A Group of Automorphisms of the Rooted Dyadic Tree and Associated Gelfand Pairs

Daniele D'Angeli (*) - Alfredo Donno (*)

ABSTRACT - In this paper we study the group G of automorphisms of the rooted dyadic tree generated by translation by 1 and multiplication by an odd integer q, showing that G admits a self-similar presentation and it is isomorphic to the Baumslag-Solitar group BS_q . Moreover, we show that the action of G on each level of the tree gives rise to a Gelfand pair.

1. Introduction.

Let T be the infinite binary rooted tree. Denote by L_n the n-th level of T, which consists of 2^n vertices. The root of T can be identified with the group \mathbb{Z} , each vertex, say at level L_n , can be regarded as a coset of $2^n\mathbb{Z}$ in \mathbb{Z} . Finally, the boundary ∂T corresponds to the ring of dyadic integers \mathbb{Z}_2 (for more details see [F]).

Let G be the group of automorphisms of T generated by the translation by 1 and by the multiplication by an odd integer q for each vertex in T. Denote by a and b such automorphisms, respectively. The action of G on T is self-similar: we will directly prove that these automorphisms admit the following form

$$a = (1, a)\varepsilon$$
, $b = (b, ba^h)$,

with q=2h+1, according to the fact that every self-similar group can be embedded in a wreath product. By using the self-similarity, we deduce that G is isomorphic to the Baumslag-Solitar group $BS_q=\langle s,t:t^{-1}st=s^q\rangle$, introduced in [BS]. We mention that self-similar groups are closely con-

E-mail: daniele.dangeli@unige.ch alfredo.donno@unige.ch

^(*) Indirizzo degli A.: Section de Mathématiques, Université de Genève, 2-4, Rue du Lièvre, Case Postale 64, 1211 Genève 4, Suisse.

nected with automata. For example, Bartholdi and Šunik in [BŠ] obtained the same result in the more general context of a family of solvable groups generated by finite automata.

Let G_n be the finite homomorphic image of G acting faithfully on L_n . Also denote by $K_n \leq G_n$ the parabolic subgroup which stabilizes a fixed vertex in L_n . This way, L_n will be identified with the corresponding homogeneous space G_n/K_n . We then prove that (G_n, K_n) is a Gelfand pair for every $n \geq 1$. In particular, we show, by direct computations involving characters, that the decomposition of the corresponding permutation representation into irreducible G-representations is multiplicity-free. Actually the result can also be obtained from the general theory of representations of semidirect products developed in [CST]. Finally, a formula for the relative spherical functions is given.

The idea for this work has been inspired by Professor A. Figà-Talamanca whom we thank for his interest and continuous encouragement.

2. Preliminaries.

Let T be the binary infinite rooted homogeneous tree, that is the tree in which each vertex has two children. For every $n \geq 1$, denote by L_n the n-th level of T, formed by 2^n vertices. Identify each vertex of L_n with a word $x_0 \dots x_{n-1}$ of length n in the alphabet $X = \{0,1\}$. Let X^* be the set of all words of finite length in the alphabet X. The root will be represented by the empty word \emptyset . We will denote by T_x the subtree of T rooted at the vertex x and isomorphic to T.

The set L_n can be endowed with an ultrametric distance d, defined in the following way: if $x = x_0 \dots x_{n-1}$ and $y = y_0 \dots y_{n-1}$, then

$$d(x,y) = n - \max\{i : x_k = y_k, \quad \forall k \le i\}.$$

We observe that d = d'/2, where d' denotes the usual geodesic distance on T.

In this way (L_n, d) becomes an ultrametric space, in particular a metric space, on which the automorphisms group Aut(T) acts isometrically. Note that the diameter of (L_n, d) is exactly n.

Each automorphism $g \in Aut(T)$ can be represented by its *labelling*. The labelling of $g \in Aut(T)$ can be realized as follows: given a vertex $x = x_0 \dots x_{n-1} \in T$, we associate with x a permutation $g_x \in S_2$ (S_2 denotes the symmetric group on 2 elements) that gives the action of g on the two

children of x. Formally, the action of g on the vertex labelled with the word $x = x_0 \dots x_{n-1}$ is

$$x^g = x_0^{g_\emptyset} x_1^{g_{x_0}} \dots x_{n-1}^{g_{x_0 \dots x_{n-2}}}.$$

It will be used also g(x) to indicate the element x^g . Let $G \leq Aut(T)$. We define the stabilizer of $x \in T$ as $Stab_G(x) = \{g \in G : g(x) = x\}$ and the stabilizer of the n-th level as $Stab_G(n) = \bigcap_{x \in L_n} Stab_G(x)$. Observe that $Stab_G(n)$ is a normal subgroup of G of finite index for all $n \geq 1$.

An automorphism $g \in Stab_G(1)$ can be identified with the elements $g_i, i = 0, 1$ that describe the action of g on the respective subtrees T_i . So we get the following embedding

$$\varphi: Stab_G(1) \longrightarrow Aut(T) \times Aut(T)$$

that associates to g the pair (g_0, g_1) .

The following definitions can be found in [BGŠ].

• G is spherically transitive if the action of G on L_n is transitive for every n.

In this case the subgroups $Stab_G(x), x \in L_n$ are conjugate each other.

• G is fractal if $Stab_G(x)|_{T_x} \cong G$, for each $x \in T$. This is equivalent to require that the map $\varphi: Stab_G(1) \longrightarrow G \times G$ is a subdirect embedding, that is, surjective on each factor.

Clearly, a fractal group is spherically transitive if and only if it is transitive on the first level of T.

• G is self-similar if for every $g \in G$, $x \in X$, there exists $g_x \in G$, $x' \in X$ such that $g(xw) = x'g_x(w)$ for all $w \in X^*$.

