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Idempotent Subreducts of Semimodules over
Commutative Semirings

DAVID STANOVSKY (*)

ABSTRACT - A short proof of the characterization of idempotent subreducts of
semimodules over commutative semirings is presented. It says that an idem-
potent algebra embeds into a semimodule over a commutative semiring, if and
only if it belongs to the variety of Szendrei modes.

1. Introduction.

Embedding one class of structures into a better understood one usually
brings some new knowledge about the former class. We will focus on
embeddings of algebras into reducts of semimodules over commutative
semirings; hence we obtain linear representations for operations of the
algebras.

Modes are idempotent algebras where every pair of operations com-
mute with one another [10]. Indeed, idempotent subreducts of semi-
modules over commutative semirings are modes and it had been an open
problem [10] whether the converse statement is true. Quite recently, N.
Dojer observed that such modes satisfy the so-called Szendrei identities
(they appeared in the paper [16] by Agnes Szendrei) and Michal Stron-
kowski found a syntactical proof that these identities do not follow from the
axioms of modes [14]. Thus there exist modes that are not idempotent
subreducts of semimodules over commutative semirings; in fact, we pre-
sent a simple example of such a mode in Example 2.
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Shortly after that, Stronkowski also proved that Szendrei modes are
embeddable [15] and thus obtained the following characterization:

THEOREM 1 (M. Stronkowski [15]). Amn idempotent algebra is a sub-
reduct of a semimodule over a commutative semiring if and only if it is a
Szendrei mode.

The aim of the present paper is to provide a short proof of Theorem 1.

Actually, M. Stronkowski considered a more general situation: He
proved the embedding theorem for (not necessarily idempotent) entropic
algebras with onto operations. (Theorem 1 is an obvious corollary of this
result.) The payoff for greater generality is much greater complexity of his
proof; it does not simplify straightforwardly if idempotency is assumed.
However, in the idempotent case, one can use several technical tricks
developed by A. Szendrei in [16], which make our proof rather short and
transparent. Since modes have interested a number of mathematicians
recently (see the monograph [10]), I think presenting a short proof is
worthwhile.

The core of the proof of Theorem 1 is contained in Section 3. In Section
2, we present auxiliary results on free Szendrei modes, based mostly on the
original Szendrei’s paper [16]. Some partial results related to Theorem 1
can be found in [4][5][6][11][12][18]; a significant part of the survey [9] was
devoted to the problem. Motivated by Example 2, the paper [7] is con-
cerned with a broad class of modes that do not embed into semimodules.
Related problems are discussed in the last section.

We quickly recall basic definitions. By a commutative semiring we
mean an algebra R = (R, +, -) such that both operations +, - are commu-
tative and associative and distributive laws hold. A semimodule over a
semiring R (or an R-semimodule) is a “module without subtraction”, it
means an algebraM = (M, +,7- : ¥ € R) such that (M, +) is a commutative
semigroup and 7- are unary operations of multiplication by elements of R
satisfying associative and distributive laws. Moreover, the semiring in our
construction will be unitary, that is, it contains a unit element 1 which acts
on semimodules as identity. Note that in R-semimodules, a term ¢ over
variables 1, ..., x, can always be written (uniquely) as

t=r -21+...+7, -2, forsomenmnry,...,r, €R.

An algebra A is called a reduct of an algebra B, if all operations of A are
term operations of B. It is called a subreduct, if it is a subalgebra of a
reduct of B. (Sometimes we also say that A embeds into B.)
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In this paper, we consider algebras over an arbitrary signature X
without constant symbols. An algebra is called idempotent, if each element
forms a one-element subalgebra. Equivalently, if the identity

fle,x,...,x0) =

holds for every operation f. An algebra is called entropic, if every pair of
operations commute with one another. Equivalently, if the identity

f(g(xlla R 790171)7 e ag(xTﬂh e ?xm%)) ~ g(f(xlla R 790771,1): e 7f(x17’ba e :'/X/.’I’)@VL))

holds for all operations f, g. Idempotent entropic algebras are called modes.
The article [9] and the monograph [10] are good surveys of what is known in
the theory of modes.

