Sectional Invariants of Scrolls Over a Smooth Projective Variety

Yoshiaki Fukuma (*)

ABSTRACT - Let X be a smooth complex projective variety of dimension n and let $\mathcal E$ be an ample vector bundle of rank r on X. Then we calculate the ith sectional Euler number $e_i(\mathbb P_X(\mathcal E),H(\mathcal E))$ and the ith sectional Betti number $b_i(\mathbb P_X(\mathcal E),H(\mathcal E))$ for $i\geq 2n-3$ or i=1, and the ith sectional Hodge number of type (j,i-j) $h_i^{j,i-j}(\mathbb P_X(\mathcal E),H(\mathcal E))$ for $i\geq 2n-1$ and $0\leq j\leq i$, where $\mathbb P_X(\mathcal E)$ is the projective space bundle associated with $\mathcal E$ and $H(\mathcal E)$ is its tautological line bundle. Moreover we define a new invariant $v(X,\mathcal E)$ of $(X,\mathcal E)$ for $r\geq n-1$. This invariant is thought to be a generalization of curve genus. We will investigate some properties of this invariant.

1. Introduction.

Let X be a projective variety of dimension n defined over the field of complex numbers, and let L be an ample (resp. a nef and big) line bundle on X. Then (X, L) is called a *polarized (resp. quasi-polarized) variety*. If X is smooth, then we say that (X, L) is a polarized (resp. quasi-polarized) manifold. In order to study polarized varieties, it is important to use an invariant of (X, L). There are the following three invariants of (X, L) which are well-known.

- The degree L^n .
- The sectional genus g(L).
- The Δ -genus $\Delta(L)$.

By using these invariants, many authors studied polarized varieties. In particular, P. Ionescu classified polarized manifolds by the degree under the assumption that L is very ample with $L^n \leq 8$ ([13], [14], and [15]), and

(*) Indirizzo dell'A.: Department of Natural Science, Faculty of Science, Kochi University, Akebono-cho, Kochi 780-8520, Japan.

E-mail: fukuma@kochi-u.ac.jp

T. Fujita classified polarized varieties by the Δ -genus and the sectional genus ([3]).

In [5], in order to study polarized varieties more deeply, the author introduced the notion of the ith sectional geometric genus $g_i(X,L)$ of (X,L) for every integer i with $0 \le i \le n$. This is a generalization of the degree and the sectional genus of (X,L). Namely $g_0(X,L) = L^n$ and $g_1(X,L) = g(L)$.

Here we recall the reason why this invariant is called the ith sectional geometric genus. Let (X,L) be a polarized manifold of dimension $n \geq 2$ with $\operatorname{Bs}|L| = \emptyset$, where $\operatorname{Bs}|L|$ is the base locus of the complete linear system |L|. Let i be an integer with $1 \leq i \leq n$. Let X_{n-i} be the transversal intersection of general n-i members of |L|. In this case X_{n-i} is a smooth projective variety of dimension i. Then we can prove that $g_i(X,L) = h^i(\mathcal{O}_{X_{n-i}})$, that is, $g_i(X,L)$ is the geometric genus of X_{n-i} .

Hence we can expect that $g_i(X,L)$ has analogous properties of the geometric genus of *i*-dimensional varieties.

In [6] and [7], we introduced the notion of the *ith sectional H-arithmetic genus* $\chi_i^H(X,L)$ of (X,L). By definition we can prove that if $\operatorname{Bs}|L|=\emptyset$, then $\chi_i^H(X,L)=\chi(\mathcal{O}_{X_{n-i}})$, where X_{n-i} is the transversal intersection of general n-i members of |L|. Namely $\chi_i^H(X,L)$ is the Euler-Poincaré characteristic of the structure sheaf of X_{n-i} . $(\chi(\mathcal{O}_{X_{n-i}}))$ is called the arithmetic genus of X_{n-i} in the sense of Hirzebruch. (See [12, 15.5, Section 15, Chapter IV]. We also call $\chi(\mathcal{O}_{X_{n-i}})$ the H-arithmetic genus of X_{n-i} .)

In [8], we also introduced some ith sectional invariants of (X,L), that is, the ith sectional Euler number $e_i(X,L)$, the ith sectional Betti number $b_i(X,L)$ and the ith sectional Hodge number $h_i^{j,i-j}(X,L)$ of type (j,i-j) for every integer j with $0 \le j \le i$, and we investigated some properties of these. In particular we proved that polarized manifolds' version of the Hodge duality and the Hodge decomposition hold (see [8, Theorem 3.1]).

In this paper we consider the ith sectional Euler number and the ith sectional Betti number of scrolls over a smooth projective variety. In this paper we say that a polarized manifold (P, H) is a *scroll over a smooth projective variety X* if there exists an ample vector bundle \mathcal{E} on X such that $(P, H) \cong (\mathbb{P}_X(\mathcal{E}), H(\mathcal{E}))$, where $H(\mathcal{E})$ is the tautological line bundle on $\mathbb{P}_X(\mathcal{E})$.

In section 3, we calculate $e_i(\mathbb{P}_X(\mathcal{E}), H(\mathcal{E}))$ and $b_i(\mathbb{P}_X(\mathcal{E}), H(\mathcal{E}))$ for $i \geq 2n-3$ and i=1 (see Theorems 3.1 and 3.2). We also calculate $h_i^{j,i-j}(\mathbb{P}_X(\mathcal{E}), H(\mathcal{E}))$ for $i \geq 2n-1$ and $0 \leq j \leq i$ (see Theorem 3.3). In particular, by using these results, we can calculate these invariants of $(\mathbb{P}_X(\mathcal{E}), H(\mathcal{E}))$ completely for n=1 or 2 (see Corollaries 3.1, 3.3 and 3.4).

In section 4, we will define a new invariant of generalized polarized manifolds. Here a generalized polarized manifold means the pair (X, \mathcal{E}) where X is a smooth projective variety and \mathcal{E} is an ample vector bundle on X. Let $r := \operatorname{rank}(\mathcal{E})$. Here we state the history of invariants of (X, \mathcal{E}) . First in [2], Fujita introduced the c_1 -sectional genus and the $\mathcal{O}(1)$ -sectional genus of (X, \mathcal{E}) . Next, in [1], for the case where r = n - 1, Ballico defined an invariant of (X, \mathcal{E}) which is called the curve genus $cg(X, \mathcal{E})$ of (X, \mathcal{E}) (see Definition 2.3), and several authors (in particular Lanteri, Maeda, Sommese, and so on) studied this invariant.

As a generalization of the curve genus, for any ample vector bundle \mathcal{E} with $r \leq n-1$, Ishihara ([16, Definition 1.1]) defined an invariant $g(X,\mathcal{E})$, which is called the c_r -sectional genus of (X,\mathcal{E}) , and in [9] we investigated some properties about $g(X,\mathcal{E})$. We note that if n-r=1, then $g(X,\mathcal{E})$ is the curve genus. This invariant means the following: If a general element of $H^0(\mathcal{E})$ has a zero locus Z which is smooth of expected dimension n-r, then $g(X,\mathcal{E})=g(Z,\det\mathcal{E}|_Z)$, that is, $g(X,\mathcal{E})$ is the sectional genus of $(Z,\det\mathcal{E}|_Z)$. Recently Fusi and Lanteri generalized this invariant. See [11] for detail.

In this paper, we will introduce a new invariant $v(X, \mathcal{E})$ of generalized polarized manifolds (X, \mathcal{E}) with $r \geq n-1$, which is defined by using a result in section 3 (see Definition 4.1). Here we note that $v(X, \mathcal{E})$ is equal to the curve genus if r = n-1. We will investigate $v(X, \mathcal{E})$ and give some results about this invariant (see Theorems 4.1 and 4.2, and Proposition 4.1).

The author would like to thank the referee for giving useful comments and suggestions.

Notation and Conventions.

We say that *X* is a *variety* if *X* is an integral separated scheme of finite type. In particular *X* is irreducible and reduced if *X* is a variety. Varieties are always assumed to be defined over the field of complex numbers. In this article, we shall study mainly a smooth projective variety. The words "line bundles" and "Cartier divisors" are used interchangeably. The tensor products of line bundles are denoted additively.

 $\mathcal{O}(D)$: invertible sheaf associated with a Cartier divisor D on X.

 \mathcal{O}_X : the structure sheaf of X.

 $\chi(\mathcal{F})$: the Euler-Poincaré characteristic of a coherent sheaf \mathcal{F} .

 $h^i(\mathcal{F}) := \dim H^i(X, \mathcal{F})$ for a coherent sheaf \mathcal{F} on X.

 $h^i(D) := h^i(\mathcal{O}(D))$ for a Cartier divisor D.

