay, Es is the exceptional divisor of the blow-up 7z along Cy, ... and Ey is the
exceptional divisor of the blow-up 7y at the 4-ple point A,.

No other exceptional divisors are subtracted in D,, because, as we said
before, the unimposed singularities are either actual or infinitely-near
double singular curves or isolated double points on our (generic) V. Put
more precisely, the exceptional divisors of the blow-ups along the double
curves appear with coefficient %; = 0 in the above expression of D,,, and the
exeptional divisors of the blow-ups along simple planes appear again with
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coefficient n; = 0. Since we have resolved all the unimposed singularities
with blow-ups either along double curves or along simple planes, only the
exeptional divisors Ko, Ey, Eg, Eg and Eg appear in D,,. Note, moreover,
that the exceptional divisor of a blow-up at a triple point also appears with
coefficient n;, =0in D,,.

5. The plurigenera of a desingularization X of V.

Let us consider the equation of V: f5(Xo, X1, X2, X3, Xy) = 0 at the end of
section 1 and arrange the form f; according to the powers of Xj.

(%) fo = 04Xo, X1, Xo, X3)XZ + 05(X0, X1, X2, X3)X4 + 05(X0, X1, X2, X3),
where ¢,(Xy, X1, X2, X3) is a form of degree ¢ in Xy, X7, X2, X3 and precisely
04(Xo, X1, Xz, X3) = a10302 X0 X3 + ao1032 X1.X5 + 22002 Xo X5 + -+ + ooee Xo Xz

Next, let us consider the hypersurface @,,, appearing in (*) section 4
and assume that its equation is F,,(Xo, X1, X2, X3, Xy) = 0, of degree m.
Arranging the form F,, according to the powers of X, we can write

(%) F(Xo, X1, Xz, X3, X4)
=y, (X0, X1, X2, X)X~ + yy 1 (Xo, X1, X, X)X 571 4 4
+v,,(Xo, X1, X2, X3),
where l//j(Xo,Xl,Xz,Xg) is a form of degree j in Xy, X1, X2, X3 and s is an
integer satisfying 0 < s < m.

Under the sole hypothesis that V has a 4-ple point at A4 the following
lemma holds.

LEmma 1. With the above notations, if @, is an m-canonical adjoint
(be it global or not), then, modulo V : fg = 0, we can assume thats > m — 1
m (¥¥F); Le. if Dy, : Fy, = 01s an m-canonical adjoint, then we can assume
that

F’m - W77¢71(X07X17X27X3)X4 + WWL(XO;X1;X2;X3)'
Moreover, we have the equality
Yin—1Xo, X1, Xz, X3) = A 5(Xo, X1, X2, X3)04(Xo, X1, X2, X3),

where Ay, _5(Xo, X1, X2, X3) is a form of degree m — 5 in Xy, X1, X2, X3 and
04(Xo, X1, X2, X3) 1s defined above in (**).
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The idea for the proof of the above lemma came from M. C. Ronconi
[CR], [Ro1]. A detailed proof can be found in [S4] (Lemma 1, section 5).

REMARK 1. In Lemma 1, we have F,, = A,,_50,X4 +v,,. We see
that, if A,, 5 = 0, then F,, defines a global m-canonical adjoint &,, to V,
whereas if A,,_5 # 0, then &,, is a “non-global” m-canonical adjoint to
V. The non-global m-canonical adjoints to V' are important for estab-
lishing the birationality of the m-canonical transformation ¢k, (see
next section).

The following lemma is proved in [S4], Lemma 2, section 12, where the
singularities at three fundamental points on a degree six hypersurface V'
differ from those on V in the present case. More precisely, V' has three
triple points with an infinitely-near double plane, whereas V has three
triple points with an infinitely-near triple curve. But the proof remains the
same in both cases.

