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A Geometric Realization of sl(6, C)

GIOVANNI GAIFFI (*) - MICHELE GRASSI (*)

ABSTRACT - Given an orientable weakly self-dual manifold X of rank two, we build a
geometric realization of the Lie algebra sl(6, C) as a naturally defined algebra
L of endomorphisms of the space of differential forms of X. We provide an
explicit description of Serre generators in terms of natural generators of L.
This construction gives a bundle on X which is related to the search for a natural
Gauge theory on X. We consider this paper as a first step in the study of a rich
and interesting algebraic structure.

1. Introduction.

This paper is a step in a broader program, which aims at finding a
geometric counterpart to the Mirror Symmetry phenomenon, and possibly
a geometric language in which to formulate a physical theory interpolating
between different o-models. While we direct the reader to [G2], [G3] for
more details, we list here only some aspects of this theory to put the
present work into context.

In the Strominger-Yau-Zaslow approach to Mirror Symmetry one has
that two mirror dual Calabi-Yaus should posses (in some limiting sense)
semi-flat special lagrangian torus fibrations f : M — B, f : M — B which
have as fibres flat tori which are dual in the metric sense (see [SYZ], and
[G2] for the terminology and the definitions). As it is widely known, the
major drawback of this approach is that it is very difficult to build special
lagrangian tori fibrations. Usually this construction can be carried out only
when the dual Calabi-Yau manifolds are actually hyperkahler, and the
special lagrangian tori can be viewed as complex submanifolds (with re-
spect to a rotated complex structure), so that the methods of complex al-
gebraic geometry can be put to work.

(*) Indirizzo degli A.: Dipartimento di Matematica “L. Tonelli”, Largo Ponte-
corvo, 5 - 56127 Pisa.
E-mail: gaiffi@dm.unipi.it grassi@dm.unipi.it
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When you do have the fibrations, then the idea is to construct the
mirror map as a sort of Fourier-Mukai transform (see for example [BMP]).
This Fourier-Mukai transform is a correspondence induced by pull-back
and push forward from the space X = M xp M. In the hyperkéhler case
this space is a complex manifold, while in the general case (for example for
Mirror Symmetry for Calabi-Yau threefolds) it is just a real manifold of
(real) dimension 3 - dimc-(M).

BACKGROUND. The notion of (Weakly) self-dual manifold (cf. [G2]) was
conceived in the first place to isolate the geometric aspects of the X above
which are needed to obtain Mirror Symmetry between M and M. We re-
produce here the definition for the reader, while referring to [G2] and [G3]
for all the remarks, examples and observations:

DEFINITION 1.1. A weakly self-dual manifold (WSD manifold for brev-
ity) is given by a smooth manifold X, together with two smooth 2-forms
wy, we, a Riemannian metric and a third smooth 2-form wp (the dualizing
form) on it, which satisfy the following conditions:

1) dw; = dwe = dwp = 0 and the distribution w(l) + wg 1s integrable.

2) For all p € X there exists an orthogonal basis dxy,...,dxy,,
dyt, ... dyy, dys, ... dys, dzy, ... dze,dwy, . .. dwe of Ty X such that the
duy, ... de,,dyt, ... dyk, dy?, ... dy%, are orthonormal and

m m
(@), =Y du; Ady}, (on), = dai Ny,
i=1 =1

m c
(@p)y = > dyt Ady? + " dz; A dw;.
i=1 i=1
Any orthogonal basis of TpX dual to a basis of 1-forms as above is said
to be adapted to the structure, or standard. The number m is the rank of
the structure.

For a more intrinsic definition of WSD manifolds the reader should
refer to [G2]. Here we have chosen the quickest way to introduce them.

When the forms w, ws, wp are covariant constant with respect to the
Levi-Civita connection, we speak of 2-Kihler manifolds. An example of
these comes from mirror symmetry for abelian varieties.

REMARK 1.2.  The form wp is symplectic once restricted to o + 3. We
hawve therefore that w%m(X )
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DErFINITION 1.3. 1) A WSD manifold 1is nondegenerate if
dim(@) Nad), =0 at all points (equivalently if its dimension is 3
times the rank).

2) A WSD manifold is self-dual (SD manifold for brevity) if all the
leaves of the distribution o? + o3 have volume one (with respect to the
volume form induced by the metric)

Using Self dual manifolds, you can give a first naive geometric defini-
tion of Mirror Symmetry as follows:

Two Calabi-Yau manifolds with B-field (M,By) and (M,BM) are
marror dual if there is aASelf—dual manifold X together with surjections
n: X —>Mand7z: X — M such that:

a) ' (wy) = w1, T (wy) = we.

b) The leaves of wi are the fibres of 7.

¢) The leaves of wy are the fibres of m.

d) The induced B-fields on M and M are the ones given.

Here make their first appearence the B-fields By, and By, which are
flat unitary gerbes on M and M respectively, and which are not relevant
for the discussions of this paper. In [G2] it was shown that this picture
works well in the case of elliptic curves, and for some other flat situations.