We say that an n-ary operation f satisfies Szendrei identities [14][16], if

S, m), s f @ty - %)
R (@), Trn)s - - - S @ru), - - - s L))

holds for every =, which is the permutation of the #n? indices which fixes all
indices except i and ji, and switches these two, for some 1 < 1,7 < n. (So

we obtain (Z) identities.) Modes satisfying all Szendrei identities for

every operation are called Szendrei modes. Note that Szendrei identities
for an operation f imply that f commutes with itself, hence Szendrei al-
gebras with a single operation are entropic. For a binary operation, there is
just one Szendrei identity, and it is equivalent to the entropic identity;
many authors call this identity mediality [4].

ExamPLE 2. We define a ternary operation f on the set {0,1,2} by
fe=y=1,
otherwise.

2-2
f(xayvz): {Z

So  f(f(wy,x2,23), f(Y1,Y2,y3), f(21,22,23)) is equal either 2 —z3, if
23 =1y3 =1and (21,22) # (1,1), or 21 =22 = 1 and (x3,y3) # (1,1); or it is
equal z3 otherwise. Consequently, the algebra A = ({0, 1,2}, f) is a mode.
However,

f(f(0,0,1),£(0,0,0),£(0,1,2)) = 2z # 2 — 2 = f(f(0,0,0), (0,0,0), f(1, 1, 2))

for z # 1, so A is not a Szendrei mode.

The notation and terminology of universal algebra we use is rather
standard and follows the book [8]. We assume the standard representation
of free algebras in a variety V by terms modulo the identities of V. Terms



36 David Stanovsky

are considered as labeled rooted trees. Inner nodes are labeled by op-
eration symbols, leaves by variables. Depth of a symbol/variable is defined
as the distance from the root.

2. Free Szendrei modes.

Throughout the paper, we fix a signature X without constants (arity of a
symbol ¢ will be denoted ar o) and let 2 denote the set of abstract symbols
oy foreveryoce Xandi=1,...,arg, ie.

Q={a,;:0€2, 1=1,...,arcg}.

Let Ry denote the semiring with unit N[Q]/6 of polynomials with (com-
mutative) variables from Q2 and coefficients from the set of natural num-
bers N, modulo the congruence 0 generated by all pairs

(Ocon,l +...+ g m, 1)

for every n-ary o € 2. On every Rs-semimodule M, consider the opera-
tions g, defined by

9olQ1, ... Q) =01 Q1+ ...+ Oy - Oy

for every n-ary o € 2. Since Ry is a commutative semiring, the algebra
(M, g, : 0 € X)is a Szendrei mode.
For a set A, we will denote

e F(A)=(F(A),+,r :r € Ry) the free R y-semimodule over A;
e G(A) =(G(A),g, : o € X) the subalgebra of (F(A),g, : 0 € X) gen-
erated by the set A.

Clearly, for u € F(A), we have u € G(A), iff there is a 2-term ¢ such that
u = t(ay,...,a,) for some ay,...,a, € A.

THEOREM 3. The algebra G(A) is a free Szendrei mode over the set A.

The theorem is an easy consequence of results of A. Szendrei [16]. We
outline its proof in the rest of the section.

A term is called completely expanded, if all variables have equal depth.
A completely expanded term is called isosceles, if at each particular depth
level, all the nodes at that depth are labeled with the same operation
symbol, except possibly the variables at the deepest level. E.g., the term
f(g(x,y),9(y,2)) is isosceles, while f(g(x, x), h(x, x)) is not.
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The address of an occurence of a symbol/variable o of depth £ in a term ¢
is the sequence (by, . .., b;_1) of natural numbers such that the (shortest)
path from the root to ¢ uses b;-th branch of the tree on i-th depth level. The
trace of an occurence of a symbol/variable ¢ of depth & in a term ¢ is the
sequence (0y, . . ., 0_1) of operation symbols such that the i-th node on the
path from the root to o is labeled by o;.

