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Sectional Invariants of Scrolls Over
a Smooth Projective Variety

YOSHIAKI FUKUMA (*)

ABSTRACT - Let X be a smooth complex projective variety of dimension n and let € be
an ample vector bundle of rank » on X. Then we calculate the ith sectional Euler
number e;(Px(E), H(E)) and the ith sectional Betti number b;(Px(£), H(E)) for
1>2n—3 or ¢ =1, and the ith sectional Hodge number of type (j,7 —7)
R (Px(€),H(E)) for i > 2n — 1 and 0 < j < 4, where Px(€) is the projective
space bundle associated with £ and H () is its tautological line bundle. Moreover
we define a new invariant v(X, £) of (X, &) for » > n — 1. This invariant is thought
to be a generalization of curve genus. We will investigate some properties of this
invariant.

1. Introduction.

Let X be a projective variety of dimension n defined over the field of
complex numbers, and let L be an ample (resp. a nef and big) line bundle on
X. Then (X, L) is called a polarized (resp. quasi-polarized) variety. If X is
smooth, then we say that (X,L) is a polarized (resp. quasi-polarized)
manifold. In order to study polarized varieties, it is important to use an
invariant of (X, L). There are the following three invariants of (X, L) which
are well-known.

e The degree L".
e The sectional genus g(L).
e The A-genus A(L).
By using these invariants, many authors studied polarized varieties. In

particular, P. Ionescu classified polarized manifolds by the degree under
the assumption that L is very ample with L" < 8 ([13], [14], and [15]), and
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T. Fujita classified polarized varieties by the 4-genus and the sectional
genus ([3]).

In [5], in order to study polarized varieties more deeply, the author
introduced the notion of the ith sectional geometric genus g;(X, L) of (X, L)
for every integer ¢ with 0 < ¢ < n. This is a generalization of the degree
and the sectional genus of (X,L). Namely go(X,L)=L" and
(X, L) = g(L).

Here we recall the reason why this invariant is called the ith sectional
geometric genus. Let (X, L) be a polarized manifold of dimension n > 2
with Bs|L| = @, where Bs|L| is the base locus of the complete linear system
|L|. Let i be an integer with 1 <7 < n. Let X,,_; be the transversal inter-
section of general n — i members of |L|. In this case X, ; is a smooth
projective variety of dimension 4. Then we can prove that
9:(X,L) = hi(Ox, ,), that is, ¢;(X, L) is the geometric genus of X,, ;.

Hence we can expect that ¢;(X,L) has analogous properties of the
geometric genus of i-dimensional varieties.

In [6] and [7], we introduced the notion of the ith sectional H-arith-
metic genus 77 (X,L) of (X, L). By definition we can prove that if Bs|L| = (,
then y(X,L) = y(Ox, ,), where X,_; is the transversal intersection of
general n —i members of |L|. Namely y7(X,L) is the Euler-Poincaré
characteristic of the structure sheaf of X,,_;. (x(Ox,_,) is called the arith-
metic genus of X,_; in the sense of Hirzebruch. (See [12, 15.5, Section 15,
Chapter IV]. We also call y(Oyx, ;) the H-arithmetic genus of X,,_;.)

In [8], we also introduced some ith sectional invariants of (X, L), that is,
the ith sectional Euler number ¢;(X, L), the ith sectional Betti number
bi(X, L) and the ith sectional Hodge number /" (X, L) of type (j, i — j) for
every integer 7 with 0 <j <1, and we mvestlgated some properties of
these. In particular we proved that polarized manifolds’ version of the
Hodge duality and the Hodge decomposition hold (see [8, Theorem 3.1]).

In this paper we consider the ith sectional Euler number and the ith
sectional Betti number of scrolls over a smooth projective variety. In this
paper we say that a polarized manifold (P, H) is a scroll over a smooth
projective variety X if there exists an ample vector bundle £ on X such
that (P, H) = (Px(&), H(E)), where H(E) is the tautological line bundle on
Px(&).

In section 3, we calculate ¢;(IPx(&),H(E)) and b;(Px(E),H(E)) for
1>2n—3 and i=1 (see Theorems 3.1 and 3.2). We also calculate
B (Px(€), H(E)) for i > 2n — 1 and 0 < j < ¢ (see Theorem 3.3). In par-
ticular, by using these results, we can calculate these invariants of
(Px(&), H(E)) completely for n =1 or 2 (see Corollaries 3.1, 3.3 and 3.4).
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In section 4, we will define a new invariant of generalized polarized
manifolds. Here a generalized polarized manifold means the pair (X, &)
where X is a smooth projective variety and £ is an ample vector bundle on
X. Let r := rank(£). Here we state the history of invariants of (X, £). First
in [2], Fujita introduced the c;-sectional genus and the O(1)-sectional
genus of (X, £). Next, in [1], for the case where » = n — 1, Ballico defined
an invariant of (X, £) which is called the curve genus cg(X, £) of (X, £) (see
Definition 2.3), and several authors (in particular Lanteri, Maeda, Som-
mese, and so on) studied this invariant.

As a generalization of the curve genus, for any ample vector bundle £
with » <n — 1, Ishihara ([16, Definition 1.1]) defined an invariant g(X, &),
which is called the c,-sectional genus of (X, ), and in [9] we investigated
some properties about g(X, £). We note that if n — r» = 1, then g(X, £) is the
curve genus. This invariant means the following: If a general element of
H’(€) has a zero locus Z which is smooth of expected dimension % — 7, then
9X, &) = g(Z,det&|,), that is, g(X, &) is the sectional genus of (Z, det &| ).
Recently Fusi and Lanteri generalized this invariant. See [11] for detail.