 $q(X)(=h^1(\mathcal{O}_X))$: the irregularity of X.

 $b_i(X) := \dim H^i(X, \mathbb{C}).$

 K_X : the canonical divisor of X.

 \mathbb{P}^n : the projective space of dimension n.

 \mathbb{Q}^n : a smooth quadric hypersurface in \mathbb{P}^{n+1} .

 \sim (or =): linear equivalence.

 $\det(\mathcal{E}) := \wedge^r \mathcal{E}$, where \mathcal{E} is a vector bundle of rank r on X.

 $\mathbb{P}_X(\mathcal{E})$: the projective space bundle associated with a vector bundle \mathcal{E} on X.

 $H(\mathcal{E})$: the tautological line bundle on $\mathbb{P}_X(\mathcal{E})$.

 \mathcal{E}^{\vee} : the dual of a vector bundle \mathcal{E} .

 $c_i(\mathcal{E})$: the *i*-th Chern class of a vector bundle \mathcal{E} .

 $c_i(X) := c_i(\mathcal{T}_X)$, where \mathcal{T}_X is the tangent bundle of a smooth projective variety X.

For a real number m and a non-negative integer n, let

$$[m]^n := \left\{ egin{array}{ll} m(m+1)\cdots(m+n-1) & ext{if} & n \geq 1, \\ & 1 & ext{if} & n = 0. \end{array}
ight.$$
 $[m]_n := \left\{ egin{array}{ll} m(m-1)\cdots(m-n+1) & ext{if} & n \geq 1, \\ & 1 & ext{if} & n = 0. \end{array}
ight.$

Then for n fixed, $[m]^n$ and $[m]_n$ are polynomials in m whose degree are n. For any non-negative integer n,

$$n! := \left\{ \begin{aligned} [n]_n & \text{if} \quad n \ge 1, \\ 1 & \text{if} \quad n = 0. \end{aligned} \right.$$

Assume that m and n are integers with $n \geq 0$. Then we put

$$\binom{m}{n} := \frac{[m]_n}{n!}$$

We note that $\binom{m}{n} = 0$ if $0 \le m < n$, and $\binom{m}{0} = 1$.

2. Preliminaries.

NOTATION 2.1. (1) Let Y be a smooth projective variety of dimension i, let \mathcal{T}_Y be the tangent bundle of Y, and let $\Omega_Y (= \Omega_Y^1)$ be the dual bundle of \mathcal{T}_Y and $\Omega_Y^j := \wedge^j \Omega_Y$. For every integer j with $0 \le j \le i$, we put

$$\begin{split} h_{i,j}(c_1(Y),\cdots,c_i(Y)) := & \chi(\varOmega_Y^j) \\ &= \int\limits_{Y} \operatorname{ch}(\varOmega_Y^j) \mathrm{Td}(\mathcal{T}_Y). \end{split}$$

(Here $\operatorname{ch}(\Omega_Y^j)$ (resp. $\operatorname{Td}(\mathcal{T}_Y)$) denotes the Chern character of Ω_Y^j (resp. the Todd class of \mathcal{T}_Y). See [10, Example 3.2.3 and Example 3.2.4].)

(2) Let (M, L) be a polarized manifold of dimension m. For every integers i and j with $0 \le j \le i \le m$, we put

$$C^i_j(M,L) := \sum_{l=0}^j \left(-1
ight)^l inom{m-i+l-1}{l} c_{j-l}(M) L^l,$$

$$w_i^j(M,L) := h_{i,j}(C_1^i(M,L), \cdots, C_i^i(M,L))L^{n-i}.$$

(3) Let M be a smooth projective variety of dimension m. For every integers i and j with $0 \le j \le i \le m$, we put

$$H_1(i,j) := egin{cases} \sum_{s=0}^{i-j-1} {(-1)^s h^s(\Omega_M^j)} & ext{if } j
eq i, \ 0 & ext{if } j = i, \end{cases}$$

$$H_2(i,j) := egin{cases} \sum_{t=0}^{j-1} \left(-1
ight)^{i-t} h^t(\Omega_M^{i-j}) & ext{if} \;\; j
eq 0, \ 0 & ext{if} \;\; j = 0. \end{cases}$$

DEFINITION 2.1. (See [8, Definition 3.1].) Let (M,L) be a polarized manifold of dimension m, and let i and j be integers with $0 \le i \le m$ and $0 \le j \le i$.

(1) The *ith sectional Euler number* $e_i(M,L)$ of (M,L) is defined by the following:

$$e_i(M,L) := \sum_{l=0}^i (-1)^l \binom{m-i+l-1}{l} c_{i-l}(M) L^{m-i+l}.$$

(2) The *ith sectional Betti number* $b_i(M,L)$ *of* (M,L) is defined by the following:

$$b_i(M,L) := \left\{ egin{aligned} e_0(M,L) & ext{if} & i = 0, \ \\ & (-1)^i igg(e_i(M,L) - \sum_{j=0}^{i-1} 2(-1)^j b_j(M) igg) & ext{if} & 1 \leq i \leq m. \end{aligned}
ight.$$

(3) The ith sectional Hodge number $h_i^{j,i-j}(M,L)$ of type (j,i-j) of

(M,L) is defined by the following:

$$h_i^{j,i-j}(M,L) := (-1)^{i-j} \Big\{ w_i^j(M,L) - H_1(i,j) - H_2(i,j) \Big\}.$$

Remark 2.1. (1) If i = 0, then

$$e_0(M,L) = b_0(M,L) = h_0^{0,0}(M,L) = L^m.$$

(2) If i = 1, then

$$e_1(M,L) = 2 - 2g(L),$$
 $b_1(M,L) = 2g(L),$ $h_1^{1,0}(M,L) = h_1^{0,1}(M,L) = g(L).$

(3) If i = m, then

$$e_m(M,L) = e(M),$$
 $b_m(M,L) = b_m(M),$ $h_m^{j,m-j}(M,L) = h^{j,m-j}(M),$ $h_m^{m-j,j}(M,L) = h^{m-j,j}(M).$

Proposition 2.1. Let (M, L) be a polarized manifold of dimension m.

- (1) For every integer i with $0 \le i \le m$, the following hold:
 - (1.1) $b_i(M,L) = \sum_{k=0}^{i} h_i^{k,i-k}(M,L)$.
 - (1.2) $h_i^{j,i-j}(M,L) = h_i^{i-j,j}(M,L)$.
 - $(1.3) \quad h_i^{i,0}(M,L) = h_i^{0,i}(M,L) = g_i(M,L).$
- (2) Assume that L is base point free. Then for every integers i and j with $1 \le i \le m$ and $0 \le j \le i$ the following hold.
 - (2.1) $b_i(M, L) \ge b_i(M)$.
 - (2.2) $h_i^{j,i-j}(M,L) \ge h^{j,i-j}(M)$.

PROOF. See [8, Theorem 3.1 (3.1.1), (3.1.3), (3.1.4) and Proposition 3.3 (2) and (3)]. $\hfill\Box$

Proposition 2.2. For every integers a, k, l and r with $0 \le l$,

$$\sum_{j=0}^{l} (-1)^{j} \binom{r+j-a}{j} \binom{r-k}{l-j} = (-1)^{l} \binom{k-a+l}{l}.$$

PROOF. See [8, Proposition 2.5]. \Box

NOTATION 2.2. Let X be a smooth projective variety of dimension $n \ge 1$ and let $\mathcal E$ be an ample vector bundle of rank r on X. We put $P := \mathbb P_X(\mathcal E)$, $H := H(\mathcal E)$ and $m := \dim P$. Then m = n + r - 1. In this paper we assume that r > 2.

REMARK 2.2. Let X, \mathcal{E} , P, H, m, n and r be as in Notation 2.2.

(1) By [18, (2.1) Proposition], we have

$$b_j(P) = b_j(X) + b_{j-2}(X) + \dots + b_{j-2r+2}(X).$$

(2) Let i be an integer with $i \le m$. Then $n+r-1 \ge i$ and we obtain r > i-n+1.