Thus, isosceles terms are precisely those terms, where all occurences of
variables have the same trace; it is called the trace of an isosceles term. An
identity ¢ ~ s is called isosceles, if both ¢, s are isosceles terms with the
same trace.

LEMMA 4 ([16], Lemma 2.2). For every pair of terms t1,ts, there are
1sosceles terms sy, Sz With the same trace such that t; =~ s1 and ts ~ se are
provable from the idempotent identities. Consequently, every identity s
equivalent to an isosceles identity (called an isosceles expansion) relative
to the idempotent identities.

Let Q" denote the set of all monomials

ka.l kn.arn

H ag‘l c o Ogare

cexr
(it means that all but finitely many k, ;’s are zeros). For a given trace , let
Q. denote the set of all w e Q" such that for each o € 2, the sum
ks1+ ...+ ksaro is equal to the number of occurences of ¢ in the trace t.
Thus Q; consists of monomials that may appear in an interpretation of an
isosceles term of trace 7 in G(A).

LEmMMA 5. Let t be a trace and p= > cow, ¢ = Y. d,o two poly-

WwEQ, wEQ,
nomaials from IN[Q]. If they are 0-equivalent, then they are equal.

Proor. We pass the situation into the polynomial ring 7Z[Q]: If p,q
are f-equivalent in N[Q], then they are equivalent also in the congruence
generated by all pairs (051 + -+ tgare, 1), 0 €2, in Z[Q], and thus
p —q belongs to the ideal I of 7Z[Q] generated by all polynomials
Jo =01+ +0sars — 1, 0 € X. We prove that this implies p =g by
showing that

(%) I does not contain a non-zero polynomial f = > byw with b, € 7.

weR,

Note that the following conditions are equivalent:
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M fer
(2) there exist polynomials f; € Z[Q] such that f = " f.9,;
oeX
(3) inf, substituting 1 — ay2 — ... — tgare fOr every o, 1, yields zero
polynomial.

It follows from (3) that I is a prime ideal. We prove (%) by induction on
k=5 arg. If all symbols in 7 have arity 1, then f = bw and it fails con-

OET

dition (3) unless b = 0. Otherwise, consider a counterexample f € Z[Q] of
minimal degree. Choose an arbitrary o of arity > 1. The variable o, ,, € Q
does not divide f if it did, we had f = a,,, - 9, and thus, by primeness, g € I
would be a smaller counterexample. So, substituting 0 for o, in f yields a
non-zero polynomial, which, as follows from (2), belongs to the respective
ideal I in Z[Q \ {0, }], hence we reduced k by one. O

Let t be an isosceles term with trace 7. We say that an occurence of a
variable in ¢ has the property d(w) for an w € Q, if it can be reached by
k,; choices of i-th branch in the nodes labeled by o. Finally, for every
w € O, let A(w,x,t) denote the number of occurences of the variable « in ¢
with the property d(w). E.g., if t = f(g(x,y), 9y, 2)), then Aoy 1001, %, 1) =
= Mog 102, Y, 0) = Mo 2001, Y, 1) = Ao 20ty 2,2, 0) = 1. I E = f(f (2, ), f(y, 2)),
then A(os 07 2,9,1) = 2.

LeEMMA 6 ([16], Theorem 2.8). The following statements are equivalent
for an isosceles identity t ~ s.

(1) t = s is provable from entropy and Szendrei identities.
Q) Alw,x,t) = Aw,x,s) for every variable x that occurs in t or s and
every w € Q.

PROPOSITION 7. The following statements are equivalent for terms t, s
over variables xi, ..., %y,.

(1) t =~ s holds in all Szendrer modes.

(2) There is an 1sosceles expansion t* ~ s* of the identity t ~ s that is
provable from entropy and Szendrei identities.

(8) Any 1sosceles expansion t* ~ s* of the identity t ~ s is provable
from entropy and Szendrei identities.

@) taq,...,an) = s(ay,...,ay) holds in the algebra G(ay, . . ., ay).