In this paper, we will introduce a new invariant (X, £) of generalized
polarized manifolds (X, £) with » > n — 1, which is defined by using a result
in section 3 (see Definition 4.1). Here we note that v(X, £) is equal to the
curve genus if » = n — 1. We will investigate v(X, £) and give some results
about this invariant (see Theorems 4.1 and 4.2, and Proposition 4.1).

The author would like to thank the referee for giving useful comments
and suggestions.

Notation and Conventions.

We say that X is a variety if X is an integral separated scheme of finite
type. In particular X is irreducible and reduced if X is a variety. Varieties
are always assumed to be defined over the field of complex numbers. In
this article, we shall study mainly a smooth projective variety. The words
“line bundles” and “Cartier divisors” are used interchangeably. The tensor
products of line bundles are denoted additively.

O(D): invertible sheaf associated with a Cartier divisor D on X.
Ox: the structure sheaf of X.

2(F): the Euler-Poincaré characteristic of a coherent sheaf F.
Lhi(F) := dimH(X, F) for a coherent sheaf F on X.

(D) := hH(O(D)) for a Cartier divisor D.

q(X)( = h'(Ox)): the irregularity of X.
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b;(X) := dim H'(X, C).

Kx: the canonical divisor of X.

IP": the projective space of dimension .

Q": a smooth quadric hypersurface in P"'?,

~ (or =): linear equivalence.

det (£) := A"E, where £ is a vector bundle of rank » on X.

Px(€): the projective space bundle associated with a vector bundle £ on X.
H(E): the tautological line bundle on Px(E).

£Y: the dual of a vector bundle &.

¢;(€): the 1-th Chern class of a vector bundle £.

¢i(X) :=¢;(Tx), where Ty is the tangent bundle of a smooth projective
variety X.

For a real number m and a non-negative integer n», let

T mm—+1)---(m+n—-1) if n>1,
m]" =
1 if n=0.

mm—1)---(m—-—n+1) if n>1,
[m]n': .
1 if n =0.

Then for » fixed, [m]" and [m], are polynomials in m whose degree are n.
For any non-negative integer n,

l e {[n]n if n>1,

1 if n=0.
Assume that m and » are integers with » > 0. Then we put
(m) _ml,
n/ " n

We note that (7:) =0if 0 <m < n, and (%@) =1.

2. Preliminaries.

NoraTION 2.1. (1) Let Y be a smooth projective variety of dimension 1,
let 7y be the tangent bundle of Y, and let Qy( = Q;) be the dual bundle of
Ty and Qf, := NQy. For every integer j with 0 < j < i, we put

hi j(e1(Y),- -, (V) :=5(2})

= / ch(Q)Td(Ty).
Y
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(Here ch(Qé) (resp. Td(7y)) denotes the Chern character of 99 (resp. the
Todd class of 7y). See [10, Example 3.2.3 and Example 3.2.4].)

(2) Let (M, L) be a polarized manifold of dimension m. For every in-
tegers ¢ and j with 0 <j <1 < m, we put

' j a1
C}(M,L):Z(—l)l(m i )c_,-_l(M>Ll,

=0 !

M(M,L) = ]’LH(Ci(M,L), e CE(M,L))LRHZ,

(3) Let M be a smooth projective variety of dimension m. For every
integers ¢ and j with 0 <j <1 < m, we put

i—j—1

(=R (@) ifj#1,

HyG,)) =4 =
0 if j =1,
j—1
o (- D@L it j#0,
Hy(i,j) = tZ J
0 it j=0.

DEFINITION 2.1. (See [8, Definition 3.1].) Let (M,L) be a polarized
manifold of dimension 7, and let 7 and j be integers with 0 < ¢ < m and
0<j<i

(1) The ith sectional Euler number e;(M, L) of (M, L) is defined by the
following:

e;(M,L) = Z( — 1) (m —it+l- 1) ¢; (ML,

1=0 l
(2) The ith sectional Betti number b;(M, L) of (M, L) is defined by the
following:
eo(M, L) if i=0,
b;(M,L) := _ i-1 _
(—=1) (ei(M, L) - ZZ( - 1)7bj(M)> if 1<i<m.
=0

(3) The ith sectional Hodge number hf’i’j(M ,L) of type (4,1 —3) of
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(M, L) is defined by the following:

B L) = (= 07 { M, L) — HyGj) — Hali,p).

REMARK 2.1. (1) If ¢ =0, then
eo(M,L) = by(M, L) = h)°(M,L) = L™.
(2) If i = 1, then
en(M,L) =2 —29(L),

bi(M, L) = 2¢(L),
', L) = 1M, L) = g(L).

3) If 1 = m, then
e’VVL(MaL) - e(M)a

bm(MaL) = bm(M);
B, L) = B (M),

hzz_-j’-j(M,L) — hm_j‘j(M).

ProPOSITION 2.1.  Let (M, L) be a polarized manifold of dimension m.
(1) For every integer 1 with 0 < 1 < m, the following hold:

A1) bi(M,L) =Y ok, ).

1.2) KM, L) = kM, L).

