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A Group of Automorphisms of the Rooted Dyadic Tree and
Associated Gelfand Pairs

DANIELE D’ANGELI (¥) - ALFREDO DONNO (¥)

ABSTRACT - In this paper we study the group G of automorphisms of the rooted
dyadic tree generated by translation by 1 and multiplication by an odd integer q,
showing that G admits a self-similar presentation and it is isomorphic to the
Baumslag-Solitar group BS,. Moreover, we show that the action of G on each
level of the tree gives rise to a Gelfand pair.

1. Introduction.

Let T be the infinite binary rooted tree. Denote by L,, the n-th level of
T, which consists of 2" vertices. The root of 7' can be identified with the
group 7, each vertex, say at level L,, can be regarded as a coset of 2"7Z in
7. Finally, the boundary 97 corresponds to the ring of dyadic integers Z»
(for more details see [F]).

Let G be the group of automorphisms of 7' generated by the translation
by 1 and by the multiplication by an odd integer ¢ for each vertex in 7.
Denote by a and b such automorphisms, respectively. The action of G on T'
is self-similar: we will directly prove that these automorphisms admit the
following form

a = (17 a/)8> b - (b7 bah)a

with ¢ = 2h 4 1, according to the fact that every self-similar group can be
embedded in a wreath product. By using the self-similarity, we deduce that
G is isomorphic to the Baumslag-Solitar group BS, = (s,t : t st = %),
introduced in [BS]. We mention that self-similar groups are closely con-
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nected with automata. For example, Bartholdi and Sunik in [Bé] obtained
the same result in the more general context of a family of solvable groups
generated by finite automata.

Let G, be the finite homomorphic image of G acting faithfully on L,.
Also denote by K,, < G, the parabolic subgroup which stabilizes a fixed
vertex in L,. This way, L, will be identified with the corresponding
homogeneous space G, /K, . We then prove that (G,, K,,) is a Gelfand pair
for every n > 1. In particular, we show, by direct computations involving
characters, that the decomposition of the corresponding permutation
representation into irreducible G—representations is multiplicity-free.
Actually the result can also be obtained from the general theory of re-
presentations of semidirect products developed in [CST]. Finally, a for-
mula for the relative spherical functions is given.

The idea for this work has been inspired by Professor A. Figa-Tala-
manca whom we thank for his interest and continuous encouragement.

2. Preliminaries.

Let T be the binary infinite rooted homogeneous tree, that is the tree in
which each vertex has two children. For every n > 1, denote by L,, the n-th
level of T, formed by 2" vertices. Identify each vertex of L, with a word
xg...%,—1 of length n in the alphabet X = {0,1}. Let X* be the set of all
words of finite length in the alphabet X. The root will be represented by
the empty word (). We will denote by T, the subtree of T rooted at the
vertex x and isomorphic to 7'.

The set L,, can be endowed with an ultrametric distance d, defined in
the following way: if x = ag... 2,1 and y = ¥o ... ¥n_1, then

d@,y) =n—max{i:x, =yp, Vk<i}.

We observe that d = d'/2, where d’ denotes the usual geodesic distance
on T.

In this way (I.,,, d) becomes an ultrametric space, in particular a metric
space, on which the automorphisms group Aut(T) acts isometrically. Note
that the diameter of (L, d) is exactly n.

Each automorphism g € Aut(7") can be represented by its labelling.
The labelling of g € Aut(T) can be realized as follows: given a vertex
x=2ay...2,_1 € T, we associate with x a permutation g, € Sy (S2 denotes
the symmetric group on 2 elements) that gives the action of g on the two
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children of x. Formally, the action of g on the vertex labelled with the word
X =12%y...%,_118

9 90 g.’ro g“'o-""rz—z
L7 =Xy ¥y ... % .

T -1

It will be used also g(x) to indicate the element 9. Let G < Aut(T). We
define the stabilizer of x € T as Stabg(x) = {g € G : g(x) = x} and the
stabilizer of the n-th level as Stabg(n) = (), Stabg(x). Observe that
Stabg(n) is a normal subgroup of G of finite index for all n > 1.

