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Zero-dimensional Gorenstein Algebras with the Action of
the Symmetric Group

HIDEAKI MORITA(*) - AKIHITO WACHI(**) - JUNZO WATANABE (¥**)

1. Introduction.

Suppose that A is a Gorenstein K-algebra with a strong Lefschetz
element [ € A. Put L = xI € End(A). Then it is possible to construct a
degree —1 map D € End(A) such that {L,D,H} is an 3$l(2)-triple,
H = [L, D], and the weight space decomposition coincides with the natural
grading decomposition. This means that the eigenspaces of H are precisely
the homogeneous parts of A. Suppose moreover that the symmetric group
Sk acts on A as permutation of the variables and that the invariant linear
form [ = x; + a2 + - - - + 2, is a strong Lefschetz element. Then, as is ob-
vious, the vector space Ker L is fixed, hence the spaces Ker L N A; are fixed
by the action of S;. Thus in such a case an irreducible decomposition of A
can be constructed by first decomposing the kernel of the multiplication
map

(1) x@+---+ap)A—-A

into irreducible spaces and then applying the map D repeatedly to the
constituents of the decomposition of Ker L. (Or equivalently, first decom-
pose Ker D and then apply L.)

An obvious example of an Artinian Gorenstein algebra in which
l=ua1 4+ -+ ) is a strong Lefschetz element is the equi-degree mono-
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mial complete intersection
A, k) = Klay, -, a1/}, - -+ ).
It is possible to identify A(n, k) with the tensor space
( Kn)®k

as (GL(n) x Si)-modules. The purpose of this paper is to understand the
strong Lefschetz property of A(n, k) with [ a strong Lefschetz element in
the context of the Schur-Weyl duality.

Let Y7 be the Young symmetrizer in K[S;] corresponding to a Young
tableau T. One might ask first what is the Hilbert series of

Sk YA, k),

the maximal isotypic submodule of A(n, k) corresponding to the shape of 7.
It turns out that it equals the g-analog of the Weyl dimension formula.
Since it does not seem to be well known and since we have been unable to
find a good reference, we give a proof for it in section 6. This is stated in
Proposition 27.

Proposition 27 is not a consequence of the strong Lefschetz property of
A(n, k), but Corollary 36, which states that the g-analog of the Weyl di-
mension formula is unimodal and symmetric, may be thought of as a
consequence of the fact [ is a strong Lefschetz element.

Terasoma-Yamada [8] considered the coinvariant algebra of S,

2) A =Klwxy, -, a]/(e1, -, ep),

where e; is the elementary symmetric polynomial of degree i. Note that
this is also a Gorenstein algebra with the action of Si. They remark that the
Hilbert series of S - Y7(A) is obtained as the g-analog of the hook-length
formula. Thus our situation is similar to theirs, but it is not true that the
Hilbert series of Sj - Y7(A) is unimodal and symmetric. The algebra A
above has the strong Lefschetz property, but no symmetric linear form is a
strong Lefschetz element, which causes the difference.
In section 7, we consider the irreducible representation

p* : GL(n) — GL(W*)

of the general linear group GL(n) on a finite dimensional vector space W*
and show how the Jordan matrix with a single eigenvalue a,

J(a,n) € GL(n)
is transformed by p”. This is done again by identifying the Artinian algebra
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A(n, k) with the tensor space (K")WC as (GL(n) x Sj)-modules so that the
Schur-Weyl duality applies to A(n, k). Here the consideration of the be-
havior of / as a multiplication operator is indispensable. The two extremal
cases of A(n, k) treated in Sections 3 and 4 should be regarded as examples
which show that our method is a new way to understand some classical
results.

One other result of this paper is Theorem 22 in Section 5. We apply
Theorem 19 to determine the minimal number of generators of the ideal

@3, @) @y + - + @)

in the polynomial ring. By analyzing Specht polynomials involving only
square-free monomials, it is possible to determine a minimal generating
set of the ideal.

The authors thank the referee very much for helpful comments and
suggestions.

2. Preliminaries.

2.1 — A list of notational conventions.

Here is a list of notation which we are going to fix throughout the paper.
Details follow the list.

e K denotes an algebraically closed field of characteristic 0.

o A= (ki ke, -, k) k indicates that 1 is a partition of a positive in-
teger k. The same notation is used to indicate a Young diagram of size k. It
is assumed that k; > ke > --- >k, > 0. The length 7 of 1 is denoted by I(7).

e IfJ € End(V) is nilpotent, we call the partition A(J) = (ky, - - -, k) the
conjugacy class of J, indicating the sizes of Jordan blocks in the Jordan
decomposition of J.

e A Young tableau T is a Young diagram A with a numbering of boxes
with integers 1,2, ---, k. In this case / is the shape of 7.

o Y7 denotes the Young symmetrizer defined by the Young tableau 7.
It is an element of the group algebra K[S;].

e Suppose that 7 is a Young tableau and / is the shape of 7. If V is an
Si-module, then Y*(V) denotes Sy, - Y7 (V). Thus Y*(V) is the maximal
submodule of V consisting of modules isomorphic to the Specht module V*.
We may regard Y*() as a functor to extract the isotypic component be-
longing to /.

e Ar denotes the Specht polynomial defined by a Young tableau 7'.
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2.2 — The equi-degree monomial complete intersection as a tensor space.

Let R = K[x1, - -, ;] be the polynomial ring. The partial degree of a
homogeneous polynomial f € R is the maximum degree of f with respect to
a single variable. By A(n, k) we denote the vector subspace of R consisting
of polynomials of partial degree at most » —1. Let I be the ideal
I = (xi,---,x}) of R. Then as vector spaces we have the decomposition

R=Ank)al.