In the paper [G3] there is a toric construction of a two-dimensional family
X,’Z}Q of WSD manifolds of rank m and (real) dimension 3m 4 2 (see Defi-
nition 3.11 on page 11 of that paper). The construction is inspired by Delzant’s
method of constructing torie projective manifolds (see [Gu]). As the real
parameters k1, ko vary, these WSD manifolds interpolate between physically
significant asymptotic limits, as described in the following. To these mani-
folds one can apply the constructions of the present paper when m = 2. In
this case the resulting degenerate WSD manifolds have dimension 6 + 2.

PHYSICAL MOTIVATION. One of the reasons to introduce SD manifolds
however was to get rid of special lagrangian fibrations, which are so dif-
ficult to construct, and to be able to attack the problem of Mirror Sym-
metry also when these fibrations are not expected to exist. In this more
general context one expects that the Mirror Symmetry phaenomenon will
not be obtained directly from fibrations of a SD manifold to the dual Ca-
labi-Yaus, but via a more sophisticated procedure, which involves a Gro-
mov-Hausdorff type of limit. In [G3] it was shown that for the family of
anticanonical divisors in complex projective space one can build a (real)
two-dimensional family of WSD manifolds, which degenerate in a nor-
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malized Gromov-Hausdorff sense to the correct limits of the mirror dual
Calabi-Yaus. The picture, taken from [G3], is the following:

where M4 and Mp are the large Kéhler and large complex structure limits
of M and M respectively. To be precise, the manifolds which come out of the
costruction of [G3] are (degenerate) Weakly self-dual manifolds or rank m
and dimension 3m + 2 for m > 1.

The point of view of [G3] is very different from the current one in the main
literature on mathematical Mirror Symmetry: instead of considering the
fibre product M x g M (when it exists) as a device for proving Mirror Sym-
metry for Calabi-Yaus, the limiting Calabi-Yaus of Mirror Symmetry are
seen as very special limits of a family of Self-Dual manifolds, which are the
main objects of study. This is actually more in line with what can be found in
the physical literature, where the o-models defining the string theories from
which Mirror Symmetry originates are seen as just “phases” of a unique
theory, which is not necessarily in the form of a g-model but could very likely
be similar to a quantized Gauge theory on an 11-dimensional manifold. To
make this circle of ideas more concrete (and hence more verifiable) at the end
of [G3] it is suggested that one should try to build a natural gauge theory on
Self-dual manifolds: the hope is that once quantized this gauge theory might
interpolate between the g-models associated to the Calabi-Yau’s, and as a
byproduct prove Mirror Symmetry for them. In the present paper we per-
form a first step in this direction, constructing natural bundles on rank two
WSD manifolds. In view of [G3], this is potentially relevant to Mirror Sym-
metry for quartic hypersurfaces in P?, i.e. K3 surfaces. Of course one can
always put a gauge bundle on the Self-dual manifolds “artificially”, but a
natural bundle which depends only on the geometric structure is much more
appealing. We ignore here the issue of which action to put on the theory, but
it too should be a natural geometric one.

Finally, on [GG] we analyzed the situation for rank three WSD mani-
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folds, and we found that in this case the corresponding natural bundle is
formed by complex Lie superalgebras. We were able to find a geome-
trically motivated real form, and to split it into simple factors. The results
of [GG] confirm the suspicion that on a WSD manifold of high enough rank
there could be enough natural algebraic bundles of operators to build in-
teresting gauge theories.

THE CONSTRUCTION OF L. From a physical point of view the case of
Calabi-Yau threefolds (i.e. rank three WSD manifolds) or fourfolds (i.e.
rank four WSD manifolds) would be the most interesting one to start with.
However, its technical difficulty convinced us to start more modestly from
the case of Calabi-Yau two-folds (i.e. K3 surfaces) which correspond to
rank two Weakly Self-dual manifolds. We also considered only orientable
nondegenerate Weakly Self-dual manifolds of rank two (hence of dimen-
sion 6): one can immediately verify that the relations among the resulting
generators of the algebra £ remain unchanged with respect to the de-
generate case.

This could be considered a proof of concept from a physicist’s point of
view, however Mirror Symmetry for K3’s is in itself very interesting
mathematically, so we hope that our results could have some useful geo-
metric consequences. The rank three case is treated in our subsequent
[GG], as mentioned in the previous section of this introduction. The main
result of the present paper is the following (which is a geometric restate-
ment of Theorem 5.11):

The Lie algebra sl(6, C) acts via canonical operators (depending only
on the geometric structure) on the smooth differential forms of any ori-
entable WSD manifold of rank 2.

This action generalizes naturally the action of sl(2, C) on smooth dif-
ferential forms of any almost Kéhler manifold, and is induced by a bundle
action on the exterior power of the cotangent bundle.

Recall that a WSD manifold is a Riemannian manifold with three
“compatible” closed differential forms. We will build a Lie algebra of
pointwise operators on complex differential forms on X, as smooth sections
of a bundle of Lie algebras of operators on the complexified cotangent
bundle of X. To start, one can define the following operators:

DEFINITION 1.4. For ¢ € Q1. X,
Lo@=wpAg, L@ =-weNg,  La(@)=w1 N
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One can notice immediately the strong resemblance of the operators
above with the Lefschetz operator of Kihler geometry. Indeed, one can
elaborate on this similarity, and use the metric to define the adjoints
A; = L;f (using a pointwise procedure, as in the almost Kihler case).