A self-similar group G can be embedded in the wreath product $G \wr S_2 = G^2 \rtimes S_2$, so that an element $g \in G$ is represented as $g = (g_0, g_1)\sigma$, where $g_i \in G$ describe the action on the subtree T_i , and $\sigma \in S_2$ corresponds to the action on L_1 . With this notation, the product between two elements $g = (g_0, g_1)\sigma$ and $h = (h_0, h_1)\tau$ is

$$gh = (g_0, g_1)(h_0, h_1)^{\sigma} \sigma \tau = (g_0 h_{\sigma^{-1}(0)}, g_1 h_{\sigma^{-1}(1)}) \sigma \tau.$$

Observe that in the product gh the automorphism g acts before the automorphism h, to have coherence with the wreath recursion. Consider again the binary tree but from another point of view. Observe that the

infinite sequence $x_0x_1x_2...$ can be regarded as the dyadic number $x_02^0 + x_12 + x_22^2 + ...$

Let us identify the root of the tree with the ring \mathbb{Z} , the vertices of the first level with $2\mathbb{Z}$ and $2\mathbb{Z}+1$ respectively. Again, the sons of $2\mathbb{Z}$ are $4\mathbb{Z}$ and $4\mathbb{Z}+2$, whereas the sons of $2\mathbb{Z}+1$ are $4\mathbb{Z}+1$ and $4\mathbb{Z}+3$. Actually, the 2^n vertices of the n-th level are, for all $n \geq 1$, the cosets of $2^n\mathbb{Z}$ in \mathbb{Z} .

In this way the boundary ∂T of the tree is identified with the dyadic closure of \mathbb{Z} , which will be denoted by \mathbb{Z}_2 .

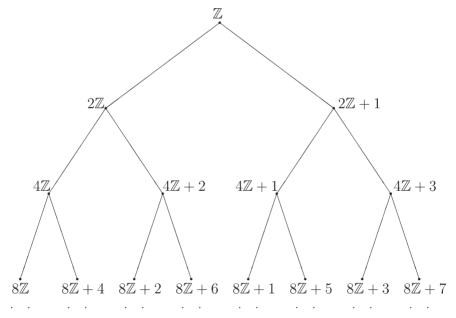


Fig. 1. – The dyadic tree.

3. Some automorphisms of the dyadic tree.

3.1 – The automorphism a.

Under this identification of the boundary of T with the ring \mathbb{Z}_2 of dyadic integers, we introduce the automorphism a of T given by the translation by 1. Actually, this is the automorphism that generates the Adding Machine (see, for instance, [BGN]). If we consider the action of a on the level L_n , then the order of a is 2^n . Therefore a admits the following self-similar

form:

$$(1) a = (1, a)\varepsilon,$$

where ε is the nontrivial permutation of S_2 .

The labelling of a is given in the following figure.

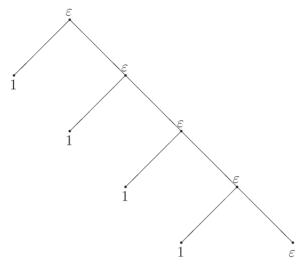


Fig. 2. – Labelling of a.

It is clear that the action of a fixes the root and so it preserves each level L_n , on which it acts transitively for every $n \ge 1$.

Let us verify, by induction on n, that the action of the automorphism a given in (1) is the translation by 1. On the first level the action of a is obviously transitive, since it exchanges the vertices corresponding to the cosets $2\mathbb{Z}$ and $2\mathbb{Z} + 1$, that means to perform the sum of 1 modulo $2\mathbb{Z}$.

Assume the claim true for n-1 and let us prove it for n. First consider an element of the form $2^n\mathbb{Z}+k$, with k even. From the labelling of a it follows that the first letter 0 is changed in 1 (that corresponds to add 1), then a acts as the identity. We have:

$$\begin{split} 2^n\mathbb{Z} + k &\stackrel{\varepsilon}{\longmapsto} 2^n\mathbb{Z} + k + 1 \stackrel{-1}{\longmapsto} 2^n\mathbb{Z} + k \stackrel{:2}{\longmapsto} 2^{n-1}\mathbb{Z} + \frac{k}{2} \\ &\stackrel{id}{\longmapsto} 2^{n-1}\mathbb{Z} + \frac{k}{2} \stackrel{\cdot 2}{\longmapsto} 2^n\mathbb{Z} + k \stackrel{+1}{\longmapsto} 2^n\mathbb{Z} + k + 1. \end{split}$$

In fact, after applying ε , the element $2^n\mathbb{Z} + k$ is in the subtree T_1 . The translation by -1 and the following division by 2 are made to identify the subtree T_1 with the whole tree T. Now, a acts trivially. Finally, multi-

plication by 2 and translation by 1 give the image of the element $2^n\mathbb{Z} + k$ in T_1 , which is $2^n\mathbb{Z} + k + 1$, as desired.

A similar argument can be developed when a acts on an element of the form $2^n\mathbb{Z} + k$, with k odd. First we have the action of ε , which is the sum by -1, then again the action of a. We have:

$$\begin{split} 2^n\mathbb{Z} + k & \stackrel{\varepsilon}{\longmapsto} 2^n\mathbb{Z} + k - 1 \stackrel{:2}{\longmapsto} 2^{n-1}\mathbb{Z} + \frac{k-1}{2} \\ & \stackrel{a}{\longmapsto} 2^{n-1}\mathbb{Z} + \frac{k-1}{2} + 1 = 2^{n-1}\mathbb{Z} + \frac{k+1}{2} \stackrel{:2}{\longmapsto} 2^n\mathbb{Z} + k + 1. \end{split}$$

In this case, after applying ε , the element $2^n\mathbb{Z} + k$ is in the subtree T_0 . The division by 2 is made to identify T_0 with the whole tree T. Now a acts again as a. By induction, this action is the translation by 1. Finally, multiplication by 2 gives the image of the element $2^n\mathbb{Z} + k$ in T_0 , which is $2^n\mathbb{Z} + k + 1$.

3.2 – The automorphism b.