1.3) kM, L) = k' (M, L) = g;(M, L).
(2) Assume that L is base point free. Then for every integers i and j with

1<i<mand0 <j<1the following hold.
2.1) b;(M,L) > b;(M).
22) WM, L) > Wi M),

Proor. See [8, Theorem 3.1 (3.1.1), (3.1.3), (3.1.4) and Proposition 3.3
(2) and (3)]. O
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PropPoSITION 2.2.  For every integers a, k, | and r with 0 <1,
!
T+ r—k k—a+1
Sev() ) e ()
=0 -J

Proor. See [8, Proposition 2.5]. O

NotaTiON 2.2.  Let X be asmooth projective variety of dimensionn > 1
and let £ be an ample vector bundle of rank » on X. We put P := Px(&),
H := H() and m := dim P. Then m = n + r — 1. In this paper we assume
that » > 2.

REMARK 2.2. Let X, &, P, H, m, n and r be as in Notation 2.2.
(1) By [18, (2.1) Proposition], we have
b(P) = b(X) + bj2(X) + - - + by_zy2(X).

(2) Let ¢ be an integer with ¢ < m. Then n 4+ — 1 > ¢ and we obtain
r>t1—n-+1
2.1) Ifi>2n—2and?—1 > j, then

j—2r+2<(@-1)-20t—-m+1)+2
=2n—-1-—1

<1.

So by (1) above, if ¢ > 2n — 2 and ¢ — 1 > j, then by (1) we have

l
D biaX) if j =21,
k=0
bj(P) =

l
> biaX) ifj=20+1.
k=0

By the same argument as this, if ¢ > 2n — 1, then we see that

l
> bigX) if i =21,
k=0
bi(P) =

!
Z b op(X) ifi=20+1.
k=0
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(2.2) Assume that i <m—1. If 1=2r—3 and i—1 >, then
J—2r+2 <2 If this equality holds, then i =n+r —1=m. But this
contradicts the assumption. Hencej — 2r + 2 < 1, and by (1) above we have

l
> biaX) if j=2I,
k=0
bi(P) =

> biaX) if j=20+1.

k=0
By the same argument as this, if 1 <m —1, n>1 (resp. » > 2) and
i=2n — 2 (resp. i = 2n — 3), then we see that by, 2(P) = 37~ b2,z 2t(X)
(resp. bau—3(P) = S48 bay3-26(X)).

DEFINITION 2.2. Let X be a smooth projective variety of dimension »
and let £ be a vector bundle of rank » on X.
(1) The Chern polynomial ci(€) is defined by the following:

&) =14 c1(E) + 2O 4 - - -

(2) For every integer j with j > 0, the jth Segre class s;(€) of € is defined
by the following equation: ¢;(£")s:(€) = 1, where ¢;(£") is the Chern poly-
nomial of £ and s,(€) = Y. s;(EF.

REMARK 2.3. (1) Let X be a smooth projective variety and let 7 be a
vector bundle on X. Let 5;(F) be the Segre class which is defined in [10,
Chapter 3]. Then s;(F) = §;(F").

(2) For every integer ¢ with 1 <1, s;(F) can be written by using the
Chern classes c¢;(F) with 1<j<i. (For example, s1(F) = ci(F),
so(F) = (:1(]-")2 — ¢2(F), and so on.)

DEFINITION 2.3. Let X be a smooth projective variety of dimension n
and let £ be an ample vector bundle of rank % — 1 on X. Then the curve

genus cg(X, €) of (X, £) is defined as follows:

g(X. &) = 1+ %(KX + (€ 1(6).

3. Sectional invariants of scrolls over a smooth projective manifold.

THEOREM 3.1. LetX, & P, H, m, nand r be as in Notation 2.2. Then the
following hold.
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@1 Ifi>2n—1, then e;(P,H) = (1 — n + 1)c,(X).

8.1.2) If n > 2, then ez, _o(P,H) = (n — 1)c,(X) + ¢, (E).

(8.1.8) If n >3, then ez, 3(P, H) = (n—2)(¢;,(X) — ¢,4,(£)) — ¢ 1(E)Kx+ ¢1(E)).
(B.14) e1(P,H) = —(n — 2)8,(E) — (c1(E) + Kx)30-1(E).

(8.1.5) eo(P, H) = s,(&).

Proor. By[10, Example 3.2.11] and Remark 2.3 (1), for every integer [
with0 <l <m

o)=Y Z( )ck p*€VHE) Fer i(p' Tx).

(Here p : P — X denotes the projection.) Hence
ei(P, H)

_ 21:( 1y (m - z;—j - 1) ¢ j(PYH" 7
j=0
:i(—l)i(m_i—.'—j_l>
70 J
i—j s .
{Z (L) (p*fv)me)m”f“*scmqo*Tx)}

s=0 u=0

Ry r+]+n—z—2 r—k
= 1 . .
> (350 [

0<k+t<i

e (p*EY)er(p T x)H(E)" 1,
By Proposition 2.2 and [3, (3.7) in Chapter 0], we get
(1)e;(P, H)

2)ti—t—
= Y, (D7 ’“(M(" l ti: t k)ck(p*gv)ct(p*TX)H(s)’”’“t
0<kt

0§k+t§i

i pf(m—1t—2 . . Ml
= > v ’“(i_t_k)%(p £)e(p*Tx)HE"
0<k,
0§k§+ttﬁi

itk [T — t—2
= Z (=1 t k<i_t_k)ck(5v)ct(TX)Snkt(g)~
0t ici
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Here we put

n—t—2

EG,k,t) == (-1)"" (@ o k)ck (£V)er(T x)sn-1—1(E).

In order to calculate e¢;(P, H), we have only to consider the case where
E(i,k,t) # 0. We note that if & + t > n, then ¢ (£")cy(T x)$,——+(E) = 0. So
we may assume that k + ¢ < n.