Simply using the L; and the A4;, one can show that the algebra generated
is isomorphic to SL(4, C) ([G2]). However, there are other natural differ-
ential forms on a WSD manifold (which do not have a counterpart in the
Kihler case), namely the volume forms of the distributions i, wy, wj; of
vectors which contract to zero with the forms w;, we and wp respectively. If
one calls Vy, V1, Vs the corresponding wedge operators, and Ay, A1, Az
their adjoints, the complexity of the calculations to describe the generated
Lie algebra grows a lot. We called £ the algebra generated by the L;, V;
and their adjoints, and L its complexification. To study £ we introduced
an operator J, which is a complex structure on each of the two-dimensional
distributions mentioned above and generates a group isomorphic to
S0O@2, R) (recall that we are in the “hyperkahler” case, corresponding to
Mirror Symmetry for K3’s, so an “extra” complex structure should not be
surprising; moreover the holonomy of a WSD manifold in which all
w1, we, wp are invariant is actually always included in the group generated
by J). One checks that all the operators introduced commute with it:

Vi (L, J] = [4;,J) =V}, J1=[4;,J]1 =0

and therefore one can try to decompose A" T’ X with respect to J and then
use Schur’s Lemma to reduce to the study of the operators on the isotypical
components. One should mention that in the (very) good cases (for instance
2-Kihler manifolds) the operators above are all covariant constant with
respect to the metrie connection, and define an action on the cohomology of
X much in the same way as in the Kéhler setting the operators L and A do
(due to Hodge-type identities). We do not explore this aspect here, although
it may be relevant to the (homological) mirror map construction.

Coming back to the construction, we point out the inclusion of the Lie
algebra L inside a copy of the Clifford algebra Clgg.

Using this Clifford algebra one can identify “degree two” or “quadratic”
operators (in a way similar to the ones involved in the Spinor re-
presentations on standard Spin manifolds) and among these the SO(2, R)-
invariant ones. A posteriori, it turns out that the operators of L @ (J) are
all the J-invariant operators of “degree two”, and this strengthens the
rationale in our selection of natural operators.

As alast step one finds that inside 4*7T*X there is an SO(2, R)-isotypical
component of dimension 6, and by direct computation we prove that indeed
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the operators restricted to this sub-representation determine a copy of
sl(6,C) (with the defining representation). Using the bound on the di-
mension of £ obtained computing “quadratic” invariants, one then shows
that the representation on this isotypical component is faithful. This pro-
vides as a byproduct a method for giving presentation of standard Serre
generators of L, explicitely written in terms of the natural geometrical
generators.

2. Basic operators.

In this section we fix a point p in the WSD manifold X. The WSD
structure splits the cotangent space as T, X = Wo & W1 @ W where the
W; are three mutually orthogonal canonical distributions defined as:

Wo={¢cT,X|$N0f=¢Af =0},
Wi={¢ecT;X|$N0j=¢Nwp=0},
Y%:{¢EQX|¢M£:¢Aw%:m.

The WSD structure also determines canonical pairwise linear identifi-
cations among W,, W; and Ws, so that one can also write T;;X =W, o R

or more simply
T:X = W @g R®

where W = Wy =2 Wy = W,.
Let us now come back to the canonical operators L; mentioned in the
introduction:

DEFINITION 14 For ¢ € QF. X,
L@ =wpN¢,  Li(@)=-waN¢,  La(¢)=w1 N

We now choose a (non-canonical) orthonormal basis yy,7, for W,
and this together with the standard identifications of the W;
determines an orthonormal basis for T;;X, which we write as
{fvj=y7®e|1=12 7=0,1,2}. We remark that the v; are an
adapted coframe for the WSD structure, and therefore we have the
explicit expressions:

w1 = V10 A V11 + V20 N Va1,

w2 = V19 A V12 + V20 A Va2,

wp = V11 A V12 + V21 N Va2.
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A different choice of the y;, y, would be related to the previous one by an
element in O(2, R) or, taking into account the orientability of X mentioned
in the Introduction, an element of SO(2, R). The Lie algebra of the group
S0(2, R) expressing the change from one oriented adapted basis to another
is generated (point by point) by the global operator J:

DEFINITION 2.1. The operator J € Endg(Q*(X)) 1s induced by its
pointwise action on the AT, X for varying p € X, defined in terms of the
standard basts vy as

J(vy1j) = vy, J(yj) = —vy;  forje€{0,1,2}

and Jw Aw) =J@) Aw +vAJ(w) forv,w € A*T;X.

REMARK 2.2. As J commutes with itself, it is well defined, in-
dependently of the choice of an oriented adapted basis.