Let us introduce the automorphism b of T given by multiplication by an odd number q=2h+1 different from 1. Since q is odd, b preserves each level and in particular it fixes the vertex $2^n\mathbb{Z}$ for every $n\geq 1$. Moreover q has dyadic norm 1, so it is invertible in the ring of dyadic integers, but its inverse does not belong to \mathbb{Z} (except in the case q=-1). So, it is not possible to identify the inverse of this automorphism with the multiplication by an integer. This is clear by considering that the order of the multiplication by q on L_n is not the same for all $n\geq 1$.

On L_1 multiplication by q is trivial.

On L_2 we have $b^2 = 1$ for each q odd.

On L_3 we still have $b^2=1$ for each q odd. This is true because

$$8 \mid (q^2 - 1)$$
 for each q odd.

To compute the order of the multiplication by q on each level L_n , with $n \geq 3$, we have to study the equation $q^{2^l} \equiv 1(2^n)$. Consider the following decomposition:

$$q^{2^{t}} - 1 = (q^{2^{t-1}} + 1)(q^{2^{t-2}} + 1)(q^{2^{t-3}} + 1) \cdots (q^{2} + 1)(q + 1)(q - 1).$$

Since $q^2 \equiv 1(4)$ for every q odd, we get that each of the factors above, except the last two, are divisible by 2 but are not divisible by higher powers of 2. Moreover, the fact that $8 \mid (q^2 - 1)$ for each q odd, implies that for all

 $n \geq 3$ we have $2^n \mid q^{2^{n-2}} - 1$, and so $q^{2^{n-2}} \equiv 1(2^n)$ for all $n \geq 3$. Actually, there exists some q whose order, at the level L_n , is strictly less then 2^{n-2} . In fact, from the previous argument it follows that if

$$q^2 \equiv 1(2^k)$$
 but $q^2 \not\equiv 1(2^{k+1})$,

then, at the level L_n , the order of multiplication by q is exactly 2^{n-k+1} , for all $n \ge k$. Also, we have $k \ge 3$. To describe the action of b on L_n , n < k, we distinguish two cases.

If $q \equiv 1(4)$, then $2^{k-1} \mid q-1$ and so b=1 on each level L_n , n < k. If $q \equiv -1(4)$, then $2^{k-1} \mid q+1$ and so $b^2=1$.

As an example, let us consider the case q=3. Now q^2-1 is divided by 8 but not by 16 and this implies that the order of the multiplication by 3 is 2^{n-2} on L_n for each $n \ge 3$. In L_1 one has b=1, in L_2 $b^2=1$.

We can now investigate the order of the orbits of vertices of L_n under the action of b.

Let us consider the sphere of center $2^n\mathbb{Z}$ and radius r with respect to the ultrametric distance already defined. It contains 2^{r-1} vertices for $r\geq 1$. The first vertex from the left belonging to this sphere is the element $2^n\mathbb{Z}+2^{n-r}$. Assume that 2^l is the period of this element under the action of b, so that we get

$$2^{n-r}q^{2^l} \equiv 2^{n-r}(2^n).$$

This implies $q^{2^l} \equiv 1(2^r)$. Therefore, if the order of b on L_n is 2^{n-k+1} for every n > k, it must be

$$l = r - k + 1$$
.

with $r \geq k$. So, the orbit of the element $2^n \mathbb{Z} + 2^{n-r}$ is exactly of length 2^{r-k+1} .

It is easy to verify that the remaining vertices of L_n belonging to the sphere of radius r have the form

$$2^{n}\mathbb{Z} + 2^{n-r} + t2^{n-r+1}, \quad t = 1, \dots, 2^{r-1} - 1.$$

We want to prove that they have the same order 2^{r-k+1} . Consider the equation

$$(2^{n-r} + t2^{n-r+1})q^{2^l} \equiv 2^{n-r} + t2^{n-r+1}(2^n).$$

Dividing by 2^{n-r} , we get

$$q^{2^{l}} + 2tq^{2^{l}} \equiv 1 + 2t(2^{r}),$$

from which

$$(q^{2^l} - 1)(2t + 1) \equiv 0(2^r).$$

Since 2t+1 is odd, we have again the equation $q^{2^l} \equiv 1(2^r)$ and so l=r-k+1, if q has order 2^{n-k+1} modulo 2^n .

Hence, the sphere of radius r decomposes, under the multiplication by q, in 2^{k-2} orbits of length 2^{r-k+1} , for all $r \ge k$. For r < k, from what observed, the sphere of radius r decomposes into orbits of length 1 or 2.

Proposition 3.1. The automorphism b admits the self-similar representation

$$b = (b, ba^h),$$

where q = 2h + 1.

PROOF. Let us prove it by induction on n.

For n=1, multiplication by q coincides with the identity, as in the self-similar form of b.

Assume the result true for n-1 and let us show it for n. First consider an element of the form $2^n\mathbb{Z} + k$, with k even. We have:

$$2^n\mathbb{Z} + k \stackrel{:2}{\longmapsto} 2^{n-1}\mathbb{Z} + \frac{k}{2} \stackrel{b}{\longmapsto} 2^{n-1}\mathbb{Z} + \frac{qk}{2} \stackrel{\cdot 2}{\longmapsto} 2^n\mathbb{Z} + qk.$$

In fact the element $2^n\mathbb{Z} + k$ belongs to T_0 . Division by 2 is made to identify the subtree T_0 with the whole tree T. Now, b acts again as b and this action is, by induction, the multiplication by q. Finally, multiplication by 2 gives the imagine of $2^n\mathbb{Z} + k$ in T_0 , that is $2^n\mathbb{Z} + qk$, as desired.