(a) The case where 1 > 2n — 1.
First we note that if (n,7) = (1,1), then

ei(P,H) =e1(P,H) =2 - b0(P,H) =2 - 29:(P, H) = 2 — 29(X) = c1(X).

So we assume that (n,1) # (1,1).
Here we note that (n—t —2)—(—t—k)=n—1-2+k<-n+k-1< -1

and k +t <i. Hence (7; _; a f) # 0 if and only if one of the following
holds. T

@l)i—-t—k=0.
@2)i—t—k>0andn—-t—-—2<0.

@l)Ifi—t—k=0,then2n —-1<i1=t+k <n. Hencen=1and=1.
But this contradicts the assumption here.

@2) If i—t—k>0 and n—t—-2<0, then t=n—1 or n because
k+t<mandk > 0. Hence (t,k) = (n —1,0), (n — 1,1) or (»,0).
If (¢, k) = (n — 1,0), then

n—t—-2Y\ -1 _(_ qyi-nel
() ( )

If ¢, k) = (n —1,1), then

n—t—2 -1 i
(i—t—k) - (z—n) = (=D

If (t, k) = (n,0), then

n—t—2 -2 e
(72 () v
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Hence if (n,7) # (1, 1), then
e;(P,H)
= (= D" e, 4(Tx)s1(E) + (= D er(€)e, 1(Tx)
+ (= VX6 = n+ Deo(Tx)
= (G —n+ De,(X).
Therefore in any case
e;(P,H) = (@ —n+ 1)c,(X)

ifi>2n—1.

(b) The case where ¢ = 2n — 2. Here we note that » > 2 in this case.

n—t—2 n—t—2
Then (i—t—k>_(2n—t—2—k)' Here we note that

Zt-2
(n—1t—2)<2n—t—2—k Hence (2 " tt 5 k) £ 0if and only if one
of the following holds. notmes

(b.1) k=mn.
b2)k<nandn—-t—2<0.

(b.l) If k=mn, then t=0 because t+k<n and ¢t>0, and

—t-2
" = 1. Here we note that n — ¢ — 2 > 0 in this case because
2n—t—2—-k

n >2andt = 0. Hence

E@n —2,1m,0) = (— 1?27, (EY) = ¢,(E).

(b.2)Ifk <mandn —t — 2 < 0,thent =n — 1 orn. Hence (¢, k) = (n — 1,0),
(n —1,1) or (n,0). By the same argument as (a.2), we obtain

E@Cn—20n—-1)+E@Cn—-21n—-1)+E@2n—20,mn)
= (—12@ 2 e, (X)s1(E) + (— P2y ()¢, 1(X)
+ (= DX 2 (g — 1)e, (X)

= (n — e, (X).
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Hence we get

627L—2(P3 H) - (% - l)cn(X) + Cn(g)
(¢) Assume that ¢ = 2n — 3. Here we note that n > 3 in this case. Then

n—t—2 . . .
<2n ke 3> # 0 if and only if one of the following holds.

(el) bk =mn.
e2k=n-1.
e3)k<n—2andt>n-—2.

First we consider the case (c.1). Then ¢t = 0 because k +¢ <mnandt > 0.
So we have

n—0-2
2n -3 —0—

n—2
= - (n _ 3> Cn(g)

= - (W/ - 2)011(8)-

E@n —3,n,0) =(— 1)#3-0 ( n) cn(EY)

Next we consider the case (c.2). Then ¢t=0 or 1, and

"=t=2 4 Hence we have E@n—3,n—1,0)=—c,1(E)s1(E) =
2n—t—k—3

= —cp_1(E)c1(€) and E@2n — 3,mn —1,1) = ¢;,_1(E)c1(X).

Finally we consider the case (¢.3). Then (k,t) = (0,7 — 1), (1,%n — 1) or
(0,7n). Hence by the same argument as above

E@n—3,0n—1)+E@n—3,1,n—1)+E2n—3,0,n) = (it — 2)c,,(X).
Therefore
ean_3(P, H)
= —(n —2)cy(E) — ¢-1(E)c1(E) + ¢p-1(E)e1(X) + (n — 2)c,, (X)
= (n — 2)(cp(X) = €4 (E)) + ¢—1(E)(c1(X) — ¢1(E))
= (n — 2)(cn(X) — (&) — cn1(E)Kx + c1(E)).
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(d) The case where ¢ = 1. Then by (1) we get
e1(P,H)

s fm—t—2
= Z (—Dir <1 e k) e (EY)e(T x)Sn—i—(E)
ogokgfi;l

=—(n —2)5,(E) + (€1(E") + c1(Tx))$0-1(E)
= —(n — 2)8,(€) — (€1(E) + Kx)sn-1(E).
(e) The case where © = 0. Then by (1) we get eo(P, H) = s,(&).
We get the assertion of Theorem 3.1. O
By Theorem 3.1, we get the following for » = 1 and 2.

COROLLARY 3.1. Let X, & P, H and n be as in Notation 2.2.
(3.1.1) Assume that n = 1. Then we get the following:

U2 -29X) f 121,

ei(P,H) = .
degé& if1=0.

(3.1.2) Assume that n = 2. Then we get the following:

(i — Dea(X) if >3,

X & f 1=2

e(P.H) — c2(X) + c2(E) 2f@ ,
—(1(&) + Kx)er (&) if i=1,

52(6) if i =0.

THEOREM 3.2. LetX, &, P, H, m, n and r be as in Notation 2.2. Then the
Sfollowing hold.