Using the chosen (orthonormal) basis, one can define corresponding
(non canonical) wedge and contraction operators:

DEFINITION 2.3. Let i€ {1,2} and j <€ {0,1,2}. The operators Ej
and I; are respectively the wedge and the contraction operator with the
form vi; on \"T*X (defined using the given basis); we use the notation

to indicate the element of TpX dual to vy € T)X:

0
61)1-]-

8?;15
Ej@ =ving,  1y¢) =

NE
PRrROPOSITION 2.4.  The operators Ey;, I; satisfy the following relations:
Vi,j, k0 EyEn=—Euly, iy =—1Iuly,
Vi,j  Eyly+1;Ey =1d,
V@) # kD) Eijly = —IyEy,
vi,j  Ej=1y I;=Ej;

where x is adjunction with respect to the metric.
Proor. The proof is a simple direct verification, which we omit. [

It is then immediate to verify that:
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ProposiTION 2.5.  J can be expressed as

2
J =) (Byly — Eyly)
j=0
on the whole \* T, X. From this expression and the previous proposition
one obtains that J* = — J, i.e. for every p the Lie algebra generated by J is a
subalgebra of o( \* T, X) isomorphic to so2, R) = R. Moreover, the eu-
ponential images inside Autr (2" (X))of the operators of type tJ fort € R
form a group isomorphic to SO2, R) = S, as this isomorphism holds for
the (faithful) restriction of the group action to T) X.

Using the (non canonical) operators Ej; we can obtain simple expres-
sions for the pointwise action of the other canonical operators, the volume
forms V;:

DEFINITION 2.6. For ¢ € A" T, X,
Vo(@) = E10E2(9), V(@) = EnE'x1(9), Va(@) = E12E2(9).

Remember however that the operators V; do not depend on the choice of a
basis, as they are simply multiplication by the volume forms of the spaces W;.

We use the v;; also as a orthonormal basis for the complexified space
T;; ®gr C (with respect to the induced hermitian inner product). We in-
dicate with the same symbols V; the complexified operators acting on the
spaces A\ T, X.

The riemannian metric induces a Riemannian metric on 7’) X and on the
space \" T, X.

DEeFINITION 2.7. Forj € {0,1,2}
Ai=1L;, A=V
By construction the canonical operators L;, V}, 4;,A; on \* T;X are the

pointwise restrictions of corresponding global operators on smooth dif-
ferential forms, which we indicate with the same symbols: for j € {0,1,2},

Summing up:
DEFINITION 2.8. The x-Lie algebra L 1is the x-Lie subalgebra of
Endg (Q°(X)) generated by the operators
{Lja‘/vj'vAijj |f07ﬂ J =0, 1,2}.
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The x operator on L is induced by the adjoint with respect to the Rie-
mannian metric. The x-Lie algebra Lo is LQ C, and is in a natural
way a *x-Lie subalgebra of End: (Q?(X)). The x operator on L is in-
duced by the adjoint with respect to the induced Hermitian metric.

The canonical splitting T;X =Wy ® W; & W, together with the cano-
nical identifications Wy = W; =2 W, induce an action of the symmetric
group Ss, which propagates to A" 7*X and to its C> sections. At every
point, the action can be written explicitly in terms of the basis as

0(7)1']') = Via(j)-
The induced action on endomorphisms via conjugation, a(¢) = g o go a1,

preserves L. Indeed, one can check directly using the basis v;; at every
point that for ¢ € S

a(Vj) = Vi), a(Lj) = &(a) L)

Since S3 acts on L by conjugation with unitary operators, its action
commutes with adjunction (the * operator), and therefore

a(4)) = A, a(4j) = &(0) Ao()-

Moreover, one also has that ¢(J) = J which means that the action of S3
commutes with that of se(2, R).

3. The action of so(2, R).

When one deals with mirror simmetry for 2-Kihler manifolds (see the
Introduction), the WSD manifolds which arise have the property that the
forms w;, wy and wp are covariant constant with respect to the metric. In
this case, the maximal possible holonomy of the WSD manifold X is in-
cluded in the so(2, R) generated by the operator J. We will show now that J
commutes with L. Our proof will be strictly algebraic, so that the com-
mutativity between so(2, R) and L will hold also on WSD manifolds for
which the holonomy is more general.

DEFINITION 3.1. Given n € 7, we indicate with V,, the one dimensional
complex representation of SO2, R) = S =~ R/7 given by the character:

0 — ean()

PROPOSITION 3.2. Under the SO@2, R) representation induced by the
operator J, for any p € X:
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1) The space \' (T X,,) splits as

VPR
2) The whole space \* (Tt X,) splits according to the following picture:
N (T:X,) = Vo
N (T:X) = Ve @ vy
N (TeX,) = L4 S I 4 S R
NT:X) = Vs @ V) @ VP @ W
N (T:X,) = Ve e v e WP
N (TeX,) = S I
N (TeXy) = Vo

Proor. 1) The space T X, is a direct sum of the three W), and each one
of these is the standard two dimensional real representation of so(2, R). We
therefore diagonalize the representation introducing a new basis for each
W = (vyj, vg):

Wi =Vy + vy, W= vy — Wy
From the definition of J, one has then for every j € {0,1,2}
J(w]) = —wj, J(wj) = ;.
Therefore one has for every j € {0,1,2}
(wp) =V, (W) = V1.