The vector space A(n, k) may be regarded as the tensor space (K”)Q@k. Since
A(n, k) = R/I the vector space A(n, k) has the structure of a commutative
ring. Put A = A(n, k). A basis of A can be the set of monomials of partial
degree at most (n — 1):
(ol af 0 < iy, i <m— 1)
An element of A is expressed uniquely as
Y Finiz, - ipalay -

With the identification A = (K")** the general linear group GL(n) acts

on the vector space A as the tensor representation. Let

(3) &:GL(n) — GL(A)
be the representation. Explicitly, if g = (g,4) € GL(n) then

. ) n—1 n—1
(4) D)) - alf) = (wai‘) (mez)-
=0 =0

Here the indices o, § of the matrix entries for g = (g,4) € GL(n) range over
0,1,---,n — 1. At the same time the symmetric group S;. acts on A as the
permutation of the variables.

We are interested in the decomposition of A into irreducible S;-mod-
ules. According to the Schur-Weyl duality it will give us an irreducible
decomposition of A as (GL(n) x Sj)-modules.

2.3 — Young tableaux and Specht polynomials.

A partition of a positive integer k is a way to express k as a sum of
positive integers. If we say that 1 = (ky, - - -, k,) is a partition of &, it means
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that k =Fk1+---+ k. and ky > --- > k, > 0. A partition of & is identified
with a Young diagram of size k in a well known manner. Thus the same

notation 2 = (ky, - - -, k,) denotes a Young diagram of size } k; with rows of
k; boxes, i =1,---,r, aligned left. A Young tableau T is a Young diagram A
whose boxes are numbered with integers 1, - - -, k in any order. In this case

we say that 1 is the shape of T'. A Young tableau is standard if every row
and column is numbered increasingly.

A Young tableau T defines a Specht polynomial, denoted 47, as follows:
Put7={1,2,--- k} and

I; = {o € I|a is in the jth column of T'}.

Define
4; = H (@0, — wp),
k]
and finally,
(5) Ar =] 4.
J

where j runs over all columns. 47 is the Specht polynomial defined by the
Young tableau 7'

2.4 — Nilpotent matrices and Jordan bases.

Let M(k) denote the set of k x k matrices with entries in K. Let
J € M(k) be a nilpotent matrix. Let

v; = rankJ' — rank J"! for i = 0,1,-- -, p,

where p is the least integer such that J?+! = O. Then Ji= (v, v1,-+,vp)is
a partition of k. We denote the dual partition of A by A(J). (cf. Definition 1
below.)

Now suppose that T is a Young tableau of size k. Using the numbering
of T' define the matrix J = (a;;) € M(k) by
(©) 1 if j is next to and on the right of ¢ in 7',

Y10 otherwise.

It is easy to see that the matrix J is nilpotent and A(J) is the shape of T.
We call any matrix defined as above for a Young tableau T a Jordan ca-
nonical form (of a nilpotent matrix).
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Let V be a vector space of dimension k. If a basis of V is fixed,
we may identify M(k) and End(V). Suppose that J € End(V) is nil-
potent. A Jordan basis for J is a basis of V on which J is in a
Jordan canonical form. (According to the definition of a Jordan basis
just defined above, any permutation of basis elements of a Jordan
basis is a Jordan basis.) Since K is algebraically closed, there exists
a Jordan basis. Note that if two nilpotent elements J and J' are
conjugate, then A(J) = A(J"). We make a definition of the “conjugacy
class” of a nilpotent endomorphism, with a slight abuse of language,
as follows.

DEFINITION 1. Let V be a k-dimensional vector space over K. Suppose
that J € End(V) is nilpotent. We say that a partition (ky, - - -, k,) of k is the
conjugacy class of J if the Jordan canonical form of J consists of the Jordan
blocks of sizes k1, - - -, k,. We denote by A(J) the conjugacy class of J.

REMARK 2. Note that the notation A(J) coincides with the previously
defined A(J) for a nilpotent matrix. In fact, if we put v; = dim Im J {/ITm JH,
then the sequence 1 = (vo, v1,- -+, vp)is a partition of k. One sees easily that
the dual partition / to 4 is the conjugacy class of J.

Let J € End(V) be nilpotent with the conjugacy class 4 = A(J). Suppose
that B C V is a Jordan basis for J. Then it is possible to place the elements
of B into the boxes of the Young diagram A(J) bijectively in such a way that
it satisfies the following conditions:

0 ¢, € B and ¢ =Je < ¢ is next to and on the right of e.
e € KerJ < e is at the end of a row.

(cf. Equation (6).)

REMARK 3. As explained above, by choosing a bijection between
the elements of a Jordan basis for J and the boxes of the Young
diagram A(J), it is possible to identify a Jordan basis B for J and the
Young diagram A(J). With this identification the rightmost boxes of
AJ) form a basis for KerJ. Also the boxes of the first column of A(J)
coincide with {b € B|b ¢ ImJ}. Once A(J) is known, KerJNB de-
termines B. Similarly the diagram A(J) and the subset B\ ImJ C B
determine B.
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2.5 — The strong Lefschetz property.

4
Let V = @ V; be a finite dimensional graded vector space. The Hilbert

series of V isljc%e map ¢ +— dim V;, which we usually write as the polynomial
> (dim Vi)q'. (For convention we let dimV; =0 for i < 0 or i > ¢.) Let
J € End(V) be a map of degree one so J consists of the graded pieces
J |u- : Vi — Vii1. Then J is nilpotent. We say that J € End(V) is a strong
Lefschetz element if the restricted map

Je 21| '—>Vc ;

is bijective for all ¢ = 0,1, - - -,[c/2]. (Such an endomorphism exists only if
the Hilbert series of V is symmetric and unimodal.)

DEFINITION 4. Let A = @ A; be an Artinian graded K-algebra. De-

note by x : A — End(A) thelrggular representation of A. (I.e., xa(b) = ab
for a,b € A.) We say that A has the strong Lefschetz property, if there
exists a linear form [ € A such that x[ € End(4) is a strong Lefschetz
element. We call such a linear form [ € A a strong Lefschetz element of A
as well as x! € End(4).