A similar argument can be developed when b acts on an element of the form $2^n\mathbb{Z} + k$, with k odd. In this case, we have:

$$2^{n}\mathbb{Z} + k \xrightarrow{-1} 2^{n}\mathbb{Z} + k - 1 \xrightarrow{:2} 2^{n-1}\mathbb{Z} + \frac{k-1}{2} \xrightarrow{b} 2^{n-1}\mathbb{Z} + \frac{q(k-1)}{2}$$
$$\xrightarrow{a^{h}} 2^{n-1}\mathbb{Z} + \frac{q(k-1)}{2} + h = 2^{n-1}\mathbb{Z} + \frac{q(k-1)}{2} + \frac{q-1}{2} = 2^{n-1}\mathbb{Z} + \frac{qk-1}{2}$$
$$\xrightarrow{\cdot 2} 2^{n}\mathbb{Z} + qk - 1 \xrightarrow{i-1} 2^{n}\mathbb{Z} + qk.$$

In this case, the element $2^n\mathbb{Z} + k$ is in the subtree T_1 . The translation by -1 and the following division by 2 are made to identify T_1 with the whole

tree T. Now, b acts as ba^h . By induction, the action of b is multiplication by q and the following action of a^h is the translation by b. The multiplication by 2 and the sum of 1 give the final image of the element $2^n\mathbb{Z} + k$ in T_1 , that is $2^n\mathbb{Z} + qk$.

3.3 – The group G_q .

It is possible to verify that the automorphism group $G=G_q$ of the dyadic tree generated by the translation by 1 and by the multiplication by an odd integer q=2h+1 is a homomorphic image of the solvable Baumslag-Solitar group

$$BS_q = \langle s, t : t^{-1}st = s^q \rangle.$$

In fact, this relation holds for every level L_n , as we are going to prove.

We have

$$a = (1, a)\varepsilon$$
, $b = (b, ba^h)$, $b^{-1} = (b^{-1}, a^{-h}b^{-1})$

and so

$$b^{-1}ab = (a^h, a^{-h}b^{-1}ab)\varepsilon.$$

For n = 1 the relation is satisfied for any q odd, because both the elements $b^{-1}ab$ and a^q exchange the vertices in L_1 .

Suppose, now, that the result is true for n-1 and let us show it for n. We have

$$b^{-1}ab = (a^h, a^{-h}b^{-1}ab)\varepsilon = (a^h, a^{-h}a^q)\varepsilon = (a^h, a^{-h+2h+1})\varepsilon =$$

$$= (a^h, a^{h+1})\varepsilon = a^{2h+1} = a^q,$$

where the second equality follows by induction, and so the relation is proved.

Actually, the two groups coincide. In fact, for $q \neq -1$, the automorphisms a and b that we defined have infinite order. On the other hand, the following lemma holds.

LEMMA 3.2. Let $BS_q = \langle s, t : t^{-1}st = s^q \rangle$ the Baumslag-Solitar group. Then the order of at least one of s or t in any proper homomorphic image of BS_q must be finite.

PROOF. Consider the factor group BS_q/N , where N is any proper normal subgroup of BS_q . If s^k or t^h belong to N for some k, h not trivial, then the claim is true. Using the following generalized relations

$$t^{-k}st^k = s^{q^k}, \quad t^{-1}s^kt = s^{kq}, \quad t^{-k}s^mt^k = s^{mq^k}$$

and suitable conjugations it is possible to write any word with occurrences of both s and t as a word of the form s^mt^k . Suppose that such an element belongs to N, this implies that $t^{-k}s^mt^{2k}=s^{mq^k}t^k\in N$. So the element $s^mt^k(s^{mq^k}t^k)^{-1}=s^{m(1+q^k)}$ is in N and this completes the proof.

So we get the following

THEOREM 3.3. The automorphisms group $G = G_q$ of the dyadic tree generated by the automorphism a which is the sum of 1 and the automorphism b which is the multiplication by q is isomorphic to the solvable Baumslag-Solitar group:

$$BS_q = \langle a, b : b^{-1}ab = a^q \rangle.$$

Note that the group G is a self-similar group whose action on the tree T is spherically transitive. Since

$$a^2 = (a, a), \quad b = (b, ba^h), \quad ba^{-2h} = (ba^{-h}, b),$$

G is a fractal group.

Remark 3.4. The case q=-1 yields the infinite dihedral group. In fact, the group we get is

$$G = \langle a, b : b^{-1}ab = a^{-1} \rangle$$

and this is exactly the presentation of the infinite dihedral group (see, for example, [BGN]). It is obvious that in this case we have $b^2=1$ and the generators for G are

$$a = (1, a)\varepsilon$$
, $b = (b, ba^{-1})$.

REMARK 3.5. In [BŠ] L. Bartholdi and Z. Šunik obtained these groups of automorphisms as groups generated by the automaton $S_{m,n}$ in the more general case of the multiplication by m in the ring \mathbb{Z}_n of n-adic integers, with (m,n)=1.

4. Gelfand pairs

$4.1 - Some \ definitions$

We present now some basic elements of the theory of finite Gelfand pairs that will be applied in what follows (see, for example, [CST1], [CST2] and [D] for many applications).

Let G be a finite group and let $K \leq G$ be a subgroup, denote $X = G/K = \{gK : g \in G\}$ the associated homogeneous space. In this way G acts transitively on X and K is the stabilizer of the element $x_0 \equiv K \in X$. The space $L(G) = \{f : G \longrightarrow \mathbb{C}\}$ is an algebra with respect to the convolution

$$(f_1 * f_2)(g) = \sum_{h \in G} f_1(gh)f_2(h^{-1}),$$

for all $f_1, f_2 \in L(G)$ and $g \in G$. The subspace of L(G) consisting of the functions K-invariant to the right (i.e. f(gk) = f(g) for all $g \in G, k \in K$) is a subalgebra that can be identified with $L(X) = \{f : X \longrightarrow \mathbb{C}\}$.

This subalgebra can be endowed with a Hilbert space structure by the scalar product $\langle f_1, f_2 \rangle = \sum_{x \in X} f_1(x) \overline{f_2(x)}$, for all $f_1, f_2 \in L(X)$. Analogously, the subspace of L(X) consisting of the functions K-invariant is a subalgebra that we identify with $L(K \setminus G/K) = \{f : G \longrightarrow \mathbb{C} : f(kgk') = f(g), \text{ for all } k, k' \in K, g \in G\}$. The group G acts on L(X) in the following way: $gf(x) = f^g(x) = f(g^{-1}x)$.