2) To prove the general case, we use the fact that the operator J determines
an almost complex structure on the manifold X, compatible with the metric.
From this, following standard arguments, the complex differential forms
and also the elements of \* T X, for any y € Y can be divided according to
their type:

dimX

* P9
AT:x, = P ATX,

n=0 p+q=n

In the notation adopted in the proof of the first statement, one has

P.q
NTEXy = iy A+ Ny, AT, A= AT, | a0y € {0,1,2).
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From the definition of the action of J one has therefore that for any p, ¢
P.a .
* ~ /&
AT X, = VE

withk = (2 ) ( 2 ) from which the second statement of the proposition can
be esily deduced. O

THEOREM 3.3. The operators L;,V; for j € {0,1,2} commute with the
generator J of so(2, R).

Proor. We prove the statements by a direct computation using the
basis v;;; moreover, using the action of Sz (which permutes the L;, V; and
fixes J), it is enough to prove the commutativity for L and V. It useful to
rewrite wy (and hence Ly which is wedge with @) in terms of the basis
generated by the w;:

Wy = V11 A Vi2 + Va1 A Ve = 5 (W1 AW — Wa A W)

DO| =

and then:
[, Lol(wi, A -+ ANwiy, AT, A=+ ATE;,) =

1 _ _ _ _
J —(wlA?/Uz—?/Uz/\wl) /\(wil/\--~/\w1;p/\w,-1/\-~-/\qu)

= o

+(§(w1 AW — Wo /\,wl)> AT (Wi, A -+ Nwy, N}, A -+ - AT,

—

—é(wl A Wg — we A W) /\J(wi1 ARRRNAY///N AWy, A .-./\@jq)'
Therefore the result follows from the fact that
1
J(é(wl A We — W2 /\@1) =0

as w; and Wy, have opposite weight with respect to J for any j, k.
Similarly, [/, V] = 0 follows from the fact that for any «

1
Vo(d)zvlo/\vgo/\dzé Wo N\ Wy N o
O

From the previous theorem one obtains the following corollary, which
holds on any WSD manifold (not necessarily 2-Kéhler):
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COROLLARY 3.4. The algebra L commutes with the action of so(2, R)
mduced by J.

Proor. Wealready know that [J, L;] = [J,V;] = 0forj € {0,1,2}. The
corresponding commutation relations for the adjoint generators A;, A; of
L follow from the fact that J* = —J, as noticed in Proposition 2.5. O

REMARK 3.5.  From Schur’s lemma it follows that the columns of the
diagram of Proposition 3.2 are preserved by the action of L.

4. An irreducible representation of L.

Looking at the table in Proposition 3.2 we notice that the second column
from the left is a representation of £~ (by Remark 3.5) of dimension 6:

V%Vﬂ;gz <7/l)()/\7/{)1, Wo N\ We, W1 AW, Wy AWy N\ we AWy,

wWo N\ w1 A\ we N\ Wi, ?/U()/\wl/\%l)z/\@2>.

In this section we will compute explicitely this representation.
Using the above described basis, it is not difficult to compute the ma-
trices by hand:

ProrosiTiON 4.1.  Indicating with f the ordered basis for V indicated
above, the matrices for the (vestrictions to V of) the generators of L are the
Sfollowing:

-2 0
—2

Mp(Lo) = . Mg(doy) =

ol cooco
DO|—
coococo

coocococo

coocococo
coocococo
coocococo
coocococo
coocococo
coocococo
coocococo
coocoo
cocooco

DO

)

Mpy(Ly) = » Mp(dy) =

O OO O O
SO OoOOo OO
S OO OO
SO oo OO
SO OO OO
SO OO OO
S o oo OO
SO oo OO
S o oo OO
S OO OoON
SO oo OO
\
OON

DO
o
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00000 0 000000
00000 0 000200
000000 000020
Myl = g1 9 00 0| MP=109090000]
0021000 000000
000000 000000
000000 000 0 00
000000 000 0 00
000000 000 -2 00
Mﬁ(VO)_00§000’M5(A0)_000000
000000 000 0 00
000000 000 0 00
0 0 0000 0000 0 0
0 0 0000 0000 2 0
0 0 000 0 0000 0 0
MV = 1o 0 000 o0f MA=10000 00
0 2000 0 0000 0 O
0 0 0000 0000 0 O
00000 0 00000 —2
000000 00000 O
00000 0 00000 0
MgV2) = 16 0000 0f MW)=1450000 o
00000 0 00000 0
100000 00000 O

Proor. Direct computation using the basis generated by the w;. O

COROLLARY 4.2. The algebra generated by the restriction of Lo to V is
1somorphic to sl(6, C), with V its natural representation.

One can sum up the computations above in the following theorem:

THEOREM 4.3. There is an exact sequence of Lie algebras
0—-K— Lc—sl6,C)—0

given by the restriction to V.
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In the next section we will prove that K = {0}, and therefore the re-
presentation V is faithful and £ = sl(6, C).