(2.1) If
$$i\geq 2n-2$$
 and $i-1\geq j$, then
$$j-2r+2\leq (i-1)-2(i-n+1)+2$$

$$=2n-1-i$$

$$<1.$$

So by (1) above, if $i \ge 2n - 2$ and $i - 1 \ge j$, then by (1) we have

$$b_j(P) = \left\{ egin{aligned} \sum_{k=0}^l b_{j-2k}(X) & ext{if } j=2l, \ \sum_{k=0}^l b_{j-2k}(X) & ext{if } j=2l+1. \end{aligned}
ight.$$

By the same argument as this, if $i \ge 2n - 1$, then we see that

$$b_i(P) = \begin{cases} \sum_{k=0}^l b_{i-2k}(X) & \text{if } i=2l, \\ \\ \sum_{k=0}^l b_{i-2k}(X) & \text{if } i=2l+1. \end{cases}$$

(2.2) Assume that $i \le m-1$. If i=2n-3 and $i-1 \ge j$, then $j-2r+2 \le 2$. If this equality holds, then i=n+r-1=m. But this contradicts the assumption. Hence $j-2r+2 \le 1$, and by (1) above we have

$$b_j(P) = \left\{ egin{aligned} \sum_{k=0}^l b_{j-2k}(X) & \text{if} & j=2l, \\ \sum_{k=0}^l b_{j-2k}(X) & \text{if} & j=2l+1. \end{aligned}
ight.$$

By the same argument as this, if $i \leq m-1$, $n \geq 1$ (resp. $n \geq 2$) and i = 2n-2 (resp. i = 2n-3), then we see that $b_{2n-2}(P) = \sum_{k=0}^{n-1} b_{2n-2-2k}(X)$ (resp. $b_{2n-3}(P) = \sum_{k=0}^{n-2} b_{2n-3-2k}(X)$).

DEFINITION 2.2. Let X be a smooth projective variety of dimension n and let \mathcal{E} be a vector bundle of rank r on X.

(1) The *Chern polynomial* $c_t(\mathcal{E})$ is defined by the following:

$$c_t(\mathcal{E}) = 1 + c_1(\mathcal{E})t + c_2(\mathcal{E})t^2 + \cdots$$

(2) For every integer j with $j \geq 0$, the jth Segre class $s_j(\mathcal{E})$ of \mathcal{E} is defined by the following equation: $c_t(\mathcal{E}^{\vee})s_t(\mathcal{E}) = 1$, where $c_t(\mathcal{E}^{\vee})$ is the Chern polynomial of \mathcal{E}^{\vee} and $s_t(\mathcal{E}) = \sum_{j>0} s_j(\mathcal{E})t^j$.

REMARK 2.3. (1) Let X be a smooth projective variety and let \mathcal{F} be a vector bundle on X. Let $\tilde{s}_j(\mathcal{F})$ be the Segre class which is defined in [10, Chapter 3]. Then $s_j(\mathcal{F}) = \tilde{s}_j(\mathcal{F}^{\vee})$.

(2) For every integer i with $1 \le i$, $s_i(\mathcal{F})$ can be written by using the Chern classes $c_j(\mathcal{F})$ with $1 \le j \le i$. (For example, $s_1(\mathcal{F}) = c_1(\mathcal{F})$, $s_2(\mathcal{F}) = c_1(\mathcal{F})^2 - c_2(\mathcal{F})$, and so on.)

DEFINITION 2.3. Let X be a smooth projective variety of dimension n and let \mathcal{E} be an ample vector bundle of rank n-1 on X. Then the *curve genus* $cg(X,\mathcal{E})$ of (X,\mathcal{E}) is defined as follows:

$$cg(X,\mathcal{E}) = 1 + \frac{1}{2}(K_X + c_1(\mathcal{E}))c_{n-1}(\mathcal{E}).$$

3. Sectional invariants of scrolls over a smooth projective manifold.

THEOREM 3.1. Let X, \mathcal{E} , P, H, m, n and r be as in Notation 2.2. Then the following hold.

(3.1.1) If
$$i \geq 2n - 1$$
, then $e_i(P, H) = (i - n + 1)c_n(X)$.

(3.1.2) If
$$n \ge 2$$
, then $e_{2n-2}(P, H) = (n-1)c_n(X) + c_n(\mathcal{E})$.

$$(3.1.3)$$
 If $n \ge 3$, then $e_{2n-3}(P, H) = (n-2)(c_n(X) - c_n(\mathcal{E})) - c_{n-1}(\mathcal{E})(K_X + c_1(\mathcal{E}))$.

$$(3.1.4) e_1(P,H) = -(n-2)s_n(\mathcal{E}) - (c_1(\mathcal{E}) + K_X)s_{n-1}(\mathcal{E}).$$

$$(3.1.5) e_0(P, H) = s_n(\mathcal{E}).$$

PROOF. By [10, Example 3.2.11] and Remark 2.3 (1), for every integer l with $0 < l \leq m$

$$c_l(P) = \sum_{i=0}^l \sum_{k=0}^j inom{r-k}{j-k} c_kig(p^*\mathcal{E}^eeig) H(\mathcal{E})^{j-k} c_{l-j}(p^*\mathcal{T}_X).$$

(Here $p: P \to X$ denotes the projection.) Hence

$$\begin{split} e_{i}(P,H) &= \sum_{j=0}^{i} (-1)^{j} \binom{m-i+j-1}{j} c_{i-j}(P) H^{m-i+j} \\ &= \sum_{j=0}^{i} (-1)^{j} \binom{m-i+j-1}{j} \\ &\left\{ \sum_{s=0}^{i-j} \sum_{u=0}^{s} \binom{r-u}{s-u} c_{u} (p^{*}\mathcal{E}^{\vee}) H(\mathcal{E})^{m-i+j-u+s} c_{i-j-s}(p^{*}\mathcal{T}_{X}) \right\} \\ &= \sum_{\substack{0 \leq k,t \\ 0 \leq k+t \leq i}} \binom{i-t-k}{j} (-1)^{j} \binom{r+j+n-i-2}{j} \binom{r-k}{i-t-k-j} \\ \end{split}$$

 $c_{k}(p^{*}\mathcal{E}^{\vee})c_{t}(p^{*}\mathcal{T}_{X})H(\mathcal{E})^{m-k-t}$

By Proposition 2.2 and [3, (3.7) in Chapter 0], we get

$$\begin{split} &(1)e_i(P,H) \\ &= \sum_{\substack{0 \leq k,t \\ 0 \leq k+t \leq i}} (-1)^{i-t-k} \binom{k+(n-i-2)+i-t-k}{i-t-k} c_k \left(p^* \mathcal{E}^\vee\right) c_t (p^* \mathcal{T}_X) H(\mathcal{E})^{m-k-t} \\ &= \sum_{\substack{0 \leq k,t \\ 0 \leq k+t \leq i}} (-1)^{i-t-k} \binom{n-t-2}{i-t-k} c_k \left(p^* \mathcal{E}^\vee\right) c_t (p^* \mathcal{T}_X) H(\mathcal{E})^{m-k-t} \\ &= \sum_{\substack{0 \leq k,t \\ 0 \leq k+t \leq i}} (-1)^{i-t-k} \binom{n-t-2}{i-t-k} c_k (\mathcal{E}^\vee) c_t (\mathcal{T}_X) s_{n-k-t} (\mathcal{E}). \end{split}$$

Here we put

$$E(i,k,t) := (-1)^{i-t-k} inom{n-t-2}{i-t-k} c_k ig(\mathcal{E}^eeig) c_t(\mathcal{T}_X) s_{n-k-t}(\mathcal{E}).$$

In order to calculate $e_i(P, H)$, we have only to consider the case where $E(i, k, t) \neq 0$. We note that if k + t > n, then $c_k(\mathcal{E}^{\vee})c_t(\mathcal{T}_X)s_{n-k-t}(\mathcal{E}) = 0$. So we may assume that $k + t \leq n$.

(a) The case where $i \geq 2n - 1$.

First we note that if (n, i) = (1, 1), then

$$e_i(P, H) = e_1(P, H) = 2 - b_1(P, H) = 2 - 2g_1(P, H) = 2 - 2g(X) = c_1(X).$$

So we assume that $(n, i) \neq (1, 1)$.

Here we note that $(n-t-2)-(i-t-k)=n-i-2+k \le -n+k-1 \le -1$

and $k+t \leq i$. Hence $\binom{n-t-2}{i-t-k} \neq 0$ if and only if one of the following holds.

(a.1)
$$i - t - k = 0$$
.

(a.2)
$$i - t - k > 0$$
 and $n - t - 2 < 0$.

(a.1) If i-t-k=0, then $2n-1 \le i=t+k \le n$. Hence n=1 and i=1. But this contradicts the assumption here.

(a.2) If i-t-k>0 and n-t-2<0, then t=n-1 or n because $k+t\leq n$ and $k\geq 0$. Hence (t,k)=(n-1,0), (n-1,1) or (n,0). If (t,k)=(n-1,0), then

$$\binom{n-t-2}{i-t-k} = \binom{-1}{i-n+1} = (-1)^{i-n+1}.$$

If (t, k) = (n - 1, 1), then

$$\binom{n-t-2}{i-t-k} = \binom{-1}{i-n} = (-1)^{i-n}.$$

If (t, k) = (n, 0), then

$$\binom{n-t-2}{i-t-k} = \binom{-2}{i-n} = (-1)^{i-n}(i-n+1).$$

Hence if $(n, i) \neq (1, 1)$, then

$$\begin{split} e_i(P,H) &= (-1)^{2(i-n+1)} c_{n-1}(\mathcal{T}_X) s_1(\mathcal{E}) + (-1)^{2(i-n)} c_1(\mathcal{E}^{\vee}) c_{n-1}(\mathcal{T}_X) \\ &+ (-1)^{2(i-n)} (i-n+1) c_n(\mathcal{T}_X) \end{split}$$

Therefore in any case

$$e_i(P, H) = (i - n + 1)c_n(X)$$

if i > 2n - 1.