We will call (G, K) a *Gelfand pair* if the algebra $L(K \setminus G/K)$ is commutative. The following are equivalent:

- (1) (G, K) is a Gelfand pair;
- (2) the decomposition of the space L(X) into irreducible submodules under the action of G is multiplicity-free, i.e. each irreducible submodule occurs with multiplicity 1;
- (3) given an irreducible representation V of G, the dimension of the subspace of K-invariant vectors $V^K = \{v \in V : kv = v \ \forall k \in K\}$ is less or equal to 1, and it is 1 if and only if $V \leq L(X)$.

The reader is referred to [CST1] for details.

A particular example of Gelfand pair is given by the *symmetric Gelfand* pairs. A finite group G and a subgroup $K \leq G$ constitute a symmetric Gelfand pair if for every $g \in G$ the condition $g^{-1} \in KgK$ is satisfied. In fact one can directly verify that this condition implies that the algebra

 $L(K\backslash G/K)$ is commutative. Moreover, it is easy to verify that the condition $g^{-1}\in KgK$ for every $g\in G$ is equivalent to require that, for all $x,y\in X$, the pairs (x,y) and (y,x) are in the same orbit under the diagonal action of G on $X\times X$.

For example, if we consider the finite dihedral group $D_n = C_n \times C_2$, it is easy to verify that (D_n, C_2) is a symmetric Gelfand pair. The condition $g^{-1} \in C_2 g C_2$, for every $g \in D_n$, is trivially satisfied for this group.

EXAMPLE 4.1. Suppose that the finite group G acts on a finite metric space (X,d) isometrically and with a 2-points homogeneous action, i.e. in such a way that for all $x,y,x',y'\in X$ such that d(x,y)=d(x',y') there exists $g\in G$ such that gx=x' and gy=y'. Let $K\leq G$ be the stabilizer of an element $x_0\in X$. It follows from the previous argument that (G,K) is a symmetric Gelfand pair.

We can observe that in this case the K-orbits (which can be identified with the double cosets of K in G) are the spheres

$$\Lambda_i = \{ x \in X : d(x_0, x) = j \}.$$

Hence, a function $f \in L(X)$ is K-invariant if and only if it is constant on the spheres Λ_i .

If (G,K) is a Gelfand pair and $L(X)=\bigoplus_{i=0}^n V_i$ is a decomposition of L(X) into irreducible submodules, then for each $i=0,1,\ldots,n$ there exists a unique (up to normalization) bi-K-invariant function ϕ_i whose G-translates generate the V_i 's. In particular, we will require that these functions take value exactly 1 on the element $x_0\in X$ stabilized by K. The functions ϕ_i , $i=0,1,\ldots,n$ are called *spherical functions* and they form a basis for the algebra $L(K\backslash G/K)$. So, the number of K-orbits under the action of K on K is equal to the number of spherical functions. A different basis for the algebra K-orbits is given by the characteristic functions of the K-orbits.

A spherical function ϕ can be also defined as a bi-K-invariant function on G satisfying the following properties:

(1)
$$\phi * f = ((\phi * f)(1_G))\phi$$
 for every $f \in L(K \setminus G/K)$;

(2)
$$\phi(1_G) = 1$$
.

As an example, the function $\phi_0 \equiv 1$ is a spherical function: this corresponds to the fact that the trivial representation always occurs in the decomposition of the space L(X) into irreducible submodules.

4.2 - Gelfand pairs associated with G.

From now on, we will apply the theory of Gelfand pairs to the groups we introduced in Section 3.

Let q = 2h + 1. Then, the multiplication by q has order 2^{n-k+1} for each level L_n , $n \ge k$. With n fixed, the group $G_n = G/Stab_G(n)$ which acts on the n-th level of T, is given by

$$G_n = C_{2^n} \rtimes C_{2^{n-k+1}},$$

where $\langle a \rangle = C_{2^n}$ and $\langle b \rangle = C_{2^{n-k+1}}$, since $a^{2^n}, b^{2^{n-k+1}} \in Stab_G(n)$, and the action is defined as $b^{-1}ab = a^q$. Observe that C_{2^n} acts transitively on L_n . Moreover $C_{2^{n-k+1}} = Stab_{G_n}(2^n\mathbb{Z})$ for all $n \geq k$. This parabolic subgroup will be denoted by K_n .

We want to show that (G_n, K_n) are Gelfand pairs. In order to prove it we use the characterization of Gelfand pairs about the decomposition of the space $L(L_n)$ into irreducible submodules, by showing that this decomposition is multiplicity-free.

We distinguish two cases. Case $q \equiv 1(4)$.

For every n < k we have $G_n = C_{2^n}$, $K_n = \{1\}$ and so in the decomposition of the space $L(L_n)$ all the irreducible representations (of dimension 1) of C_{2^n} occur with multiplicity 1. The pairs $(C_{2^n}, 1)$ are not symmetric (except in the case n = 1) Gelfand pairs.

Let now $n \ge k$. We have

$$G_n = C_{2^n} \rtimes C_{2^{n-k+1}}.$$

The space $L(L_n)$ decomposes under the action of C_{2^n} as

(2)
$$L(L_n) = \bigoplus_{j=0}^{2^n - 1} V_j,$$

where the representation V_j is associated with the character χ_j defined by $\chi_j(a)=\omega^j$, with $\omega=e^{\frac{2\pi i}{2^n}}$. We want to study how the automorphism b acts on the V_j 's. By using the relations holding in the group we get

$$a(bV_i) = ba^q V_i = \omega^{qj} bV_i$$

and so $bV_j = V_{qj}$. We want to understand which of these subspaces are invariant under this action. The equation $qj \equiv j(2^n)$ gives $j(q-1) \equiv 0(2^n)$, that implies $j \equiv 0(2^{n-k+1})$. The V_j 's such that j satisfies this property are exactly 2^{k-1} and they correspond to the vertices of the spheres of radius r,