An automorphism g € Stab;(1) can be identified with the elements
gi,© = 0,1 that describe the action of g on the respective subtrees 7;. So we
get the following embedding

¢ : Stabg(1) — Aut(T) x Aut(T)

that associates to g the pair (go, g1)- 5
The following definitions can be found in [BGS].

o (7 is spherically transitive if the action of G on L, is transitive for
every n.

In this case the subgroups Stabg(x), x € L, are conjugate each other.

e G is fractal if Stabg(x)|y, = G, for each x € T. This is equivalent to
require that the map ¢ : Stab;(1) — G x G is a subdirect embedding, that
is, surjective on each factor.

Clearly, a fractal group is spherically transitive if and only if it is
transitive on the first level of 7.

o G is self-similar if for every g € G, x € X, there exists g, € G, «' € X
such that g(xw) = /g, (w) for all w € X*.

A self-similar group G can be embedded in the wreath product
G 1S3 = G? xSz, so that an element g € G is represented as g = (g9, 91)0,
where ¢; € G describe the action on the subtree T, and ¢ € S, corresponds
to the action on L. With this notation, the product between two elements
g = (go,91)0 and h = (hg, hy)t is

gh = (90, 91)(ho, h1)’ 0T = (gohs-1(0), J1hs11))0T.

Observe that in the product gh the automorphism g acts before the
automorphism £, to have coherence with the wreath recursion. Consider
again the binary tree but from another point of view. Observe that the
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infinite sequence xpx1x2... can be regarded as the dyadic number
90020+9612+96222+....

Let us identify the root of the tree with the ring 7, the vertices of
the first level with 27 and 27 + 1 respectively. Again, the sons of 27
are 47 and 47 + 2, whereas the sons of 27 + 1 are 47 + 1 and 47 + 3.
Actually, the 2" vertices of the n-th level are, for all n > 1, the cosets of
2"7,in 7.

In this way the boundary 07 of the tree is identified with the dyadie
closure of 7, which will be denoted by 7Zs.

)

8Z 8Z+4 8Z+2 8Z+6 8Z+1 8Z+5 8Z+3 8Z+T7
Fig. 1. — The dyadic tree.

3. Some automorphisms of the dyadic tree.
3.1 — The automorphism a.

Under this identification of the boundary of 7" with the ring Zs of dyadic
integers, we introduce the automorphism a of 7' given by the translation by
1. Actually, this is the automorphism that generates the Adding Machine
(see, for instance, [BGN]). If we consider the action of @ on the level L,,
then the order of a is 2". Therefore a admits the following self-similar
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form:
(1) a=(1,ak,

where ¢ is the nontrivial permutation of Ss.
The labelling of a is given in the following figure.

Fig. 2. — Labelling of a.

It is clear that the action of @ fixes the root and so it preserves each level
Ly, on which it acts transitively for every n > 1.

Let us verify, by induction on n, that the action of the automorphism a
given in (1) is the translation by 1. On the first level the action of « is ob-
viously transitive, since it exchanges the vertices corresponding to the
cosets 27 and 27 + 1, that means to perform the sum of 1 modulo 27.

Assume the claim true for n — 1 and let us prove it for n. First consider
an element of the form 2"7 + k, with k even. From the labelling of a it
follows that the first letter 0 is changed in 1 (that corresponds to add 1),
then a acts as the identity. We have:

27 Ak LA k415 27k 2014

i k .
&2”—17;+§ Zoony 4k o 4 k1.

In fact, after applying ¢, the element 27 + k is in the subtree T5. The
translation by —1 and the following division by 2 are made to identify the
subtree 77 with the whole tree 7. Now, a acts trivially. Finally, multi-
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plication by 2 and translation by 1 give the image of the element 2”7 + k in
Ty, which is 2”7 + k + 1, as desired.

A similar argument can be developed when a acts on an element of the
form 2"7 + k, with k odd. First we have the action of ¢, which is the sum by
—1, then again the action of a. We have:

k-1

WZ+k¢$TZ+k—1¥iW*Z+—§f

JLWAZ+&%E+1:W“Z+&%lﬁiﬂz+k+1

In this case, after applying ¢, the element 2”7 + k is in the subtree T.
The division by 2 is made to identify T, with the whole tree 7. Now a acts
again as a. By induction, this action is the translation by 1. Finally, mul-
tiplication by 2 gives the image of the element 2"7 + k in T, which is
2"Z+k+1.