ProposiTION 5. Supposethat A = @ A; 15 a graded Artinian K-algebra

with a symmetric Hilbert series hlq Let L be a linear form of A. Then x1
18 a strong Lefschetz element if and only if A( x 1) is the dual partition to
(ho, Yy, -+ -, h,), which is a permutation of (ho,h1,-- -, he) put in the de-
creasing order.

Proor. See [3] Proposition 18. O
ProposiTioNn 6. With the same motation as above, suppose that
J € End(A) is a strong Lefschetz element. Then any homogeneous basis of

KerJ can be extended uniquely to a homogeneous Jordan basis for J.

Proor. Let > h;q' be the Hilbert series of A. Since J is a strong
Lefschetz element, we have

. 0 if hz S hi+17
(8) dim (KerJ NA;) = ]
hi —hiq if by > hiq.
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Let s be the greatest integer such that 2;_; < ks and let
m; ZI’LZ‘ —hi,l, for ¢ = 0,1,2,---,8.
Since h; = h,_; for 0 <1 < ¢, we may rewrite the equation (8) as

m; fort=0,1,2,---,s,

dim (KerJ NA,_;) = .
0 otherwise.

Now let B be a homogeneous basis of KerJ given arbitrarily. We have to
find a basis of A containing B on which J is in the Jordan eanonical form. Put
B._,=BnA.;fori=0,1,---,s.Then B,_; is abasis of KerJ N A._;. Since
the restricted map J°~2: A; — A,_; is bijective, there is a finite set B; C A;
such that #B; = m; and such that J°2(B;) = B,_;. It is easy to show that
the set

Bi=| {FB)|j=0,1,2, c—2i}
i=0
is linearly independent and hence is a basis of A. It is easy to see that Bisa
desired basis. The uniqueness is obvious since the choice of the finite set B;
is unique for+=0,1,---,s. O

The following result is proved in [9] and plays an important role in this
paper.

THEOREM 7. Let A = A(n, k) be the same as defined in Section 1. Then A
has the strong Lefschetz property and x1 + x2 + - - - + ay, s a strong Lef-
schetz element of A.

3. A(n,2), the two fold tensor of K".

If k=2, then the Gorenstein algebra A = K[x,---,x.]/@f, -, o}
takes the form
A = Klay, 22/ (), x3).

Write a,y for x;,x2. Recall that we identify A = A(n,2) as a vector
subspace of R = K[x,y] and R = A @ (", y"). Denote by x:A — End(A4)
the regular representation of the Artinian algebra A. Put J = x(x + y).
Since J is a strong Lefschetz element, we may use Proposition 6 to
construct a Jordan basis for J. First we would like to construct a
homogeneous basis for Ker.J.
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The Hilbert series of A is the following sequence.

degree o(1(2|---|n—-2|n-1 n | 2n—3 |2n—2
dim 1(2(3|---|n-1 n n—1]--- 2 1

Since J is a strong Lefschetz element, J: A; — A;; is either injective or
surjective. Hence we have

. 0, ifi<n—1,
dim(KerJ NA4;) = . .
1,ifn-1<7<2n-2
Since dim(KerJ NA;) is at most one, a homogeneous basis of Ker./
is uniquely determined up to constant multiple. For d=n —1,
nw,n+1,--- 2n—2, put

d
by = Z( — 172y’ and by = bgmod (", y").
=0
Then since bg(x + y) = x% + y?*1, we have by € KerJ ford > n — 1. Thus
we have

9) KerJ NAg = (bg) for d=n—1,m,---,2n—2.

Because J is a strong Lefschetz element, there is an element a; € A; for
each i <mn — 1 such that J2"2-2i(q;) = by,_» ;. Note that Ji(a;) are all
symmetric if 7 is even and are alternating if 7 is odd. Now we have proved
the following.

THEOREM 8. The set

n—1 )

| [ {F@]j=0,1,2,-- 20 -2 2i}

=0
is a homogeneous Jordan basis for J € End(A). The basis element J/(a;) is
symmetric if i 1s even and alternating ifi is odd. The conjugacy class of J is
given by

MH)=2@Cn—-1,2n-3,---,3,1).

Proor. The first part was treated more generally in Proposition 6. The
second part follows immediately from the definition of b, s_; and a;. The
third statement follows from Proposition 5. |
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Now we consider the representation
@: GL(n) — GL(A)

as introduced in Section 2.2. (For the definition of @ see (3) and (4).)

Recall that the special linear group SL(2) has a unique irreducible
module of dimension ¢ for each ¢ > 0. We denote it by V(z — 1). Fixn > 0
and let

(10) ¥ SL(2) — GL(n)

be the irreducible representation corresponding to the module V(n — 1).
We may consider A = A(n,2) as an SL(2)-module via the composition

(11) SL©@) L GL1) L GLA).

PROPOSITION 9. With the same notation above A decomposes into SL(2)-
modules as

Ax2V@2n-2)eV(E2rn—-4) & --- & V(0).

ProOOF. Abbreviate p=®o¥, so p:SL2) — GL(A). The group
homomorphism p induces a Lie algebra homomorphism

dp: 3(2) — gl(A).

It is well known that the irreducible decomposition of p is determined by
that of dp. Now recall that the Lie algebra 3((2) is the vector space spanned
by three elements e, f, h with the bracket relations

le.f1=h,[h, el =2e,[h,f]1=—2f.

It is easy to see that to decompose A into irreducible 3((2)-modules is to
decompose dp(e) into Jordan blocks (cf. [9]). Notice that d¥(e) is nilpotent
and may be considered as a single Jordan block by conjugation since ¥ is
irreducible. Consequently dp(e) € gl(A) may be considered as the multi-
plication map X (x + ) by definition of p and dp. Hence the assertion follows
from Theorem 8. O

REMARK 10. The isomorphism in Proposition 9 is known as the Clebsch-
Gordan decomposition of the tensor product V(n — 1) @ V(n — 1) as 3[(2)-
modules. We may also regard it as a consequence of Pieri’s formula as
follows. Let p, denote the irreducible representation of GL(n) corre-
sponding to a Young diagram /. with (1) < n. Pieri’s formula (e.g. [6, I
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(5.16)]) applied to the character proves that
Pu® Py = @ Pis

where the sum is taken over all partitions A such that A/u is a horizontal -
strip. When n = 2 and ¢ = (v) and all p, are restricted to SL(2), it gives us
the decompostion of Proposition 9 with r replacing n — 1.