5. Quadratic invariants.

We begin by showing that the action of Lie algebra L is induced by
a (non-canonical) Clifford algebra representation. We use for simplicity
the canonical identification 7" X, =~ TX,, without further comment, so

that if {v;} is a basis for 7 X, then {88--
basis for T, X. Vi

} is the corresponding dual

DEFINITION 5.1. For p € X, the Clifford algebra C, is
Cp=CUT X T,X,q

with the quadratic form q induced by the metric

Viaja hvk <vij>vhk> = Oa
.. g 0
V’L7]7h/7k <8TU7aThk> _Oa
.. 0
V(Z,J) 7é (h7 k) v?]aav—hk = Oa
.. 0 1
V1,J <W’57ij> =3

REMARK 5.2. The Clifford algebras C, for varying p define a Clifford
bundle C on X, as the definition of C, is independent on the choice of a
basis. Indeed, the quadratic form used to define it is simply induced by — =

2
times the natural bilinear pairing TyX @ T)X — R.

ProrosiTiON 5.3.  The Clifford algebra C, has a canonical representa-
tion p, on AT, X, induced by the operators Ey; and Ijj via the map

0
pywi) = By, py (@) =1
ij

Proor. The Clifford relations
v +yd=—2(¢,y)
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are precisely the content of Proposition 2.4. The representation is canonical,
even if the operators E;; and I; are not, because it can be defined in a basis
independent way as

0 0
/’p(v)(oc) =vAuq, Py <%) =3 —
O

Abusing slightly the notation, we will identify C, with its (faithful) im-
age inside Endg ( \" rx ), and we will omit any reference to the map Pp-
Actually, as the representation above is a real analogue of the Spinor re-
presentation, it is easy to check that the map p, is an isomorphism of as-
sociative algebras. One then has:

DEFINITION 5.4. The linear subspace Cf, of C, is the image of the natural
map /\2 (TyX ®T,X) — Cp. The linear subspace Cg of C, is the subspace
generated by 1.

Recall that C?, is a Lie subalgebra of C, (with the commutator bracket).

PROPOSITION 5.5.  The Lie algebra L, and the operator J sit inside Cizo
forallp € X.

Proor. The operators L;, the 4;, the V; and the A, lie inside C2 @ CO by
Proposition 2.4 and the fact that w;, w wp he in /\ T*X The operator J hes
inside (32 @ CO by Proposition 2.5. By definition the elements C2 are com-
mutators and therefore have trace zero in any representation, and hence
also in the p,. Moreover, again by inspection all the generators of £, have
trace zero once represented via p,, (they are nilpotent), and therefore they
must lie inside C2 The operator J is in the Lie algebra of the isometry
group, and therefore it too has trace zero and hence sits inside C’2 As C2 is
closed under the commutator bracket of Cp, and this commutator commdes
with the composition bracket of operators, we have the conclusion. O

REMARK 5.6. Giving degree 1to the operators Ey; and degree —1 to the
operators I, we induce a 7-degree on C,. This degree coincides with the
degree of the operators induced from the grading on the forms from

N T*X.

REMARK 5.7. For any p € X, the Clifford algebra C, is isomorphic
to Clgs, as the metric used to define it has signature (6,6). The
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previous proposition therefore shows that L, is a Lie subalgebra of
C'lg,6 = spin(6,6) = so0(6,6), generated by smooth global sections of the
Clifford bundle C.

The operator J acts on all of C, by adjunction with respect to the
commutator bracket, and sends its quadratic part C[Q, to itself from Pro-
position 5.5.

We will show that the space of J-invariants inside 6723 (the “quadratic” J-
invariants) coincides with L. To deseribe it explicitely, let us introduce the
following notation:

DEFINITION 5.8.
ij ZElj—i—ZEQj, E@j :Elj—ZEgj,
ij :Ilj _ZIQJ', I@j lej—‘rllgj.

LEMMA 5.9.  The adjoint action of the operator J on By, Ly, B, Iz, is:
[J,ij] = - Zija [Ja Iw/] = lej‘a
[J,Em] = IE,L—Uj, [J,IE] = 7@1@..

Proor. It is enough to consider the corresponding J-weights of
the wi,@_vj. O

ProrosiTION 5.10.  The following 36 operators provide a linear basis
for the quadratic J-invariants:

D) (B, B, 1, By B |, By, B, 1 By, B 1, By, By 1, [ By, B 1

(2) [[wmlﬁl]y [Iwoylﬁz]a [11017IE2]7 [leylm,]a [11027IE0]7 [I’M)zylﬁl];

3) (B, By |, (B, B, 1, (B, , B, I

4) [Iwmlwo]a [le ) Iﬁ;l]a [11027]%2]3

5) (Ewys Loy 1 By Ly 1, [y s Loy 1, (B s Lay 1y [y Lo s [ By, Ly 1

6) (B, I, ), (B, I, ), (B, I, ), (B, I, ), (B, Iy ), (B, , I 1

(1) [Ewy, L), [y Loy 1, (B Ly ), (B, Iy ), (B, s I, 1, LB, I, 1

Proor. The J-weight of a bracket of J-homogeneous operators is the
sum of the respective weights. The quadratic “monomials” (with respect to
the bracket) in the £, 1, Ez,, Iy, are all J-homogeneous, and therefore to
find a basis of J-invariant quadratic operators it is enough to identify the J-
invariant quadratic monomials. To be J-invariant means simply to have
weight zero, and the computation of the J-weight of the quadratic mono-
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nials follows immediately from those of Ky, I, B, Iz, which are re-
spectively —2,2,1, —u. O

We end this section with the following:

THEOREM 5.11. In the exact sequence of Theorem 4.3 the kernel K is
equal to {0}. The algebra L is therefore isomorphic to sl(6, C).