3.21)Ifm >1>2n -1, then b;(P,H) = b;(P).
8.2.2) If n > 2 and m > 2n — 2, then bey,_o(P,H) = bay,_o(P) + ¢,,(£) — 1.
3.23) If n > 3 and m > 2n — 3, then

bon3(P, H) = bz, 3(P) + (n — 2)¢, () + ¢, 1(E)(Kx + ¢1(E)) + 2 — 29(X).
(3.24) by(P,H) = 2 + (n — 2)8,(E) + (c1(E) + Kx)$1-1(E).
(3.2.5) by(P, H) = s,(&).
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PRrOOF. Since e;(P, H) has been calculated in Theorem 3.1, we need to

i—1
study Z( — l)kbk(P). By using Remark 2.2, we calculate this.

k=0
(a) The case where ¢ > 2n — 1. Since b,,(P,H) = b,,(P), we assume that
1 < m.
(a.1) Assume that ¢ is even. Then 7 > 2n. Here we note that b;(X) = 0 if
j > 2n. Then

.
—

(— Dfb(P)
k=0
= 2 (% - k) bo(X) — ; (% —k+ 1) bor—1(X)
=3 R Db D) 30— kot Db () + L o),

=

f=]

k=1
n

Here we note that by Remark 2.2 (2.1), we have b;(P) = Z by, (X) because
1 > 2n in this case. Since 1 is even, we have k=0

b;(P,H) — b;(P)

-1 n
=(-1 (ei(P,m -2 (- wbj(P)) - baX)
k=0

J=0

= =0+ 16,0~ 2> 00—k + Dbp(X)
k=0

+2) (n—k+2)by1(X) — (0 — 2n — 2)e(X) — Z bar(X)
=0

n
k=1

= (n+3)eX) + Y @k — 21— 3)bze(X) + ) @ — 2k + 4boe1(X)
k=0 k=1

=" @k — WbaX) — Y @ — 1 — Dby 1(X).
k=0 k=1
Here we prove the following.
n
Cram3.1l. (1)) @k —n)by(X) = 0.
k=0

2 Z 2k —n — Dbg_1(X) = 0.
=1
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Proor. (1) Assume thatn = 2[. Then we note that 2k — n)bg,(X) = 0if
k = l. So by Poincaré duality

3 @k — 1)be X0

k=0

N
,_.

@ b0+ 3 @ — bl

k=0 k=l+1
-1 -1

=@k = mbyX) + > (1 — 2k)ba, 2(X)
k=0 k=0

{\4
,_.

-1

> (@ — )b (X) — Z(Zk 1)z, (X)

il
(=1

=0.

If n = 21 + 1, then by Poincaré duality

3 @k — 1)be X0
k=0

l

=5 @ b+ 3 @ — ()
k_

— k=l+1

l

l
@k — Wb 00 + > (0 — 2k)by (X
k=0 k=0

(2k 1) (X) — Z(Zk 1)b2(X)
k=0

??‘

=0.

Hence we obtain the assertion of (1).
(2) This can be proved by the same argument as (1). |

By Claim 3.1, b;(P,H) = b;(P) if 1 > 2n — 1 and 7 is even.
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(a.2) Assume that 7 is odd. Then

(—1)b;(P)

_ (ﬂ - k) boy(X) — 3 (ﬂ ke 1) a1 (X)

k=0 2 k=1 2

=Y —k+Db(X) = Y (0 — k + Dbg1(X)
k=0 k=1
+ (Hzl —n— 1>6(X).

By Remark 2.2 (2.1), we have b;,(P) = Z boj.—1(X) because ¢ > 2n — 1in this
k=1
case. Hence by Theorem 3.1 and Claim 3.1, we have

bi(P,H) — bi(P)

i—1
=- <(z‘ —n+DeX) —23 (- 1>"b_,»(P>> — bi(P)

J=0

= —(n+2)eX) + Y @n — 2k + 2)b(X) — > @n — 2k + by 1(X)
k=0 k=1

= (= 2)bg(X) = > (0 — 2k + Dby 1(X)
k=0 k=1

=0.

Therefore b;(P,H) = b;(P) if 1 > 2n — 1 and 7 is odd.
In any case, if m > 1 > 2n — 1, then b;(P, H) = b;(P).

(b) The case where © = 2n — 2 and 2n — 2 < m. Then by Remark 2.2 (2.1)
we obtain

l
> biaX) if j =2,
k=0

bi(P) =

l
D bja(X) if j=21+1
k=0
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for every integer j with j < 2n — 2. Hence

2n—3 ) n—2 n—1
S (- DHP) =Y 00—k Dby > (0 — k)bg 1 (X).
j=0 k=0 k=1

By assumption,we haven +r —1 =m > 1+ 1 = 2n — 1. So by Remark 2.2
(2.2) we obtain

n—1

ba-2(P) =Y _ bar(X).
k=0

Therefore

bzn,z(P, H) - b27172(P)

2n—3 )
= <62n2(PaH) -2 Z (— 1)7(7_7'(P)> — b2y —2(P)

=0

n—2

= — DeX) + c,(€) = Y @n — 2k — 2)b(X)
k=0

n—1 n—1

+> 0 @n =20y 1) — > bar(X)
k=1 k=0

n—2

= — DeX) + c,(€) = Y @n — 2k — by (X)
k=0

n—1

+ ) @n — 20)bg 1(X) — by, 2(X)
k=1

n—1
=m—DeX) + ¢, (&) +eX) — 1 — Z 2n — 2k)bg(X)
k=0
n—1
+ Y @n — 2k + Dbge_1(X) + gy 1(X)
k=1

n—1

= neX) + ¢, (6) = 1= @n — 2k)bg(X)
k=0

+ Y @n— 2k + Dby (X).
k=1
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Since

-1

3

@n — 2)boi(X) =Y (20 — 2h)bgi(X),
k=0 k=0

we obtain

bou—o(P, H) — bgy—2(P)

= ne(X) + cu(6) =1 = (@n — 2k)bg(X)
k=0

+ Z @2n — 2k + 1)bg;,_1(X)
=1

= (&) = 14> @k — m)ba(X)

k=0
= > @k — 1 — Dby (X).
k=1

By Claim 3.1, we get
bou—2(P,H) = bay—2(P) + ¢, (E) — 1.