3.2 — The automorphism b.

Let us introduce the automorphism b of 7' given by multiplication by an
odd number g = 2k + 1 different from 1. Since ¢ is odd, b preserves each
level and in particular it fixes the vertex 2"7 for every n > 1. Moreover ¢
has dyadie norm 1, so it is invertible in the ring of dyadic integers, but its
inverse does not belong to 7 (except in the case ¢ = —1). So, it is not
possible to identify the inverse of this automorphism with the multi-
plication by an integer. This is clear by considering that the order of the
multiplication by g on L, is not the same for all » > 1.

On L; multiplication by g is trivial.

On Ly we have b? = 1 for each ¢ odd.

On Ls we still have b* = 1 for each ¢ odd. This is true because

8 (q2 —1) for each q odd.

To compute the order of the multiplication by q on each level L,,, with
n > 3, we have to study the equation ¢2 = 1(2"). Consider the following
decomposition:

¢ —1=( +D@ +DG@ +D- @+ D@+ Dg—D.

Since ¢? = 1(4) for every ¢ odd, we get that each of the factors above,
except the last two, are divisible by 2 but are not divisible by higher powers
of 2. Moreover, the fact that 8 | (¢? — 1) for each q odd, implies that for all
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n >3 we have 2" | ¢ — 1, and so ¢ = 1(2") for all n > 3. Actually,
there exists some ¢ whose order, at the level L,, is strictly less then 2"-2,
In fact, from the previous argument it follows that if

? =125 but ¢ # 1@,

then, at the level L,, the order of multiplication by q is exactly 2"*+1, for all
n > k. Also, we have k > 3. To describe the action of b on L, n<k, we
distinguish two cases.

If ¢ = 1(4), then 21| ¢ — 1 and so b =1 on each level L,, n<k. If
g = —1(4), then 21 | ¢ + 1 and so b = 1.

As an example, let us consider the case ¢ = 3. Now ¢* — 1 is divided by 8
but not by 16 and this implies that the order of the multiplication by 3 is
2"=2 on L,, for each n > 3. In L one has b =1, in Ly b% = 1.

We can now investigate the order of the orbits of vertices of L,, under
the action of b.

Let us consider the sphere of center 2”7 and radius r with respect to
the ultrametric distance already defined. It contains 2"~! vertices for » > 1.
The first vertex from the left belonging to this sphere is the element
27, + 2", Assume that 2! is the period of this element under the action of
b, so that we get

znfquZ = 21T (M),

This implies ¢ = 1(2"). Therefore, if the order of b on L, is 2"+ for every
n > k, it must be

l=r—k+1,

with » > k. So, the orbit of the element 2"7 + 2"~" is exactly of length
277k+1_

It is easy to verify that the remaining vertices of L,, belonging to the
sphere of radius r have the form

QU7 4 gl =1 2 1

We want to prove that they have the same order 2"**1. Consider the
equation

@ 4 t2n77’+1)q21 —onr 4 t2n77'+1(2n).
Dividing by 2"", we get

& +2tg% =1+ 22",
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from which
@ —D@t+1) = 0@2").

Since 2t +1 is odd, we have again the equation qzl =1(2") and so
I =7 —k+ 1, if ¢ has order 2" %+ modulo 2".

Hence, the sphere of radius » decomposes, under the multiplication by
q, in 2¥-2 orbits of length 2" *+1 for all » > k. For r <k, from what ob-
served, the sphere of radius » decomposes into orbits of length 1 or 2.

ProOPOSITION 3.1.  The automorphism b admits the self-similar repre-

sentation
b=(b,ba"),

where ¢ = 2h + 1.

ProOF. Let us prove it by induction on %.

For n = 1, multiplication by ¢ coincides with the identity, as in the self-
similar form of b.