LEmMA 2. The m-canonical adjoint to V given by
Dy, + Apy—5(Xo, X1, Xo, X3)p4(Xo, X1, Xo, X3) Xy + w,,,(Xo, X1, X3, X4) = 0,
has the following property
Dy, > 0= Dy, + E9 >0,

where D, = 7\ - - my{m[7;(Dy,)] — mE2} — mEy — mEs — mEg — mBEy, is
defined in (*), section 4.

REMARK 2. Roughly speaking, the result in Lemmas 1 and 2, that
permits us an easy computation of the m-genus P,, (vm) of a desingu-
larization ¢ : X — V of V, is the following. Our degree six hypersurface
V has a 4-ple point, so from Lemma 1 we can assume that the m-cano-
nical adjoint @,, is defined by a form of the type F,, = Au—504X4 + v,,,
where the variable X; appears to the power 1. In order to compute the
linear conditions given by the other singularities to the hypersurfaces
®,, so that they are m-canonical adjoints to V, i.e. to obtain Dy, >0,
we find that we do not need to restrict D,, to X and, after imposing
Dy, > 0, we only need to have D,, + Ey > 0. This follows from the fact
that F,, contains the variable X4 to the power 1, whereas the form f;
defining V contains the variable X, to the power 2, and also from the
particular singularities obtained in our examples. We note that Ey has
to be added to D,,, otherwise D,, may not be effective (when A,, 5 # 0,
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see Remark 1). So it is very easy to compute the conditions on F, such
that D,, + Egy is effective and, since P,, = number of linearly in-
dependent forms contained in F, (cf. [S1]), the computation of P,,, Vm,
is very easy too.

Now, we are ready to compute the plurigenera of a desingularization
o:X —V of V. Let us write

Ay 5(Xo, Xy, Xz, X3)X,4 —< > alyth3X{X§X§>X4,

i+j+k+h=m—5

VX0, X1, X0, X) = > by Xg X X5 XY

i =m

where a;jrn, bijin, € k.

ee First let us consider the two blows-up ny and me. We know that the
blow-up 7; of P* at Ay is given by By, By,, B,, By, (cf. section 1). Let us
consider the affine open set Uy = {Xj # 0} as in section 1.

The total transform of &,, N U, with respect to By, is given by

B (@, N Uo) : Ap—5(1, Xata, Yala, 24t)ps(1, Tats, Yats, 2ata)ta+
l//m(].,.’)C4t4, Z/4t4, 2’41547 t4) =0.
The double surface S infinitely near A, in affine coordinates

L4

(24, Y4, 24, t4) is given by { ty ::(? (cf. section 1).

The blow-up 7z along S is locally given by the formulas:

Ty = 41 X4 = Tgotye
L) Ys=Ya oo L) Y4 =Y
Bx41 . _ ) Bt42 . _
24 =241 24 = 242
ty = a1ty ty = ty2

The total transform of B;;((Dm N Uyp) with respect to B,,, is given by
B; [BZ(dam NUy]:

L41

2 2
Ap—5(1, g ta1, a1 Yartar, Ta12a1ta1) 941, 041841, a1 Yartar, Xa1241841)Ca1tar+

2
W (L, 41841, 41 Yartar, Ca1241ta1, Caatar) = 0.
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With the above notations, this total transform is given by

B; [BZ(djm NUp)] :

Lq1

2j+k+h  k h 2
( E Qijien 4 .7/41241> 041, 3 a1, Xa1 Yartar, Ca12a1ta)%artan
i+j+k+h=m—5

21 +K +h K b
+ E , bijien %41 Yai2q = 0.
V+j R+ =m

The following claims hold true; they are corollaries to Lemma 1 and 2
and consequences of the desingularization of V.

CrLAM 1. The composition of the two local blows-up B,;,, o B;, coincides,
up to isomorphisms, with the desingularization o), on the affine open set
V.., because V,,, is nonsingular (see the tree of blow-ups at the end of
section 3). In fact, V,,, is isomorphic to an open set on X and the two above
morphisms can be identified on V,,, .