(¢) The case where ¢ =2n — 3 and 7 < m. Then by Remark 2.2 (2.2) we
obtain
l
> biX) if j =2,

b(P) — k=0

> biaX) if j=20+1
k=0
for every integer j with j < 2n — 3. Hence

2n—4 n—2

n—2
S 0i(P) =Y~k — Dby(X) = > (n — k — Dbyg_1(X).
j=0 k=0 k=1

By assumptionwe haven +r — 1 =m > 1+ 1 = 2n — 2. Hence by Remark
2.2 (2.2) we obtain

n—1

ban-3(P) = > by 1(X).
k=1
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Therefore
bon—3(P, H) — ba,_3(P)

2n—4

= —2, 3(P,H) +2 ) (= 1Yb;(P) — bz, 3(P)
j=0

= —(n —2)(e(X) — u(E)) + cn-1(E)(Kx + 1(E))

n—2 n—2
+3 @ — 2k — 2bu(X) — Y @1 — 2k — 2by 1(X)
k=0 k=1

n—1
= by (X)
k=1

= —(n —2)(e(X) — ¢ (&) + cu-1(E)(Kx + c1(E))

n—2 n—2

+ ) @ — 2k — 2)by(X) = Y @1 — 2k — Dbz (X0)
k=0 k=1

- b2n—3(X)

= —(n —2)(eX) — cu(&)) + ¢ 1(E)(Kx + c1(E))
- 26(X) + 2b27¢72(X) + 2b2n(X) - 3()27—0,3()() - 2b2n71(X)

n—2 n—2

+ 3 @n — 200 (X) = Y~ @n — 2k + Doy (X)
k=0 k=1

= —(n —2)(e(X) — (&) + cun-1E)(Kx + ¢1(E))

n

+ 3 @n— 2bu (0 — Y @0 — 2k + Dby 1(X)
k=0 k=1

- 29(X) + 2b2n(X) - b2nfl(X)
= —(n — 2)e(X) + (n — 2)cn(E) + ¢ 1(E)(Kx + c1(E))
+ > — 2M)be(X) — > (0 — 2k + Dby (X)
k=0 k=1

+ (1 — 2)e(X) + 2b2y(X) — bay-1(X).

111
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Since b2, (X) =1 and bg,,_1(X) = b1(X) = 2¢(X), by Claim 3.1 we obtain
b2n73(P; H) - b2nf3(P)
= —2)cn (&) + c1(E)(Kx + ¢1(8)) + 2 — 29(X).
(d) The case where 7 = 1.
Then by Theorem 3.1 (3.1.4) and the definition of b1 (P, H)
b(P,H) = —e1(P,H) + 2by(P)
=24 (n — 2)s,(E) + (c1(E) + Kx)s$—1(E).

(e) The case where ¢ = 0.
Then by Theorem 3.1 (3.1.5) and the definition of by(P, H),

bo(P,H) = eo(P, H) = $,().

Therefore we get the assertion. O

COROLLARY 3.2. Let X, &, P, H, m and n be as in Notation 2.2. Ifn > 2
and m > 1 > 2n — 2, then b;(P,H) > b;(P).

Proor. Ifi > 2n — 1, then by Theorem 3.2 (3.2.1) we get the assertion.
Next we consider the case where ¢ = 2n — 2. Since £ is ample, we have
¢ (&) > 1. Therefore by Theorem 3.2 (3.2.2), we see by, _2(P, H) > bgy,_2(P).
This completes the proof. O

COROLLARY 3.3. Let X, & P, H, m and n be as tn Notation 2.2.
(3.3.1) Assume that n = 1. Then we get the following:

biP) f m>1i>1,

bi(P,H) = o
degé if 1 =0.

(3.3.2) Assume that n = 2. Then we get the following:

bi(P) if m>1i>3,
b2(P) + c2(6) — 1 if i =2,
01(5)(01(5) + Kx)+2 Zf 1= 1,
$2(E) if i=0.

bi(P,H) =

Proor. By Theorem 3.2, we get the assertion. (Here we note that if
n =2, then 2n —2 =2 < n+r—1=m because we assume r > 2 in this
paper.) O
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REMARK 3.1. Since £ is ample, we see that if =1 or 2, then
b;(P,H) > 0 for any 1.

Here we calculate hﬁ"ifj (P, H) for the case where m > 1 > 2n — 1.

THEOREM 3.3. Let X, & P, H, m and n be as in Notation 2.2. If
m>1>2n—1and 0 <j<i, then I;"7(P,H) = W(P).