With the same notation as above let W=V(#n —-1)®@ V(n —1). Let
W =W @ W, be the decomposition of W into the symmetric and alter-
nating tensors respectively. (It is well known that the spaces W and W,
are irreducible GL(n)-modules, which we take for granted.) Via the re-
presentation (10) the spaces W and W, are also SL(2)-modules. The fol-
lowing proposition shows how W; and W, decompose into irreducible
SL(2)-modules.

ProrosITION 11. If n is even, then

W2 Vi@n-2)eV@2rn-6)d--- @ V(@),
n/2

and

We2V2rn-49)aVi@2rn-8 ¢ ---a V().
n/2

If n is odd, then

We=V@2n—-2aV2n—6)&--- @ V(0),
(n+1)/2

and

Wo2VE2n—-4)oV@2en -8 ®---dV(@).
(n—1)/2

Proor. Identify W = A(n,2). Then W is the space spanned by the
symmetric polynomials in A and W,, the alternating polynomials. Hence the
assertion follows immediately from Theorem 8 and Proposition 9. O

REMARK 12. Let p = @ o ¥ be the composite

SL©@) % GLm) L GLW)
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as defined in (11). Let p = p, @ p, be the decomposition corresponding to
W =W, ®W,. Let h = diag(¢~',¢q) € SL(2). The plethysm formula (e.g.
[6, (I.8) Example 9)]) can be used to obtain the diagonal form for the ma-
trices p,(h) and p, (k) and the Jordan decomposition for

of( )+

As is conceived, it gives us the same decomposition as Proposition 11. In
particular, it provides us with another proof for the fact that x +y is a
strong Lefschetz element in the Artinian algebra R/(x", y").

4. A2,k), the k-fold tensor of K2.

Throughout this section we fix A = A2, k). So A is the subspace of the
polynomial ring K[ux;,---,xx] spanned by square-free monomials. At the
same time A is endowed with the algebra structure with the identification:

A=Klxy, - ,ack]/(oc%, e ,xi).

We put L = x(x; + 22 + - - - + a,) and

o0
T Oy oy,

We think of L and D as operating on the polynomial ring R =
= K[y, -, a;). Recall that R = A & I, where I = (2%, --,a%). We denote
by D|, the restricted map D on A. Similarly by L|, we denote the map
R/I — R/I induced by L. Thus L|4,D|, € End(4). Let H be the com-
mutator H = [L|,,D|,]. So H € End(A).

PrOPOSITION 13. (a) (L|,,D|,, H) is an s[2)-triple.
(b) There exists a Jordan basis B for L|, such that B\ Im(L|,) is a
basis of Ker (D| ).

00 10
(i [, J 1), where[J,J ] = (1

1
Proor. (a) Let J, = (O ),J _= (O 0). Then the three elements

0
the case k = 1. Let E; be the 2 x 2 identity matrix. Then one sees that,
using square free monomials as a basis of A, the map L/, is represented by

_01) ,is an 3((2)-triple. This proves
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the matrix

k
ZE2®~~®EQ®J+®E2®~--®E2
— ~— ————
=1 i1 Je—i
and similarly D|, by
k
E:® QEQJ_QE®---®@KEs.
— —
= i-1 k—i

1=1

We induct on k to show that the three matrices L|,,D|,, and
H:=[L|4,D| ] satisfy the required relations [H,L|,]=2L|,, and
[H,D|,]=-2D|,.

(b) See Humphreys ([4] pp. 31-34). O

The following theorem enables us to construct a Jordan basis for L|,.

THEOREM 14. Fori=0,1,2,--- [k/2], the vector space (Ker D) N A; is
spanned by the Specht polynomial of degree i. The Specht polynomials
arising from the standard Young tableaux form a basis of (Ker D) N A.

Proof of Theorem 14 is postponed to the end of Proposition 18.
LEmMA 15. Ker D = K[{x; — xj|1 < 14,5 < k}].

Proor. Recall that R = K[x1,---,2;] and KerD = {f € R|Df = 0}.
Since Ker D is a subalgebra of R, we have
KerD D K[{x; — xj|]1 <,j < k}].

The right hand side is isomorphic to the polynomial ring in (¢ — 1) variables.
Noticing that D is surjective of degree —1, it is easily verified that they
coincide by comparing the Hilbert series. O

LEMMA 16. PutV = (KerD) N A. Then

il ())

where V; =V NA,.
Proor. First note that the Hilbert series of A is given by > (f) q.
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The graded vector space A has the strong Lefschetz property with L|, a
strong Lefschetz element. By Proposition 13, the maps D|, and L|, are
alike except that D|, is a degree —1 map. Thus D|,:A4; — A;_; is either
injective or surjective. Thus the assertion follows. O

LEMMA 17. Let T be a Young tableaw with the shape 1. Suppose that A
has size k. Let Ap be the Specht polynomaal defined by T.

1) 47 =1 < A has one row.

(2) Ar € A and Ay # 1< 1 has two rows.

(3) Suppose that Ay € A. Then the degree of Ay is equal to the sec-
ond term of A

@) dr e Ker[D|, :A—AINA; if 1=k —1,9).

Proor. (1), (2) and (3) are immediate from the definition of Ay. (4)
follows from Lemma 15. O
We need one more proposition to prove Theorem 14.

PRrROPOSITION 18. Suppose that A = (k — 1,1) is a Young diagram.

(@) The number of standard Young tableaux of shape A 1is

(6)- (5

(b) The set of Specht polynomials defined by the standard Young
tableaux of a fixed shape A is linearly independent.