Assume the result true for n — 1 and let us show it for n. First consider
an element of the form 2" + k, with k even. We have:

207, 4 ks 2717, 4 lz_c Loy qz—k 297, 4 gk
In fact the element 2"7 + k belongs to Ty. Division by 2 is made to
identify the subtree Ty with the whole tree T. Now, b acts again as b and
this action is, by induction, the multiplication by ¢. Finally, multiplication
by 2 gives the imagine of 2”7 + k in T\, that is 2"Z + gk, as desired.
A similar argument can be developed when b acts on an element of the
form 2"7, + k, with k odd. In this case, we have:

k—1 b

B ‘ k-1
2"/Z+k»—1>2”7,,+k—1i>2"‘17;,+TH2"‘1Z+q( )

2

h — — — —
>a—> 2"71‘744—%4—}& = 2"71744—%4'%—1 = 2”717,44'%

2on gk —1 7L 207, 4 gk

In this case, the element 2”7 + k is in the subtree 7. The translation
by —1 and the following division by 2 are made to identify T with the whole
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tree T. Now, b acts as ba”. By induction, the action of b is multiplication by
q and the following action of o’ is the translation by 4. The multiplication
by 2 and the sum of 1 give the final image of the element 2”7 + k in T4, that
is 2"7. + qk. O

3.3 — The group G,.

It is possible to verify that the automorphism group G = G4 of the
dyadic tree generated by the translation by 1 and by the multiplication by
an odd integer ¢ = 2k + 1 is a homomorphic image of the solvable Baum-
slag-Solitar group

BS, = (s,t:t st = s9).

In fact, this relation holds for every level L,, as we are going to prove.
We have

a=0,a)e, b=(,bd"), b1=0"1a"b
and so
b lab = (d",a"b ab)e.

For n = 1 the relation is satisfied for any ¢ odd, because both the elements
b~lab and a? exchange the vertices in L.

Suppose, now, that the result is true for n — 1 and let us show it for ».
We have

-1 b —hp-1 b~ b —hi2ht1
b~ ab = (@",a"b " ab)e = (a",a"ae = (a", a7 )e =

— (ah7ah+l)8 _ CL2h+1 — aq7
where the second equality follows by induction, and so the relation is
proved.

Actually, the two groups coincide. In fact, for ¢ # —1, the automor-
phisms a and b that we defined have infinite order. On the other hand, the
following lemma holds.

LEMMA 3.2. Let BS, = (s,t: t"1st = s7) the Baumslag-Solitar group.
Then the order of at least one of s or t in any proper homomorphic image of
BS, must be finite.
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Proor. Consider the factor group BS,/N, where N is any proper
normal subgroup of BS,,. If s* or t" belong to N for some k, h not trivial, then
the claim is true. Using the following generalized relations

thsth = g0 ik = ke phgmik — gmd"

and suitable conjugations it is possible to write any word with occurrences
of both s and ¢ as a word of the form s™t*. Suppose that such an element
belongs to N, this implies that ¢ *s"¢?* = sd"tk ¢ N. So the element
™tk (sma k)1 = g1+ is in N and this completes the proof. O

So we get the following

THEOREM 3.3. The automorphisms group G = G, of the dyadic tree
generated by the automorphism a which is the sum of 1 and the auto-
morphism b which is the multiplication by q is isomorphic to the solvable
Baumslag-Solitar group:

BS, = (a,b: bab = a’).

Note that the group G is a self-similar group whose action on the tree T
is spherically transitive. Since

a? =(@,a), b=(b,ba"), ba? =ba" ),
G is a fractal group.

REMARK 3.4. The case ¢ = —1 yields the infinite dihedral group. In
fact, the group we get is

G=(a,b:btab=al),

and this is exactly the presentation of the infinite dihedral group (see, for
example, [BGN]). It is obvious that in this case we have b2 =1 and the
generators for G are

a=1,a), b=(b,ba").

REMARK 3.5. In [BS] L. Bartholdi and Z. Sunik obtained these groups
of automorphisms as groups generated by the automaton S, ,, in the more
general case of the multiplication by m in the ring 7, of n-adic integers,
with (m,n) = 1.
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4. Gelfand pairs
4.1 — Some definitions

We present now some basic elements of the theory of finite Gelfand
pairs that will be applied in what follows (see, for example, [CST1], [CST2]
and [D] for many applications).

Let G be a finite group and let K <G be a subgroup, denote
X =G/K ={gK : g € G} the associated homogeneous space. In this way
G acts transitively on X and K is the stabilizer of the element xy = K € X.
The space L(G) = {f : G— C} is an algebra with respect to the con-
volution

(fi = fo)9) =Y _ filghfs(h™),
heG

for all fi1,f2 € L(G) and g € G. The subspace of L(G) consisting of the
functions K-invariant to the right (i.e. f(gk) = f(g) forallg € G,k € K)is a
subalgebra that can be identified with L(X) = {f : X — C}.