(b) The case where i = 2n - 2. Here we note that $n \ge 2$ in this case.

Then $\binom{n-t-2}{i-t-k}=\binom{n-t-2}{2n-t-2-k}$. Here we note that $(n-t-2)\leq 2n-t-2-k$. Hence $\binom{n-t-2}{2n-t-2-k}\neq 0$ if and only if one of the following holds.

- (b.1) k = n.
- (b.2) k < n and n t 2 < 0.
- (b.1) If k=n, then t=0 because $t+k\leq n$ and $t\geq 0$, and $\binom{n-t-2}{2n-t-2-k}=1.$ Here we note that $n-t-2\geq 0$ in this case because

n > 2 and t = 0. Hence

$$E(2n-2, n, 0) = (-1)^{2n-2-n} c_n(\mathcal{E}^{\vee}) = c_n(\mathcal{E}).$$

(b.2) If k < n and n - t - 2 < 0, then t = n - 1 or n. Hence (t, k) = (n - 1, 0), (n - 1, 1) or (n, 0). By the same argument as (a.2), we obtain

$$\begin{split} E(2n-2,0,n-1) + E(2n-2,1,n-1) + E(2n-2,0,n) \\ &= (-1)^{2(2n-2-n+1)} c_{n-1}(X) s_1(\mathcal{E}) + (-1)^{2(2n-2-n)} c_1(\mathcal{E}^{\vee}) c_{n-1}(X) \\ &+ (-1)^{2(2n-2-n)} (n-1) c_n(X) \\ &= (n-1) c_n(X). \end{split}$$

Hence we get

$$e_{2n-2}(P,H) = (n-1)c_n(X) + c_n(\mathcal{E}).$$

(c) Assume that i=2n-3. Here we note that $n\geq 3$ in this case. Then $\binom{n-t-2}{2n-t-k-3}\neq 0$ if and only if one of the following holds.

(c.1)
$$k = n$$
.

(c.2)
$$k = n - 1$$
.

(c.3)
$$k < n - 2$$
 and $t > n - 2$.

First we consider the case (c.1). Then t=0 because $k+t\leq n$ and $t\geq 0$. So we have

$$E(2n-3, n, 0) = (-1)^{2n-3-0-n} \binom{n-0-2}{2n-3-0-n} c_n(\mathcal{E}^{\vee})$$

$$= -\binom{n-2}{n-3} c_n(\mathcal{E})$$

$$= -(n-2)c_n(\mathcal{E}).$$

Next we consider the case (c.2). Then t=0 or 1, and $\binom{n-t-2}{2n-t-k-3}=1.$ Hence we have $E(2n-3,n-1,0)=-c_{n-1}(\mathcal{E})s_1(\mathcal{E})=$ $=-c_{n-1}(\mathcal{E})c_1(\mathcal{E}) \text{ and } E(2n-3,n-1,1)=c_{n-1}(\mathcal{E})c_1(X).$

Finally we consider the case (c.3). Then (k, t) = (0, n - 1), (1, n - 1) or (0, n). Hence by the same argument as above

$$E(2n-3,0,n-1) + E(2n-3,1,n-1) + E(2n-3,0,n) = (n-2)c_n(X).$$

Therefore

$$\begin{split} &e_{2n-3}(P,H)\\ &= -(n-2)c_n(\mathcal{E}) - c_{n-1}(\mathcal{E})c_1(\mathcal{E}) + c_{n-1}(\mathcal{E})c_1(X) + (n-2)c_n(X)\\ &= (n-2)(c_n(X) - c_n(\mathcal{E})) + c_{n-1}(\mathcal{E})(c_1(X) - c_1(\mathcal{E}))\\ &= (n-2)(c_n(X) - c_n(\mathcal{E})) - c_{n-1}(\mathcal{E})(K_X + c_1(\mathcal{E})). \end{split}$$

(d) The case where i = 1. Then by (1) we get

$$\begin{split} e_{1}(P,H) &= \sum_{\substack{0 \leq k,t \\ 0 \leq k+t \leq 1}} (-1)^{1-t-k} \binom{n-t-2}{1-t-k} c_{k} (\mathcal{E}^{\vee}) c_{t}(\mathcal{T}_{X}) s_{n-k-t}(\mathcal{E}) \\ &= -(n-2) s_{n}(\mathcal{E}) + (c_{1}(\mathcal{E}^{\vee}) + c_{1}(\mathcal{T}_{X})) s_{n-1}(\mathcal{E}) \\ &= -(n-2) s_{n}(\mathcal{E}) - (c_{1}(\mathcal{E}) + K_{X}) s_{n-1}(\mathcal{E}). \end{split}$$

(e) The case where i=0. Then by (1) we get $e_0(P,H)=s_n(\mathcal{E})$. We get the assertion of Theorem 3.1. \square

By Theorem 3.1, we get the following for n = 1 and 2.

COROLLARY 3.1. Let X, \mathcal{E} , P, H and n be as in Notation 2.2. (3.1.1) Assume that n = 1. Then we get the following:

$$e_i(P,H) = \left\{ egin{aligned} i(2-2g(X)) & \mbox{if } i \geq 1, \ \deg \mathcal{E} & \mbox{if } i = 0. \end{aligned}
ight.$$

(3.1.2) Assume that n=2. Then we get the following:

$$e_i(P,H) = \begin{cases} (i-1)c_2(X) & \text{if } i \geq 3, \\ c_2(X) + c_2(\mathcal{E}) & \text{if } i = 2, \\ -(c_1(\mathcal{E}) + K_X)c_1(\mathcal{E}) & \text{if } i = 1, \\ s_2(\mathcal{E}) & \text{if } i = 0. \end{cases}$$

THEOREM 3.2. Let X, \mathcal{E} , P, H, m, n and r be as in Notation 2.2. Then the following hold.

(3.2.1) If
$$m \ge i \ge 2n - 1$$
, then $b_i(P, H) = b_i(P)$.

(3.2.2) If
$$n \ge 2$$
 and $m > 2n - 2$, then $b_{2n-2}(P, H) = b_{2n-2}(P) + c_n(\mathcal{E}) - 1$.

(3.2.3) If
$$n \ge 3$$
 and $m > 2n - 3$, then

$$b_{2n-3}(P,H) = b_{2n-3}(P) + (n-2)c_n(\mathcal{E}) + c_{n-1}(\mathcal{E})(K_X + c_1(\mathcal{E})) + 2 - 2q(X).$$

$$(3.2.4) b_1(P,H) = 2 + (n-2)s_n(\mathcal{E}) + (c_1(\mathcal{E}) + K_X)s_{n-1}(\mathcal{E}).$$

$$(3.2.5) b_0(P, H) = s_n(\mathcal{E}).$$

PROOF. Since $e_i(P, H)$ has been calculated in Theorem 3.1, we need to study $\sum_{k=0}^{i-1} (-1)^k b_k(P)$. By using Remark 2.2, we calculate this.

- (a) The case where $i \ge 2n 1$. Since $b_m(P, H) = b_m(P)$, we assume that i < m.
- (a.1) Assume that i is even. Then $i \geq 2n$. Here we note that $b_j(X) = 0$ if j > 2n. Then

$$\begin{split} &\sum_{k=0}^{i-1} (-1)^k b_k(P) \\ &= \sum_{k=0}^n \left(\frac{i}{2} - k\right) b_{2k}(X) - \sum_{k=1}^n \left(\frac{i}{2} - k + 1\right) b_{2k-1}(X) \\ &= \sum_{k=0}^n (n-k+1) b_{2k}(X) - \sum_{k=1}^n (n-k+2) b_{2k-1}(X) + \frac{i-2n-2}{2} e(X). \end{split}$$

Here we note that by Remark 2.2 (2.1), we have $b_i(P)=\sum_{k=0}^n b_{2k}(X)$ because $i\geq 2n$ in this case. Since i is even, we have

$$\begin{split} b_i(P,H) - b_i(P) \\ &= (-1)^i \left(e_i(P,H) - 2 \sum_{j=0}^{i-1} (-1)^j b_j(P) \right) - \sum_{k=0}^n b_{2k}(X) \\ &= (i-n+1)c_n(X) - 2 \sum_{k=0}^n (n-k+1)b_{2k}(X) \\ &+ 2 \sum_{k=1}^n (n-k+2)b_{2k-1}(X) - (i-2n-2)e(X) - \sum_{k=0}^n b_{2k}(X) \\ &= (n+3)e(X) + \sum_{k=0}^n (2k-2n-3)b_{2k}(X) + \sum_{k=1}^n (2n-2k+4)b_{2k-1}(X) \\ &= \sum_{k=0}^n (2k-n)b_{2k}(X) - \sum_{k=1}^n (2k-n-1)b_{2k-1}(X). \end{split}$$

Here we prove the following.