ProoF. (a) Suppose that T'is a standard Young tableau. If the box k is
removed from 7' it is a Standard Young tableau of size k¥ — 1. Thus the in-
duction works. (Details are left to the reader.) (b) Suppose that T is stan-
dard. Then one notices easily that the head term of 47 in the reverse lex-
icographic monomial order is the product of monomials in the second row.
Thus the proof is complete. O

ProOOF OF THEOREM 14. Immediate by Lemmas 15, 16, 17 and Propo-
sition 18. O

Now our main theorem of this section is stated as follows.

THEOREM 19. LetJ = L|, and V; = (Ker D|,) N Aq. Put h = [k/2], and

k k .
m; = (z) — (i1>fom—0,1,...7h.
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(1) The conjugacy class A(J) of J is given by

(k+1,--- k+1,k-1,---  k—1,k-3,---,k—3,---,1,---,1), if k is even,
——

my my ma my,

)=

(k+1,---.,k+1,k71,---7k71,k73,---7k73,---,w), if k is odd.
2) For0<d<h, and 0 <1 <k — 2d, the vector space
J' (Vo)
18 am 1rreducible Si-module of isomorphism type /. = (k — d, d).
(3) For any Specht polynomial Ay € Vy, the vector space
(dp,J(Ar), J*(Ap) - -, T2 (Ar))
18 am wrreducible GL(2)-module of isomorphism type 2 = (k — d, d).

(4) An irreducible decomposition of A as Si-modules is given by
ho (k-2d
A= <@ Jl(Vd)> :
d=0 \ i=0

In particular the irreducible Si-module of type . = (k — d, d) occurs
(k + 1 — 2d) times, and the irreducible GL(2)-module of type (k — d, d)
occurs mgy times.

Proor. (1) See Proposition 5. (2) In Lemma 17 and Proposition 18 we
showed that the space V; is spanned by the Specht polynomials defined by
the standard Young tableau of shape (k — d, d). It is well known that this is
irreducible. (Cf. [8].) Also li(Vy) is isomorphic to V; unless it is trivial be-
cause ¥y + - - - + ay, is Sp-invariant. (3) Let p be the composition

SL@) L L) L 6L,

where ¥ is the natural injection and @ is the tensor representation. To
decompose A into irreducible GL(2)-modules is the same as to decompose it
as SL(2)-modules. This is obtained by decomposing the Lie algebra re-
presentation:

dp : 3[2) — gl(A).

Now the assertion follows from Lemma 13. (4) Clear from (1), (2) and (3).
O
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ExamPLE 20. Let k =4. Let | = x(x1 + %2 + 23 + x4) € End(A(2, 4)).
We exhibit the Jordan basis of x/. The Hilbert series of Ais (1, 4, 6, 4, 1).
The derived sequence is (1, 3, 2).

1. The Specht polynomial of degree 0 is 1.

2. The Specht polynomials of degree 1 (corresponding to the
standard Young tableau with shape 1=(3,1)) are
a:=2x1 —%2,b:=x1 —a3 and ¢ := x1 — x4.

3. The Specht polynomials of degree 2 (corresponding to the
standard Young tableau with shape 1=(2,2)) are
f = (1 — x2)(a3 — x4) and g := (w1 — @3)(ow2 — 24).

The bases for the irreducible decomposition of A = A(2,4) as GL(2)-
modules are:

Lo(1,0, 2,8,
3. (a,la,l?a) and (b, b, ?b) and (c,lc, ?c)
3. (f)and (g)

We have 2 =5 x1+3x3+41x2. When I is expanded, all terms
which contain a square of a variable should be regarded zero. With this
convention [’ is equal to the ith elementary symmetric polynomial multi-
plied by z!.

5. Application to the theory of Gorenstein rings.

Put A=R/@5, - ,2f) and l=wx +a2+ - +x, € A. Using the
notation of Proposition 13, we have x[ = L|,. Since we have obtained a
Jordan basis for D|,:A — A, it gives us a basis for 0:/ as well as for
Ker[D:A — A]. (cf. Proposition 13.) However, it does not necessarily a
minimal ideal basis for 0:{. In this section we would like to exhibit a
minimal basis of the ideal 0: [. Denote by ( )*: A — A the “Hodge dual” of A.
Namely, define

M =@y an)/M

for a monomial M € A. By linearity this is extended to define the dual map
A — A. The following lemma is easy to see, and proof is omitted.

LEmMA 21. Let A = (r, s) be a Young diagram, with r + s = k, and let A
be a Specht polynomial of shape A Then for any integeri, 1 <1 <k,
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a . . .
@ 87A 1s either 0 or a Specht polynomial of shape (r +1,s — 1).
i
0 * .
@) %F =u;(F™) for any F € A.

1

3) ((ai%+---+a%€>F) = @1+ +ap)F) for any F € A.

In the next theorem Ay denotes the Specht polynomial defined by the
Young tableau of some shape /.
THEOREM 22. In the polynomial ring R, put
I=@f, o) (@ + - +ay).

Then the minimal number of generators of the ideal I is

’”@ B <hil>

Here h is such that h = k/2 or h = (k + 1)/2 according as k is even or odd.
If k is even, then

I =5, o)+ {45] shape (T) = (b, h)}R,
and if k is odd,
=2, %) + {45 shape (T) = (h,h — D}R.
Uf k is even, it is the same if x is dropped.)
Proor. It is enough to prove the second part. Put V =

= Ker[D:A — A], and let V; be the homogeneous part of degree ¢ so that
we have the decomposition V' = € V;. First notice that

9

(12) .