CrAmM 2. Since &,, is an m-canonical adjoint to V, by definition we have
Dy, > 05 s0, from Lemma 2, we can say that: D,, + Eq > 0.

Cramv 3. From Claims 1 and 2, we deduce (up to isomorphisms) that

B, [B; (Dy, 0 Uo)l — mEs + Eg > 0.

L41

This last inequality is equivalent to the following equality of polynomials

2+kth kb 2
Z ijien 4 ?/41241) 041, a1, a1 Yartar, Ca1241t41)%a1ta1
i+j+k+h=m—5

27 +k'+0 | K W m
+ § , bijien 41 Yagzg = €4 ()
U+ +W+U=m

CLAaM 4. Since (04(1, ac?nt41, X41 y41t41, 90412’41t41) = 9021(), the latter
equality of polynomials is equivalent to the inequalities

2l +k+h+3+1>m ; j>i+1
2j/+k/+hl2m b .e. jIZi/ .

ee Neuxt, let us consider the two blows-up ng and ny. As in section 3, we
can assume that the first blow-up that we perform is 73 at A1, so we can use
the local blows-up B, By,, Bz,, B, in section 1.

As in the above case of 7; and 72, here too for 73 and 4, we find that the
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total transform of @,, N U; with respect to By, is given by

B; (@, N U1) : Ap—5(ata, 1, Yata, 24ta)p4(ats, 1, Yata, 2484)ts
+ v, (@ats, 1, Yats, 2ats, t4) = 0.

The triple curve C; infinitely near A; in affine coordinates (x4, ¥4, 24, t4)

Xyq4 = 0
is given by (section 3) < z4 =0.
t4=0

The blow-up 74 along C; is locally given by the formulas:

X4 = 41 Xy = X42242 X4 = X43t43
Ys=Yua B.. Ys =VYa2 | B, - Y4 = Y43

L41 _ ) [ZV I _ ) 43 — t .
24 = X41241 24 = 242 24 = 243043
ty = Cyty ty = 249840 ty = t43

The total transform of B;;((Dm N Uy) with respect to B,,, is given by

B, [B;,(®,, N U] :

L41

2itkt2h, k 2 2
( Z ijien 3y y41z41)(/)4(9041t41,1,9041?/411541,90412'41t41)9041t41
i+j+k+h=m—5

. 21 +k' +21 , k'
+ E bijin gy Yz = 0.
V) =m

From the analogous four claims written above and from the equality

04y tar, 1, a1 Yartar, 05 2a1tan) = 23, (...),
we obtain the inequalities

2i+k+2h+4+1>m ; i+h>7
20 +k +20 >m R AN A

ee Let us move on now to consider the two blows-up nz and ng. Once
again, we can assume that the blow-up 73 at A is performed first, so we can
again use the local blows-up B,,, By,, B.,, B, in section 1.

As in the above cases, here for n; and 7g we obtain that the total
transform of @,, N Uz, with respect to B,,, is given by

B,,(®n N Us) : Ap—5(2y2, Y2, 1, Y222)04(X2y2, Y2, 1, Y222)Ya2ts
+ W (2y2, Y2, 1, Y222, Yat2) = 0.
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The triple curve C; infinitely near Ay in affine coordinates (xz, y2, 22, t2)

X9 = 0
is given by (section 3) < 2 =0.
to=20
The blow-up 7g along Cs is locally given by the formulas:
Xp = X21 XTo = Xo2Yo2 Xp = Xa3lo3
L) Yo =x21Y21 Y=y . ) Y2 = yosles
Bew 2=z Bya g =2 Bl g =223
o = X212 to = Yooloo o = tog

The total transform of B;z@m N Uz) with respect to B,,, is given by
B [B;z((bm NU2)]:

L21
Qitj+h j 2 2
( E Wijteh X9y %1Z21>(ﬂ4(9€g1?12179021 Ya1, 1, X21221)%5;, Y21t21
i+j+k+h=m—5
20+7+h ) f
+ bijicn Xoy Y9123 = 0.
VA +h +U=m