Proor. First we note that we can take an ample line bundle A on X
such that £ ® A%! is ample and spanned for every positive integer ¢. Hence
H(E ® A®") is ample and spanned. We also note that there exists an iso-
morphism ¢ : Py (€ ® A®') — P with H(E ® A®') = ¢"(H @ p*(A*?)), where
p: P — X is the projection. Therefore H ® p*(A*!) is also ample and
spanned. By this ¢, we identify Py (€ ® A®') and P. By Theorem 3.2 we have

bi(P,H(E @ A®Y) = by(P).
Hence
bi(P, H @ p*(A™"))
= b;(P,HE @ A®Y)
= by(P).
On the other hand by Proposition 2.1 (1.1) and (2) we have

h;;:’iij(P,H ® p*(A®t)) _ h]Z*](P)

because H @ p*(A®) is ample and spanned. But since F(t):=
= 1"(P,H ® p*(A®")) — h*"7I(P) is a polynomial in ¢ and F(¢) =0 for
every positive integer t, we see that F'(0) = 0, that is,

WP, H) = BH(P).

This completes the proof. O

COROLLARY 3.4. Let X, & P, H, m and n be as tn Notation 2.2.
(3.4.1) Assume that n = 1. Then we get the following:

hj’i_j(P) fm>1>1and 0<j <z,

WP H) =
deg €& if i=0andj=0.
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(3.4.2) Assume that n = 2. Then we get the following:

WP if m>i>8and 0<j<i,
hO%(P) ifi=2andj=0,

h.g-iif(P’ H) = hz’O(P) lf 1=2 (l’l’Ld] =2,
RYL(P) + ¢o(E) — 1 ifi=2andj=1,
1@ (&) +Ex)+1 ifi=1andj=0,1,
52(E) fi1=0andj=0.

Proor. If n =1, then by Corollary 3.3 and Theorem 3.3 we get the
assertion.

Assume that n = 2. Then by Corollary 3.3 and Theorem 3.3 we get the
assertion for the case where m > 1 > 3 and 0 <j < 1. If (¢,7) = (2,0) (resp.
(2,2)), then by Proposition 2.1 (1.3) and [5, Example 2.10 (8)] we have
hy*(P,H) = go(P, H) = h*(Op) = h**(P) (vesp. hy°(P,H) = g>(P,H) =
= h%(Op) = h'2(P) = h*O(P)). Moreover by Corollary 3.3 (3.3.2) and Pro-
position 2.1 (1.1) we get hy' (P, H) = hM1(P) + ¢2(E) — 1.

Assume that ¢=1. Then by Proposition 2.1 (1.1) we have
by(P,H) = hy°(P, H) + h* (P, H). Moreover by Proposition 2.1 (1.2) we
have h}’O(P, H) = h?’l(P,H ). Therefore by Corollary 3.3 we get the asser-
tion for the case i = 1.

By Corollary 3.3 we get the assertion for the case where i = 0. |

- REMARK 3.2. Since £ is ample, we see that if » =1 or 2, then
B;(P,H) > 0 for any i and j with 0 <j <14 <m.
4. A new invariant of generalized polarized manifolds.

Here we use Notation 2.2. Assume that ¢ =2n — 3, » > 3 and 7 < m.
Then by Theorem 3.2 (3.2.3) we see that (n — 2)c,,(€) + ¢,_1(E)Kx + ¢1(E))
is even because bs,_3(P,H) and bg,_3(P) are even (see [8, Theorem 3.1
3.1.2)]). We put

vX,€) =1+ % ((n = 2)en(E) + cn1(E)Kx + 1(E))).

Here we note that * >n —1sincen+r—1=m>1+1=2n — 2.
If » =n —1, then

Q)(X, =1+ % (KX + 01(5))071_1(5).
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So v(X, &) is thought to be a generalization of the curve genus cg(X, &) of
(X, &) (see Definition 2.3). Here we define v(X, £) again.

DEFINITION 4.1. Let (X, &) be a generalized polarized manifold of di-
mension 7 > 3. Assume that » > n — 1. Then the invariant (X, £) of (X, &)
is defined as follows.

1
VX, 6 =1+ 5 ((r = 2)eu(E) + €n1(E)Ex + c1(E)).

Since by, _3(P, H) — bsy,_3(P) = 2v(X, &) — 2q(X) by Theorem 3.2 (3.2.3),
we can propose the following conjecture.

CONJECTURE 4.1. Let (X,&) be a generalized polarized manifold of
dimension n > 3. Assume that »r > n — 1. Then v(X, &) > q(X).

Here we study the non-negativity of v(X, £).

THEOREM 4.1. Let (X, &) be a generalized polarized manifold of di-
mension n > 3. Assume that r > n — 1. Then v(X,E) > 0.

Proor. If r=n—1, then v(X,&) is the curve genus and then
v(X, &) > 0 by [19, Theorem 1]. So we may assume that » > #.

If » > nand Kx + ¢1(€) is nef, then (Kx + ¢1(E))c,—1(E) > 0 because & is
ample. Furthermore ¢,(€) > 1. So we obtain v(X, &) > 2.

If » > n and Kx + ¢1(€) is not nef, then (X, &) = (P", O (1)") by [22,
Theorem 1 and Theorem 2]. In this case (Kx + ¢1(€))c,—1(E) = —n and
c,(€) = 1. Hence v(X, &) = 0. Therefore we get the assertion. O

THEOREM 4.2. Let (X, &) be a generalized polarized manifold of di-
mension n > 3. Assume that r > n — 1.

M) If v(X, &) =0, then (X, E) is one of the following.

1.1) (P", 0p(@)™).

12) (P, 0p()™ ).

1.3) (P",0p ()" & O (2)).

(14) (Q", 01" 1.

(1.5) X = Pui(F) for some vector bundle F of rank n on PL and
£ = @' (H(F) + 1" Op(b), where 7: X — P! is the bundle
projection.
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) If v(X, &) =1, then (X, ) 1is one of the following.
2.1) X = Pc(F) for some vector bundle F of rank n on a smooth
elliptic curve C, and Ep =2 (9.[),171(1)69"’1 for any fiber F' of the
bundle projection X — C.
2.2) Kx+det()=0Oxandr=mn-—1.