0
Vit -Vi=Viy
8xk

by Lemma 21 (1). This is equivalent to
(13) Vit +uVi=Vi,

by Lemma 21 (2). We have already proved that the vector space V is
spanned by the Specht polynomials. Hence by Lemma 21 (3), we have that
0 : lis spanned by 4} for various T'. The above equality (13) shows that 0 :
is, as an ideal, generated by V. O
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COROLLARY 23. Let A = K[wy, -, a1/ (%, - -, &2), and let L be the linear
element | = x1 + - - - + x;, of A. Then the minimal number of generators of

the ideal (0 : 1) is
k 3 k
h h+1)

Here h 1s as in Theorem 22.
Proor. Immediate by Theorem 22. O

THEOREM 24. As before let A = R/(«3,- -+, a2), and let y € A be a gen-
eral linear form of A. Then the Macaulay type of A/(y) is the hth Catalan

number %H (2}? ) Here h is as in Theorem 22. Equivalently if we put

I=(3%, - a2 Y) whereY is a general linear form of the polynomial ring
and if we write a minimal free resolution of R/I as

0O—-Fy—Fy1—--—>F—>R—>R/I—0,
1 /2h
then we have rank F), :h—+1 ( h)'

Proor. The Macaulay type of A/(y) is equal to the minimal number of
generators of 0: . It is well known that this is also equal to the last rank of
the minimal free resolution of 0: y. Now it suffices to notice that

(Z) - (hf—l) :h%l(zf)

where k = k/2 or (k4 1)/2 as in Theorem 22. O

6. The Hilbert series of the ring of invariants of A(n, k).

In this section we let A = K[y, ---,2]/(x}, - - -, x}}) where n and k are
arbitrary positive integers. Let G :=S; act on A by permutation of the
variables. In the next theorem we would like to exhibit the ring of in-
variants A® and the Hilbert series of A%,

THEOREM 25.

AG - K[eh e 76k]/(pnvpn+17 e 7pn+k71)~
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Here eg 1s the elementary symmetric polynomial of degree d and pg is the
power sum pg = a§ + - - - + al. Hence the Hilbert series of AC is:

(1 _ q")(l _ qn+1) . (1 _ qn+k—1)
A-ghHd —¢»---(1—gb

Proor. Consider the exact sequence

0— (@, --,2p) > R—A—0.

hAG (q) =

Since ch K = 0, we have the exact sequence
0— @, 2% - R - A% - 0.

Note that RG = Kley,---,e;). The socle degree of A is nk —k, and
Apee = ((e)" ). Since e/~ ! is fixed under the action of G, this shows that
the maximum degree of elements of A% is nk — k.

Put A’ = R%/(py, Pus1, -+ Prsk_1). Obviously we have a natural sur-
jection:
(14) A — A% -0

which we would like to prove to be an isomorphism. First note that the
rational series in the statement of this theorem is the Hilbert series of A’.
(This can be obtained using the fact R® = Kley, es, - - - , e;].) This shows that
A’ and AC have the same socle degree, which is equal to nk — k. Since A’ is
an Artinian Gorenstein ring, the one dimensional vector space of the
maximum degree is the unique minimal ideal of the ring A’. This shows
that the map (14) cannot have a non-trivial kernel. This completes the
proof. |

REMARK 26. 1. Since

(1 _ qn)(l _ qn+1) . (1 _ qn+k71) _ (n +k— 1)

lim 1

-1 1-gh1—-¢» -1 -g"

n+k—1

k
irreducible GL(n)-module corresponding to the trivial A, which is the
symmetric tensor space.

we have dim A% = hae(1) = ( ) This is expected since AC is the

2. One may conceive that the Hilbert series of Y*(A) where Y* is a
Young symmetrizer corresponding to A = (ky,---,k.) F k should be ob-
tained as a g-analog of the dimension formula of the irreducible GL(n)-
module in the decomposition of (K")**. This can be proved using the g¢-
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dimension formula ([5] Proposition 10.10). We indicate an outline of proof
in the next proposition.

Recall that we have the isomorphism A(n, k) = (K”)ng as vector spaces.
The symmetric group Sy, acts on A(n, k) as permutations of variables. Also
the general linear group GL(n) acts on A(n,k) as the tensor repre-
sentation. Recall that Y*(A(n,k)) =S - YT(A(n,k)), where the map
YT :A(n, k) — An, k) is a Young symmetrizer with shape /- k with at
most n parts. It is well known that Y*(A(n,k)) is an irreducible
(GL(n) x S)-module and every irreducible GL(n)-module is obtained as
an irreducible component of Y*(A(n, k)) for some 1. (For details see, e.g.,
[2] pp. 336-339.)

PRrOPOSITION 27. For A = (kq,...,k,) F kwith r < n, the Hilbert series
of the module Y(A(n, k)) as a graded subspace of A(n, k) is
ki — k; +7 —1]
Ry i@ = ¢"% H l[‘/fl]

1<i<j<n

a
g for any positive integer a, and

Here n()) := Z (G — Dkj, [a] denotes 11
k;=0forj > r

Before we give a proof we review the g-dimension formula [5, §10.9,
§10.10] for GL(n). Let W be a finite dimensional irreducible GL(n)-module
with highest weight 4, and W = @ W,, its weight space decomposition. The

g-dimension of W is defined by !
(15) dim,W = ) (dimW,)g" ",

u: weight of W

where (-,-) denotes the standard inner product on R”, and ¢ is “the half
sum of the positive roots” defined by (n — 1,7 —3,...,—n+1)/2 € R".
Note that the exponent (4 — u,d) is the number of the simple roots oc-
curring in A — u, since (o, J) = 1 for any simple root o.

The g-dimension formula [5, Proposition 10.10] says

ki —k;j+7—1l

(16) dim,W =[] 1]

1<i<j<n

)

where W is a finite dimensional irreducible GL(n)-module with highest
weight 4 = (kq, ..., ky).
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Proor oF ProrosITION 27. — Let GL(n) act on the n-dimensional
K-vector space K[x]/(x") through the vector representation with the
basis 1,x,2%,...,2" 1. Then a/~! is a weight vector with weight
e =1(0,...,1,...,0) (only jth entry is 1). Therefore the weight of a
weight vector decreases by a single simple root (like & — ¢&j,1), as its
degree increases by one. This principle holds also for A(n,k), since
A, k) = Klay, ..., 0]/}, ..., a}) is isomorphic to the tensor product
Klx1]/(@}) @k --- @k Klap]/(x) as GL(n)-modules. In particular, the
homogeneous polynomial with the least degree in Y*(A(n,k)) C A(n,k)
is the highest weight vector.