Proor. (3) = (2) = (1) = (4) are trivial. We prove (4) = (3).
Assume the equality t(ay, . .., ay) = s(aq,. .., a,) in G(ay, . .., ay). Then
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also t*(ay,...,ay) = s*(a1, .. .,ay) for any isosceles expansion t* ~ s* of
the identity ¢ = s. Let 7 be its trace. Then

t*(al,---,am)—zm:<z qu,ww> -a; and S*(al,-u,am)—i(Z di.ww> - @y,

i=1 \weQ, =1 \we:;

where ¢;, = Alw, x;,t*) and d;,, = Alw, x;, s*). Hence

i=1 \weQ, i=1 \weQ,

holds in the free Rs-semimodule over ay,...,a, and, consequently, the

polynomials > ¢;,wand ) d;,w are 0-equivalent for every ¢, and so, by
wER, wEQR,

Lemma 5, are equal. Particularly, 4(w,x;,t*) = ¢; o = di, = Aw, x;,5") for

every o and ¢ and we can use Lemma 6. O

Theorem 3 follows immediately from Proposition 7.

3. Proof of Theorem 1.

Since subreducts of semimodules over commutative semirings satisfy
both entropy and Szendrei identities, one implication of Theorem 1 is clear.
In the rest of the section, we prove the converse.

LetA = (A, f, : 0 € X) be an arbitrary Szendrei mode and let’s denote «
the projection of the free Szendrei mode G(A) = (G(A), g, : ¢ € X) onto the
algebra A, extending the identity mapping on generators. We define a
relation p on F'(A) consisting of all pairs

WH+w-b, W+ wis1- a1+ ...+ Wtgy - y),

where o € X is an n-ary symbol, w € F(A), ® € Q" and ay,...,a,,b € A
such that b = f,(ay, ..., ay,).

LEmMA 8. Let (u,v) € p. Then u € GA) iff v € G(A). Moreover, if
u,v € GA), then n(u) = n(v).

Proor. Letu € G(A). Then u = t(ay, . . ., a;) for some k-ary X-term ¢
and some ay,...,a; € A. Since (u,v) € p, we have

U=w-+w-a;
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for certain 1 <17 < k and
V=w+wis1 b1+ ...+ wtsy - by

for some n-ary o € 2, we F(A), we Q and by,...,b, € A such that
a; = f5(b1,...,by) in A. Let s be the term resulting from ¢ by replacing
one of the occurence of a; with d(w) property with the term o(xy, ..., %),
where 1, ...,x, are new variables. Then v = s(ay, ..., ax,b1,...,b;) and
thus v € G(4).

[Example: Let A=(4,%) (thus Q={o.1,0.2}), t=wxxy,
u = ta,b) = o, 10 + 0. 20, and b = ¢ x d. Then s(x,y,u,v) = x * (4 * v), and
sov = s(a,b,c,d) = o, 10 + o, 20 1€ + o, 200, 2]

Now, let v € G(A). Then v = s(ay, . .., a;) for some k-ary X-term s and
some ay, ..., a; € A. Since (u,v) € p, we have

u=w+aw-b
and

V=W~ W01 Uy + ...+ W0y - dj,

for some n-ary o € X, w € F(A), w € QF, certain 1 <jy,...,j, <k and
b € Asuchthatb = f;(q;,, ..., a;,). According to Lemma4,v = s'(a1, . .., ax)
for an isosceles term s’, and thus, according to Lemma 6, v = s”(ay, . .., ay)
for an isosceles term s”, in which the involved occurences of a;,, . . ., a;, are
next each other, ie., they form a subterm o(a;,,...,q;). (Recall that
Lemma 6 allows to switch any two occurences with the same Jd(w) property.)
Now, let ¢t be the term that results from s” by replacing the subterm

o(aj,...,a;) by a single new variable. Then u = t(a1, ..., ax,b) and thus
u € G(A).