Proor. If v(X,&) <1, then by the proof of Theorem 4.1, one of the
following cases occurs:

421)r=n-—1.
4.2.2) » > n and Kx + ¢1(€) is not nef.

If r=n—-1 and v(X,&) =0 (resp. v(X,&) =1), then 0 =v(X,¢&) =
=cgX, &) (resp. 1 =v(X, &) = cg(X, E)) and by [19, Theorem 1 and Theo-
rem 2] we get the above types.

If » > n and Ky + ¢1(€) is not nef, then (X, &) = (P", Op(1)¥") by [22,
Theorem 1 and Theorem 2] and then v(X, &) = 0. Hence we get the as-
sertion. O

REMARK 4.1. (1) If (X,&) is the type (2.2) in Theorem 4.2, then a
classification of (X, £) has been obtained by [20].
2) If v(X, €) < 1, then we see that v(X, &) > ¢(X).

PrOPOSITION 4.1. Let (X, &) be a generalized polarized manifold of
dimension n > 3. Assume that »>n—1 and £ is spanned. Then
v(X, &) > ¢(X).

Proor. Set (P,H) := (Px(E), H(E)). Then H is ample and spanned. So
by Proposition 2.1 (2.1) we obtain

b21173(P,H) > b2n73(P)-

On the other hand
boy—3(P, H) — bay—3(P)
= 20X, &) — 2¢(X).
Hence we get the assertion. O

REMARK 4.2. (1) By Theorem 4.2 we can determine the type of (X, &)
such that (X, £) = ¢(X) and ¢(X) < 1.
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(2) For every integer g > 2, there exists an example of (X,&) with
vX,E) = q=qX) (This was given by the referee.): Let C be a
smooth projective curve with g(C) = q > 2. We note that there exist
vector bundles F and G on C with rank F =n and rank G=n —1
such that £ .= H(F) ® n*(G) is an ample vector bundle of rank n — 1
on X, where X := P¢(F), H(F) is the tautological line bundle of F
and 7 : X — C is the bundle projection. Then we can easily check
that v(X, &) = cg(X,E) =q > 2.

(3) We see that if £ is ample and spanned, rank £ =n —1 and
v(X, E) = q¢(X) > 2, then (X, £) is isomorphic to the type in (2) above.
This has been proved by [17, Theorem].

Here we give the following conjecture which was pointed out by the
referee:

CONJECTURE 4.2. Let X be a smooth projective variety of dimension
n > 3 and let £ be an ample vector bundle on X with rank £ = r. Assume
that » >n—1 and ¢X) > 2. If £ is spanned and v(X,E) = q¢(X), then
r=n-—1

REMARK 4.3. We consider the case where » > n > 3. (The following (a)
and (b) were also pointed out by the referee.)

(a) If Kx + c1(€) is not ample, then by [4, Main Theorem] (X, £) is one of

the following 6 types and we can calculate v(X, £) and q(X):

(@) (P",0p@)™*Y). In this case W(X,E), X)) =1+ @1/2)-
(n —2)(n + 1),0).

(@.2) (P", Op(1)®). In this case (X, &), ¢(X)) = (0,0).

(a.3) X = Pc(F) for a vector bundle F of rank % on a smooth curve
C, and € =2 H(F)® n*(G) for a vector bundle G on C with
rank G = n, where 7 : X — C is the bundle projection. In this
case (V(X, &),q(X)) = (9(C) + (n — 1)(g(C) — 1 4 c1(F) + c1(9)),

g(C)).

(@d) (P", 0™ 1 Op(2). In this case @X,E),qX)) =
=m-1,0).

@5) (P",Tp). In this case (X,&),qX) =1+ (1/2)n —2).
(n +1),0).

(@.6) (Q", 0, (1)™). In this case WX, &), ¢X)) = (n — 1,0).

Here we consider the case where (X, £) is the type (a.3) above. Then
1 < ¢ (&) = c1(F) + ¢1(G) because &€ is ample. Hence g(C) — 1 + ¢1(F) +
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+c¢1(@) >0 and we get v(X, &) > g(C) = ¢(X). Moreover if g(C) > 1,

then we see that v(X, &) > q¢(X) + (n — 1) > q(X).

We also note that if £ is spanned by global sections, then ¢, () > 2 by

[21, (3.4) Theorem] and we obtain v(X, &) > q(X) + (n — 1) > q(X).

(b) Next we assume that Ky + ¢1(€) is ample. Then we can prove the
following:

ProposiTION 4.2. (1) If Kx+ c1(&) is ample, then v(X,&) > 1+
1
+ 5 (n—1).

2) If Kx + ¢1(E) s ample and & s spanned, then v(X,E) > n.

Proor. (1) By  assumption, we have ¢,(&)>1 and
(Kx + c1(E))cy—1(E) > 1. Hence we get the assertion of (1).

(2) Since € is spanned and Ky + c¢1(€) is ample, we see that ¢, (£) > 2
by [21, (34) Theorem]. Hence n —2)c,(&)+ (Kx + c1(E))cy_1(E) >
> 2(n — 2) + 2 because the term on the left is even. Therefore we get the
assertion of (2). O

The above results suggest that for the case where r >mn and
(X, E) # q(X) there are some gaps for the value of v(X, &) — ¢(X), de-
pending on n. We will investigate this in a future paper.
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