It follows from the principle above and the note after (15) that the
Hilbert series and the g¢-dimension of Y*(A(n,k)) differ only by a
power of g. Notice that the g-dimension dimqY)“(A(n, k)) starts with ¢°
followed by higher terms, while the Hilbert series fy:q,1)(q) starts
with ¢?, where d is the degree of the monomial of the highest weight
vector. Therefore it suffices to show that the degree of a monomial
with weight 1 = (ky,...,k.) &k (r <m) is equal to n(A).

Since the weight of 1is ¢; = (1,0,...,0) in the GL(n)-module K[x]/(x"),
the weight of 1 in A(n, k) ~ (K[ac]/(x"))m is ke = (k,0,...,0). The degree
of a monomial with weight 4 is

(key — 2,0) = ((k — kq, —k2, —ks, ..., —ky),0)
= ke +2ks+---+ (r — Dk,

We thus have proved the assertion. O

7. The multiplicative group of the Artinian algebras.

We need the following proposition from commutative algebra. Very
important to us is the corollary that follows, which says that the generic
form of degree d has the largest rank among all elements of order d. The
proof for the case where M is principal is given in [10, Proposition A in
Appendix]. Since the proof goes verbatim, we omit the proof.

ProprosITION 28. Let (R, m) be an Artinian local ring with residue field
K and M a finite R-module. Let my, - - -, ms be arbitrary elements of m, and
let | =x1mq+xemg +---+axsms with x; € R. Let Xy, --,X; be in-
determinates over R, let Q = R[X7, - - -, X;] be the polynomial ring and let

M=M®erQ/YM @r Q).
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where Y = Xymy + - - - + Xymy. Let U be the set of non-zero-divisors of €
and let a be the ideal (X7 — a1, -+, X5 — 25)Q. Then we have

(17) lengthg, (My) < lengthg (M ©q Q/«).

Furthermore, there exists a radical ideal b C K[ X, ..., X,] such that the
mequality (17) 1s the equality if and only if the ideal (X1 — %1, ..., Xy — )
does not contain b. (x; denotes the image of x; in K.)

COROLLARY 29. Suppose that A = @A zs a standard graded K-alge-
bra, where K is an infinite field. Let M @M be a finite graded A-

module. Let m be the maximal ideal of A. Let d be any positive integer.
Then the minimal value

Min{dim M /yM},

where y ranges over m?, is attained by a homogeneous element y of degree
d. If M has the strong Lefschetz property, and if z € Ay 1s a strong Lefschetz
element for M, then we have

dim M /2¢M = Min{dim M /yM | y € m?},

or equivalently, the rank of the linear map xz% : M — M is greater than or
equal to the rank of xy : M — M for any y € m?.

ProoF. Since m? = @ A; and since m?/m?! ~ A, any represen-
j>d
tative of a K-basis of m?/ m“”1 is a minimal generating set of the ideal m?

and vice versa. Thus the first part is a direct consequence of Proposition 28.
(We apply the proposition by letting m,, - - -, ms be a set of minimal gen-
erating set of m?.) To see the second part suppose that ¥ € m? is any
homogeneous element. The linear map xy : M — M decomposes into the
sum of piece-wise linear maps xy : M; — M; 4. Hence the rank of the
linear map xy : M — M does not exceed
b—d
(18) > Min{dim M;, dim M; 4}

i=a

(Here we have set M, ; = 0 for 7 > 0.) Now if z is a strong Lefschetz ele-
ment and if y = 2%, then the rank of xy : M — M is equal to the integer
given in (18) above. In fact the linear map xz? : M; — M. is either in-
jective or surjective as is easily deduced from the definition. Thus we have
shown that the rank of the linear map xz¢ : M — M is greater than or equal
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to the rank of 4’ : M — M for any %' € m?. This is equivalent to the second
assertion of the corollary. O

Let A = @ A; be an Artinian standard graded K-algebra. We denote

=0
by A* the multiplicative group of A. Obviously it is an Abelian algebraic
group with the underlying algebraic set

{(CL(),(ll,'-~ ,ac) cA= @Ai | a; EAZ',(I() 75 O}
We may regard it as an algebraic subgroup of GL(A).

ExamMpLE 30. Let A = K[x]/(«"). Then f € A* induces an automorph-
ism xf : A — A. If we write

f=a+ae+ax® + -+ ap_2"

then xf is represented by the matrix

p ap az -+ Op—2 QAp-1
a/O a/l e e an72
ao e e a/n73

(%)

This way we regard the group A* as the algebraic subgroup of GL(n). O

Let V be an n-dimensional vector space and let
@ : GL(V) — GL(V®F)

be the tensor representation. Now let V' = K[x]/(x") be as in Example 30
above and let A = A(n, k) = Klxy, - -, 0]/ (2}, - - -, a}}). Define the map

PV A
by
f@) = f(e)f () - - - f o).