This subalgebra can be endowed with a Hilbert space structure by
the scalar product (fi,f2) = 3 i@ fa(x), for all fi,f» € L(X). Analo-

xeX

gously, the subspace of L(X) consisting of the functions K-invariant is a
subalgebra that we identify with L(K\G/K)={f:G— C : f(kgk') =
=f(g), forall k., k' € K,g € G}. The group G acts on L(X) in the fol-
lowing way: gf(x) = f9(x) = f(g~ ).

We will call (G, K) a Gelfand pair if the algebra L(K\G/K) is commu-
tative. The following are equivalent:

(1) (G,K) is a Gelfand pair;

(2) the decomposition of the space L(X) into irreducible submodules
under the action of G is multiplicity-free, i.e. each irreducible submodule
occurs with multiplicity 1;

(3) given an irreducible representation V of G, the dimension of the
subspace of K —invariant vectors VK = {v € V : kv = v Vk € K} is less or
equal to 1, and it is 1 if and only if V' < L(X).

The reader is referred to [CST1] for details.

A particular example of Gelfand pair is given by the symmetric Gelfand
pairs. A finite group G and a subgroup K < G constitute a symmetric
Gelfand pair if for every g € G the condition ¢! € KgK is satisfied. In fact
one can directly verify that this condition implies that the algebra
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L(K\G/K) is commutative. Moreover, it is easy to verify that the condition
97! € KgK for every g € G is equivalent to require that, for all ,y € X, the
pairs (x, ¥) and (y, x) are in the same orbit under the diagonal action of G on
X xX.

For example, if we consider the finite dihedral group D,, = C,, x Cy, it is
easy to verify that (D,,Cs) is a symmetric Gelfand pair. The condition
g7 ! € Ca9Cs, for every g € D, is trivially satisfied for this group.

ExampLE 4.1. Suppose that the finite group G acts on a finite metric
space (X, d) isometrically and with a 2-points homogeneous action, i.e. in
such a way that for all x,y,2',%' € X such that d(x,y) = d(«’,y’) there
exists g € G such that gx = o’ and gy = %'. Let K < G be the stabilizer of
an element x, € X. It follows from the previous argument that (@, K) is a
symmetric Gelfand pair.

We can observe that in this case the K-orbits (which can be identified
with the double cosets of K in G) are the spheres

Ay = {x € X : d(x,x) =j}.

Hence, a function f € L(X) is K-invariant if and only if it is constant on the
spheres ;.

If (G, K) is a Gelfand pair and L(X) = é V; is a decomposition of L(X)

into irreducible submodules, then for ealc};] 1=0,1,...,n there exists a
unique (up to normalization) bi-K-invariant function ¢; whose G-translates
generate the V;’s. In particular, we will require that these functions take
value exactly 1 on the element x, € X stabilized by K. The functions ¢;,
1=0,1,...,n are called spherical functions and they form a basis for the
algebra L(K\G/K). So, the number of K-orbits under the action of G on X
is equal to the number of spherical functions. A different basis for the al-
gebra L(K\G/K) is given by the characteristic functions of the K-orbits.

A spherical function ¢ can be also defined as a bi-K-invariant function
on G satisfying the following properties:

(1) ¢+ f = (§+f)1e))¢ for every f € LIK\G/K);
@) ¢(lg) = 1.

As an example, the function ¢, = 1 is a spherical function: this corre-
sponds to the fact that the trivial representation always occurs in the de-
composition of the space L(X) into irreducible submodules.
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4.2 - Gelfand pairs associated with G.

From now on, we will apply the theory of Gelfand pairs to the groups we
introduced in Section 3.

Let ¢ = 2h + 1. Then, the multiplication by ¢ has order 2" %+ for each
level Ly, n > k. With n fixed, the group G,, = G/Stabg(n) which acts on the
n-th level of T, is given by

n — L2n n—k+1
Gy = Con X Corir,

where (a) = Cz. and (b) = Cyurn1, since a2',0%""" € Stabg(n), and the
action is defined as b~lab = ad. Observe that Cy. acts transitively on L,,.
Moreover Cyi-w1 = Stabg, (2"Z) for all n > k. This parabolic subgroup will
be denoted by K,,.