PrOOF. Since L is included in the Lie algebra of quadratic invariants,
it is enough to show that J & L, as from this and the previous proposition it
follows that dim(L¢) < 35. As L maps surjectively to sl(6, C) which has
dimension 35, the kernel must be zero. When restricted to the sub-
representation V, the generators of £~ have all trace zero by inspection of
their matrices. However, by definition of V, J restricted to it is multi-
plication by —2:, and has therefore trace equal to —12:. O

COROLLARY 5.12. The Lie algebra L & (J) equals the Lie algebra of
quadratic invariants inside CIZO.

6. A geometric presentation of Serre generators.

In this section, to gain a better geometric understanding of the re-
presentation L of sl(6, C), we explore in greater detail its relation to the
geometric structure of a WSD manifold. In particular, we give a pre-
sentation of a natural choice of Cartan subalgebra and Serre generators in
terms on the geometric generators L;, 4;, V;, A;.

The L; operators are similar in nature to the Lefschetz operators of a
Kéhler manifold. This analogy is what provided the initial interest in the
algebraic structure of L. Similarly to the corresponding standard con-
struction of a representation of sl(2, C), we define

DEFINITION 6.1. Forj € {0,1,2}
H; = [L;, 4;].

These operators are self-adjoint, as L} = /; by definition. As in the
context of Kéhlerian geometry, for every j the algebra (L;, 4;, H;) turns
out to be a copy of sl(2, C). Moreover, the following proposition shows that
the operators H; are semisimple on the whole algebra L, and therefore
generate a toral subalgebra of L¢:
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PROPOSITION 6.2. The geometric operators H; generate a toral sub-
algebra of L¢, and the following relations hold: for j # k € {0,1,2}

) [H, L] =2L;,  [HjA]=—24;,
@) [H;, L] = Ly, [H;, 4] = — Ay,
@) [H;,V;1=0,  [HjA]=0,

@) [H;, V] =2V, [H;, Al = — 24;.

Proor. In view of Theorem 5.11, at this point the quickest method of
proof of this proposition is to refer to the explicit matrices of the (faithful)
restriction of L~ to V. O

The whole algebra L splits into a direct sum of weight spaces with
respect to (Hy, H1, Hs), as this subalgebra is toral. The weight of L, with
respect to the basis dual to Hy, Hy, Ho is:

ar, = (or,(Ho),or,(H1),ar,(Hz)) = 2,1,1).
The full list is:

or, = (2,1,1), Ogy = — ALy,
or, = (1,2,1), oy = —ar,,
or, = (1,1,2), Oy = — 0L,
ay, = (0,2,2), Oa, = — Oy,
ay, = (2,0,2), o4, = —ay,,
ay, = (2,2,0), 04, = — Ay,

To find a natural geometric expression for two ad-semisimple elements
which complete (Hy,H1,Hsz) to a Cartan subalgebra we look at the gen-
erators V; and A;. However, it turns out that the natural candidates [V}, A;]
already lie in the algebra (H, H1, H2). We instead build the new operators
by “subtracting” from the V; their weight ay;:

DEFINITION 6.3. We define:
So = ll[Vo, 411, 421, Lo],
Sy =ll[V1, 421, 40, L1],
Sg = o[[[Va, Ao, A1], L]
and denote by H the Lie algebra (over C):
H = (Hy,H1,H2,80,81,82).
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The coefficients + which appear in the formulas above are dictated by
the fact that with this choice the (diagonal) matrices of the S; restricted to
V have integer entries.

PROPOSITION 6.4. The algebra H is a Cartan subalgebra of L. More

precisely, the following are the diagonals of the operators Hy, ... ,Ss once
restricted to V

-1 -1 0 -1 1 0

-1 0 -1 1 0 -1

0 -1 -1 0 -1 1
Ho: 0 71‘112 1 7f]z: 1 ,So: 0 7Sli 1 7S22 1

1 0 1 1 0 -1

1 1 0 -1 1 0

Proor. The computation of the matrices above shows that, once
restricted to V, the algebra H spans the space of diagonal matrices of trace
zero in the given basis. O

REMARK 6.5. The computation above shows also that operators
So, 81,82 safisfy the relation
So+S1+8S2:=0.