with r < k. They are in fact irreducible submodules of dimension 1 in the representation of G_n on $L(L_n)$. More generally the V_j 's such that $j \equiv 0(2^{n-r})$ but $j \not\equiv 0(2^{n-r+1})$ correspond to the vertices of the sphere of radius r in L_n and in fact they are 2^{r-1} in number. They are the V_j 's with $j = 2^{n-r} + t2^{n-r+1}$, $t = 0, \ldots, 2^{r-1} - 1$. Since we know that the order of b on the sphere of radius r is 2^{r-k+1} , we deduce that these V_j 's will form 2^{k-2} irreducible submodules for G_n of dimension 2^{r-k+1} . As an example, the orbit

$$V_{2^{n-r}} \overset{b}{\longmapsto} V_{q2^{n-r}} \overset{b}{\longmapsto} V_{q^22^{n-r}} \overset{b}{\longmapsto} \dots \overset{b}{\longmapsto} V_{q^{2^{r-k+1}-1}2^{n-r}}$$

generates the irreducible representation for G_n

$$V_{2^{n-r}} \oplus V_{q2^{n-r}} \oplus V_{q^22^{n-r}} \oplus \ldots \oplus V_{q^{2^{r-k+1}-1}2^{n-r}}.$$

The matrices corresponding to this representation are

$$a \longmapsto \begin{pmatrix} \omega^{2^{n-r}} & 0 & \cdots & 0 \\ 0 & \omega^{q2^{n-r}} & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & \omega^{q^{2^{n-k+1}}-12^{n-r}} \end{pmatrix},$$

$$b \longmapsto \begin{pmatrix} 0 & \cdots & 0 & 1 \\ 1 & 0 & & 0 \\ 0 & \ddots & \ddots & \vdots \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

Let us call ψ the character of this representation. We have

$$\psi(a) = \chi_{2^{n-r}}(a) + \chi_{q2^{n-r}}(a) + \dots + \chi_{q^{2^{r-k+1}-1}2^{n-r}}(a) = 0,$$

since the 2^n -th roots of 1 which occur in the sum are pairwise opposite. Moreover $\psi(b)=0$. Denote by $\psi_d, d=1,\ldots,2^{k-2}$ the characters of the 2^{k-2} irreducible representations associated with the sphere of radius r. In order to prove that they are pairwise non isomorphic, we present a suitable element of G_n on which the characters ψ_d take different values, for each d.

Let us consider the element $a^{2^{r-k+1}} \in G_n$. We observe that

$$(\omega^{2^{n-r}})^{2^{r-k+1}} = \omega^{2^{n-k+1}} = e^{\frac{2\pi i 2^{n-k+1}}{2^n}}.$$

Moreover we have $2^{n-k+1}\equiv q2^{n-k+1}(2^n)$, since $1\equiv q(2^{k-1})$. The same computation holds for the following powers of q. Hence, all the powers of ω which occur in the diagonal of the matrix associated with a^{r-k+1} correspond to the same angle $\frac{2\pi 2^{n-k+1}}{2^n}=\frac{2\pi}{2^{k-1}}$.

Let us consider now any element $2^{n-r} + t2^{n-r+1}$ in the sphere of radius r. We have

$$(\omega^{2^{n-r}+t2^{n-r+1}})^{2^{r-k+1}} = \omega^{2^{n-k+1}+t2^{n-k+2}}$$

and

$$q(2^{n-r} + t2^{n-r+1})2^{r-k+1} \equiv 2^{n-k+1} + t2^{n-k+2}(2^n),$$

as one can easily prove by using the property $q \equiv 1(2^{k-1})$. We want to study under which condition the elements $2^{n-r} + t2^{n-r+1}$ and $2^{n-r} + s2^{n-r+1}$ belong to the same orbit under the multiplication by q. We get the equation

$$2^{n-k+1} + t2^{n-k+2} \equiv 2^{n-k+1} + s2^{n-k+2}(2^n)$$

which gives $t \equiv s(2^{k-2})$.

So, the elements

$$V_{2^{n-r}}, V_{2^{n-r}+2^{n-r+1}}, V_{2^{n-r}+2\cdot 2^{n-r+1}}, \dots, V_{2^{n-r}+(2^{k-2}-1)2^{n-r+1}}$$

belong to the 2^{k-2} different orbits associated to the sphere of radius r. The angles corresponding to the respective powers of ω are

$$\frac{2\pi}{2^{k-1}} + 2u\frac{2\pi}{2^{k-1}}, \quad u = 0, 1, \dots, 2^{k-2} - 1.$$

For $u=2^{k-2}-1$ we get the angle $-\frac{2\pi}{2^{k-1}}$ and so the angles associated with these orbits are pairwise different.

We have shown that the characters ψ_d take different values on the same element $a^{2^{r-k+1}}$ and so the associated representations are not isomorphic, as required.

Case $q \equiv -1(4)$.

For n = 1 the group G_1 is the cyclic group G_2 and we get the symmetric Gelfand pair $(G_2, 1)$.

For $2 \le n \le k-1$ we have $b^2 = 1$ and so

$$G_n = C_{2^n} \rtimes C_2,$$

which is the dihedral group of order 2^{n+1} . The pairs (G_n, K_n) are symmetric Gelfand pairs (as we observed above).

Let $n \ge k$. Let the V_j 's be the spaces given in (2), with the relation $bV_j = V_{qj}$. In this case the subspaces which are invariant under the action of b are V_0 and $V_{2^{n-1}}$, as one can get from the equation $qj \equiv j(2^n)$ using that

 $q \equiv 1(2)$ but $q \not\equiv 1(4)$. The spheres of radius 1 < r < k decompose into 2^{r-2} irreducible submodules of dimension 2 and each of them is the direct sum $V_j \oplus V_{-j}$, with $j \equiv 0(2^{n-r})$ but $j \not\equiv 0(2^{n-r+1})$ and they are non isomorphic.

Let $r \geq k$. We distinguish two subcases.