We want to show that (G,,, K,,) are Gelfand pairs. In order to prove it we
use the characterization of Gelfand pairs about the decomposition of the
space L(L,) into irreducible submodules, by showing that this decom-
position is multiplicity-free.

We distinguish two cases.

CASE ¢ = 1(4).

For every n <k we have G,, = Can, K, = {1} and so in the decomposi-
tion of the space L(L,) all the irreducible representations (of dimension 1)
of Cy« occur with multiplicity 1. The pairs (Ce«, 1) are not symmetric (except
in the case n = 1) Gelfand pairs.

Let now n > k. We have

G% = Czn X Czn—k+1 .

The space L(L,) decomposes under the action of Con as
211
2) L) =PV,
=0

where the representatlon V; is associated with the character y; defined by
1;(@) = o’ , with w = il We want to study how the automorphism b acts on
the V;’s. By using the relations holding in the group we get

a(dV;) = balV; = o¥bV;

and so bV; = V,;. We want to understand which of these subspaces are in-
variant under this action. The equation gj = j(2") gives j(q¢ — 1) = 0(2"),
that implies j = 0(2"~**1). The V}’s such that j satisfies this property are
exactly 2¢~1 and they correspond to the vertices of the spheres of radius 7,
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with »<k. They are in fact irreducible submodules of dimension 1 in the
representation of G, on L(L,). More generally the V}’s such that j = 0(2"™")
but j # 0(2""*1) correspond to the vertices of the sphere of radius r in L,
and in fact they are 2'~! in number. They are the Vi’s with
j=2mr 42+l =, ..., 2"1 — 1. Since we know that the order of b on
the sphere of radius » is 2"**1 we deduce that these V}’s will form 2+~2
irreducible submodules for G,, of dimension 2" **1, As an example, the orbit

b b b b
Vzvv,—r — quﬂﬁ' — quzﬂﬂ“ ... VqZT*kJrl—lZn—r

generates the irreducible representation for G,
Vzn—r @ qun—r @ VqZZn—r @ . e @ Vq21‘—k+1,12ﬂ,1..

The matrices corresponding to this representation are

o 0 .. 0
0 a)qzﬂr*i' .
a+— . . s
O 0 ’ wq27"k+1 ~lgn-r
0 - 0 1
1 0 0
b— .
o . .
0 0 1 0

Let us call y the character of this representation. We have
(@) = g0 (@) + gger(@) + -+ + g i1, (@) = 0,

since the 2"-th roots of 1 which occur in the sum are pairwise opposite.

Moreover w(b) = 0. Denote by w,, d = 1, ..., 252 the characters of the 2¢~2

irreducible representations associated with the sphere of radius . In order

to prove that they are pairwise non isomorphic, we present a suitable

element of G,, on which the characters y,; take different values, for each d.
Let us consider the element a2 """ € G,,. We observe that

(wzn—r)?"fkurl _ w27z—k+1 _ eZﬂiZ’;;k+1

Moreover we have 2" %1 = ¢2"-k+1(2") gince 1= ¢(2°~1). The same

computation holds for the following powers of q. Hence, all the powers of w

which occur in the diagonal of the matrix associated with a”*+! correspond
27‘52717]6"% o2

to the same angle o = -
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Let us consider now any element 2"~" 4+ {2""*1 in the sphere of
radius . We have

on—r +t2n—7‘+1 or—k+1
(w ) =

on—k+1 +t2n—k+2
w

and
q(zn—r + t2n—r+1)27—k+1 = 2%—k+1 + t271,—k+2(2n)7

as one can easily prove by using the property q = 1(2¢-1). We want to
study under which condition the elements 2" " 42" "1 and
20" 4 52"+ helong to the same orbit under the multiplication by g.
We get the equation

2n—k+1 + t2n—k+2 = 2n—k+1 + 827L_k+2(2n),

which gives t = s(2¢~2).
So, the elements

V271—r, V2774‘+271—1‘+1, Vzn—r+2,27zf1‘+l, ey V2r1—7~+<2k—2,1)2n—r+1

belong to the 22 different orbits associated to the sphere of radius 7. The
angles corresponding to the respective powers of w are

%JrZuz%—Z, w=0,1,...,2"2_1,
2
For u = 282 — 1 we get the angle — TZ and so the angles associated

with these orbits are pairwise different.