CLAIM 3.1. (1)
$$\sum_{k=0}^{n} (2k - n)b_{2k}(X) = 0.$$

$$(2)\sum_{k=1}^{n}(2k-n-1)b_{2k-1}(X)=0.$$

PROOF. (1) Assume that n=2l. Then we note that $(2k-n)b_{2k}(X)=0$ if k=l. So by Poincaré duality

$$\sum_{k=0}^{n} (2k - n)b_{2k}(X)$$

$$= \sum_{k=0}^{l-1} (2k - n)b_{2k}(X) + \sum_{k=l+1}^{n} (2k - n)b_{2k}(X)$$

$$= \sum_{k=0}^{l-1} (2k - n)b_{2k}(X) + \sum_{k=0}^{l-1} (n - 2k)b_{2n-2k}(X)$$

$$= \sum_{k=0}^{l-1} (2k - n)b_{2k}(X) - \sum_{k=0}^{l-1} (2k - n)b_{2k}(X)$$

$$= 0.$$

If n = 2l + 1, then by Poincaré duality

$$\sum_{k=0}^{n} (2k - n)b_{2k}(X)$$

$$= \sum_{k=0}^{l} (2k - n)b_{2k}(X) + \sum_{k=l+1}^{n} (2k - n)b_{2k}(X)$$

$$= \sum_{k=0}^{l} (2k - n)b_{2k}(X) + \sum_{k=0}^{l} (n - 2k)b_{2n-2k}(X)$$

$$= \sum_{k=0}^{l} (2k - n)b_{2k}(X) - \sum_{k=0}^{l} (2k - n)b_{2k}(X)$$

$$= 0.$$

Hence we obtain the assertion of (1).

(2) This can be proved by the same argument as (1). \Box

By Claim 3.1, $b_i(P, H) = b_i(P)$ if $i \ge 2n - 1$ and i is even.

(a.2) Assume that i is odd. Then

$$\begin{split} &\sum_{j=0}^{i-1} (-1)^j b_j(P) \\ &= \sum_{k=0}^n \left(\frac{i+1}{2} - k \right) b_{2k}(X) - \sum_{k=1}^n \left(\frac{i-1}{2} - k + 1 \right) b_{2k-1}(X) \\ &= \sum_{k=0}^n (n-k+1) b_{2k}(X) - \sum_{k=1}^n (n-k+1) b_{2k-1}(X) \\ &\quad + \left(\frac{i+1}{2} - n - 1 \right) e(X). \end{split}$$

By Remark 2.2 (2.1), we have $b_i(P) = \sum_{k=1}^n b_{2k-1}(X)$ because $i \ge 2n-1$ in this case. Hence by Theorem 3.1 and Claim 3.1, we have

$$\begin{split} b_i(P,H) - b_i(P) \\ &= -\left((i-n+1)e(X) - 2\sum_{j=0}^{i-1}{(-1)^j b_j(P)}\right) - b_i(P) \\ &= -(n+2)e(X) + \sum_{k=0}^{n}{(2n-2k+2)b_{2k}(X)} - \sum_{k=1}^{n}{(2n-2k+3)b_{2k-1}(X)} \\ &= \sum_{k=0}^{n}{(n-2k)b_{2k}(X)} - \sum_{k=1}^{n}{(n-2k+1)b_{2k-1}(X)} \\ &= 0. \end{split}$$

Therefore $b_i(P, H) = b_i(P)$ if $i \ge 2n - 1$ and i is odd. In any case, if $m \ge i \ge 2n - 1$, then $b_i(P, H) = b_i(P)$.

(b) The case where i=2n-2 and 2n-2 < m. Then by Remark 2.2 (2.1) we obtain

$$b_j(P) = egin{cases} \sum_{k=0}^l b_{j-2k}(X) & ext{if} \quad j=2l, \ \sum_{k=0}^l b_{j-2k}(X) & ext{if} \quad j=2l+1 \end{cases}$$

for every integer j with j < 2n - 2. Hence

$$\sum_{j=0}^{2n-3} (-1)^{j} b_{j}(P) = \sum_{k=0}^{n-2} (n-k-1) b_{2k}(X) - \sum_{k=1}^{n-1} (n-k) b_{2k-1}(X).$$

By assumption, we have $n+r-1=m\geq i+1=2n-1$. So by Remark 2.2 (2.2) we obtain

$$b_{2n-2}(P) = \sum_{k=0}^{n-1} b_{2k}(X).$$

Therefore

$$\begin{split} b_{2n-2}(P,H) - b_{2n-2}(P) \\ &= \left(e_{2n-2}(P,H) - 2\sum_{j=0}^{2n-3} (-1)^j b_j(P)\right) - b_{2n-2}(P) \\ &= (n-1)e(X) + c_n(\mathcal{E}) - \sum_{k=0}^{n-2} (2n-2k-2)b_{2k}(X) \\ &+ \sum_{k=1}^{n-1} (2n-2k)b_{2k-1}(X) - \sum_{k=0}^{n-1} b_{2k}(X) \\ &= (n-1)e(X) + c_n(\mathcal{E}) - \sum_{k=0}^{n-2} (2n-2k-1)b_{2k}(X) \\ &+ \sum_{k=1}^{n-1} (2n-2k)b_{2k-1}(X) - b_{2n-2}(X) \\ &= (n-1)e(X) + c_n(\mathcal{E}) + e(X) - 1 - \sum_{k=0}^{n-1} (2n-2k)b_{2k}(X) \\ &+ \sum_{k=1}^{n-1} (2n-2k+1)b_{2k-1}(X) + b_{2n-1}(X) \\ &= ne(X) + c_n(\mathcal{E}) - 1 - \sum_{k=0}^{n-1} (2n-2k)b_{2k}(X) \\ &+ \sum_{k=1}^{n} (2n-2k+1)b_{2k-1}(X). \end{split}$$

Since

$$\sum_{k=0}^{n-1} (2n - 2k)b_{2k}(X) = \sum_{k=0}^{n} (2n - 2k)b_{2k}(X),$$

we obtain

$$\begin{split} b_{2n-2}(P,H) - b_{2n-2}(P) \\ &= ne(X) + c_n(\mathcal{E}) - 1 - \sum_{k=0}^n (2n - 2k)b_{2k}(X) \\ &+ \sum_{k=1}^n (2n - 2k + 1)b_{2k-1}(X) \\ &= c_n(\mathcal{E}) - 1 + \sum_{k=0}^n (2k - n)b_{2k}(X) \\ &- \sum_{k=1}^n (2k - n - 1)b_{2k-1}(X). \end{split}$$

By Claim 3.1, we get

$$b_{2n-2}(P, H) = b_{2n-2}(P) + c_n(\mathcal{E}) - 1.$$

(c) The case where i = 2n - 3 and i < m. Then by Remark 2.2 (2.2) we obtain

$$b_j(P) = \left\{ egin{aligned} \sum_{k=0}^l b_{j-2k}(X) & ext{if} \quad j=2l, \ \sum_{k=0}^l b_{j-2k}(X) & ext{if} \quad j=2l+1 \end{aligned}
ight.$$

for every integer j with j < 2n - 3. Hence

$$\sum_{j=0}^{2n-4} b_j(P) = \sum_{k=0}^{n-2} (n-k-1)b_{2k}(X) - \sum_{k=1}^{n-2} (n-k-1)b_{2k-1}(X).$$