Even if from the previous proposition we know that H is maximal toral
inside L, the natural geometric generators L;, 4; are not eigenvectors for
the adjoint action of the Sjy. At this point however it is possible to single out
in natural geometric terms operators of £ which have “pure” weight with
respect to the algebra H and which contain in their linear span the L;, 4;:

DEFINITION 6.6. Forj € {0,1,2}
Ly = =2L; + [S;, L], Lo; = 2L; + [S;, L],
Ay = =24 =[S, 4, Mgy = 24; =[S, 4j].
PROPOSITION 6.7. Indicating with e} the 6 x 6 matrix with a 1 in

position k (row) and h (column) and zero otherwise, the matrices of the
operators L and Ay restricted on V are:

_ 9,2 _ 1 _ 3
Ly =2¢3,  Lu=—2e, Lpp=—2e,
_ 1 _ 3 _ 9,2

Loy = —2e5, Loy = —2¢;, Lo = 2ej,
6 _ 4 _ 5
/110 = 862, /111 = —861, /112 = —863,

/120 = —86?, /121 = —863, /122 = 86‘21.
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COROLLARY 6.8. We have the following relations for the operators of
L restricted to V:
(Hy, Lyl = A+ 6yp)Lyy,  [Hy, Ayl = — A + 0y Ay,
[Sk, Lijl = (= D1 = 80)Lig,  [Sk, 451 = (= D'(1 = 3545y,
[Sk, Vi1=0,  [Sk,4;1=0.

Guided by all the explicit computations of the action on the isotypical
component V = V% made up to this point, we now define in terms of the
natural geometric operators a set of Serre generators for the algebra L.

DEFINITION 6.9.

1 1
e = Z[LZO’Al]’ fi= Z[Vl,/lzo],

1 1
e = Z[LZZ’AO]’ fo= Z[VO,Azz],
ez =V, f3 = Ay,

1 1
ey = Z[LQ’AO]’ fy= Z[Vo,/hz],

1 1
e = Z[L107A1], f5= Z[Vl,/llo]-

Moreover, for all i € {1,...,5} we define h; = le;,f;].

As the e; have by construction associated matrix e§ .1 once restricted to
V and the f; are their respective adjoints, one gets:

ProPOSITION 6.10. The operators e;,f;, h;. satisfy the Serve relations
for sl(6, C) and the h; span the Cartan subalgebra H:

1
hy zé(Hl—Hz—Sl—SzL

h :%(HO_HI +82),

s = (~Ho + Hy + Hy),
o = 3 (Hy — Hy — ),
h5:%(Hl —Hy+ 81+ 8s).
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It would be interesting as a last remark to identify in the list of
quadratic invariants the geometric operators L;;, 4;;, V;j, A;, the algebra 'H
and the so(2, R) generator J. To do this one could of course use the explicit
matrices for the quadratic invariants once restricted to V, which are not
difficult to compute. One can however get very quickly a qualitative picture
by using the notion of multidegree which we now introduce.

The decomposition T*X = W, ® W; ® We induces naturally a multi-
degree on \" T X with values in 73, which we indicate with mdeg. This
follows from the equation

n p q r
ATix= @ AWeC)e AWieC)e AWeoC).
p+qt+r=n
We notice furthermore that the (complexified) decomposition above is
preserved by the operator J, and therefore mdeg commutes with the action
of so(2, R).

PROPOSITION 6.11.  The operators L;,V;, 4;,A;, H;, S; are mdeg-homo-
geneous, with multi-degrees:

mdeg(Lo) = (0,1,1), mdeg(L1) = (1,0,1), mdeg(Lg) = (1,1,0),
mdeg(4y) = (0,—-1,—-1), mdeg(A;) =(—1,0,-1), mdeg(As) =(—1,-1,0),
mdeg(Vy) = (2,0,0), mdeg(V1) = (0,2,0), mdeg(Vs) = (0,0,2),
mdeg(Ay) = (—2,0,0), mdeg(4;) = (0,-2,0), mdeg(Az) = (0,0, —2),
mdeg(Hy) = (0,0,0), mdeg(H1) = (0,0,0), mdeg(Hz) = (0,0,0),
mdeg(Sy) = (0,0,0), mdeg(S1) = (0,0,0), mdeg(Sz) = (0,0,0).

Proor. The values for mdeg for the L; and the V; follow immediately
from mdeg of the corresponding forms and the dual (contraction) operators
have opposite value of mdeg. The remaing values can be computed using the

additivity of mdeg with respect to the bracket. O
ProposITION 6.12.  Let {j,k,l} ={0,1,2}. Then:
Span(Lyj, L) = Span([Ey,,Ez] By, Ez]),
Span(Myj, Ay) = Span([Lw,, Iz, Uy, Iz]),
Span(V;) = Span ([ij , E@j]) ,
Span(A4;) = Span ([ij , I@j]> ,
HoSpan(J) = é Span([Ew, L, ), [Ex,I5,]).

m=0
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Proor. The mdeg of the L;; is the same of the corresponding L;,
and similarly for their adjoints. The mdegs of the quadratic monomials
are immediately computed as they are the sum of those of their com-
ponents. For example, mdeg(E,,) = mdeg(Ey,) = (1,0,0), mdeg(E\y,) =
= mdeg(Ey,) = (0,1,0) and therefore mdeg([E,,, Ey ]) = (1,1,0), equal
to that of Lis and Los. O
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