Let q=4h-1 with h=2x+1. In this case necessarily k=3, since (q-1)(q+1)=8(2x+1)(4x+1), and so the sphere of radius r decomposes exactly into two orbits under the action of b. Analogously to the case $q\equiv 1(4)$, we want to write a certain power of a on which the characters of these two representations take different values to deduce that they are non isomorphic.

Let us consider the element $a^{2^{r-3}}$. We observe that

$$(\omega^{2^{n-r}})^{2^{r-3}} = \omega^{2^{n-3}} = e^{\frac{2\pi i 2^{n-3}}{2^n}} = e^{\frac{i\pi}{4}}.$$

Moreover

$$(\omega^{q2^{n-r}})^{2^{r-3}} = \omega^{q2^{n-3}} = e^{\frac{2\pi i q2^{n-3}}{2^n}} = e^{\frac{iq\pi}{4}}$$

Now $\frac{q\pi}{4} = \frac{4h\pi}{4} - \frac{\pi}{4} \equiv \pi - \frac{\pi}{4}(2\pi)$, since h is odd. The same holds for the following powers of q.

Viceversa, the element $\omega^{-2^{n-r}}$ raised to the power 2^{r-3} gives the angle $-\frac{\pi}{4}$. As before, one can show that the element $\omega^{-q2^{n-r}}$ raised to the same power 2^{r-3} gives the angle $\pi + \frac{\pi}{4}$. The same argument can be developed for the following powers of q. It is clear that the characters associated with these two representations take opposite nonzero values on the element $\alpha^{2^{r-3}} \in G_n$ and this completes the proof in this first case.

Now let q = 4h - 1, with h = 2x. Observe that

$$q^2 - 1 = (4h - 2)(4h) = 8h(2h - 1)$$

and so $2^{k-3} \mid h$. In this case we consider the element $a^{2^{r-k}}$. We have

$$(\omega^{2^{n-r}})^{2^{r-k}} = \omega^{2^{n-k}} = e^{\frac{2\pi i 2^{n-k}}{2^n}} = e^{\frac{2\pi i}{2^k}}.$$

Moreover

$$(\omega^{q2^{n-r}})^{2^{r-k}} = \omega^{q2^{n-k}} = e^{\frac{2\pi i q 2^{n-k}}{2^n}} = e^{\frac{2\pi q i}{2^k}}.$$

Now observe that

$$\frac{2\pi q}{2^k} = \frac{2\pi (4h-1)}{2^k} = \frac{2\pi 4 \cdot 2^{k-3}m}{2^k} - \frac{2\pi}{2^k} = m\pi - \frac{2\pi}{2^k} \equiv \pi - \frac{2\pi}{2^k} (2\pi).$$

The last equality is true since the expression of h implies that m is odd. A similar argument can be developed for the following powers of q. So the angles $\frac{2\pi}{2k}$ and $\pi - \frac{2\pi}{2k}$ alternate in the orbit containing $V_{2^{n-r}}$.

Consider now any element $2^{n-r}+t2^{n-r+1}$, with $t=0,\ldots,2^{r-1}-1$. Its 2^{r-k} -th power gives an angle equal to $\frac{2\pi}{2^k}$ if the equation

$$2^{n-k} \equiv 2^{n-k} + t2^{n-k+1}(2^n).$$

which implies $t \equiv 0(2^{k-1})$, is satisfied.

On the other hand the 2^{r-k} -th power gives an angle equal to $\pi - \frac{2\pi}{2^k}$ if the equation

$$2^{n-k} + 2^{n-k} + t2^{n-k+1} \equiv 2^{n-1}(2^n).$$

which gives $1 + t \equiv 2^{k-2}(2^{k-1})$, is satisfied.

The values of t modulo 2^{r-1} that satisfy these two equations are $\frac{2\cdot 2^{r-1}}{2^{k-1}}=2^{r-k+1}$, as many as the order of an orbit. So the elements whose 2^{r-k} th power gives $\frac{2\pi}{2^k}$ or $\pi-\frac{2\pi}{2^k}$ are exactly those which satisfy the two equations.

Consider now the two equations

$$2^{n-k} + t2^{n-k+1} \equiv 2^{n-k} + s2^{n-k+1}(2^n)$$

and

$$2^{n-k} + t2^{n-k+1} + 2^{n-k} + s2^{n-k+1}(2^n) \equiv 2^{n-1}(2^n).$$

Their solutions are, respectively,

$$t \equiv s(2^{k-1})$$
 and $t \equiv 2^{k-2} - 1 - s(2^{k-1})$.

So, if we fix a value of t modulo 2^{r-1} not satisfying the first two equations, it is possible to find, by using these two new equations, 2^{r-k+1} values which will form a new orbit, whose corresponding angle will be different from $\frac{2\pi}{2^k}$ and $\pi - \frac{2\pi}{2^k}$.

This way we get 2^{k-2} orbits in the decomposition of the sphere of radius r, all of them corresponding to different angles and so the corresponding 2^{k-2} submodules have characters which take different values on $a^{2^{r-k}}$ and so they are non isomorphic.

Consider now the general case of any odd q to show that the Gelfand pairs considered in this paper are non symmetric for every $n \ge k$. We

recall that the pair (G_n, K_n) is symmetric if the condition $g^{-1} \in K_n g K_n$ is satisfied for every $g \in G_n$.

Let us choose g=a and consider $K_n=\langle b:b^{2^{n-k+1}}=1\rangle$. We can restrict our attention on the elements of the form $b^{-i}ab^i$. In fact the elements of the form b^iab^j with $i\neq -j$ give elements with occurrences of both a and b which are clearly different from a^{-1} . Since $b^{-i}ab^i=a^{q^i}$, we have to study the equation

$$(3) q^i \equiv -1(2^n),$$

with $i = 0, ..., 2^{n-k+1} - 1$. It is clear that in the case i = 0 the equation is satisfied only in the trivial case n = 1, when $G_n = C_2$. Also in the case already developed q = -1 this equation is satisfied by i = 1.