By assumption we have $n+r-1=m\geq i+1=2n-2$. Hence by Remark 2.2 (2.2) we obtain

$$b_{2n-3}(P) = \sum_{k=1}^{n-1} b_{2k-1}(X).$$

Therefore

$$\begin{split} b_{2n-3}(P,H) - b_{2n-3}(P) \\ &= -e_{2n-3}(P,H) + 2 \sum_{j=0}^{2n-4} \left(-1 \right)^{j} b_{j}(P) - b_{2n-3}(P) \\ &= -(n-2)(e(X) - c_{n}(\mathcal{E})) + c_{n-1}(\mathcal{E})(K_{X} + c_{1}(\mathcal{E})) \\ &+ \sum_{k=0}^{n-2} (2n - 2k - 2)b_{2k}(X) - \sum_{k=1}^{n-2} (2n - 2k - 2)b_{2k-1}(X) \\ &- \sum_{k=1}^{n-1} b_{2k-1}(X) \\ &= -(n-2)(e(X) - c_{n}(\mathcal{E})) + c_{n-1}(\mathcal{E})(K_{X} + c_{1}(\mathcal{E})) \\ &+ \sum_{k=0}^{n-2} (2n - 2k - 2)b_{2k}(X) - \sum_{k=1}^{n-2} (2n - 2k - 1)b_{2k-1}(X) \\ &- b_{2n-3}(X) \\ &= -(n-2)(e(X) - c_{n}(\mathcal{E})) + c_{n-1}(\mathcal{E})(K_{X} + c_{1}(\mathcal{E})) \\ &- 2e(X) + 2b_{2n-2}(X) + 2b_{2n}(X) - 3b_{2n-3}(X) - 2b_{2n-1}(X) \\ &+ \sum_{k=0}^{n-2} (2n - 2k)b_{2k}(X) - \sum_{k=1}^{n-2} (2n - 2k + 1)b_{2k-1}(X) \\ &= -(n-2)(e(X) - c_{n}(\mathcal{E})) + c_{n-1}(\mathcal{E})(K_{X} + c_{1}(\mathcal{E})) \\ &+ \sum_{k=0}^{n} (2n - 2k)b_{2k}(X) - \sum_{k=1}^{n} (2n - 2k + 1)b_{2k-1}(X) \\ &= -(n-2)e(X) + (n-2)c_{n}(\mathcal{E}) + c_{n-1}(\mathcal{E})(K_{X} + c_{1}(\mathcal{E})) \\ &+ \sum_{k=0}^{n} (n-2k)b_{2k}(X) - \sum_{k=1}^{n} (n-2k + 1)b_{2k-1}(X) \\ &+ (n-2)e(X) + 2b_{2n}(X) - b_{2n-1}(X). \end{split}$$

Since $b_{2n}(X)=1$ and $b_{2n-1}(X)=b_1(X)=2q(X)$, by Claim 3.1 we obtain $b_{2n-3}(P,H)-b_{2n-3}(P)$ $=(n-2)c_n(\mathcal{E})+c_{n-1}(\mathcal{E})(K_X+c_1(\mathcal{E}))+2-2q(X).$

(d) The case where i = 1.

Then by Theorem 3.1 (3.1.4) and the definition of $b_1(P, H)$

$$b_1(P,H) = -e_1(P,H) + 2b_0(P)$$

= 2 + (n - 2)s_n(\varepsilon) + (c_1(\varepsilon) + K_Y)s_{n-1}(\varepsilon).

(e) The case where i = 0.

Then by Theorem 3.1 (3.1.5) and the definition of $b_0(P, H)$,

$$b_0(P, H) = e_0(P, H) = s_n(\mathcal{E}).$$

Therefore we get the assertion.

COROLLARY 3.2. Let X, \mathcal{E} , P, H, m and n be as in Notation 2.2. If $n \geq 2$ and m > i > 2n - 2, then $b_i(P, H) > b_i(P)$.

PROOF. If $i \geq 2n-1$, then by Theorem 3.2 (3.2.1) we get the assertion. Next we consider the case where i=2n-2. Since $\mathcal E$ is ample, we have $c_n(\mathcal E) \geq 1$. Therefore by Theorem 3.2 (3.2.2), we see $b_{2n-2}(P,H) \geq b_{2n-2}(P)$. This completes the proof. \square

COROLLARY 3.3. Let X, \mathcal{E} , P, H, m and n be as in Notation 2.2. (3.3.1) Assume that n=1. Then we get the following:

$$b_i(P,H) = \left\{ egin{aligned} b_i(P) & \textit{if } m \geq i \geq 1, \\ \deg \mathcal{E} & \textit{if } i = 0. \end{aligned}
ight.$$

(3.3.2) Assume that n = 2. Then we get the following:

$$b_i(P,H) = egin{cases} b_i(P) & \ if \ m \geq i \geq 3, \ b_2(P) + c_2(\mathcal{E}) - 1 & \ if \ i = 2, \ c_1(\mathcal{E})(c_1(\mathcal{E}) + K_X) + 2 & \ if \ i = 1, \ s_2(\mathcal{E}) & \ if \ i = 0. \end{cases}$$

PROOF. By Theorem 3.2, we get the assertion. (Here we note that if n=2, then 2n-2=2< n+r-1=m because we assume $r\geq 2$ in this paper.) \square

Remark 3.1. Since \mathcal{E} is ample, we see that if n=1 or 2, then $b_i(P,H) \geq 0$ for any i.

Here we calculate $h_i^{j,i-j}(P,H)$ for the case where $m \geq i \geq 2n-1$.

Theorem 3.3. Let X, E, P, H, m and n be as in Notation 2.2. If $m \ge i \ge 2n - 1$ and $0 \le j \le i$, then $h_i^{j,i-j}(P,H) = h^{j,i-j}(P)$.

PROOF. First we note that we can take an ample line bundle A on X such that $\mathcal{E} \otimes A^{\otimes t}$ is ample and spanned for every positive integer t. Hence $H(\mathcal{E} \otimes A^{\otimes t})$ is ample and spanned. We also note that there exists an isomorphism $\phi: \mathbb{P}_X(\mathcal{E} \otimes A^{\otimes t}) \to P$ with $H(\mathcal{E} \otimes A^{\otimes t}) = \phi^*(H \otimes p^*(A^{\otimes t}))$, where $p: P \to X$ is the projection. Therefore $H \otimes p^*(A^{\otimes t})$ is also ample and spanned. By this ϕ , we identify $\mathbb{P}_X(\mathcal{E} \otimes A^{\otimes t})$ and P. By Theorem 3.2 we have

$$b_i(P, H(\mathcal{E} \otimes A^{\otimes t})) = b_i(P).$$

Hence

$$b_i(P, H \otimes p^*(A^{\otimes t}))$$

$$= b_i(P, H(\mathcal{E} \otimes A^{\otimes t}))$$

$$= b_i(P).$$

On the other hand by Proposition 2.1 (1.1) and (2) we have

$$h_i^{j,i-j}(P,H\otimes p^*(A^{\otimes t}))=h^{j,i-j}(P)$$

because $H\otimes p^*(A^{\otimes t})$ is ample and spanned. But since $F(t):=:=h_i^{j,i-j}(P,H\otimes p^*(A^{\otimes t}))-h^{i,i-j}(P)$ is a polynomial in t and F(t)=0 for every positive integer t, we see that F(0)=0, that is,

$$h_i^{j,i-j}(P,H) = h^{i,i-j}(P).$$

This completes the proof.

COROLLARY 3.4. Let X, \mathcal{E} , P, H, m and n be as in Notation 2.2. (3.4.1) Assume that n = 1. Then we get the following:

$$h_i^{j,i-j}(P,H) = \begin{cases} h^{j,i-j}(P) & \text{if } m \ge i \ge 1 \text{ and } 0 \le j \le i, \\ \deg \mathcal{E} & \text{if } i = 0 \text{ and } j = 0. \end{cases}$$

(3.4.2) Assume that n=2. Then we get the following:

$$h_i^{j,i-j}(P,H) = \begin{cases} h^{j,i-j}(P) & \text{if } m \geq i \geq 3 \text{ and } 0 \leq j \leq i, \\ h^{0,2}(P) & \text{if } i = 2 \text{ and } j = 0, \\ h^{2,0}(P) & \text{if } i = 2 \text{ and } j = 2, \\ h^{1,1}(P) + c_2(\mathcal{E}) - 1 & \text{if } i = 2 \text{ and } j = 1, \\ \frac{1}{2}(c_1(\mathcal{E})(c_1(\mathcal{E}) + K_X)) + 1 & \text{if } i = 1 \text{ and } j = 0, 1, \\ s_2(\mathcal{E}) & \text{if } i = 0 \text{ and } j = 0. \end{cases}$$

PROOF. If n = 1, then by Corollary 3.3 and Theorem 3.3 we get the assertion.

Assume that n=2. Then by Corollary 3.3 and Theorem 3.3 we get the assertion for the case where $m\geq i\geq 3$ and $0\leq j\leq i$. If (i,j)=(2,0) (resp. (2,2)), then by Proposition 2.1 (1.3) and [5, Example 2.10 (8)] we have $h_2^{0,2}(P,H)=g_2(P,H)=h^2(\mathcal{O}_P)=h^{0,2}(P)$ (resp. $h_2^{2,0}(P,H)=g_2(P,H)=h^2(\mathcal{O}_P)=h^{0,2}(P)$). Moreover by Corollary 3.3 (3.3.2) and Proposition 2.1 (1.1) we get $h_2^{1,1}(P,H)=h^{1,1}(P)+c_2(\mathcal{E})-1$. Assume that i=1. Then by Proposition 2.1 (1.1) we have

Assume that i = 1. Then by Proposition 2.1 (1.1) we have $b_1(P, H) = h_1^{1,0}(P, H) + h_1^{0,1}(P, H)$. Moreover by Proposition 2.1 (1.2) we have $h_1^{1,0}(P, H) = h_1^{0,1}(P, H)$. Therefore by Corollary 3.3 we get the assertion for the case i = 1.