From the same four claims written above, and from the equality

04 (05, Yo1, 21 Y21, 1, X21221) = a5 (...),
we obtain the inequalities

2i+j+h+2+2>m . i1 >k+1
24/ “1‘]7 + R >m , lLe. 7 > ¥

ee Finally, considering the two blows-up n; and 7g, as in the case of 75
and g, we obtain the inequalities

1+2+k+2+2>m e J>h+1
742/ +kK >m R A=
Joining the above inequalities, we obtain

(44) t+h>j>i+1>2k+2, j>h+1
i/Jrh/Zj,Zi/Zk/, j/Zh/

From the inequalities in the first line of (**), we deduce 57 > 2, 1 > 1,
h > 1. Bearing in mind that 1 +j+k+h =m — 5,
i) there are no values of 1,j, k, h satisfying (**) and corresponding

to m, for m < §;
ii) the values [1 = 1,7 =2, k = 0, h = 1] correspond to m = 9;
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iii) there are no values of 7,7, k, h satisfying (**) and corresponding
to m = 10;

iv) the two sets of values [t =2, =38, k=0, h=1] and [: =1,
7 =38,k =0, h = 2] satisfy (**) and correspond to m = 11, and so on; there
are values of 4, , k, h satisfying (**) that correspond to any value of m > 12.

As for the inequalities in the second line of (**), and given that
i’+j’+k’+h’:m,

1) there are no values of ¥, j/, ¥/, &/ satisfying (**) and corresponding to
m=1;

2) the two sets of values [¢' =5 =1, K=" =0] and [/ =1 =1,
1 = k' = 0] satisfy (**) and correspond to m = 2;

3) the two sets of values [/ =7 =k =1, ¥/ =0] and [¢' =5 =1 =1,
k' = 0] satisfy (**) and correspond to m = 3;

4) there are 4 sets of values satisfying (**) and corresponding to m = 4,
there are also 4 sets of values satisfying (**) and corresponding to
m = 5, 8 sets satisfying (**) and corresponding to m = 6 and 8 sets sa-
tisfying (**) and corresponding to m = 7.

5) The following sets [¢' =5 =8, k' =W =0], [i' =7 =W =2, k¥ =0],
[ =7=2k=0=1),[{' =2,5 =3,k =0,k = 1]are4 of the 8 sets of
values satisfying (**) that correspond to m = 6.

The following sets [¢' =45 =3, kK =1, ' =0], [/ =h =2, j/ =3,

K=0,[=17=38k=1n"=2][i'"=1,7 =K =38,k = 0] are 4 of the

8 sets of values satisfying (**) that correspond to m = T7.

CONSEQUENCES. Let us just recall that we have written the equation
of an m-canonical adjoint &,, as follows:

Dy : Ap5(Xo, X1, Xo, X3)04(Xo, X1, X2, X3) X4 + v, (X0, X1, X3,Xy) =0,

where
Ao, X1, Xo, Xo)Xy — ( ) al,-khxgxgxgxg)&
i+j+k+h=m—5
and
l//m(Xo,X1,X2,X3) - Z bijthg XJ; Xg/Xg/.
A . —

Fromi),...,vi), we deduce that the form A,, 5 is zero if and only if m < 8 and
m = 10.
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Since the m-genus P,, of a desingularization X of V is the number of the
linearly independent forms defining m-canonical adjoints to V' (cf. [S1]),
from 1), ...,4), we deduce the following results regarding the plurigenera of
a desingularization X of V.

From 1), we can establish that there are no 1-canonical adjoints (also
called canonical adjoints) to V; this implies that the geometric genus of X is
pg =0.

From 2), we find that @, : wy(Xo, X1, X3, Xy) = X1(1 X0 + 12X3) = 0,
where /; € k; this implies that the bigenus of X is Py = 2.