[Example: Let A=(A,x), s=(@x*xy) *xw=*xv), v=sa,bcd =
= 00 1010 + 0 1020 + 020 1€ + 020 2d, and e =bxd — this per-

fectly fine constellation, since o, j0.2 = o 20, 1. Then 8’ =s and 8" =
= (x xu) * (y * v),sothatv =s"(a, b, ¢, d), and we may define t(x, ¥, 2, u,w) =
=@ +u)*xw. Thenu=1t(a,b,c,d,e) =, 10,10+ 0. 10 2 + 0 2€.]

So, as we have seen, if u,v € G(A) and (u,v) € p, then we can write
u=1ta,...,a;)and v = s(aq,...,aq;) for terms ¢, s such that s results from
t by replacing an occurence of a variable b by the subterm ¢(b4, . .., b,), for
some b,by,...,0, € {a1,...,a;} with b=f,(by,...,b,) in A. Hence,
because 7 is a homomorphism identical on A, we have n(u) = n(v). O

Let p be the symmetric transitive closure of p. Then p is a congruence of
the Ry-semimodule F'(A), so F(A)/p is again an R s-semimodule.
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LEMMA 9. The Szendrei mode A embeds into the reduct
FQA)/p, g5 : 0 € X) of the R x-semimodule F(A)/p.
Proor. The embedding is a—[a],. This is a homomorphism, because
golarls, ... [an)y) = oo - landy + .o 4 top - [an],
=[og1- a1+ ... 4 gy - an]f; = [folaq, ... 7“%)]/7-

(The first equality is the definition of g,, the last follows from the definition
of p.) So it remains to prove that the mapping is injective. Assume
[al, = [b], for some a,b € A, it means (a,b) € p. Hence there is a chain

@ = U, U1, ..., Uy 1,%, = b such that (u;, u; 1) € pUp~L. It follows from
Lemma 8 that uyg, . .., u, € G(A) and thus that n(uy) = n(u1) = ... = n(u,).
However, n(a) = n(b) iff @ = b, because = is the identity on A. O

This ultimately proves Theorem 1.

4. Concluding remarks.

Two similar types of representation appear in the literature:

o Quasi-(semi)linear algebras are subreducts of (semi)modules;
their operations can be expressed as (semi)module terms, i.e.
T1-X1+ ...+ Ty Ty

o Quasi-(semi)affine algebras are subreducts of (semi)modules with
additional constants pointing to every element;
their operations can be expressed as (semi)module polynomials, i.e.
c+r-%1+...+7r, - x, with a constant c.

In this terminology, what we did, is characterizing idempotent quasi-
semilinear algebras over commutative semirings.

We wish to discuss a couple of related questions. First, why do we
consider idempotent subreducts only? One reason is that my original in-
tention was to answer the open problem posed in [10], to characterize
modes embeddable into semimodules over commutative semirings. Even
when Stronkowski’s result appeared, it was still desirable to find a short
and transparent proof for the idempotent case. A characterization of not
necessarily idempotent subreducts is an open problem.

Regarding semilinear representations over general semirings, the
problem is ultimately solved. J. Jezek [3] proved that actually every al-
gebra (without constants) is a subreduct of a semimodule over a semiring.
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And what about semiaffine representations? Since idempotent quasi-
semiaffine algebras over commutative semirings are also Szendrei modes,
we obtain “quasi-semiaffine over c.s. < quasi-semilinear over c.s.” for
idempotent algebras. However, according to Jezek and Kepka [4], there is
a (non-idempotent) algebra which is quasi-semiaffine over c.s. but not
quasi-semilinear over c.s.

What about subreducts of modules? We don’t know any general results
about quasi-linear algebras, but there are several papers on quasi-affine
algebras. Indeed, they are abelian, in the sense of commutator theory [1].
Not all abelian algebras are quasi-affine, though this is true under various
additional assumptions, such as congruence modularity [2]. R. Quacken-
bush [13] proved that quasi-affine algebras form a quasivariety, ax-
iomatized by a scheme of quasiidentities that could be considered as a
“more restrictive abelianess”. For more information, see the survey paper
[17]. We don’t know whether quasi-affine algebras without constants are
quasi-linear.