By Corollary 3.3 we get the assertion for the case where i = 0.

REMARK 3.2. Since $\mathcal E$ is ample, we see that if n=1 or 2, then $h_i^{j,i-j}(P,H)\geq 0$ for any i and j with $0\leq j\leq i\leq m$.

4. A new invariant of generalized polarized manifolds.

Here we use Notation 2.2. Assume that i = 2n - 3, $n \ge 3$ and i < m. Then by Theorem 3.2 (3.2.3) we see that $(n - 2)c_n(\mathcal{E}) + c_{n-1}(\mathcal{E})(K_X + c_1(\mathcal{E}))$ is even because $b_{2n-3}(P, H)$ and $b_{2n-3}(P)$ are even (see [8, Theorem 3.1 (3.1.2)]). We put

$$v(X, \mathcal{E}) := 1 + \frac{1}{2}((n-2)c_n(\mathcal{E}) + c_{n-1}(\mathcal{E})(K_X + c_1(\mathcal{E}))).$$

Here we note that $r \ge n-1$ since $n+r-1=m \ge i+1=2n-2$. If r=n-1, then

$$v(X,\mathcal{E}) = 1 + \frac{1}{2}(K_X + c_1(\mathcal{E}))c_{n-1}(\mathcal{E}).$$

So $v(X, \mathcal{E})$ is thought to be a generalization of the curve genus $cg(X, \mathcal{E})$ of (X, \mathcal{E}) (see Definition 2.3). Here we define $v(X, \mathcal{E})$ again.

DEFINITION 4.1. Let (X, \mathcal{E}) be a generalized polarized manifold of dimension $n \geq 3$. Assume that $r \geq n - 1$. Then the invariant $v(X, \mathcal{E})$ of (X, \mathcal{E}) is defined as follows.

$$v(X,\mathcal{E}):=1+\frac{1}{2}((n-2)c_n(\mathcal{E})+c_{n-1}(\mathcal{E})(K_X+c_1(\mathcal{E}))).$$

Since $b_{2n-3}(P,H) - b_{2n-3}(P) = 2v(X,\mathcal{E}) - 2q(X)$ by Theorem 3.2 (3.2.3), we can propose the following conjecture.

Conjecture 4.1. Let (X, \mathcal{E}) be a generalized polarized manifold of dimension $n \geq 3$. Assume that $r \geq n-1$. Then $v(X, \mathcal{E}) \geq q(X)$.

Here we study the non-negativity of $v(X, \mathcal{E})$.

THEOREM 4.1. Let (X, \mathcal{E}) be a generalized polarized manifold of dimension $n \geq 3$. Assume that $r \geq n - 1$. Then $v(X, \mathcal{E}) \geq 0$.

PROOF. If r = n - 1, then $v(X, \mathcal{E})$ is the curve genus and then $v(X, \mathcal{E}) > 0$ by [19, Theorem 1]. So we may assume that r > n.

If $r \geq n$ and $K_X + c_1(\mathcal{E})$ is nef, then $(K_X + c_1(\mathcal{E}))c_{n-1}(\mathcal{E}) \geq 0$ because \mathcal{E} is ample. Furthermore $c_n(\mathcal{E}) \geq 1$. So we obtain $v(X, \mathcal{E}) \geq 2$.

If $r \geq n$ and $K_X + c_1(\mathcal{E})$ is not nef, then $(X, \mathcal{E}) \cong (\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(1)^{\oplus n})$ by [22, Theorem 1 and Theorem 2]. In this case $(K_X + c_1(\mathcal{E}))c_{n-1}(\mathcal{E}) = -n$ and $c_n(\mathcal{E}) = 1$. Hence $v(X, \mathcal{E}) = 0$. Therefore we get the assertion.

THEOREM 4.2. Let (X, \mathcal{E}) be a generalized polarized manifold of dimension $n \geq 3$. Assume that $r \geq n-1$.

- (1) If $v(X, \mathcal{E}) = 0$, then (X, \mathcal{E}) is one of the following.
 - (1.1) $(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(1)^{\oplus n}).$
 - (1.2) $(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(1)^{\oplus n-1}).$
 - $(1.3) \quad (\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(1)^{\oplus n-2} \oplus \mathcal{O}_{\mathbb{P}^n}(2)).$
 - (1.4) $(\mathbb{Q}^n, \mathcal{O}_{\mathbb{Q}^n}(1)^{\oplus n-1}).$
 - (1.5) $X \cong \mathbb{P}_{\mathbb{P}^1}(\mathcal{F})$ for some vector bundle \mathcal{F} of rank n on \mathbb{P}^1 , and $\mathcal{E} \cong \bigoplus_{j=1}^{n-1} (H(\mathcal{F}) + \pi^* \mathcal{O}_{\mathbb{P}^1}(b_j))$, where $\pi : X \to \mathbb{P}^1$ is the bundle projection.

- (2) If $v(X, \mathcal{E}) = 1$, then (X, \mathcal{E}) is one of the following.
 - (2.1) $X \cong \mathbb{P}_{C}(\mathcal{F})$ for some vector bundle \mathcal{F} of rank n on a smooth elliptic curve C, and $\mathcal{E}_{F} \cong \mathcal{O}_{\mathbb{P}^{n-1}}(1)^{\oplus n-1}$ for any fiber F of the bundle projection $X \to C$.
 - (2.2) $K_X + \det(\mathcal{E}) = \mathcal{O}_X$ and r = n 1.

PROOF. If $v(X, \mathcal{E}) \leq 1$, then by the proof of Theorem 4.1, one of the following cases occurs:

$$(4.2.1) r = n - 1.$$

(4.2.2) $r \ge n$ and $K_X + c_1(\mathcal{E})$ is not nef.

If r=n-1 and $v(X,\mathcal{E})=0$ (resp. $v(X,\mathcal{E})=1$), then $0=v(X,\mathcal{E})=cg(X,\mathcal{E})$ (resp. $1=v(X,\mathcal{E})=cg(X,\mathcal{E})$) and by [19, Theorem 1 and Theorem 2] we get the above types.

If $r \geq n$ and $K_X + c_1(\mathcal{E})$ is not nef, then $(X, \mathcal{E}) \cong (\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(1)^{\oplus n})$ by [22, Theorem 1 and Theorem 2] and then $v(X, \mathcal{E}) = 0$. Hence we get the assertion.

REMARK 4.1. (1) If (X, \mathcal{E}) is the type (2.2) in Theorem 4.2, then a classification of (X, \mathcal{E}) has been obtained by [20].

(2) If $v(X, \mathcal{E}) \leq 1$, then we see that $v(X, \mathcal{E}) \geq q(X)$.

PROPOSITION 4.1. Let (X,\mathcal{E}) be a generalized polarized manifold of dimension $n \geq 3$. Assume that $r \geq n-1$ and \mathcal{E} is spanned. Then $v(X,\mathcal{E}) \geq q(X)$.

PROOF. Set $(P, H) := (\mathbb{P}_X(\mathcal{E}), H(\mathcal{E}))$. Then H is ample and spanned. So by Proposition 2.1 (2.1) we obtain

$$b_{2n-3}(P,H) \ge b_{2n-3}(P).$$

On the other hand

$$b_{2n-3}(P, H) - b_{2n-3}(P)$$

= $2v(X, \mathcal{E}) - 2q(X)$.

Hence we get the assertion. \Box

REMARK 4.2. (1) By Theorem 4.2 we can determine the type of (X, \mathcal{E}) such that $v(X, \mathcal{E}) = q(X)$ and $q(X) \leq 1$.

- (2) For every integer $q \geq 2$, there exists an example of (X,\mathcal{E}) with $v(X,\mathcal{E}) = q = q(X)$ (This was given by the referee.): Let C be a smooth projective curve with $g(C) = q \geq 2$. We note that there exist vector bundles \mathcal{F} and \mathcal{G} on C with rank $\mathcal{F} = n$ and rank $\mathcal{G} = n 1$ such that $\mathcal{E} := H(\mathcal{F}) \otimes \pi^*(\mathcal{G})$ is an ample vector bundle of rank n 1 on X, where $X := \mathbb{P}_C(\mathcal{F})$, $H(\mathcal{F})$ is the tautological line bundle of \mathcal{F} and $\pi: X \to C$ is the bundle projection. Then we can easily check that $v(X, \mathcal{E}) = cg(X, \mathcal{E}) = q \geq 2$.
- (3) We see that if \mathcal{E} is ample and spanned, rank $\mathcal{E} = n-1$ and $v(X,\mathcal{E}) = q(X) \geq 2$, then (X,\mathcal{E}) is isomorphic to the type in (2) above. This has been proved by [17, Theorem].