Then it is easy to see that @' is a group homomorphism. As described above
we may identify V* as a subgroup of GL(V) and A* a subgroup of GL(V®F),
Note that @' is nothing but the restriction of @. In other words we have the
commutative diagram:
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GL(V) 2 GL(A)
(19) 7 1
where the vertical maps are natural inclusions.
By J(a,n) we denote the n x n matrix

a 1 O
J(a,n) = “

o
0 a

Itis an elementary fact that if a matrix M has a single eigenvalue a, then M

decomposes into a direct sum of such blocks as follows:

J(a,ny)
J(a,ns) 0

0 ; J(a,n,)

This is known as the Jordan canonical form of M. We denote this

matrix by
J(a,n) @ - ®J(@,n).

b
DEFINITION 31. Let V =5V, be a graded K-vector space with the
Hilbert series i=a

b
) = hy(@) = hig',

where we assume that V, # 0 and Vy, # 0. Suppose that h(q) is symmetric
and unimodal. Then the dual Hilbert series of V, or of h(q), is defined to
be the descending sequence of positive integers

UL, U, -+, Us
which satisfy

1 - a —u; a ”
(20) Q) = q (q< +0+1-u)/2 _ q( +b+1+ 7,)/2).
i=1
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REMARK 32. With the same notation as above, the Hilbert series 2(q) of
V gives a partition of the positive integer dimV. In fact dimV =
= hg + hgi1 + - - - + . (If one prefers, the summands may be arranged in
the increasing or decreasing order.) The dual Hilbert series of V is
nothing but the dual partition of the Hilbert series. For example if
h(q) = ¢ + 8¢ + 6¢°% + Tq* 3 4+ 6¢°™* + 3¢°*® 4 ¢**5, then the dual
Hilbert series of V is 7,5,5, 3,3, 3,1, independent of the shift by a.

Now we may state the main theorems of this section.

THEOREM 33. Let @ : GL(n) — GL((K”)M) be the tensor representation
of the general linear group GL(n). Let M = J(a,n). Then a* is the unique
etgenvalue of ®(M) and the Jordan canonical form of ®(M) is given by

J@* u) @ - @ Ik, u,),

where uy,---,u, 1s the dual Hilbert series of the polynomial h(q) =
=A+q+ -+

Proor. Put A =AMn,k)=Klx, -, 2]/}, --,2}). Then, since
a+---+ q7l*1)k is the Hilbert series of A, it suffices to prove that (1) ak is
the unique eigenvalue of @(M) and (2) (M) — a* has the same Jordan
canonical form as that of a strong Lefschetz element of A. (See Proposition
6.) Put V = K[x]/(x"). We have the commutative diagram (19) as shown
above. With the natural embedding V* — GL(n) the element a+x
corresponds to the matrix J(a,n). Thus @'(a + %) = ®(M). Now put
I = &(a + %) — a*. Then we have

l=@+%)- - (a—f—@)—ak =" YT+ + Xy;) + polynomial in #; of degree > 2.

Put! =7 + - + T;. Then we have
1N\ ‘
<Fl/> =0 modm!, §=1,2,---.

Thus by Proposition 28 we have that the rank of ( x /) is equal to the rank of ( x I')
for all 4 > 1. This shows that @'(a — %) — a* and [ have the same Jordan canonical
form. Now the proof is complete. O

THEOREM 34. Let /. - kwith at most n parts and let W be an irreducible
GL(n)-module corresponding to J. Denote by ¢) " GL(n) — GL(W*) the
corresponding irreducible representation of GL(n). Put

An, k) = Klay, -+, o]/, - -+ o).
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Suppose that the sequence
(fla"'afl?.f27'”3.]027”'7.]087'“5.](:9)
—— —— ——

my mz my
is the dual Hilbert series of Y*(A(k,n)). Then the Jordan canonical form of
¢"(J(a,n)) is given by

J f)@-aJd ) aJa f) @ oJd, - I f) @@ J@, f),

my /m my/m ms/m

where m is the number of the standard Young tableaux of shape .

Before proving this theorem, we collect some basic facts in a lemma.

LEMMA 35. Put A = A(n, k) = Klxy, - -, 2 ]/@f, - -, @), Let .+ k and
let T be a standard Young tableaw with shape 1. We identify A with (K™)*k,
Then

(1) Y*A) C A is an irreducible (GL(n) x Si.)-module.

(2) The number of times that the irreducible GL(n)-module W*
occurs in Y*(A) is equal to the dimension of the irreducible Sy-module that
occurs in Y+(A).

(3) Supposethat W C Y*(A) is an irreducible GL(n)-module. Let m
be the dimension of any irreducible Sy-module that occurs in Y*(A). Then
hyia)(Q) = mhw(q).

4) Let l=o1 +---+ . Then l is a strong Lefschetz element for
Y*(A). Hence the endomorphism x1 € End(Y*(A)) decomposes as

J(O)ul) @ tre @ J(O;ur)>
where uy, - - -, u, is the dual Hilbert series of Y*(A).

Proor. (1) and (2) are immediate from the Schur-Weyl duality. Let
W c Y*(A) be an irreducible GL(n)-module and let T4, - -, T, be all the
standard Young tableaux with shape 1. Then we have

Thus (3) follows. We prove (4). Write L for the linear map x! € End(A). Let
D € End(A) be the degree —1 map such that D, L,[D, L] is an 3[(2)-triple.
We note that D is compatible with the action of Sy as well as L. Let Z be any
homogeneous basis for 0 : /. Then the set | D(Z) is the Jordan basis for L,

. >0
and the subset Y#(4) N U Dl(Z)) is a Jordan basis of L|Y/1( A)- This shows
(4). (cf. Proposition 7.) =0 O
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Proor or THEOREM 34. — We use the notation of the lemma above. It is
well known that W# appears as a submodule of (K")*. First recall that the
dimension of an irreducible S;-module in Y*(A) is equal to the number of
the standard Young tableaux of shape 1. To prove the assertion of the
theorem it suffices to show that (1) @'(a + x) restricted on the submodule
Y*(A) has the unique eigenvalue a* and (2) I := @' (a + x) — a* decomposes
into Jordan blocks in the same way as the multiplication x! € End(Y*(A))
decomposes into Jordan blocks. (It should be noticed beforehand that
IY*(A) C Y*(A) and I'W* C W*, which is easy to see.) By (4) of the lemma
above, l = ¥ + - - - + Xy, is a strong Lefschetz element for Y*(A). Hence the
proof is complete. |

COROLLARY 36. The graded vector space Y*(A) has a unimodal sym-
metric Hilbert series for any A+ k.

Proor. The assertion is an immediate consequence of the fact that
I € A is a strong Lefschetz element for Y*(A). (cf. [5, Exercise 10.12].) O
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