Finally, let’s look at representations over commutative rings. Parti-
cularly, which modes are embeddable into modules over commutative
rings? Chapter 7 of the book [10] is devoted to this problem. For instance,
cancellative modes are quasi-linear, and [15] contains a non-idempotent
generalization of this statement. However, no characterization is known.
Quasi-linear and quasi-affine algebras are abelian. It is not difficult to
prove that abelian modes satisfy Szendrei identities. Is it true that all
abelian modes are quasi-linear (or quasi-affine) over commutative rings?

Acknowledgments. The author is indebted to Anna Romanowska and
Michal Stronkowski from the Warsaw University of Technology for in-
troducing me to the theory of modes, many helpful advices and also for
their hospitality during my visits in Warsaw, confinanced by the GACR
grant #201/05/0002 and by the INTAS grant #03-51-4110. I am also
grateful to the referee for a thorough reading of the paper and pointing out
several weak places.

REFERENCES

[1] R. FrREESE - R. McKENZzIE, Commutator theory for congruence modular
varieties, London Mathematical Society Lecture Note Series, 125 (Cambridge
University Press, 1987).

[2] C. HERRMANN, Affine algebras in congruence modular varieties, Acta. Sci.
Math., 41 (1979), pp. 119-125.



Idempotent Subreducts of Semimodules over Commutative Semirings 43

[38] J. JEZEK, Terms and semiterms, Comment. Math. Univ. Carolinae, 20 (1979),
pp. 447-460. .

[4] J. JEZEK - T. KEPKA, Medial groupoids, Rozpravy CSAV 93/2, 1983.

[5] J. JEZEK - T. KEPKA, Linear equational theories and semimodule representa-
tions, Int. J. Algebra Comput., 8 (1998), pp. 599-615.

[6] K. KEARNES, Semilattice modes I: the associated semiring, Algebra Uni-
versalis, 34, 2 (1995), pp. 220-272.

[7] A. KRAVCHENKO - A. PILITOWSKA - A. ROMANOWSKA - D. STANOVSKY, Differ-
ential modes, Internat. J. Algebra Comput., 18, 3 (2008), pp. 567—588.

[8] R. McCKENZIE - G. McNuLty - W. TAYLOR, Algebras, Lattices, Varieties,
Volume I. Wadsworth & Brooks/Cole, 1987.

[9] A. RoMANOWSKA, Semi-affine modes and modals, Scientiae Mathematicae
Japonicae, 61 (2005), pp. 159-194.

[10] A. RomanowskA - JDH SmitH, Modes. World Scientific, 2002.

[11] A. ROMANOWSKA - A. ZAMOJSKA-DZIENIO, Embedding semilattice sums of
cancellative modes into semimodules, Contributions to General Algebra, 13
(2001), pp. 295-303.

[12] A. ROMANOWSKA - A. ZAMOJSKA-DZIENIO, E'mbedding sums of cancellative
modes into semimodules, Czech. Math. J., 55, 4 (2005), pp. 975-991.

[13] R. QUACKENBUSH, Quasi-affine algebras, Algebra Universalis, 20 (1985), pp.
318-327.

[14] M. STRONKOWSKI, On free modes, Comment. Math. Univ. Carolinae, 47, 4
(2006), pp. 561-568.

[15] M. STRONKOWSKI, On embeddings of entropic algebras, PhD Thesis, Warsaw
University of Technology, 2006.

[16] A.SzENDREIL, Identities satisfied by convex linear forms, Algebra Universalis,
12 (1981), pp. 103-122.

[17] A. SzENDREIL, Modules in general algebra, in: Contributions to General
Algebra, 10 (Proc. Klagenfurt Conf., 1997), Verlag Johannes Heyn, Klagen-
furt, 1998; pp. 41-53.

[18] A. ZamoJSKA-DZIENIO, Medial modes and rectangular algebras, Comment.
Math. Univ. Carolinae, 47, 1 (2006), pp. 21-34.

Manoscritto pervenuto in redazione il 18 maggio 2007.