We have shown that the characters y, take different values on the same
element a2 " and so the associated representations are not isomorphic, as
required.

CASE ¢ = —1(4).

For n = 1 the group G is the cyclic group Cs and we get the symmetric
Gelfand pair (Cg, 1).
For 2 <mn < k — 1 we have b%> =1 and so

Gn = C2” X CZ,

which is the dihedral group of order 2"+1. The pairs (G, K,,) are symmetric
Gelfand pairs (as we observed above).

Let m > k. Let the V}’s be the spaces given in (2), with the relation
bV; = V. In this case the subspaces which are invariant under the action
of b are V and V5.1, as one can get from the equation gj = j(2") using that
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q = 1(2) but ¢ # 1(4). The spheres of radius 1 <7<k decompose into 2”2
irreducible submodules of dimension 2 and each of them is the direct sum
Vi ® V_;, with j = 02"") but j # 0(2"~"+1) and they are non isomorphic.

Let » > k. We distinguish two subcases.

Let ¢ =4h — 1 with & = 2x + 1. In this case necessarily k¥ = 3, since
(g —1)qg+1) =82x+ 1)(4x + 1), and so the sphere of radius » decom-
poses exactly into two orbits under the action of b. Analogously to the case
q = 1(4), we want to write a certain power of a on which the characters of
these two representations take different values to deduce that they are non
isomorphic.

Let us consider the element a2 . We observe that

2nig"—3
e 2"

=I5

—r 9r-3 -3
(wz?l T )27 — a)271 —

= ef.
Moreover
(a)qzn—r)zv'fii _ qu'n—:; _ 627:{4{2%:773 _ ei?T”‘
gt 4dhn & T . .
Now A=1 1 = 1 (2n), since & is odd. The same holds for the fol-

lowing powers of gq.
Viceversa, the element w2 raised to the power 2" gives the angle

— g As before, one can show that the element %" raised to the same
power 2" gives the angle 7 + g The same argument can be developed for

the following powers of q. It is clear that the characters associated with
these two representations take opposite nonzero values on the element
a2 € G, and this completes the proof in this first case.
Now let ¢ = 4h — 1, with & = 2. Observe that
¢ — 1 = (4h — 2)(4h) = 8h(2h — 1)

and so 2573 | k. In this case we consider the element a2 . We have

(wzm)zr% = = ezmgz% — 0¥
Moreover
(qu”*")Z"*k‘ _ qun—k _ ezm({zz);l*k _ e% .
Now observe that
2rnq  2n(4h —1) 274 k=3, B 2_7z B 2n

2n
= = o o 2k—mn—2—kzn—§(2n).
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The last equality is true since the expression of z implies that m is odd. A
similar argument can be developed for the following powers of q. So the
2 2 . . ..
angles 2—: and 7 — 2—: alternate in the orbit containing Vou-».
Consider now any element 2"~ + 2" "+1 with t = 0,...,2"1 — 1. Its

2
2"*_th power gives an angle equal to Z—Z if the equation

2nfk = znfk + t2n7k+l (211)

which implies ¢ = 025 1), is satisfied. 9
On the other hand the 2"~*-th power gives an angle equal to = — o if
the equation

ank + ank + t2n7k+l = 27171(271),

which gives 1+t = 2F-2(2k-1), is satisfied.
The values of ¢ modulo 2! that satisfy these two equations are
2. 27'71

T 2"~%+1 a5 many as the order of an orbit. So the elements whose
2 2 . .

2"-kth power gives 2—? or m— Z—Z are exactly those which satisfy the two

equations.

Consider now the two equations
znfk + t2n7k+1 = 271710 + 82%*164'1(2%)
and
zn—k + t2n—k+1 + 2n—k + 8217,—k+1(2n) = 2%—1(271).
Their solutions are, respectively,
t=s@1) and t=2F2% 1@,

So, if we fix a value of ¢t modulo 2! not satisfying the first two equations,
it is possible to find, by using these two new equations, 2" **1 values
which will form a new orbit, whose corresponding angle will be different
2n 2n
from o and 7 — o
This way we get 252 orbits in the decomposition of the sphere of radius
r, all of them corresponding to different angles and so the corresponding
2F-2 submodules have characters which take different values on a2 and
so they are non isomorphic.
Consider now the general case of any odd q to show that the Gelfand
pairs considered in this paper are non symmetric for every n > k. We
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recall that the pair (G,, K,,) is symmetric if the condition g~ € K,gK, is
satisfied for every g € G,,.