Consider now the equation (3). If 2^n divides $q^i + 1$, then 2^{n+1} divides $(q^i + 1)(q^i - 1) = q^{2i} - 1$. So one has $q^{2i} \equiv 1(2^{n+1})$. The smallest nonzero exponent satisfying this equation is, as we know, 2^{n-k+2} . But it must be $2i \leq 2^{n-k+2} - 2$. This completes the proof. Collecting all the results obtained in this section we have the following

THEOREM 4.2. Let q be an odd integer such that $q^2 \equiv 1(2^k)$ but $q^2 \not\equiv 1(2^{k+1})$, then, for every $n \geq k$, $G_n = G/Stab_G(n) = C_{2^n} \rtimes C_{2^{n-k+1}}$ and $K_n = Stab_{G_n}(2^n\mathbb{Z}) = C_{2^{n-k+1}}$. The associated pairs (G_n, K_n) are non symmetric Gelfand pairs.

For n < k and $q \equiv 1(4)$ we get $G_n = C_{2^n}$ and $K_n = \{1\}$, which are non symmetric (except in the case n = 1) Gelfand pairs.

For 1 < n < k and $q \equiv -1(4)$ we get $G_n = D_{2^n}$ and $K_n = C_2$, which are symmetric Gelfand pairs. For n = 1 we have the symmetric Gelfand pair $(C_2, 1)$.

4.3 - Final remarks.

In [CST] the authors show in a different way that the pairs (G_n, K_n) introduced above are Gelfand pairs by using the general theory of the Gelfand pairs associated to the semidirect products.

Let $G=N \times H$ be a finite group and let $K \leq N$ be a subgroup of N invariant under the action of H and such that (N,K) is a Gelfand pair. Set X=N/K and let $L(X)=\bigoplus_{i=0}^n V_i$ be the multiplicity-free decomposition of L(X) into irreducible N-submodules and let $\phi_i \in V_i$ be the corresponding spherical functions. The map $nK \longmapsto nKH$ is a bijection between N/K and

G/KH. The action of G on X = G/KH can be defined as $nh(n'KH) = nhn'h^{-1}KH$ and the induced action on L(X) is, as usual, $f^g(x) = f(g^{-1}x)$. It is easy to check that if V_i is any irreducible N-invariant submodule in L(X), then hV_i is still N-invariant and irreducible, for every $h \in H$, in other words H permutes the V_i 's.

So the decomposition of L(X) under the action of G into irreducible submodules is

(4)
$$L(X) = \bigoplus_{j=0}^{r} W_j,$$

where $W_j = \bigoplus_{i:V_i \in \varGamma_j} V_i$ and \varGamma_j denotes, for $j = 0, \ldots, r$, the H-orbits on $\{V_0, V_1, \ldots, V_n\}$. The W_j 's are pairwise non isomorphic because the restrictions to N of the representations W_j and $W_{j'}$ decompose into non isomorphic submodules for $j \neq j'$.

Hence the decomposition (4) is multiplicity-free and this implies that (G, KH) is a Gelfand pair. The corresponding spherical functions can be easily computed from the ϕ_i 's and they are given by

$$\Phi_j = \frac{1}{|\Gamma_j|} \sum_{i: V_i \in \Gamma_i} \phi_i = \frac{1}{|H|} \sum_{h \in H} h \phi_i.$$

In the case of the groups introduced above we have $N=C_{2^n}$, $K=\{1\}$ and $H=C_{2^{n-k+1}}$. The V_i 's are the submodules in which decomposes the space $L(L_n)$ under the action of C_{2^n} whose spherical functions are exactly the characters of C_{2^n} . The W_j 's are the orbits of the spaces V_i 's under the automorphism b with $bV_i=V_{qi}$.

The previous argument guarantees that $(C_{2^n} \rtimes C_{2^{n-k+1}}, C_{2^{n-k+1}})$ is a Gelfand pair and yields the associated spherical functions.

In Section 4.2 we preferred to give an explicit calculation of the irreducible subspaces of $L(L_n)$ under the action of G_n using only congruences modulo 2^n and identifying the spaces V_j 's with the vertices of the n-th level of the dyadic tree.

REFERENCES

[BGN] L. BARTHOLDI - R. I. GRIGORCHUK - V. NEKRASHEVYCH, From fractal groups to fractal sets, Fractals in Graz (P. Grabner and W. Woess editors), Trends in Mathematics, Birkäuser Verlag, Basel (2003), pp. 25–118.

[BGS] L. Bartholdi - R. I. Grigorchuk - Z. Šunik, *Branch groups*, Handbook of Algebra, North-Holland, Amsterdam (2003), Vol. 3, pp. 989–1112.

- [BŠ] L. Bartholdi Z. Šunik, Some solvable automaton groups, in Topological and asymptotic aspects of group theory, Contemp. Math., 394 (2006), pp. 11–30.
- [BS] G. BAUMSLAG D. SOLITAR, Some two-generator, one relator non-Hopfian groups, Bull. Amer. Math. Soc., 68 (1962), pp. 199–201.
- [CST] T. CECCHERINI-SILBERSTEIN F. SCARABOTTI F. TOLLI, Trees, wreath products and finite Gelfand pairs, Adv. Math., no. 206 (2006), pp. 503-537.
- [CST1] T. CECCHERINI-SILBERSTEIN F. SCARABOTTI F. TOLLI, Finite Gelfand pairs and their applications to Probability and Statistics, J. Math. Sci. (New York), 141, no. 2 (2007), pp. 1182–1229.
- [CST2] T. CECCHERINI-SILBERSTEIN F. SCARABOTTI F. TOLLI, Harmonic Analysis on Finite Groups: Representation Theory, Gelfand Pairs and Markov Chains, Cambridge Studies in Advanced Mathematics 108, Cambridge University Press, 2008.
- [D] P. DIACONIS, Group Representations in Probability and Statistics, IMS Hayward, CA, 1988.
- [F] A. FIGÀ-TALAMANCA, Note del Seminario di Analisi Armonica, a.a. 1992, Università di Roma "La Sapienza".

Manoscritto pervenuto in redazione il 7 luglio 2007.