Here we give the following conjecture which was pointed out by the referee:

Conjecture 4.2. Let X be a smooth projective variety of dimension $n \geq 3$ and let \mathcal{E} be an ample vector bundle on X with rank $\mathcal{E} = r$. Assume that $r \geq n-1$ and $q(X) \geq 2$. If \mathcal{E} is spanned and $v(X,\mathcal{E}) = q(X)$, then r = n-1.

Remark 4.3. We consider the case where $r \ge n \ge 3$. (The following (a) and (b) were also pointed out by the referee.)

- (a) If $K_X + c_1(\mathcal{E})$ is not ample, then by [4, Main Theorem] (X, \mathcal{E}) is one of the following 6 types and we can calculate $v(X, \mathcal{E})$ and q(X):
 - (a.1) $(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(1)^{\oplus n+1})$. In this case $(v(X, \mathcal{E}), q(X)) = (1 + (1/2) \cdot (n-2)(n+1), 0)$.
 - (a.2) $(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(1)^{\oplus n})$. In this case $(v(X, \mathcal{E}), q(X)) = (0, 0)$.
 - (a.3) $X \cong \mathbb{P}_C(\mathcal{F})$ for a vector bundle \mathcal{F} of rank n on a smooth curve C, and $\mathcal{E} \cong H(\mathcal{F}) \otimes \pi^*(\mathcal{G})$ for a vector bundle \mathcal{G} on C with rank $\mathcal{G} = n$, where $\pi : X \to C$ is the bundle projection. In this case $(v(X, \mathcal{E}), q(X)) = (g(C) + (n-1)(g(C) 1 + c_1(\mathcal{F}) + c_1(\mathcal{G})), g(C))$.
 - (a.4) $(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(1)^{\oplus n-1} \oplus \mathcal{O}_{\mathbb{P}^n}(2))$. In this case $(v(X, \mathcal{E}), q(X)) = (n-1, 0)$.
 - (a.5) $(\mathbb{P}^n, \mathcal{T}_{\mathbb{P}^n})$. In this case $(v(X, \mathcal{E}), q(X)) = (1 + (1/2)(n-2) \cdot (n+1), 0)$.
 - (a.6) $(\mathbb{Q}^n, \mathcal{O}_{\mathbb{Q}^n}(1)^{\oplus n})$. In this case $(v(X, \mathcal{E}), q(X)) = (n 1, 0)$.

Here we consider the case where (X, \mathcal{E}) is the type (a.3) above. Then $1 \le c_n(\mathcal{E}) = c_1(\mathcal{F}) + c_1(\mathcal{G})$ because \mathcal{E} is ample. Hence $g(C) - 1 + c_1(\mathcal{F}) + c_2(\mathcal{E})$

 $+c_1(\mathcal{G}) \geq 0$ and we get $v(X,\mathcal{E}) \geq g(C) = q(X)$. Moreover if $g(C) \geq 1$, then we see that $v(X,\mathcal{E}) \geq q(X) + (n-1) > q(X)$.

We also note that if \mathcal{E} is spanned by global sections, then $c_n(\mathcal{E}) \geq 2$ by [21, (3.4) Theorem] and we obtain $v(X, \mathcal{E}) \geq q(X) + (n-1) > q(X)$.

(b) Next we assume that $K_X + c_1(\mathcal{E})$ is ample. Then we can prove the following:

Proposition 4.2. (1) If $K_X + c_1(\mathcal{E})$ is ample, then $v(X, \mathcal{E}) \ge 1 + \frac{1}{2}(n-1)$.

(2) If $K_X + c_1(\mathcal{E})$ is ample and \mathcal{E} is spanned, then $v(X, \mathcal{E}) > n$.

PROOF. (1) By assumption, we have $c_n(\mathcal{E}) \geq 1$ and $(K_X + c_1(\mathcal{E}))c_{n-1}(\mathcal{E}) \geq 1$. Hence we get the assertion of (1).

(2) Since \mathcal{E} is spanned and $K_X + c_1(\mathcal{E})$ is ample, we see that $c_n(\mathcal{E}) \geq 2$ by [21, (3.4) Theorem]. Hence $(n-2)c_n(\mathcal{E}) + (K_X + c_1(\mathcal{E}))c_{n-1}(\mathcal{E}) \geq 2(n-2) + 2$ because the term on the left is even. Therefore we get the assertion of (2).

The above results suggest that for the case where $r \ge n$ and $v(X, \mathcal{E}) \ne q(X)$ there are some gaps for the value of $v(X, \mathcal{E}) - q(X)$, depending on n. We will investigate this in a future paper.

REFERENCES

- E. Ballico, On vector bundles on 3-folds with sectional genus 1, Trans. Amer. Math. Soc., 324 (1991), pp. 135-147.
- [2] T. FUJITA, Ample vector bundles of small c₁-sectional genera, J. Math. Kyoto Univ., **29** (1989), pp. 1–16.
- [3] T. Fujita, Classification Theories of Polarized Varieties, London Math. Soc. Lecture Note Ser. 155, Cambridge University Press, (1990).
- [4] T. Fujita, On adjoint bundles of ample vector bundles, Complex algebraic varieties (Bayreuth, 1990), pp. 105–112, Lecture Notes in Math., 1507, Springer, Berlin, 1992.
- [5] Y. Fukuma, On the sectional geometric genus of quasi-polarized varieties, I, Comm. Alg., 32 (2004), pp. 1069-1100.
- [6] Y. Fukuma, Problems on the second sectional invariants of polarized manifolds, Mem. Fac. Sci. Kochi Univ. Ser. A Math., 25 (2004), pp. 55–64.
- [7] Y. Fukuma, On the second sectional H-arithmetic genus of polarized manifolds, Math. Z., 250 (2005), pp. 573-597.
- [8] Y. Fukuma, On the sectional invariants of polarized manifolds, J. Pure Appl. Alg., 209 (2007), pp. 99–117.

- [9] Y. FUKUMA H. ISHIHARA, A generalization of curve genus for ample vector bundles, II, Pacific J. Math., 193 (2000), pp. 307–326.
- [10] W. Fulton, Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 2 (1984), Springer-Verlag.
- [11] D. Fusi A. Lanteri, Ample vector bundles with small g-q, Comm. Alg., 34 (2006), pp. 2989–3008.
- [12] F. HIRZEBRUCH, Topological methods in algebraic geometry, Grundlehren der mathematischen Wissenschaften, 131 Springer-Verlag, 1966.
- [13] P. Ionescu, Embedded projective varieties of small invariants, in Proceedings of the Week of Algebraic Geometry, Bucharest 1982, Lecture Notes in Math., 1056 (1984), pp. 142–186.
- [14] P. Ionescu, Embedded projective varieties of small invariants, II, Rev. Roumanie Math. Puves Appl., 31 (1986), pp. 539–544.
- [15] P. Ionescu, Embedded projective varieties of small invariants, III, in Algebraic Geometry, Proceedings of Conference on Hyperplane Sections, L'Aquila, Italy, 1988 Lecture Notes in Math., 1417 (1990), pp. 138–154.
- [16] H. ISHIHARA, A generalization of curve genus for ample vector bundles, I, Comm. Alg., 27 (1999), pp. 4327–4335.
- [17] A. Lanteri H. Maeda A. J. Sommese, Ample and spanned vector bundles of minimal curve genus, Arch. Math., 66 (1996), pp. 141–149.
- [18] A. LANTERI D. STRUPPA, Projective manifolds whose topology is strongly reflected in their hyperplane sections, Geom. Dedicata, 21 (1986) pp. 357–374.
- [19] H. MAEDA, Ample vector bundles of small curve genera, Arch. Math., 70 (1998) pp. 239-243.
- [20] T. Peternell M. Szurek J. A. Wiśniewski, Fano manifolds and vector bundles, Math. Ann., 294 (1992) pp. 151–165.
- [21] J. A. WIŚNIEWSKI, Length of extremal rays and generalized adjunction, Math. Z., 200 (1989), pp. 409–427.
- [22] Y. G. YE Q. ZHANG, On ample vector bundles whose adjoint bundles are not numerically effective, Duke Math. J., 60 (1990) pp. 671–687.

Manoscritto pervenuto in redazione il 10 luglio 2007.