Let us choose g = a and consider K, = (b : 2" = 1). We can restrict
our attention on the elements of the form b~‘ab’. In fact the elements of the
form blab’ with i # —j give elements with occurrences of both a and b
which are clearly different from a~1. Since b~‘ab’ = a?, we have to study
the equation

(3) ¢ =—-1@2"),

with i = 0,...,2" %1 _ 1, It is clear that in the case i = 0 the equation is
satisfied only in the trivial case n = 1, when G,, = Cs. Also in the case al-
ready developed ¢ = —1 this equation is satisfied by 7 = 1.

Consider now the equation (3). If 2" divides ¢' + 1, then 2"*! divides
(" +1)(¢" — 1) = ¢ — 1. So one has ¢* = 1(2"*1). The smallest nonzero
exponent satisfying this equation is, as we know, 2" %2, But it must be
2i < 2" *+2 _ 2 This completes the proof. Collecting all the results ob-
tained in this section we have the following

THEOREM 4.2. Let q be an odd integer such that ¢* =1(2F) but
q? # 12", then, for every n >k, G, = G/Stabg(n) = Co x Cyu-ra and
K, = Stabg,2"Z) = Cou-rn. The associated pairs (Gy, K,) are non sym-
metric Gelfand pairs.

For n<k and ¢ = 1(4) we get G,, = Con and K, = {1}, which are non
symmetric (except in the case n = 1) Gelfand pairs.

For 1<n<k and ¢ = —1(4) we get G,, = Dav and K,, = Cs, which are
symmetric Gelfand pairs. For n = 1 we have the symmetric Gelfand pair
(Ce, 1).

4.3 — Final remarks.

In [CST] the authors show in a different way that the pairs (G,, K,)
introduced above are Gelfand pairs by using the general theory of the
Gelfand pairs associated to the semidirect products.

Let G = N xH be a finite group and let K < N be a subgroup of N
invariant under the action of H and such that (V, K) is a Gelfand pair. Set

n
X =N/K and let L(X) = @ V; be the multiplicity-free decomposition of

i=0
L(X) into irreducible N —submodules and let ¢; € V; be the corresponding
spherical functions. The map nK — nKH is a bijection between N /K and
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G/KH. The action of G on X = G/KH can be defined as nh(n'KH) =
= nhn'h~'KH and the induced action on L(X) is, as usual, f9(x) = f (g x).
It is easy to check that if V; is any irreducible N-invariant submodule in
L(X), then hV; is still N-invariant and irreducible, for every h € H, in other
words H permutes the V;’s.

So the decomposition of L(X) under the action of G into irreducible
submodules is

”
(4) LX) =EpWw,
J=0
where W;= @ V; and I'; denotes, for j=0,...,r, the H-orbits on
Z‘:ViEFj
{Vo,V1,...,Vy}. The Wy’s are pairwise non isomorphic because the re-

strictions to N of the representations W; and W; decompose into non iso-
morphic submodules for j # j'.

Hence the decomposition (4) is multiplicity-free and this implies that
(G,KH) is a Gelfand pair. The corresponding spherical functions can be
easily computed from the ¢;’s and they are given by

1

I ivier; heH

In the case of the groups introduced above we have N = Cs., K = {1} and
H = Cout:1. The V;’s are the submodules in which decomposes the space
L(L,) under the action of Cy» whose spherical functions are exactly the
characters of Cz.. The W’s are the orbits of the spaces V;’s under the
automorphism b with bV; = V;.

The previous argument guarantees that (Con X Cou-ii1, Couri1) is a Gel-
fand pair and yields the associated spherical functions.

In Section 4.2 we preferred to give an explicit calculation of the irre-
ducible subspaces of L(L,) under the action of G,, using only congruences
modulo 2" and identifying the spaces V;’s with the vertices of the n-th level
of the dyadic tree.
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