From 3), we learn that @5 : w4(Xo, X1, X5, X4) = Xo X1y Xe + 115X3) = 0,
W; € k; this implies that the trigenus of X is P3 = 2.

From 4), we obtain that P, = P; =4, P¢ = 8 and P; = 8.

In addition, X has the plurigenera Pg = 13, Py = 15, Py = 19, P1; = 22.

6. The m-canonical transformation ¢|,,x, |, m > 2.

Let us use o, : V — — — PP~ to indicate the rational transformation
associated with the linear system of m-canonical adjoints &, to V. The
following triangle

X __('iliﬂil__, PpPm—1
t
: Qm
0% |
|
v

is commutative.

Let us consider the linear system of m-canonical adjoints @,,. From i)
and 1),...,,4) and the Consequences, we can see that if 2 < m < 5, then @,,
is given by v,,(Xo, X1, X3, X4) = 0; moreover, the rational transformation
o, has the generic fiber of dimension > 1. From the commutativity of the
above triangle, ¢k, also has the generic fiber of dimension > 1.

From i) and 5) and the Consequences, we know that @,,, for m = 6,7, is
again given by v,,(Xo, X1, X3, X4) = 0, and that the rational transformation
o, as well as ¢, g |, is generically 2 : 1. As a consequence of this and of the
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fact that Py # 0, ¢}, | is either generically 2 : 1 or birational (to its image)
for m > 8. It is not difficult to prove that psx, | and ¢k, are generically
2 : 1, since all we have to do is consider the rational transformation defined
by the 4 sets of values given in 5) (in both cases m = 6,7).

Next, we note that a necessary condition for the birationality of ¢, x| is
that A,,_5 # 0 in the equation A,,_5¢0,X4 + v,, = 0 of @,,; in other words,
@, must be a non-global canonical adjoint to V (cf. Remark 1, section 5).

To be more precise, let us consider @,, : A,,_50,X4 + v,, = 0 and as-
sume that the rational transformation o/, : V — — — PP~ defined by the
linear system y,, = 0 of global m-canonical adjoints to V (see Remark 1,
section 5) is generically 2:1, then ¢, is birational if and only if
A5 # 0. This is immediately proved by the presence of the addendum
A,,—5 X4, which contains X4 to the power 1; indeed, this addendum sepa-
rates the two distinet points on V : 9, X% + ¢;X4 + ¢ = 0 that are mapped
to one point.

As a corollary of this latter fact, in the light of i),...iv) and the Cose-
quences, ¢k, is birational if and only if m =9 and m > 11. So, for
m = 10, there is a gap in the birationality of ¢, k.-

This concludes our examination of Pk for m > 2.

7. Computing the irregularities of X.

This brings us to the demonstration that ¢; = dim;, H'(X, Ox) = 0, for
i=1,2. We know that ¢; = dimy H'(X, Ox) = ¢(S,) = dim; H'(S,, Os,),
where S, C X is the strict transform of a generic hyperplane section S of V
(cf. [S1], section 4, for instance). S has several isolated (actual or infinitely-
near) double points and no other singularities. This follows from the fact
that, outside the points Ay, A1, A2, A3 and Ay, the hypersurface V only has
actual or infinitely-near double curves and isolated double points. So,
q1 =0.

To prove that go = 0, we use the formula (36) in section 4 of [S;], which
states that:

g2 = pg(X) + py(S,) — dimy, (W),

where W is the vector space of the degree 2 forms defining global adjoints
@, to V, i.e. defining hyperquadrics @, such that

77.': ﬂ;[ﬂ;(@pz)] — Eg — E4 — EG — Eg —Eg Z 0,

(cf. the expression of D,, in (*), section 4). So the above hyperquadrics @2
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are those passing through the points Ay, A1, A2, A3 and A4. Thus, dimy, (W)

=15—

5 = 10. It follows from p,(S,) = 10 and p,(X) = 0 (cf. Consequences

at the end of section 5) that g2 = 0.
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